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Let D be an ample divisor on a smooth projective algebraic variety
X. We will define the notion of a vector bundle 7/ on A' to be
strongly stable with respect to D. If X has characteristic zero this
definition is the same as the usual definition of stability. In general
it implies stability.

Let / : Y —> X be a finite morphism. Then we have the bundle
/ T on 7 which has the ample divisor f~ιD. If W is stable
with respect to D, we will prove

THEOREM 1 (Characteristic zero). f*W is the direct sum of stable
bundles of the same slope with respect to f~ιD, i.e. f*W is poly-stable.

Consider the special case of a finite morphism / : Ψn —• Ψn . For
instance / is given by raising the homogeneous coordinates to the
kth power. Then we have an essentially unique choice of D and
f~ιD. Our result is a strong version of the above problem. When
rank W = 2 this is due to Barth [5].

THEOREM l.IfW is a strongly stable bundle on Fn, then f*W is
strongly stable.

By Theorem 1 in characteristic zero we need only see that f*W is
indecomposable. One may apply this in particular to the Mumford-
Horrocks' bundle on P 4 and thereby produce many other rank two
bundles on P 4 with larger Chern classes. See [6].

1. Stability and strong stability. Let D be an ample divisor on
a smooth projective variety X. Let W be a torsion-free coherent
sheaf on X. The slope μ(W) = άtgW/vankW where d e g ^ =

Then W is stable with respect to D if μ(&) < μ{W) for all non-
zero coherent subsheaves & ^ *W.

For strong stability we will assume that W is locally free. When W
is strongly free if for all 0 < i < r a n k ^ , Γ(X, ^f®'1 ® Λ* ^ ) = 0
for all invertible sheaves 3* on X such that deg-S? > iμ{W).
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LEMMA 3. Strongly stable implies stable.

Proof. Let 0 Φ & C w be a coherent subsheaf of W of rank i.
Then we have the obvious homomorphism i: f\ι & —> f\ιW. Let
-S* be (Λ / ^'/torsion) d o u b l e d l i a l . Then ί induces an inclusion 3> c
Λ' a r . Thus if a r is strongly stable then deg-S" < ι/ι(2r) but μ ^ ) =
deg.27/. Thus //(^) < //(ar) and hence 3Γ is stable. D

Thus one easily checks that stable means that no section of
f\ι W satisfies the Plίicker relations at the generic point X if degi? >

Next we will use some analysis.

PROPOSITION 4. If char(X) = 0 then strongly stable o stable.

Proof. Assume that W is stable. Let W be a Kahler metric with
C\{D) as cohomology class. Then by the theorem of Donaldson-
Uhlenberg-Yau W admits a Kahler-Einstein metric. As mentioned
in [4] Λ* ̂  has a Kahler-Einstein metric of slope iμ(W). Thus by
Kobayashi's theorem /\ι W is the direct sum of stable bundles &> of
slope //ι(ar). In particular each 9^ does not contain an invertible
sheaf Sf of deg > iμ(W). Hence /\ι W has the same property. D

2. The proof of Theorem 1. We will prove Theorem 1 by induction
of dimension X = n. Let h = dim W.

If n = 1 then 3Γ has a Hermitian-Einstein metric for some Hermi-
tian metric coχ on X. Thus /*3Γ has a Hermitian-Einstein metric
for the degenerate metric / V z on Y which vanishes at the ramifi-
cation points of / . Let ^ c f*W be a coherent sheaf of rank / ,
which we may assume is a subbundle as Y is a smooth curve. Thus
S? = /\h^ c f\h f*W is a subbundle. Hence the curvature of & is
pointwise smaller than that of /\h f*W.

We immediately conclude that f*W is semi-stable. If the deg-S* =
slope /\h f*W 9 then ^f has a Hermitian-Einstein metric with respect
to f*&χ. Then we have a section of 2?®~x <g>/\h f*W corresponding
to the inclusion but this sheaf has zero curvature. As usual we see that
9* is a direct summand of f*W.

For the inductive step let X' be a general hyperplane section of
X of large degree. Then W\x< is stable by the restriction theorem of
Mehta-Ramanathan [1]. ByBertini f~ι{X') = Yf is smooth. Trivially
f:Y'-+ X1 is finite. Then f*tfr\X') = f'*W\r is poly-stable. Say
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f*Φ\γ* = 0 5 ^ Θ Λ / where the Ψι are non-isomorphic bundles with
the same slope. It follows that

Endί/ arv) = 0Endc(ce*O

and each direct summand is given by a idempotent.
By Serre's vanishing theorem E n d ( / * ^ ) -* End(/*ar |y) is an

isomorphism because Y' has large degree. Thus we have a decom-
position /*3Γ = 0 2?:ΘΠ' which extends to the one above and this
decomposition is independent of the choice of Y'. Thus each Ψ[
is stable and they have the same slope by the trivial direction of the
reasoning of the restriction theorem. Thus Theorem 1 is here.

3. Endomorphisms of Ψn . L e t f:Ψn —• Fn be a non-constant
morphism. Then /*^»(1) = &p*(k) where k is positive. Now
f(x0 ,...,Xn) = (Fo(x)> > Fn{X)) where Fo, . . . , Fn are homo-

geneous polynomials of degree k with no common zero.
Let /: k[Yo, ... , Yn] —• &[Xo> ••• » ̂ «] be the homomorphism

sending Yf to Fj. Then by the argument in invariant theory [3]
we may conclude that / is injective and k[Xo, ... , Xn] is a free
k[Yo, . . . , Γ«]-module with a basis r!, . . . , rd of homogeneous ele-
ments. This implies

LEMMA 5. (a) / is a flat finite morphism.
(b) for all I, / * ( ^ (/)) = Θm €s ( /)^W»*) where the finite set S{1)

satisfies
(c) 5(0) has only one non-negative element which is zero and S(l)

has non-negative elements if I < 0.

Proof. The point (c) follows from (b) by looking to the isomorphism
of global sections

Γ(P*,<f r (/))= 0 Γ(P», <f r(m)).
meS(l)

To prove (a) first note that / is affine as f~ι(Yi Φ 0) = (Ft Φ 0) is
affine. Thus (a) follows from (b). For (b) we compute

= [k[X0, . . . ,

? ^«J(X)Jsome degree depending on r

As this isomorphism is global (b) follows. D
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4. The proof of Theorem 2. Let / : Fn -+ Fn be a non-constant
morphism. Let W be a strongly stable vector bundle on PΛ of slope
μ with respect to D where D is a hyperplane section.

Now we want to prove that f*W is strongly stable of slope k μ
with respect to D where kD ~ /*2Γ. Let J? be an invertible sheaf
on Fn such that Γ(Ψn, - S ^ " 1 <g> Λ7 / * ^ 1 ^ 0 for 0 < ί < ranker.
Then we need to show that deg-S* < ikμ. Let 3* =

Write I = kr-s where 0 < s < k. Then

= Γ(P" , <*-(-*)) Θ /* fo

As ^* is strongly stable we get +rm < iμ for some m e S(—s)
where m < 0 unless 5 = 0 then m < 0. Thus degoS* = / = kr + s =
k{r + s/k) < k(rm) < k(iμ) = i(kμ) which is what we wanted.

5. Splitting of bundles. Let W be a bundle on P" . Then W is
split if and only if W = 0 ^ y (/,•) for some //. Let / : Ϋn ->Fn be a
finite morphism.

LEMMA 6. /*2Γ w split iff W is.

Proof. The " i f part is trivial.
To prove the other way note that Hi(Ϋn, 3Γ(z)) is a direct summand

of Hί(Fn,f*W(ki)) by §2. Thus Horrocks' criterion [2] for f*W
implies the same condition for W. Hence W is split if f*W is. D
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