Vol. 153, No. 2, 1992

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Lusternik-Schnirelmann invariants in proper homotopy theory

R. Ayala, Eladio Domínguez Murillo, Alberto Márquez Pérez and A. Quintero

Vol. 153 (1992), No. 2, 201–215
Abstract

We introduce and study proper homotopy invariants of the Lusternik-Schnirelmann type, p-cat(), p-Cat(), and cat 𝜀() in the category of T2-locally compact spaces and proper maps. As an application, n (n3) is characterized as (i) the unique open manifold X with p-Cat(X) = 2, or (ii) the unique open manifold with one strong end and p-cat(x) = 2.

Mathematical Subject Classification 2000
Primary: 55P55
Secondary: 55M30
Milestones
Received: 20 August 1990
Revised: 3 June 1991
Published: 1 April 1992
Authors
R. Ayala
Eladio Domínguez Murillo
Alberto Márquez Pérez
A. Quintero