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We give an elementary proof that the H” spaces over the unit
disc (or the upper half plane) are the interpolation spaces for the real
method of interpolation between H' and H* . This was originally
proved by Peter Jones. The proof uses only the boundedness of the
Hilbert transform and the classical factorisation of a function in H”
as a product of two functions in H? and H" with 1/q + 1/r =
1/p . This proof extends without any real extra difficulty to the non-
commutative setting and to several Banach space valued extensions
of HP spaces. In particular, this proof easily extends to the couple
HPo(lg)), H(ly,), with 1 < po, p1, go, @1 < oo. In that situation,
we prove that the real interpolation spaces and the K-functional are
induced (up to equivalence of norms) by the same objects for the
couple Ly (lg)), Ly, (lz). In another direction, let us denote by C,
the space of all compact operators x on Hilbert space such that
tr(|x|?) < co. Let T, be the subspace of all upper triangular matrices
relative to the canonical basis. If p = co, C, is just the space of
all compact operators. Our proof allows us to show for instance that
the space H?(C,) (resp. T,) is the interpolation space of parameter
(1/p, p) between H'(C;) (resp. T;) and H*®(Cw) (resp. To).
We also prove a similar result for the complex interpolation method.
Moreover, extending a recent result of Kaftal-Larson and Weiss, we
prove that the distance to the subspace of upper triangular matrices in
C; and Co can be essentially realized simultaneously by the same
element.

Introduction. Let 0 < p < co. We will denote simply by L, the
L,-space relative to the circle group T equipped with its normalised
Haar measure denoted by m. We will denote by H? the classical
Hardy space of analytic functions (on the unit disc D of the complex
plane). It is well known that this space can be identified with a closed
subspace of L,, namely the closure in L, (for p = oo we must take
the weak*-closure) of the linear span of the functions {e'™|n > 0}.
We refer e.g. to [G] or [GR] for more information on HP-spaces.

Let us recall here the definitions of the K; and J; functionals which
are fundamental in the real interpolation method. Let Ay, A4; be
a compatible couple of Banach (or quasi-Banach) spaces. This just
means that A4y, 4; are continuously included into a larger topological
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vector space (most of the time left implicit), so that we can consider
unambiguously the sets 4y + 4; and ApN A4;.
For all x € Ag + A; and for all ¢ > 0, we let

Ki(x, Ao, A1)
= inf(||xo[l.4, + £l|X1]l4,|x = X0 + X1, X0 € Ao, X1 € 41).

For all x € 49N A; and for all ¢ > 0, we let
Jt(x » A0> Al) = rnax(“xOHA0 ’ t”'XIHAI) .

Recall that the (real interpolation) space (4p, 41)p,, is defined as the
space of all x in Ag+ A, such that ||x||y , < oo where

1/p
lxllg,» = (/(t""Kz(x, Ay, A))) dt/t) .

We also recall that there is a parallel definition of (Ag, 41)g , us-
ing the J; functional which leads to the same Banach space with an
equivalent norm. For example, if 1 <pg,p1, g<ocand 0<O<1,
we have
(Lpo > Lpl)e,q =Ly,

where L, , is the classical Lorentz space, identical to L, if p =gq.
We refer to [BL] for more details.

In §1, we give a new proof of the following interpolation theorem
of Peter Jones [J1], as reformulated by Sharpley (cf. [BS] p. 414):

There is a constant C such that

VfeH' '+ H®, vt>0, K/(f,H' H®)<CK/(f,L", L™®).
We should recall that

K,(f,LI,L°°)=/Otf*ds=sup{/E|f|dm|ECT,m(E)zt},

where we have denoted by f* the non-increasing rearrangement of
the function |f|. The difficulty of Jones’ theorem lies in the fact
that the optimal decomposition which realizes K;(f, L', L*®) is ob-
tained by truncating the function f. If f is analytic, this operation
clearly spoils the analyticity, and the problem is to find a substitute,
something like a truncation but which preserves analyticity.

We should mention that a different proof of Jones’ results (including
some results which cannot be obtained by our method) has already
been obtained a few months ago by Quanhua Xu. However, Xu’s
argument does not seem to extend to the non-commutative case.
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We now describe the (very simple) method of proof we use through-
out this paper, we call it the “square/dual/square” argument.

Let us say that the couple (H?, H?) is K-closed if there is a con-
stant C such that

VA€EHP+HY, VYt>0, K/(f,H?,H <CK(f,L"?,L9).

The first step consists in showing the following “squaring” property:

(0.1)If (H? , H%) is K-closed and if the pointwise product defines
a bounded bilinear map from H?” x H?4 into the interpolation space
(H?, HY)1/3,0 , then (HP, H?) is K-closed.

The next step is a dualisation (this seems to be the point that has
been overlooked by previous researchers).

(0.2) The couple (H?, H9) is K-closed iff (H? , HY) is also K-
closed (1<p,qg<oo0, l/p+1/p'=1/g+1/qg' =1).

We can then sketch our “square/dual/square”-proof of the fact that
(H!', H®) is K-closed as follows:

By (0.1), it suffices to show that (H?, H*®) is K-closed, then by
(0.2) it suffices to show that (H?, H') is K-closed, but then by (0.1)
again, it suffices to show that (H*, H?) is K-closed, and this is an
obvious and well-known consequence of Marcel Riesz’s theorem on
the simultaneous boundedness of the Hilbert transform on L, for all
l1<p<oo.

Our proof emphasizes the existence of a “simultaneous good ap-
proximation” to H! and H*. More precisely, we have

(0.3) There is a constant C, such that for all f € L, there is a
function £ € H* such that we have simultaneously

If = Al < Cdist,_(f, H®) and |f - hl; < Cdist, (f, H').

As far as we know at the time of this writing, these results are known
only in dimension 1, and are open in higher dimension either for the
ball or the polydisc. We refer the reader to [J2] for a survey of what
is known in the latter case.

In §2, we prove a non-commutative analogue of Peter Jones’ theo-
rem, where the space L? is replaced by the space C, of all compact
operators x on /, such that tr|x|? < oo, and HP? is replaced by the
subspace T, of all upper triangular matrices.

This result, which was motivated by and which improves a result of
[KLW], says again that the K;-functional for the couple (7}, T,) is
induced (up to a constant independent of ¢) by the K;-functional for
the couple (Cy, C). As a corollary, we identify the real interpolation
spaces for the couple (77, 7).
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In that case also, there is a simultaneous good approximation to 7}
and T, as in (0.3) above.

In §3, we discuss the case of Banach space valued H?-spaces. In par-
ticular, we show that Jones’ theorem is also true for the couple of oper-
ator valued HP-spaces (H!(C;), H*(Cx)), i.e. the K;-functional is
induced (up to a constant independent of ¢) by the K;-functional for
the couple (L;(C}), Low(Cwx)). (See Theorem 3.3 and its corollaries
for more precision.) As a consequence, we can again identify the real
interpolation spaces. This result is closely related to the result in §2.
(In fact, one can deduce from it the above result on (77, 7).) More
generally, we obtain similar results for the couples (H?s(l, ), H"(l,)),
and (Hpo(CqO), HPn(CqI)) ,with 1 < po, p1,4q,q1 < oo. We doubt
that Jones’ proof can be adapted to all these cases. In the case of
(H*(ly), H*(l)) , our argument leads to a new proof of a theorem
of Bourgain [B], but we chose to write this separately, we refer to [P].

In §4, we consider similar problems for the complex interpolation
method. Peter Jones [J1] proved that H? = (H', H®)q, with 1/p =
1 -0 . Using what seems to be a new idea in this context, we show that
this result can be deduced from a slightly extended version of the real
case. Our argument extends to the non-commutative case and gives
I, = (Ty, Two)g -

Although we state and prove our results on the unit disc, there is no
problem to extend them to the case of the upper half plane. We leave
this to the reader.

We now introduce a specific notation needed to treat the Banach
space valued case. Let 7 be the circle group equipped with its nor-
malized Haar measure m. Let 0 < p < co. When B is a Banach
space, we denote by L,(B) the usual space of Bochner-p-integrable
B-valued functions on (T, m), so that when p < 0o, L,®B is dense
in L,(B). We denote by HP(B) the closure in L,(B) of all the finite
sums of the form Y .;_,xxe’*! with x; € B. In other words, if
we denote by J the space of all analytic trigonometric polynomials,
HP?(B) is the closure in L,(B) of  ® B. We reserve the notation
HP?(B) (and simply H? if B is one dimensional) for the Hardy space
of B-valued analytic functions f such that

sup ( / £ (re™)|? dm(t)>l/p < 0.

Again, see [G, GR] for more information.
When B is reflexive, is a separable dual or is an L;-space (in par-
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ticular if B is finite dimensional), then it is well known that H?(B) =
HP?(B) forall p < 0o, and HP(B) can be identified with a subspace of
L,(B) forall p < co. We refer to [BuD, E, HP] for more information
on this property, called the analytic Radon-Nikodym property.

The next proposition although very simple will be essential in the
sequel. We suspect that the importance of the equivalence (i) <
(i1) has been overlooked although its proof is routine. We should
emphasize that the exponents p, g in (i) and (ii) are the same, they
are not conjugate to each other.

ProrosITION 0.1. Let 1 < p < q < oo. Consider an interpolation
couple of Banach spaces (Ag, A1), the following are equivalent:

(i) There is a constant C’' such that
Vf € HP(Ao) + HY(4,), vVt > 0,
Ki(f, H?(Ag), HY(A4))) < C'Ki(f, LP(Ap), LI(4y)).
(ii) There is a constant C such that
Vf € [LP(Ao)/ HP (Ao)]1N L4 (A1) /H(A)],
Vi >0, 3felLP(dy)nLi(A4;)
satisfying
Ji(f, LP(4o), L(A) < CI(f , LP (Ao)/HP (Ao), LU(A1)/H(4))).
(iii) There is a constant C such that
Vf € [LP(A0)/H? (Ao)IN[LY(A1)/HY(A1)], 3f € LP(4o) N L9(41)
satisfying
”f ”L"(AO) < C”f "Lp(AO)/ﬁp(Ao) >
17 zeay < OIS llegq v

In the above statement we regard the spaces L7(Ag) /ﬁp (Ap) and
L4(A,)/H9(A,) as included via the Fourier transform f — ( f(-=1),
f(=2), f(=3),...) in the space of all sequences in Ay + 4,. In
this way, we may view these quotient spaces as forming a compatible
couple for interpolation. (For the subspaces H?(Ay), H9(A;), there
is no problem, we may clearly consider them as a compatible couple
in the obvious way.)
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Proof. For brevity, we will denote simply L?/HP(A,) instead of
LP(AO)/I;TP(AO) , we will also write LP, H?, ... instead of L?(Ay),
HP(Ay), ... no confusion should arise. The proof is routine. We
indicate first the argument for (i) = (ii) which is the one we use
below.

Assume (i). Let f be as above such that

Ji(f, LP [HP(Ao), LY/H(41)) < 1.
Then let g, € L”(Ap) and g, € L9(A;) be such that

lgollr <1, Nggllis <t™', f=g+H(Ao), [=g+H! ().
Therefore, g, — g; must be in H? + HY and

Ki(8p — &g, LF(Ao), LU (A1) < llgpllrr + tll&glle < 2.

By (i), we have K;(g, — g5, H?, HY) < 2C’, and hence there are
h, € HP(Ay) and h; € H9(A,) such that g, — g, = h, — hy; and
Wollzr + tlihgllze < 2C". Now if we let f = g, — hy = g4 — hg.
then we have that f € LP(Ag) N L9(4,), f = f + H?(4p) in the
space L?/HP(Ay) and f = f+ H9(A;) in the space L4/H%(4,) and
moreover

J(f, L7, L) < max(|f ||, f llze) < 1 +2C".

By homogeneity this completes the proof of (i) = (ii) with C <
1+2C’. The converse is similar, we skip the details. The implication
(i1) = (iii) is easy; just take

t= (S Nrray)mea 0))(||f”L" A)/H(4 ))_1
The converse (iii) = (ii) is trivial. O

REMARK. The preceding statement would also remain valid if we
had defined H*°(B) as the subspace of L, (B) formed by the func-
tions with a Fourier transform vanishing on the negative integers. See
the end of this section for a more general viewpoint.

We recall the following basic fact: If 1 < py < p; < co then there
is a constant C such that for all £ > 0 we have:

(0.4) Vfe HPo+ HP', Vt>0,
Kt(f’ Hpo, le) S CKt(fs Lpoy Lpl)-
This is an obvious consequence of the simultaneous boundedness of

the orthogonal projection P: L? — H? on all the L? spaces (or equiv-
alently of the same for the Hilbert transform). This “simultaneous”
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boundedness of P obviously also implies thatif 1 < pg <p < p; < ©
and if 1/p=(1-06)/py+ 0/p,, we have

H? = (HP, H?)g

or more generally, if we define H?-9 as the space of analytic functions
in the disc with boundary values in the Lorentz space L?:¢ (on the
circle), then, for any 1 < g < oo, we have

H?9 = (HP, HP)g ,,
and in particular
(0.5) HP C HP»* = (H?, H")p o -

1. The proof of Peter Jones’ theorem. We prove the theorem in
several steps: starting from (0.4) restricted to py, p; both finite and
more than 1, we will progressively extend the set of couples (pg, p;)
for which (0.4) is valid until we eventually have eliminated all restric-
tions on pg, p; .

PROPOSITION 1.1. Forall 1 < p < q < oo we have
(1.1) H? c (H', H%)p o,

with norm bounded by some constant K(p, q), where 0 < 6 < 1
satisfies 1/p=1-0+6/q.

Proof. Choose any number r > ¢, and define 7', s and ¢ by the
relations

lr+1/r=1, 1/r+1/s=1/p, 1/r+1/t=1/q.
Observe that 1/s = (1-6)/r+60/t. Let f be in the unit ball of H?,

and write f = gh with g and A respectively in the unit balls of H"
and HS. By the above basic fact (0.4) we have

HC (H", H)g,
and this inclusion has norm less than (say) C . Observe that the opera-
tion of multiplication by g maps (by Holder’s inequality) the unit ball
of H" (resp. H') into that of H! (resp. HY); hence it maps the unit
ball of (H" , H')g, o, into that of (H', H)g, ... Therefore the norm
of f = gh in the space (H'!, H%)y o, is less than C, which com-
pletes the proof. (This statement is also immediate using the complex
interpolation method). O

The proof of the next proposition, although very simple, is impor-
tant in the sequel.
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PROPOSITION 1.2. For each 1 < q < oo, there is a constant C' such
that

Vt>0, VfeH'+HY, K(f,H', H)<CK/(f,L', L9).

Proof. Let f be analytic in the disc and such that K;(f, L!, L9) <
1. We factorize f as f = BF? with F non-vanishing and B a
Blaschke product. Then since |F| = |f|/? on the unit circle, we
clearly have K,»(F, L?, L?7) < 2!/2; hence by (0.1),

K.a(F, H*, H¥) <2'2C.
Therefore, there are analytic functions gy and g; such that
(1.2) F=g+s, lgollz + £'/2l1g1ll2g < 2'/2C.
Now we can write f = B(g+ &1)> = B(g¢ + g% +28081) ; hence
(1.3) Ku(f, H', H) < Ki(g5 + &1, H', H)) + Ki(2g0g1, H', HY).
By (1.3) we have
(1.4) K/(g}+g?, H', HY) <2C?,

and on the other hand by Hélder ||2gog;|l, < 2C2t~1/? where 1/p =
1/2+1/2q. Note that 1 < p < ¢q, and that 1/p =1—- 6+ /g with
0 = 1/2, so that by Proposition 1.1 for some constant K we have

128081ll s 1oy, _ < K2C*t1/2,

Hence, in particular, t~9K,(2gog,, H', H9) < K2C?t~1/2 | so that
(1.5) K:(2g0g1, H', H?) < K2C?.
Returning to (1.3), we see that (1.4) and (1.5) imply

K.(f, H', HY) <2C? + K2C?. O

REMARK. At this point, we can easily check (0.1) by a minor mod-
ification of the preceding proof. We will refer to (0.1) in the sequel as
“the squaring argument.”

The special nature of the K and J functionals on one hand and
of HP and (HP)' on the other hand imply that Proposition 1.2 has
the following consequence.
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PROPOSITION 1.3. For each 1 < q < oo, there is a constant Cy such
that
Vt>0, VfeL'/H'nLi/HI,

3f € L' n L9 satisfying Ji(f, L', LY) < C,Ji(f, L'/H', LY/HY).
Equivalently, Vf € L'\/H'nL4/H1,
(1.6) 3f € L' N LY satisfying
170, < Collf gy » I e < Call £ Nlzoye -

Proof. By Proposition 0.1, this follows from Proposition 1.2. O

Up to now we have not used the duality between the K; and J;
functionals, we now do so. We record below the dual versions of the
preceding two propositions.

PROPOSITION 1.2*. For each 1 < p < oo, there is a constant C,

such that
Vi>0, VfeL*®/H®NLP/H?,
3f € L*® N L? satisfying
Jt(fy Loo ’ Lp) S C;)Jt(fs LOO/HOO ) LP/HP)'

PROPOSITION 1.3*. For each 1 < p < oo, there is a constant C,

such that
Vi>0, VfeH®+H?, K\(f,H®,H?)<CK/(f,L>,L").

The proof is obvious, we just recall that if p and g are con-
jugate then the dual of the space K (L'/H!,LP/HP) (resp.
J(L'/H', LP/HP)) is isometrically identifiable with the space
J,-1(H*, H?) (resp. K,-i(H>, H?)), and that an injection is an iso-
morphic embedding iff its adjoint is onto (the relevant constants being
the same).

Let us record here an immediate consequence of Proposition 1.3
and Proposition 1.2*.

COROLLARY 1.4. Assume 1 <p <q <oo with 1/p=(1-)/1+
B/q and with 1/q = (1—y)/oco+7y/p. Thenforall f € L'/H'NL1/HY

(1.7) 1A ez yme < CaOlf g ) = - (N Npoyme) -
And for all f € LP/HP N L>®/H*®
(1.8) 1A Nzegme < CoUISf Nz pme)? = (NS Nz =)' 7
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Proof. (1.7) follows immediately from (1.6), and (1.8) can be proved
similarly using Proposition 1.2* instead of Proposition 1.3. O

We now use a simple “extrapolation” trick to obtain

PROPOSITION 1.5. For each 1 < p < o, there is a constant K, such
that

Vfe L*/H®NL'[H" || [z < Kp(lIf Npym)' =0 S Nl sm=)? s
where 1/p=(1-0)/1+6/c.

Proof. Combining (1.7) and (1.8), we find,

1A Wz e < CaUlS g ) ™2 - (ol W o - 1S W)
Hence,
1S W2 e < CalCP I o IS e e -
This yields the desired inequality with
Kp = (Cq(CH)VF7,

since 1 —60 = (1—-p)(1-By)"L. i

We can now complete our proof of Peter Jones’ theorem. (A differ-
ent proof has already been given a few months ago by Quanhua Xu
[X3].)

THEOREM 1.6. There is a constant C such that for all t > 0 we
have:

VfeH' + H®, Vt>0, K(f,H' H®)<CK/(f,L', L®).

Proof. We simply reproduce the proof of Proposition 1.2, but this
time we can take g = oo because of Proposition 1.3* (applied to the
case p = 2). Moreover, Proposition 1.5 allows us to complete that
same proof because by duality Proposition 1.5 is equivalent to the
assertion

Hp, c (Hla Hoo)l—@,oos

with norm bounded by some constant K . In other words, Proposition
1.1 remains valid for g = co. It is then easy to complete the proof by
the squaring argument of Proposition 1.2. O
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COROLLARY 1.7. Forall 0< 60 <1, 1 <q<oo we have
HP? = (Hl s Hoo)oq

where L =136+ &

REMARK 1.8. To prove Proposition 1.5, we can invoke Tom Wolff’s
interpolation theorem [W]. Indeed, Proposition 1.3 gives us the “right
answer” for the interpolation spaces (L{/H', L;/H?) for g < oo
and Proposition 1.2 gives us the case (L,/H?, L,/H>) for p > 1.
Actually, Corollary 1.7 can be deduced directly from Propositions 1.2
and 1.3* using Wolff’s results in [W].

REMARK 1.9. It is easy to extend Theorem 1.6 to the case of H”"
with 0 < r < 1. First, we can check

(1.9) H' C(H", H®), g

with | = =2 4+ 2 Indeed, we easily prove H! C (H", H%),, 00 With
1 =124 ¢ for g < co by the same method as above. Then we can
obtain (1.9) from Wolff’s theorem [W]. Using (1.9), it is immediate
to adapt the preceding arguments to prove Theorem 1.6 with H" and
L" (0<r<1) instead of H! and L!.

REMARK 1.10. (i) The same method will prove that the couple of
quasi-normed spaces (H!>®, H*®) is K-closed relative to (L',
L>). The same argument works. Note however that we already
know a priori from Corollary 1.7 that the real interpolation spaces
between (H':>, H*®) are the same (by reiteration) as those between
(H!, H*). Indeed, the inclusion (H':®, H*®)y , C HP-? is the triv-
ial direction, and Corollary 1.7 provides the converse. A fortiori the
same is true for the interpolation spaces between (L /}—Ié , H®).

(i) By Holmstedt’s formula (cf. [BL], pp. 52-53), it follows
from Jones’ theorem that all the couples (HP, H?) are K-closed,
for any 0 < p, g < oo, and similarly for couples of Lorentz spaces
(HPo% , HP %) with po # p;

Let us recapitulate and at the same time formalize the preceding
argument.

Consider a compatible couple (4, 4;) of Banach (or quasi-Banach)
spaces. Assume given a closed subspace S C Ay + 4A; and let

So=SNAy, S;=8SnNA4;.

Let Qp = Ap/Sp and Q; = 4,/S; be the associated quotient spaces.
Clearly (Qp, Q1) form a compatible couple since there are natural
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inclusion maps
Qo — (4p +A1)/S and Q; — (do+4,)/S.

We will say that the couple (Sp, S;) is K-closed (relative to (4g, A;))
if there is a constant C such that

Vi>0 VxeSy+S;
Kt(x, S(), Sl) S CKI(X, Ao, Al)

We will say that (Qp, Q;) is J-closed if for some constant C we
have

Vi>0 VxeQynQ; 3x e Aygn A; such that
JI(X’ A09 Al) < Jt(-x’ Q()’ Ql)

By the same argument as in Proposition 0.1 above one can show that
this is equivalent to the following “simultaneous lifting property:”
Vx € QoNQ; 3x € AgN A; such that

X=X+8yin Qy, x=X+S11in Q,

and

Xll4, < Clixllg, > IXll4, < Cllxllg, -
Our terminology is motivated by the fact that, roughly speaking,
(So, S1) is K-closed iff Sy + S; is closed in Ay + 4; with a uni-
formity over ¢, while (Qq, Q) is J-closed iff Qg N Q; is closed in
(Ao + 4,)/S with a uniformity over ¢. Then our key observation in
the preceding proof can be reformulated more “abstractly” as follows:

ProrosITION 1.11. (Sp, Sy) is K-closed iff (Qo, Q1) is J-closed.

We leave the routine proof to the reader.

REMARK 1.12. Let us denote A4y , = (Ao, A1)g,, and Sp , =
(So, Si)e,p - Assume that (Sp, S;) is K-closed (relative to (4p, 41)).
Then Sy , can obviously be identified with a subspace of 4y , and
the norm induced by 44 , on Sy , is equivalent to the norm of
Sp,p - Moreover, the Holmstedt reiteration formula (cf. [BL], pp. 52—
53) for the K-functional shows that if 0 < 6y # 6, < 1, and if
1 < pp,p1 < oo, then the couple (Sgo, p,>S6,,p,) 18 @ fortiori K-
closed relative to (Ay , , Ag ,p ), and also the couples (So, Sp, p )
and (Sp_,p, . S1) are K-closed relative to respectively (4o, 4g ) and

(Aeo,poa Al) .
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We can reformulate Proposition 1.11 using duality. Assume AyNA4;
dense in Ay and in A; and also assume that there is a subspace
s C AgN A, which is dense in S, with respect to Ay, and in S; with
respect to A;. Then (Sp, S;) is K-closed in (4g, 4;) iff (S, Si)
is K-closed in (4, 47).

REMARK 1.13. An even more abstract fact is behind the preceding
statement. Indeed, Proposition 1.10 can be viewed as a consequence
of the following statement: Let X;, X, be two closed subspaces of
a Banach space X. Let Q;: X — X/X; be the quotient map (i =
1,2). Then Q;(X;) is closed iff Q,(X;) is closed. This can also
be made more quantitative. Let us say that a surjective operator is a
A-surjection if the image of the open ball with center 0 and radius A
contains the open unit ball with center 0. Now in the above situation,
if O X, IS a A-surjection onto its image Q;(X;), then Q| X, is a
(A+ 1)-surjection onto its image Q,(X;). (To see the connection with
Proposition 1.10, consider the case X = 49 x 41, X; = Sp x S; and
Xy ={(x, —x)|x € 49N 4;}.)

2. The non commutative case. Let H be a separable Hilbert space.
Let us denote by C,(H) or simply by C, the Schatten ideal formed
by all the compact operators 77 on H such that tr|T}? < oo and
equipped with the norm ||T||, = (tr|T|P)!/?. Here 1 < p < co. If
p = oo, we denote by C,, the space of all compact operators on H .
In the above, we have taken |T| defined as (7*7)!/2, but actually
this choice is unimportant here since (as is well known) tr(7T*T)?/2 =
tr(TT*)?/?, and hence ||T||c, = |T*|c, -

Assume H separable (possibly finite dimensional) and let (e,) be a
fixed orthonormal basis. Let E; = span(e;, i < k) forall k > 1. We
will simply say that a bounded operator 7: H — H is triangular if
T(Ey) C E; forall k. This definition can be extended formally to the
case when the indexing set for the orthonormal basis is any countable
totally ordered set in the place of the set of all positive integers.

We will denote by 7,(H) or simply by 7, the subspace of C,(H)
formed by all the triangular operators. We will show the following
non-commutative version of P. Jones’ theorem proved in the preceding
section. The first point was proved recently, with C, and 7 in the
place of C; and T, in [KLW]. It is this result from [KLW] which
motivated the present paper.

THEOREM 2.1. (i) There is a constant K such that for any x in
C), there is an operator X in T, such that we have simultaneously
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”x _'2” —<— Kdl(xa Tl)’
| = X|joo £ Kdoo(X, Two)
where we have denoted
dp(x, Tp) = inf{||x = yllp, y € Tp}.
(ii) There is a constant C such that for any x in T\ + T, we have
Vi>0 Kix, Ty, Tew) < CKi(x, Cy, Cx).
(iti) If 0< @ <1 and ; =138 + &, we have
(Th, Too)op = T

with equivalent norms (and similarly for the Lorentz space case).

The proof of this theorem is entirely similar to the proof given in
§1, so that we will only briefly review the main ingredients one by one.

First we recall the following well-known fact (due to Macaev, cf.
e.g. [GK]).

LEMMA 2.2. The orthogonal projection P: C, — T, is bounded si-
multaneously on C, for all 1 < p < . Therefore, in particular
(0.4) extends to the present non-commutative setting as follows: If
1 < py < p1 < oo then there is a constant C such that for all t > 0 we
have

(2.1) VxeT, +T,, Vt>0,
Ki(x, Ty, Tp,) < CKi(x, Cp,, Cp.) -

The following fact is also well known.

LemMa 2.3. Let 1 < p,q,r < oo with 1 = 1+ ;. Assume (for

simplicity) that H is finite dimensional. Then every invertible x in T,
can be written as x = ab with ae€ T,, b e T, and | a|,||bllq = |Ix||p -

Proof. Note that either p/qg < 1/2 or p/r < 1/2. Assume p/q <
1/2. Also, assume | x|, = 1. By the Cholesky factorization, we
have |x|?/9 = b*b for some b triangular. Moreover, b is necessarily
invertible and |b|? = |x|P, so that ||b||;, =1. Let a =1-2p/q. Note
a > 0. We have x = U|x| with U unitary. Hence, x = U|x|*b*b.
Then, let a = xb~! = U|x|*b*. Clearly, a is triangular (since a and
b~! are so, and triangular operators form an algebra) and moreover,

aa* = U|x|ab*b|xlaU* — lelZ(l-p/q) U*
= U|x|21’/’U*,
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Hence (aa*)!/? = U|x|P/TU* so that ||a||, = 1. This completes the
proof if 5 <s5.

In case we have instead £ < % , an entirely similar argument works.
We first write x = (xx*)!/2V then (xx*)?/" = aa* with a triangular
and b =a 'x = a*(xx*)!/2-P/"V . Then the rest is the same. O

It is now easy to complete the proof of the following non-commuta-
tive version of Proposition 1.1, we skip the proof.

PROPOSITION 2.4. Forall 1 < p < q < oo we have
(2.2) Tp (T, Tg)e, o

with norms bounded by some constant K(p, q) where 0 < 0 < 1
satisfies $ =1-6+12.

To extend the squaring argument (0.1) (cf. the proof of Proposition
1.2), we need a non-commutative analogue of the “scaling” that we
used heavily for an analytic function without zeros. In the present
setting, this is somewhat easier. Indeed, let us denote by A(|x|) =
(An(Ix]))n>0 the sequence of the eigenvalues of |x| (arranged in non-
increasing order, and repeated as usual according to their multiplicity).
Observe that for all o >0

(2.3) An(1X]%) = (An(Ix1))* .

PROPOSITION 2.5. If 1 < pg < p; < oo then for all x in Cp + Cp,
we have for all t > 0

Ki(x, Gy, Cp) = Ki(|X|, Cp s Cp) = Ke(AUXI)s Ly, s Iy, -

Moreover, a similar double identity holds for the J-functional. If we
allow 0 < py < p1 < 00, then the first identity still holds and the second
one becomes there is a constant C such that for all t > 0

Ki(x, Gy, Cp) < Ki(A(xXD), by, » b)) < CKi(x, Cp,, Cp,)-

The first equality is easy to check using the unitary invariance of
the spaces C,. The second equality follows from the existence of
a projection simultaneously bounded on all C,’s (p > 1) onto the
elements which are diagonal on the same basis as |x|. In the quasi-
normed case, the last assertion can be checked as follows. Let a,(x)
be the distance (in the operator norm) of x to the set of all operators
of rank < n. It is well known that a,(x) = 4,(|x|), and also that
an(xo + x1) < an(xp) + an(x;). Using this it is an easy exercise to
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check the last assertion. In any case, we refer the reader to [PT] for
more details on such results.

Using Proposition 2.5, it is easy to extend Proposition 1.2 to the
non-commutative case, as follows.

PROPOSITION 2.6. For each 1 < q < oo, there is a constant C’
(depending only on q) such that

Vi>0 VxeTi+T, K(x,Ti,T,) <CKix,Ci,Cp).

Proof. Assume w.l.o.g. that H is finite dimensional and x invert-
ible. Let T be triangular such that

x| = (x*x)'/2 = b*b = |b*.

We have A(|b|) = A(|x|'/?). Hence by Proposition 2.5 and (2.3) we
have

Kun(b, Cyp, , Cap) < (2Ki(x, Cp, » Cp))'2.

Assume for simplicity 2K;(x, Cp , Cp) < 1. Then by (2.1), there are
o, &1 triangular such that b = gy + g and ||gll> + /2| g1l24 < C.
Note that x = U|x| = Ub*b = ab where a = xb~! is triangular.
Since a = Ub* (and ||x|, = ||x||,) we have obviously

Ktl/z(a ) C2po ) C2p1) = Ktl/z(b , C2p0 , C2p1) .

Hence by (2.1) again, a = hg + h; with hg, h; triangular such that
lholl2 + £1/2||hy]l2g < C. Finally, x = ab = (ho + h1)(g + &1) can be
estimated as in the (commutative) proof of Proposition 1.2. ]

REMARK 2.7. The analogue of Proposition 1.3 is clearly valid in
the case of 7, with the same proof. The same comment applies to
Proposition 1.2* and Proposition 1.3*. Moreover, Proposition 1.5
clearly also extends to the non-commutative case, so that the proof of
Theorem 2.1 can be completed exactly as in §1.

3. The Banach space valued case. We first remark that Jones’ the-
orem remains valid for a couple (H!(B), H®(B)) for an arbitrary
Banach space B. Indeed, if f is H!(B), using an elementary outer
function argument, one can factor f as F¢, where F is analytic,
scalar valued and such that |F| = ||f||p, while ¢ is bounded ana-
lytic B-valued and such that ||¢|| = 1 a.s. on T. Moreover, if f is
in the unit ball of H!(B), then f can be approximated in H!(B)
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by products F¢ with F in the unit ball of H' and ¢ in the unit
ball of H*(B). This reduces the problem to the scalar case, since
it easy to verify that K,(f, H'(B), H®(B)) < K,(F, H', H®) and
K(F, Ly, L) < K;(f,Li(B), Lo(B)). Similarly, for any 1 < p,
g < oo, the couples (H?(B), H4(B)) and (HP(B), HI(B)) are K-
closed, by reduction to the scalar case.

However, the general case of a compatible couple (A4y, A;) of two
different Banach spaces, is more delicate. We refer the reader to [BX]
for more information and for a counterexample showing that Jones’
theorem does not extend in that degree of generality (cf. also [X1],
[X2]). Nevertheless, we show below that in a number of nice cases, it
does extend. There seems to be no counterexample known at the time
of this writing within couples of Banach lattices.

Using the same method as in §1, we can prove

THEOREM 3.1. Let 1 < py, p1, 90, 1 < 0co. (Moreover, the space
102 must be replaced by co wherever it appears.) Then the couple
(HPo(lg,), HP1(lg,)) is K-closed with respect to (Lp (lq)), Lp (Ig,))-

REMARK. One can derive from Jones’ proof the case pg =g =1,
P1 = q; = oo, but probably not the other cases. However, some
other cases can be derived from [B]. More precisely, Bourgain states
explicitly in [B] a theorem which in our terminology means that the
couple (H!(l;), H'(ly)) is K-closed. By a rather simple factorisation
argument (such as Theorem 2.7 in [HP]), one can show that a couple
(HP(Ag), HP(A,)) is K-closed for some 1 < p < oo iff it is K-closed
for all 1 < p < oo. Therefore, Bourgain’s theorem does imply certain
cases of Theorem 3.1. But actually, it is interesting that one can go
conversely: in [P] we indeed do recover most of the results of [B] by
the methods of the present paper.

We will denote simply by g-4 the pointwise and coordinatewise
product of two sequences g = (g,) and h = (h,) of scalar analytic
functions. We first observe that in the situation of Theorem 3.1, if

1 1 1 1 1 1
(3-1) =20 T ™ 7% T2
then the unit ball of H?(/;) coincides with the set of all products
g-h with g and & in the unit balls respectively of H??(l5,) and
H?P: (I2g,) - Indeed, this is easy to check using outer functions. Then,
the squaring argument (0.1) suitably generalized, becomes



358 GILLES PISIER

LEMMA 3.2. In the same situcition asin Z“heorem 3.1 (replacing [
by co wherever it appears), if (H*"(ly, ), H?\(ly,)) is K-closed and
if, with p and q as in (3.1) above,

(3.2) HP(ly) € (HPo(lg,), HP(Ig))1/2,00 5
then (HP(l,), HP (I, )) is K-closed.

Proof. The assumptions allow to reduce to the case of finite dimen-
sional /,-spaces with constants independent of the dimension. Then;
the distinction between H”(l;) and HP (l4) becomes irrelevant and
we can argue exactly as in Proposition 1.2. O

Proof of Theorem 3.1. Let us record here the preliminary observa-
tion that if we a priori know that (H 21’0(12%) , H?P: (I2q,)) 1s K-closed,
then (3.2) holds iff the couple (ﬁpo(lqo) , I?Pn(lql)) is K-closed. Indeed,
Lemma 3.2 gives the only if part, and the converse is clear since H? (Ig)
is included into L”(l;), hence into the complex interpolation space
(L), L2i(lg )12, and a fortiori into (LPo(lg,), LPi(lg))1/2,e0
but, if we assume K-closedness, the latter space induces on
the subspace of analytic functions a norm equivalent to that of
(HPo(lg,) » HP1(lg,))1/2,00 » Which proves the converse part.

Using the observations preceding Lemma 3.2, when all the indices
are finite it is easy to extend Proposition 1.1 to the present setting with
essentially the same proof; more precisely, we have an inclusion

HPo(l)) € (HPo(lg,), H?1(lg)))g, 0

where 1/pg = (1-0)/po+6/p1, 1/q9 = (1—0)/q0+6/q: , and all the
indices are finite. Indeed, this can be checked using the well known
fact (apparently going as far back as [BB]) that the Hilbert transform
is bounded simultaneously on L,(/;) forall 1 < p, g < oo, a fact
which provides us with a substitute for (0.4), and proves the preceding
inclusion when all indices are strictly between 1 and oo (this can also
be seen, perhaps more easily, using complex interpolation). Then,
the factorisation argument as in Proposition 1.1 yields the preceding
inclusion assuming only that all indices are finite. This extension and
Lemma 3.2 give us Theorem 3.1 in case all the four indices pgy, pi,
do, ¢ are finite. We now dualize. To avoid irrelevant complications
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let us assume for the moment that, everywhere until said otherwise, /,
is the finite dimensional space C" equipped with the /,-norm. Then,
by Proposition 0.1 and dualisation, we obtain Theorem 3.1 and (3.2)
in case all the four indices are more than 1. At this stage, by the
preliminary remark recorded at the start of the proof, to conclude
it suffices to check that (3.2) holds in full generality. To do so, we
note that if gy, ¢; are both finite and py, p; are both more than 1,
but possibly infinite, then we still have (3.2) and hence K-closedness
because we can apply the argument for Proposition 1.1 to the second
indices only. More precisely, choosing r large enough, we can write
any f in the unit ball of HP(l/;) as a product gh with g in the
unit ball of H®(l,) and A in the unit ball of HP(l;) with 1/r +
1/s = 1/q, and this “translation” by 1/r reduces the problem to
the case of all indices more than 1, which has already been settled.
By duality (or by a similar argument applied to the first indices), if
do, ¢1 are both more than 1 and pgy, p; both finite, we also have
K-closedness. Let us now check that all the other cases follow. To
describe the argument, it is convenient to denote xy = (1/po, 1/40),
x1 = (1/p1, 1/q1) and fo view these two points as the extremities on
a line segment lying in the unit square of R2. Then using the same
argument as in Proposition 1.5 (or invoking Wolff’s theorem [W]) we
can obtain (3.2) for the segment (xp, x;) everytime we know it for
two subsegments (xp, ¥) and (z, x;) which intersect in a non-empty
open subsegment (z, y). In this way, it is then an entirely elementary
matter to check all the remaining cases, using the already settled ones.
This concludes the proof in the case of finite dimensional /,-spaces,
with constants independent of the dimension. By a density argument,
(note that the presence of the tildes and the substitution of ¢y for /o
allows the reduction to the finite dimensional case) it is easy to deduce
the general case from the finite dimensional one. O

_THEOREM 3.3. In the same situation as in Theorem 3.1, the couple
(HPo(Cy,), HP1(Cy,)) is K-closed with respect to (Lp (Cy,), Lp (Cq))-

Proof. This is entirely analogous to the preceding argument for The-
orem 3.1, but of course we must use suitable matrix-valued extensions
of the classical factorization theorems used in §1. Sarason’s paper [S]
contains all that is needed here, but actually, by density we need only
prove the matrix valued case, with constants independent of the size
of the matrix. In that case, if H is finite dimensional, it can be de-
duced from classical results of Wiener-Masani-Helson-Lowdenslager
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(see [H]) that if 1 <p;,s;,r <oo and 1/py=1/sy+1/r,every f
in the unit ball of H>(Cp (H)) can be written as a product f = gh
with g in the unit ball of H>(Cs (H)) and A in the unit ball of
H>(C; (H)). Here of course the product means the pointwise product
of operator valued functions. This can be checked following the same
argument as for Lemma 2.3 but using the fact that any positive matrix
valued function W, such that (say) W > eI for some ¢ > 0, can be
written as b*b for some invertible (actually outer) matrix valued ana-
lytic function b, cf. [H]. One can get rid of ¢ a posteriori by a weak*-
compactness limiting argument. Taking into account the remarks at
the beginning of this section, we find that, if 1 < pg, s, rop < oo and
1/po = 1/so + 1/rg, any f in the unit ball of H?(C, (H)) can be
written as a product f = gh with g in the unit ball of H*%(Cs (H))
and A in the unit ball of H"(C, (H)). The proof of Theorem 3.3
can then be computed easily following the same line of reasoning as
in §2. Let us indicate here an “economic” route for the inexperienced
reader. We assume H finite dimensional, but all our constants will be
independent of its dimension. Let us explain more technically what
the “squaring” argument becomes in the non-commutative case. We
will show that if (H*(Cyg), H*1(Cy,)) is K-closed and if (3.2)
holds, then (FIPo(CqO) , fIPn(qu)) is K-closed. To prove that consider
[ in HPo(C, ) + HP/(C,) such that K,(f, Ly (Cq,), Ly, (Cq)) < 1,
this means there are fy € L, (Cy) and Ji € Ly (Cy,) such that

(3.3) f=h+h, Il c,)+tAhlL c,) <1

90

Fix ¢ > 0. Let F be an analytic matrix valued function such that
(3.4) F*F =|f|+el

a.e. on T, and such that z — F(z)~! is analytic. This is possible by
choosing F outer, cf. [H]. Let us denote by % the set of all matrix
valued (measurable) functions ¥ such that |V (¢)]| < 1 a.e. on T.
Note that |f|!/2 = VF for some V € % . By polar decomposition,
f=U|f|=U|f|'?VF for some U € % . Therefore, f = GF with
G = U|f|'?V . But G must be analytic since G = fF~1. Now we
claim that for some J > 0 which can be made arbitrarily small by
letting ¢ tend to zero, we have

(3.5) Kn(F, Lyp (Caq) + Loy (Cag)) < 217 + 6,

t
K, (G, Lo (Cag) + Loy (Cag))) < 2112,
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Let us justify this. Going back to our assumption on f, we have
|f|=U*f =U*fo+ U*f;. Using the diagonal projection mentioned
after Proposition 2.5 (more precisely, the inequality || Y_ a;ie;®e;|l, <
[l(aij)|lp valid for any p > 1 and any orthonormal basis (e;)), we can
project the last decomposition and we obtain |f | = gop + g where g
and g; are diagonal for the same basis as |f | and by (3.3) they satisfy
||g0||Lp0(qu)+t||g1HLpl(qu) < 1. Nowsince |f|, &, & all commute we

can write |f|1/2 <|go|'/? + |g1|!/? from which it follows exactly as in
the commutative case that

K(If1'2, LPo(Caq,), L7 (Cyy)) < 2112,

which, recalling (3.4) and the value of G, obviously implies the above
claim (3.5). The rest of the proof is then clear: since we assume K-
closedness for the doubled indices, we can write, for some constant
c,
F=F+F, G=Gy+G;
with
- 1/2 - 1/2
"FO”HZPO(Cqu) +1 ”FIHHZPI(Cqu) < C(2 + 5) ’

1Goll 7, )+ 121Gz, ) < €272
9]

qo)

Finally, we have
f =GF = (GoFy + G F1) + (GoFy + G Fy)

and we can conclude exactly as we did for Proposition 1.2. This
concludes the proof of the squaring argument. With this, it is now
easy to complete the proof exactly as in Theorem 3.1. O

COROLLARY 3.4. Let H be a separable Hilbert space. The couple
(HY(C\(H)), H®(B(H))) is K-closed relative to (L\(C(H)),
LY (B(H))), where we have denoted by LY (B(H)) the space of all
essentially bounded weak*-measurable functions with values in
B(H) (if we view the B(H)-valued functions as matrix valued, weak*-
measurability simply means here that all the entries are measurable).

Proof. Consider f € H!(C(H))+ H®(B(H)) with
Ki(f, Li(Ci(H)), Lo (B(H))) < 1.

We view f as a doubly infinite matrix valued function. Let f, be
the function which has the same entries as f on the upper left n x n
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square and zero elsewhere. By Theorem 3.3, for any ¢ > 0, we can
write f, = gn + h,, with

(3.6) “gn”H‘(Cl(H)) <C and ||2a|lg=sa) < C/t.

By compactness, we can assume w.l.o.g. that g, and A, converge
in the weak operator topology, uniformly on compact subsets of the
unit disc D to g and 4. Clearly (3.6) remains valid in the limit and
f = g+h, so that we conclude K,(f, H'(C;(H)), H®(B(H))) < 2C.
By homogeneity, this completes the proof. O

By well-known results on the interpolation of L,-spaces (cf. [BL]
p. 130, note 5.8.6, and [PT]) the preceding results immediately imply

COROLLARY 3.5. If 1/p=1-6, then
(H'(I), H*(l)),p = H?(Ip) ,

and

(H'(Ci(H)), H®(B(H)))g,, = H?(Cp(H))
for any separable Hilbert space H . Moreover, a similar result holds for
the HP-spaces.

4. Complex interpolation. In this section, we deduce the complex
version of Peter Jones’ theorem from the real one. Somehow, we feel
that the idea in the proof of this deduction is of some (theoretical)
interest even for couples of L, spaces.

Let us denote by Hf*? the subspace of H?-9 formed by the bound-
ary values of the analytic functions vanishing at 0. We will denote by
Fﬁ"’ the subspace of L, , formed by all the antianalytic functions
whose complex conjugates lie in HJ'?. When p = ¢, as usual we de-
note these spaces by H?, H;. We wish to prove that if 1 < p < oo,
and 1/p =1-0, then H? = (H', H®),. By standard methods, it
suffices to show that

(4.1) (L1/Hy, Loo/H)1_g C H

where 1/g =6.

Let us denote by dn the counting measure on the integers. We will
denote simply by A,  thespace L, o(dm®dn) and by h?-°° (resp.
Eg *®) the subspace formed by the elements f(z, n) such that for each
n, the function f(.,n) is in H9-® (resp. Hy’™). When g = oo
we denote similarly by A, and A the corresponding spaces. By
the method of the preceding section, it is easy to show that the couple
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(hy’™ , Fig") (which, of course is equivalent to the couple (21>, h>))

is K- closed with respect to (A}, «, Ax) . Indeed, by Theorem 3.1 and
reiteration (cf. Remark 1.12) we know that the couple (A2, h*) is
K-closed, so that by the squaring argument, it suffices to check that

h2’°° C (hl,oo, hoo)l/Z,oo-

The latter inclusion is clear since by Theorem 3.1, we have A%:>® =
(h', h®)1)2,0 and h' C h'>>*. Thus, we have checked the K-

closedness of the couple (Z(l)’oo , 7280 ) with respect to (A} o, Aco) -

In particular, by Proposition 0.1, this implies we have a simultane-
ous good lifting for the quotient spaces (Aj, oo /Z(l)’oo s Loo(lso) /15 ) -
From this, it is easy to deduce using the J-method that the space
(Al,oo/ﬁ(l)’oo,Loo(loo)/ﬁgo)l_g,oo can be identified with the space
Ay, oo/Ry™ where 1/g=6.

By interpolation and reiteration, the natural (i.e. orthogonal) pro-
jection is bounded from A, o into A4 o if 1 < g < oo. Therefore,
A o /Eg"” can simply be identified with 4, o,. The result of this
discussion is the following

LEMMA 4.1. If 1 < g < o0, and 1/q = 0, then there is a bounded
natural inclusion

(A1, 00/, Loo(loo) /g )1-.50 C Pig, o0 -

We will now introduce a mapping J; from L, /H{ into Ay, /Zg’
for all 1 < ¢ < o0, as follows. We start by defining a mapping
K;: Ly — Ay, by setting

VFeL, Ky F)t,n) =n"YIF(1).

For any positive real x, we denote by [x] the largest integer » which
is less than x. Then, we have

F
(4.2) thm{n"/"IFl >t} =t‘1/ [I 1 ] dm </|F|‘1dm
n>0
Moreover, the supremum of the left side over all ¢ > 0 is equal to
the right-hand side (to check this, simply let ¢ tend to 0). Hence
|Kq(F)|| = |F||, so that K, has norm 1. Note that K, obviously
maps Hg into kg™, and therefore we may define J,: L,/Hg —
Aq,ﬁ/ﬁg’oo as the mapping canonically associated to K,;. For f €
L, /Hg, if F € L, is a representant of the equivalence class of f,
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then (n~!/4F) is a representant of J,(f). The next result is a key
observation allowing us to deduce the complex interpolation theorem
from the real one.

LEMMA 4.2. If 1 < g < o0, 1/q = 6, the operator J; defines a
bounded mapping from (Ly/Hy, Leo/H)1-g into hy, oo

Proof. For any z with 0 < Re(z) < 1, let J? be the operator
defined exactly as J, but with n°~! in the place of n~1/4. Then,
by (4.2), if Re(z) =0, JZ is clearly a contraction from L; /T{_(l) into
Al,w/ﬁ(l)’oo, and if Re(z) = 1, it is a contraction from L.,/Hg
into Ly (lw) /h3° . Hence, by complex interpolation (namely
Stein’s interpolation theorem for analytic families of opera-
tors), J, = J!/9 is a contraction from (LI/ITI(I,, Lo/Hy ) _g into
(Al,w/ﬁé’w, Loo(l) /g )i—e » hence a fortiori (cf. e.g. [BL] p. 102,
see also the following remark for a technical precision), it is bounded

77l I7 . —1,00 —
from (Li/Hy, Loo/Hg )16 into (A1 e0/ho'™ , Loo(loo)/h )1-6,00
so that we can conclude the proof by Lemma 4.1. O

REMARK. In the preceding argument, there is a slight problem be-
cause A . is not normable, and the complex interpolation method
is usually developed in the locally convex setting (see however [JJ]).
This difficulty can be circumvented easily. Indeed, let us denote sim-
ply 01 = Loo(lx) /ESO . Let By be the Banach space of all sequences of
measurable functions (x,) such that [ sup(n|x,|)dm < oo, equipped
with the norm ||(x,)|| = [sup(n|x,|)dm. We will denote by S, the

subspace of By formed by the sequences (x,) such that x, € ﬁ(l, for
all n. Finally, we set Qg = By/Sp. We will use the observation that
By C Ay, and this inclusion has norm one, so that we also have Qp C

Ay ,oo/ﬁ(l)’oo with norm one. Then, the preceding argument shows that
J, is a contraction from (L;/Hy, Leo/Hy)1_e into (Qo, O1)ip,
hence a fortiori it is bounded into (Qp, Q1)1-6, > and finally by the

preceding observation, into (A; /El)’oo » Loo(ls)23 ) 1-6, 00 - In this
manner, we have managed to remain with Banach spaces.

We can now obtain the complex case of Peter Jones’ theorem as a
consequence of the real case.

THEOREM 4.3. If | <p < oo, and 1/p=1-0, then
HP = (H!', H®),.
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Proof. Let p be the conjugate of g, so that 1/p+1/g = 1. The
inclusion (H!', H®)y C HP? is obvious. To prove the converse we
dualize. Hence we have to prove that

—1 —00
(Li/Hy, Loo/Hy )1-¢ C HY
where 1/q = §. By Lemma 4.2, it suffices to show
Vx e H® |[x|p = “(”_l/qx)“hq,w'

But this follows from the simple identity

(4.3) /lxlq dm = sup {t" > m(lx| > tnl/q)} .

>0
This concludes the proof. (Note that (4.3) means that K, is an iso-
metric embedding of L, into A4-*.) 0

COROLLARY 4.4. For any Banach space B, in the same situation as
in Theorem 4.3, we have

(4.4) HP(B) = (H'(B), H®(B))s
and
(4.5) HP(B) = (H'(B), H*(B))s .

Proof. The obvious inclusion (H'(B), H®(B))gC(L{(B), Le(B))g
= L,(B) implies

(H'(B), H®(B))y C H?(B).

Moreover, we recall that for any f in HP(B), and any r < 1,
the function f, defined by f,(z) = f(rz) is clearly in H?(B), and
I/ | e By = SuPo<r<t 1ol B Using this, we obtain similarly

(H'(B), H*(B))g C H?(B).

To check the converse, by the factorisation argument mentioned at
the beginning of §3, we can write any f in HP(B) as a product of
f=gh,with g € H? and h € H®(B). By Theorem 4.3, g belongs
to (H!, H®)y; hence, by interpolation, since the multiplication by
h maps H' into H!(B) and H*® into H>(B), the function gh
belongs to (H'(B), H*(B))y . This completes the proof of (4.5). We
leave the rest of the proof to the reader.
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The proof of Theorem 4.3 extends with almost no change to the
non-commutative case (as was pointed out to me by QuanHua Xu),
as follows

THEOREM 4.5. If 1 <p < oo, and 1/p=1-0, then
(4.6) Tp =(T1, Tw)g

and

(H'(Ci(H)), H*(B(H)))g = H?(Cy(H))
Jor any separable Hilbert space H . Moreover, a similar result holds for
the HP-spaces.

Proof. The argument is entirely similar to the above. Let us indicate
how (4.6) can be checked. First, the inclusion (77, Tw)g C T is
obvious, so that it suffices to prove the converse one. Let us denote
Sq(H) = Ca(H)NTj- and Sy, o(H) = Cy,00(H)NTj-. To abbreviate,
we will sometimes write simply S, instead of S,(H). By duality, it
suffices to show, in analogy with (4.1) that

(TI/SI ’ Too/Soo)l_o C Tq

where 1/g =6 =1-1/p. Let H® [, be the Hilbert space which is
the Hilbertian tensor product of H and /,. We define a mapping K|,
from C,(H) into Cy (H ® ;) by letting

where we have denoted by (J,) the canonical basis of /. It is
easy to check that K, is an isometric embedding from C,;(H) into
Cy,00(H ® [5) . Let us denote H = H®]I,. Since we assume given an
orthonormal basis (e,) in H, we can order the basis (e, ® J;)
using the lexicographic order, so that we can define as usual the
notion of a “triangular” operator on H. Then obviously, K; maps
S, into S, .(H), and hence it induces a mapping J, from C,/S,
into Cq,m(ﬁ)/Sq,oo(IA{). We again denote by J* the same map-
ping but with n!=Z in the place of n~1/9. By reasoning exactly as in
Lemma 4.2, we can show that J; is bounded from (C; /S, Coo/Sx)1-0
into T, q,oo(}AI ). Let us denote by (ax(x))r>0 the sequence of singu-
lar numbers of an operator x, (i.e. with the notation of §2, we have
ar(x) = Ax(]x])) . We observe that the sequence (a,(K,(x))) coincides
with the non-increasing rearrangement of the collection {n~1/9g; (x)|

n > 1,k > 0}. This implies that ||K,;(x)|l4,00 = ||X|lq.- Hence, we
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can argue exactly as for Theorem 4.3 above, and we obtain (4.6). We
leave the rest of the proof to the reader.

ReEMARK. While we were completing the present paper, we received
a copy of a preprint by Paul Miiller [M] which contains a strikingly
simple proof of Peter Jones’ theorem, or at least of Corollary 1.7
above, by an extremely simple probabilistic stopping time argument.
It seems unlikely however that his idea will yield the non-commutative
case. More recently (in Oberwolfach in September 91) S. Kisliakov
showed me an extremely simple classical proof of Jones’ theorem (The-
orem 1.6) which only uses the boundedness of the Hilbert transform
in L,. This proof uses the same idea as in [K] (where the more del-
icate HP-spaces with weights are considered), but is much simpler.
See also [KX] for more results related to the above §3.

FINAL REMARK. The research for this paper was motivated by a
preprint of Kaftal, Larson and Weiss, where Proposition 1.2* and
its non-commutative analogue for nest algebras are proved for p =
2 using an operator algebraic method related to Arveson’s distance
formula. The author is most grateful to David Larson for showing
him a copy of that paper and for stimulating conversations. I am
also grateful to Svante Janson for observing some point that needed a
correction in the preprint version.
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