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The notion of a dual of an operator space which is again an operator
space has been introduced independently by Vern Paulsen and the
author, and by Effros and Ruan. Its significance in the theory of
tensor products of operator spaces has already been partially explored
by the aforementioned. Here we establish some other fundamental
properties of this dual construction, and examine how it interacts
with other natural categorical constructs for operator spaces. We
define and study a notion of projectivity for operator spaces, and give
a noncommutative version of Grothendieck's characterization of I1 (I)
spaces for a discrete set / .

1. Introduction. If V is a vector space then we write Mn(V) for
the vector space of n x n matrices with entries in V. Let E and
F be normed spaces and suppose that for each positive integer n
there are norms || ||Λ and ||| \n defined on the spaces Mn(E) and
Mn(F) respectively. A linear map T: E —> F has a natural n-fold
amplification Tn: M(E) -> Mn(F) given by Γπ([έ?0 ]) = [Γ(έ?y)]. We
say that T is completely bounded if

\\T\\cb = sup{||Γn | |: positive integers n) < oo,

completely contractive if each Tn is a contraction, and a complete
isometry if each Tn is an isometry. We write CB(E, F) for the
space of completely bounded maps from E to F, with norm || | | c j,.
An operator space (E, || ||Λ) is a pair consisting of a vector space E,
and a sequence of norms || \\n defined on the spaces Mn(E), such
that there exists a complete isometry from E into the space B{H)
of bounded operators on a Hubert space H. Recall that B(H) has a
natural sequence of matrix norms obtained by identifying Mn(B(H))
with B(H^) in the obvious way. Thus an operator space is merely
a subspace E of some B(H), with the commitment to keep track of
the associated norms of matrices with entries in E.

The theory of quantized functional analysis [E]—the study of op-
erator spaces and their completely bounded maps—is intended to be
a generalization of ordinary functional analysis—the study of normed
spaces and bounded linear maps. For instance, the extension theorem
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16 DAVID P. BLECHER

for completely bounded maps [A] generalizes the Hahn-Banach theo-
rem. The reason why it is a strict generalization is because there is a
full embedding 3 of the category NS of normed spaces and bounded
linear maps into a full subcategory of the category OS of operator
spaces and completely bounded maps. Restated in less flowery lan-
guage: corresponding to every normed space E there is a canonical
operator space 3(E) and every bounded map T: E —> F of normed
spaces induces a canonical completely bounded map 3(T) from 3(E)

to 3(F) with | |3(Γ)|U = IÎ Ίl I n f a c t t h e r e a r e t w 0 s u c h natural em-
beddings, MIN and MAX, which we describe below (see also [BP,
ER1]) since they are of interest in the sequel.

A normed space E may be considered as a subspace of the com-
mutative C*-algebra of bounded functions on the unit ball of its dual
space; this subspace is an operator space with the natural sequence of
matrix norms inherited from the C*-algebra. We call this operator
space MIN(2s). The following property, which also defines the oper-
ator space MAX(£r), holds: For any linear isometry T from E into
some B(H) we have

BALL(Mn(MIN(E))) D BALL(Mn(T(E))) D BALL(Mn(MAX(E))).

The MIN embedding behaves well with respect to injective constructs,
the MAX with respect to projective constructs (see §§2 and 3, and
[BP]). With respect to the MIN embedding C*-algebras correspond
to C(X) spaces, algebras of operators to function algebras [B], the
spatial tensor norm of operator spaces to the injective tensor norm
of normed spaces [BP], injective operator spaces to injective normed
spaces [R2], etc. With respect to the MAX embedding the projective
operator space tensor norm corresponds to the projective tensor norm
of normed spaces [BP], projective operator spaces to projective Banach
spaces (§3), etc.

One obstacle to the success of this "quantized" program has been
the absence of an appropriate duality theory for operator spaces. Pre-
vious candidates for the dual of an operator space [CE] force one to
leave the category OS. Recently however the notion of a dual of an
operator space which is again an operator space has been introduced
independently in [BP] and [ER3]. The significance of this new duality
has already been partially explored via its relationship with the theory
of tensor products of operator spaces [BP, ER3, ER4]. In particular it
has made possible a natural generalization of the Grothendieck tensor
norm program to the non-commutative scenario.
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The purpose of this note is to establish some fundamental proper-
ties of this dual construction, and to examine how it interacts with
some other natural categorical constructs for spaces of operators. We
show for example that the new dual gives an explicit natural relation
between MIN and MAX, and that the new matrix norms on the sec-
ond dual coincide with the older version. The extension theorem for
completely bounded maps may be reformulated as the fact that if T
is a complete isometry then Γ* is a complete quotient map; this is
now explicitly a generalization of the Hahn-Banach theorem.

In §3 we use the duality to characterize projective operator spaces.
Grothendieck showed in [G] that a Banach space F with the prop-
erty that each bounded map from F into a quotient space Xj Y lifts
to a bounded map from F to I , and such that F* is injective, is
isometric with I1 (I) for some discrete set / . The converse obviously
holds. We show here that the only operator spaces with an analogous
completely bounded lifting property for quotients, and whose duals
are W*-algebras, are the Lι direct sums of finite dimensional trace
class algebras. Since an injective Banach space with predual is a W*-
algebra this is indeed a generalization of Grothendieck's result. We
say that a W*-algebra M is weak"-injective if each weak* continuous
completely bounded map from a weak* closed subspace Y of a dual
space X into M extents to a weak* continuous completely bounded
map from X to M. The last result may be rephrased as follows:
a W*-algebra is weak*-injective if and only if it is W*-algebraically
isomorphic to a direct sum of finite dimensional matrix algebras. In
particular this shows that the hyperfinite IIi factor is not σ-weakly
linearly isomorphic to a direct sum of matrix algebras, which comple-
ments a result in [CS] asserting that they are completely boundedly
isomorphic.

2. Definitions and basic properties. Let X be a vector space, and let
|| Ha be a sequence of norms defined on the space Mn(X) ofnxn

matrices with entries in I . If X* is the dual normed space of X

then we define on the space Mn(X*) the following norm:

\\[fij]\\n = sup{||[/y(*fc/)]||: positive integers m ,

[xkl]eBALL(Mm(X))}.

This is equivalent to equating Mn(X*) with CB(X, Mn) via the usual
identification of a matrix of linear maps with a matrix valued linear
map. It is not hard to see that || ||i coincides with the usual norm.
There is a matrix norm structure on CB(X, Y), defined in exactly the
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same way, if Y is any operator space [ER2, BP].
For X as above let M be the W*-algebra

n : positive integers n, and each x e BALL(Mn(X))},

and define a linear complete isometry T: X* -^ M by

Γ(/) = ©{/*(*)}>
where fn denotes the usual «-fold amplification of / . It is easy to
check that if X is a uniformly closed matrix normed space then T
is actually a σ(X*, X) - σ(M, Af*) homeomorphism onto a weak*-
closed subspace of M. We have shown:

PROPOSITION 2.1. With the sequence of matrix norms defined above,
X* is completely isometrically isomorphic to an operator space. More-
over X* has a weak*-homeomorphic completely isometric representa-
tion on a Hilbert space.

REMARK. This observation provides a direct proof of [ER4, Propo-
sition 5.1]. We also remark that there is a result corresponding to
Proposition 2.1 for the "classical matrix normed dual" of an Lι ma-
trix normed space [ER2, Theorem 3.3] which is considerably more
difficult to prove.

We call the operator space (X*, || | |n) defined above the standard
dual of X. We shall always write X* for this operator space, un-
less stated otherwise. Similarly one can show that CB(X, Y) is an
operator space for any operator space Y.

If X is an operator space then it follows from a result of Roger
Smith [SI] that we may as well take m = n in the definition of X*
above. The finite dimensional trace class algebra Af * is denoted by
Tn . It is shown in [BP] that Tn = Rn ®Λ Cn completely isometrically,
where Rn and Cn are respectively the operator spaces which are first
row and column of Mn , and where Θ^ denotes the Haagerup tensor
norm. Also, as observed in [ER4], as an operator space i?* is Cn,
and C* is Rn.

The following is proven in [BP, ER3]:

PROPOSITION 2.2. If X is an operator space then X is completely
isometrically contained in the standard second dual X**.

For the reader who does not have immediate access to these ref-
erences we note that the result also follows from Theorem 2.5. We
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now give a construction due to Stephen Montgomery-Smith which
explicitly displays Proposition 2.2 as a type of Bourbaki-Alaoglu the-
orem. Let X be an operator space, and let M^X*) be the space of
countably infinite matrices with entries in X*, whose finite trunca-
tions are uniformly bounded; the norm on M^X*) is given by least
upper bound. This space has a predual [ER4]. Put M^ = Λ/oo(C),
and consider the C*-algebra C(BALL(A/oo(Jf*)); M^) of functions
from BALL(A/oo(X*)) to M^ which are continuous when each of
the spaces are endowed with their weak* topology. Define a map j
from X to C(BALL(Moo(X*)); Moo) by setting j{x)([fa]) equal to
[fij(x)]. Proposition 2.2 is equivalent to the statement that j is a
complete isometry.

Notice that the previous two propositions give a characterization
(independent of [Rl]) of operator spaces as the vector spaces X with
a sequence of norms defined on the space Mn{X) such that X is
completely isometrically contained in X**. However there seems to
be no easy way of showing directly that an L°° -matrix normed space
is completely isometrically contained in its standard second dual.

PROPOSITION 2.3. If X and Y are operator spaces and if S: X -> Y
is a completely bounded linear map then S*: Y* —> X* is completely
bounded as a map between standard duals, and \\S*\\cι, = ||5Ί|C^. More-
over if S is a complete isometry then S* is a complete quotient map,
and if S is a complete quotient map then S* is a complete isometry.
In particular S is a complete isometry if and only if *S** is a complete
isometry.

Proof, The only nontrivial point here is that if S is a complete
isometry then S* is a complete quotient map; but this is equivalent
to the extension theorem for completely bounded maps.

REMARK. The map T -^ Γ** from CB(X, Y) to CB(X**, Γ**) is
a complete isometry.

COROLLARY 2.4. If X and Y are operator spaces with Y c X then
Γ* = X+/Y1-, and (X/Y)* = Yx completely isometrically; here as
usual * denotes the standard dual

Let X be an operator space. Traditionally the norm on Mn(X*)
has been given by the duality pairing ([fa], [xί7]) = Σij(fa> xu) w i t h

Mn(X). Sometimes ([fu], [Xij]) = Σij(fij>Xji) or ([fa], [xu]) =
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rrιΣij(fu> χji) a r e u s e ( i instead. We shall refer to these as the
"classically" dual matrix norms. However whichever of these clas-
sical pairings one considers one obtains the same operator space as
the second dual; we shall denote this classical second dual as X".

THEOREM 2.5. If X is an operator space then the standard second
dual matrix norm structure coincides with the classical second dual
structure. That is, X** = X" completely isometrically.

Proof. Let us write ||| \\n for the classical matrix norms on
Mn(X"). Choose F G Mn(X**) by the bipolar theorem there exists a
net xv G Mn(X), with \\xv\\n = \F\n , converging in the weak* topol-
ogy to F. Thus Σij fuWj) - Σij Fijifij) for all [fu] G Mn(X*). In
particular fix*.) -> F^f) for feX\ and so [/*/(*&)] -> [/y (/*/)]
for [fkl] e Mn(Xη . This shows that || • ||Λ < ||| | π on Mn(X**).

The reverse inequality follows using an argument similar to that
used in [BP, ER3] to prove the complete isometry X —• X**. Of
course X" has a weak*-homeomorphic completely isometric repre-
sentation on a Hubert space: if X c B(H) completely isometrically,
then the second dual of the inclusion is a weak*-homeomorphic com-
pletely isometric map of X" into the W*-algebra B(H)". So we can
suppose that X" acts on a Hubert space H, and that every functional
on X" of the form F —• (Fζ, η), for ζ, η e H, is continuous in the

Let [Fk[] G Mn(X"), let ε > 0 be given, and then choose ζ\, ... , ζn

and m , . . . , ηn G H with | Σ*/<**/£/ >1k)\> |[**/]|>i-β and £ IIC/II2

= Σllf/ll 2 = l Define a map T on X/r by Γ( ) = P ^ - ^ , where
AT = span{Ci, . . . , ζn, r\\, . . . , ηn}. Then T may be regarded as a
completely contractive map from X" into Mk, say. We may identify
T( ) with [(•£/,&)] where {£;} is an orthonormal basis for AT. Also

A:/

Define ^ ( x ) = (x %•, &) for x G X . Then / ^ / ί ^ ) = (Fklξj, ί/>
by the weak* continuity of the functional ( ζj, ίf ) . Thus

which completes the proof since ε was arbitrary.
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Now if A is a C*-algebra we know that the normed space A** is
again a C* -algebra [T] and consequently has a canonical predefined
operator space structure.

COROLLARY 2.6. If A is a C*-algebra then the standard second
dual operator space structure of A** coincides with its operator space
structure as a C*-algebra.

Corollary 2.6 and Theorem 2.5 are equivalent. It is curious that if A
is an operator algebra it seems one cannot prove by a direct calculation
that the natural multiplication on the standard second dual A** is
completely contractive. In fact one can show that this latter fact is
also equivalent to Theorem 2.5.

It might be suspected at this point that there are other notions of a
dual which are equally (or perhaps more) useful. However the stan-
dard dual is determined uniquely by its functorial properties; it is the
unique functor d from OS to OS such that

(i) Xd = X* isometrically for operator spaces X,
(ii) for all operator spaces X and Y the canonical imbedding of

X ® Y in the space of linear maps from Xd to Y gives an isometry
from the spatial tensor product of X and Y into CB(Xd, Y),

(iii) if X c Y completely isometrically then Xdd c Ydd com-
pletely isometrically, and

(iv) if A is a C*-algebra then the operator space structure on Add

matches its operator space structure as a C*-algebra.

To see this observe that (iii) and (iv) imply that Xdd = X** com-
pletely isometrically. Now put Y = Mn and replace X with Xd in
(ii). Alternatively the standard dual is characterized by the isomet-
ric isomorphism from the spatial tensor product of Xd and Y onto
CB(X9 Y) for finite dimensional Y.

We recall that a commutative operator space is an operator space
which is completely isometrically isomorphic to a subspace of a com-
mutative C*-algebra; or equivalently, an operator space of the form
MIN(ΛΓ) for some normed space X.

COROLLARY 2.7. The standard second dual of a commutative oper-
ator space is again a commutative operator space.

COROLLARY 2.8. Let X be a normed space. Then MIN(X)* =
MAX(X*) and MAX(X)* = MIN(X*) completely isometrically.
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Proof. Observe that

Mn(MAX(X)*) = CB(MAX(X), Mn) = B(X, Mn)

= X* ®λ Mn = Mn(MIN(X*))

via the canonical isometric isomorphisms. This proves the second as-
sertion. Therefore, MAX(X*)* = MIN(X**) = MIN(X)** completely
isometrically, after using the previous corollary. Thus MAX(X*) and
MIN(X)* are two isometric operator spaces with the same standard
dual, and are consequently completely isometrically isomorphic by
Proposition 2.1.

A von Neumann algebra M has a unique Banach space predual
[D]. Endowing this with the obvious "standard predual" matrix norm
structure gives us an operator space which we call the standard predual
operator space of M, and write as AT*. One may ask if the standard
dual of A/* is M a moment's thought will convince the reader that
this is not a tautology.

THEOREM 2.9. A W*-algebra is completely isometrically isomorphic
to the standard dual of its standard predual.

Proof. By the definition of the standard predual AT* we see that for
[Xij] G Mn{M) we have

IllxyllU > sup{||Λ/(xy)]||: [/*/] € BALL(ATm(Af*))}

the reverse inequality follows as the proof of Theorem 2.5.

It follows from the above that a W*-algebra M has a unique stan-
dard predual operator space Af*.

If A is a unital operator algebra then the maps π*: A —• CB(A*),
and π*: A —> C5(^4*) if 4̂ has a predual, induced by the left (right)
regular representation are easily seen to be completely isometric homo-
morphisms. More generally if A is an operator space, and an algebra
with identity of norm one, such that | | [ ^ 7 ^ / ] | | m r t < ||[fly]|UI|[ftit/]|U
for all [ay] G Mm(A) and [b^] e Mn(A), then the homomorphism
π*: A —y CB(A*) is a complete isometry. If in addition A has a
predual, and if the homomorphism π* above compresses to a map
π*: A —• Cβ(^4*), then π* will also be a unital completely isometric
homomorphism, and moreover if A is commutative then π*(A) will
be maximally commutative in CB(A*). Such "matrix normed alge-
bras" seem to occur naturally in many settings. For instance if G is
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a locally compact group, and if B(G) is defined to be the standard
dual of the group C*-algebra C*(G) of G, then B{G) has a natural
commutative algebra structure [Ey], and one can show using the rep-
resentation theorem for completely bounded maps [PI] that it has the
property above. Thus there is a natural completely isometric unital
representation of B(G) as a maximally commutative subalgebra of
CB(C*(G)). We thank M. E. Walter for raising this question (see also
Theorem 1 in [W]).

If A is a unital operator algebra one may ask if the natural bilinear
maps A x A* -+ A* and A* x A —• A* induced by the right and
left regular representation are completely contractive. In fact if βjj
are the matrix units in A = Mi, and if we consider [βj{\ e Mi{Mi)
and [eji] G Mi(Ti), one can see this is not the case. Modifying this
example in an obvious way shows that this is not the case even for
A = l°°.

3. Direct sums and projectivity. If {Xa: a e Λ} is a collection of
operator spaces then (B^Xa- α E λ} will denote the operator space
which is the usual direct sum with matrix norms given by

{xa{i,j): OL e Λ}1 II = sup{||[*α(/, j)]\\nm <* e Λ } .

In other words we identify ^ ( 0 ^ Xa) with 0 ^ Mn(Xa). It is clear
t h a t Θoo a n d M I N commute, that is, M I N ί φ ^ JΓα) = ( B ^ M I N ^ )
as operator spaces, for normed spaces Xa .

There is a natural duality ( , •) between 0 Xa and 0 X*. We de-
fine an operator space structure on the Lι-direct sum φx{Xa' OL G Λ}
by assigning matrix norms

\\[uυ]\\H = sup I \\[(fkl, Uij)]\\: [fkί] € BALL (λίm ( 0 X α *

It is clear that with these matrix norms 0 j Xa is an operator space,
and that the canonical maps ιa: Xa —• φ\Xa and qa: 0 ! ^ —>
Xa are complete isometries and complete quotient maps respectively.
A simple argument gives the coincidence of MAX(0 1 X α ) and
0 ! MAX(Xα) as operator spaces, for normed spaces Xa.

It is also not hard to show that ( φ ^ α ) * = 0 ^ ^ and that
(Θoo^α)* 2 0 i ^ α completely isometrically. The second result of
the previous line needs the fact that all the sums occurring may be
approximated by finite sums. Similarly one can see that 0 j X* is the
standard dual of some operator space.
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PROPOSITION 3.1. Every uniformly closed operator space is com-
pletely isometrically isomorphic to a quotient of an Lι-direct sum of
finite dimensional trace class algebras.

Proof. Let X be a uniformly closed operator space. By Proposition
2.1 there is a completely isometric cr(X*, X) - σ(M, M*) homeo-
morphism from X* onto a weak* closed subspace of a direct sum of
matrix algebras. This induces the required complete quotient map,
after using Corollary 2.4 and the first fact from the last paragraph.

We can explicitly write down the quotient map guaranteed by the
proposition above as follows: let Λ be the collection of matrices
in BALL(Mn(X)) for all positive integers n. We associate to each
x E Λ a finite dimensional trace class algebra Tn consisting of ma-
trices of the same size as x. There is a natural map Sx: Tn —•
X- laki\ -+ ΣJW a ki x ki\ define a map S from Φ J Γ ^ X G Λ } to X
by S(@ax) = ΣxSx(ax). Since X is complete S is well defined,
and it is easily checked that S is a complete quotient map.

COROLLARY 3.2. Let X be a uniformly closed operator space. Then
X is a quotient of the standard predual B(H)*, for some Hubert space
H.

REMARK. There are some similar results in [ER2], but with regard
to a different notion of duality.

DEFINITION 3.3. A uniformly closed operator space F is said to
be projective if given an operator space X and a uniformly closed
subspace 7 of I , and given ε > 0, then each completely contractive
linear map T: F —• X/Y lifts to a completely bounded linear map
T~: F -> X, with \\T~\\cb < 1 + e, so that the following diagram
commutes:

X

An operator space X is said to be a dual operator space if there
exists an operator space X* whose standard dual is X.

We say that a dual operator space E is weak*-injective if it has
the following property: if X is a dual operator space with a weak*
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closed subspace Y, and if T: Y —» E is a weak* continuous com-
pletely bounded map, then for any e > 0 there is a weak* continuous
completely bounded extension T~: X —> E of T, with ||Γ~||C£ <
\\T\\cb + ε.

It is not hard to see that an operator space F is projective if and
only if F* is weak*-injective.

There are no doubt various other notions of projectivity which one
might consider, in terms of approximate liftings and approximate
commutative diagrams. The problem of lifting maps on operator sys-
tems with some sort of positivity has been extensively studied (see
[S2] for a survey).

Grothendieck considered the analogous notion for Banach spaces
[G], and characterized the projective Banach spaces precisely as the
spaces isometrically isomorphic to I1 (I) for a discrete set / . This
shows that an operator space of the form MAX(JF) , for a Banach
space F, is projective precisely when F is isometrically isomorphic
to I1 (I) for a discrete set / .

THEOREM 3.4. The algebra C of complex numbers is the only C*-
algebra which is projective as an operator space.

Proof. It follows from results in [H] that if A is a C* -algebra which
is projective as an operator space then A is either C, 1$° or M2. If
M2 was projective then it is easy to see that I™ is projective. However,
Proposition 3.4 of [H] implies that If = MAX(lf) (see [P2] for a
simpler proof of this). Thus if If is projective then it is projective as
a Banach space, which by Grothendieck's result implies in turn that
If and l\ are isometric. However it is well known that although
If and l\ are isometric if the underlying field is the real numbers,
they are not isometric if the field is the complex numbers. This is the
desired contradiction.

THEOREM 3.5. If F is projective then the standard dual i7* is an
injective operator space.

Proof. Suppose Γ c l , and that T: Y —• F* is a complete con-
traction. Taking duals gives a map T*: F** —• Y*, and by restriction
a map F —• Y*. Using Corollary 2.4 and the projectivity of F we
may lift to a map Sn: F -> X* with H^H^ < 1 + l//i. Taking duals
again gives a map S*: X** —• F*, and composing this with the canon-
ical map X —• X** gives a map T~: X —• F*. Some diagram chasing
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is necessary to show that T~ is in fact an extension of T. Let T~
be a £JF*-topology limit point [PI] of {T~}, it is easy to see that
T~ is a completely contractive extension of T.

The proof above was found together with V. Paulsen.

PROPOSITION 3.6. If {Fa: a e Ω} is a collection ofprojective oper-
ator spaces then φχ{Fa: a e Λ} isprojective.

Proof. Let T: φ{Fa —• X/Y be completely contractive, and let
ε > 0 be given. Then the composition T o ιa: Fa —• Xj Y is a com-
plete contraction, and lifts to T~\ Fa -• X with | | 7 ^ | | ^ < 1 + ε.
Define Γ~: Θ i ^ , -^ ̂  by Γ ~ ( φ / α ) = Σ ^ ( / α ) Clearly Γ~ is
an extension, we must show that ||Γ~||C^ < 1 + ε. Now

\\[T~«Bfa(i,j))]\\n

= sup | Σφkι(T~(Mi,j)))} :[φkι]eBALL(Mn(X*))\

< sup I ' 0 Ψkl ° T~] II : [φkl] G BALL(MM(X*))}

which completes the proof.

PROPOSITION 3.7. The space Tn is projective.

Proof. By results in [BP] CB(Tn , X) = Mn(X) completely isomet-
rically. Thus lifting a map in CB{Tn , X/Y) to a map in CB{Tn, X)
of nearly the same norm follows from the definition of Xj Y as an
operator space.

The proof of Proposition 3.7 shows that "corners" of Tn are also
projective. More specifically if p and q are orthogonal projections in
Mn then pTnq is projective. Conversely, one can show that a pro-
jective operator space which is a subspace of some Tn is completely
isometrically isomorphic to an Lι direct sum of such "corners". This
is because an injective operator space on a finite dimensional Hubert
space is a "corner" of a finite dimensional C*-algebra [R2, Theorem
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4.5]. After this paper was submitted Roger Smith has proved [S3],
in response to a question of the author, that every finite dimensional
injective operator space is of the form p Aq, where A is a, finite di-
mensional C*-algebra, and p and q are orthogonal projections in A.
Thus we obtain:

THEOREM 3.8 [S3]. The finite dimensional projective operator spaces
are {up to complete isometric isomorphism) precisely the operator spaces
of the form (px TΆχ qx) θ i ®x (pm tnm qm), where pt and qt are or-
thogonal projections in Mw .

DEFINITION 3.9. An operator space X is said to be almost a direct
summand of an operator space Y if for all ε > 0 there is a subspace
F of Y which is the range of a projection P on Y satisfying \\P\\Cb <
1 + ε and if there exists an isomorphism T: X —• F with ||Γ||C^ and
\\T-i\\eh<\+ε.

THEOREM 3.10. An operator space X is projective if and only if X
is almost a direct summand of an Lι-direct sum of finite dimensional
trace class algebras.

Proof. The sufficiency is obvious. The necessity follows easily from
Propositions 3.1, 3.6, and 3.7.

REMARK. There is a result dual to 3.10: an operator space X is
injective if and only if X is a direct summand of an L°°-direct sum
of finite dimensional matrix algebras.

In light of Corollary 3.2 one might hope for a characterization as
a direct summand of some B{H)* however B(H)* is not projective
if H is infinite dimensional. This is somewhat surprising in light
of Proposition 3.7. We recall (see remark after Definition 3.3) that
the projectivity of B(H)* is equivalent to an extension theorem for
weak* continuous completely bounded maps into B(H). There is an
example in [ER2] which shows that no such extension theorem exists.
Alternatively, the non-weak*-injectivity of B{H) follows immediately
from the following consequence of Theorem 3.10:

COROLLARY 3.11. Each weakly convergent sequence in a projective
operator space converges uniformly.

Proof. It is sufficient to consider a direct sum of finite dimensional
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trace class algebras; and the usual proof of the assertion for I1 (I)
works.

THEOREM 3.12. A W*-algebra M is weak*-injective if and only if
M is isomorphic to an L°°-direct sum of finite dimensional matrix
algebras.

Proof. The sufficiency is clear. To prove the other direction we ob-
serve that M decomposes into a direct sum of a finite W* -algebra
and a properly infinite PΓ*-algebra, each of which must be weak*-
injective. We first show that the properly infinite part is empty. Re-
call that a properly infinite W*-algebra R is isomorphic to a J^*-
algebra tensor product 7?® 7? (77), where 77 is a separable Hubert
space [V, Appendix C]. However there are obviously normal projec-
tions from R®B(H) onto B(H) and thus R®B{H) is not weak*-
injective since 7?(77)* is not projective for infinite dimensional 77
(see comment before Corollary 3.11).

We have shown that M is finite, and so there exists a normal condi-
tional expectation of N onto the center C [T]. Therefore C is weak*-
injective, so the comments before Proposition 3.4 imply that C is
linearly isometrically isomorphic, and hence algebraically isomorphic,
to /°°(7) for some discrete set 7. Thus M is a direct sum of finite
weak*-injective factors. Since infinite dimensional type I factors are
not weak*-injective, if we can show that there are no weak*-injective
type Hi W*-algebras then we shall have completed the proof.

Suppose that there exists a weak*-injective W*-algebra N of type
Hi, we will obtain a contradiction. Let S be a maximal abelian *-
subalgebra of N; since we have the (completely contractive) condi-
tional expectation available [T, V.2.3.6] it suffices to show that S is
not isomorphic to /°°(7) for some discrete set 7. However if it were,
and if e is a minimal projection in /°°(7), then since N can contain
no minimal projection we see that e strictly dominates a nonzero pro-
jection / . It is now easy to see that / is not in S but does commute
with S, contradicting the maximality of S.

COROLLARY 3.13. A direct sum of finite dimensional matrix algebras
is not σ-weakly linear isomorphic to either the hyper finite II i factor,
or to B(H) for any infinite dimensional Hubert space H.

This last corollary complements a result in [CS] asserting that they
are completely boundedly isomorphic. We remark that it is easy to
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show directly that the hyperfinite II i factor is not weak*-injective, by
explicitly constructing a weakly convergent sequence in the predual
which does not converge uniformly.

COROLLARY 3.14. An operator space X which is the standard pre-
dual of a W*-algebra is projective if and only if X is completely iso-
metric to an Lι direct sum of finite dimensional trace class algebras.

The proof of Theorem 3.12 shows that a W*-algebra M is an L°°
direct sum of finite dimensional matrix algebras if and only if it has
the property that every weak*-continuous completely contractive map
from a weak* closed subspace Y of a dual operator space X into M
extends to some weak* continuous completely bounded map from X
to M (we are not asking for control of the cb norm). Or stated in
another way, if F is a (uniformly closed) universal projective object
in OS (that is, each completely bounded map F —• X/Y has some
completely bounded lifting F —• X (we are not asking for control of
the norm)), whose standard dual is a W*-algebra, then F is projective
in our sense, and consequently completely isometrically isomorphic to
an Lι direct sum of finite dimensional trace class algebras. This is the
generalization of Grothendieck's result promised in the introduction.

The results above ought to be viewed as a step towards an ideal
characterization of projective operator spaces, perhaps as "corners"
of projective preduals of W*-algebras (see Theorem 3.8 and remarks
immediately before). It would be interesting to see the development
of a theory of the "projective skeleton" of an operator space, corre-
sponding to the injective envelope [R2].
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