Vol. 156, No. 2, 1992

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying Δx = Ax + B

Luis Alías, Angel Ferrandez and Pascual Lucas

Vol. 156 (1992), No. 2, 201–208
Abstract

In this paper we locally classify the surfaces Ms2 in the 3-dimensional Lorentz-Minkowski space 𝕃3 verifying the equation Δx = Ax + B, where A is an endomorphism of 𝕃3 and B is a constant vector.

We obtain that classification by proving that Ms2 has constant mean curvature and in a second step we deduce Ms2 is isoparametric.

Mathematical Subject Classification 2000
Primary: 53C50
Secondary: 53C42
Milestones
Received: 30 April 1991
Published: 1 December 1992
Authors
Luis Alías
Departamento de Matemáticas
Universidad de Murcia
Campus de Espinardo
E-30100 Espinardo, Murcia
Spain
Angel Ferrandez
Pascual Lucas