SURFACES IN THE 3-DIMENSIONAL LORENTZ-MINKOWSKI SPACE SATISFYING $\Delta x = Ax + B$

Luis Alías, Angel Ferrandez and Pascual Lucas
SURFACES IN THE 3-DIMENSIONAL LORENTZ-MINKOWSKI SPACE SATISFYING
\[\Delta x = Ax + B \]

Luis J. Alías, Angel Ferrández and Pascual Lucas

In this paper we locally classify the surfaces \(M^2_t \) in the 3-dimensional Lorentz-Minkowski space \(\mathbb{L}^3 \) verifying the equation \(\Delta x = Ax + B \), where \(A \) is an endomorphism of \(\mathbb{L}^3 \) and \(B \) is a constant vector.

We obtain that classification by proving that \(M^2_t \) has constant mean curvature and in a second step we deduce \(M^2_t \) is isoparametric.

0. Introduction. In [FL90] the last two authors obtain a classification of surfaces \(M^2_s \) in the 3-dimensional Lorentz-Minkowski space satisfying the condition \(\Delta H = \lambda H \), for a real constant \(\lambda \), where \(H \) is the mean curvature vector field. That equation is nothing but a system of partial differential equations, so that the problems quoted in [FL90] can be framed in a more general situation: classify semi-Riemannian submanifolds by means of some characteristic differential equations. In this line, the technique of finite type submanifolds, created and developed by B. Y. Chen, has been shown as a fruitful tool to inquire into not only the intrinsic configuration of the submanifold, but also the extrinsic one, because the Laplacian of the isometric immersion is essentially the mean curvature vector field of the submanifold.

Following Chen’s idea, Garay [Gar88] has obtained a characterization of connected, complete surfaces of revolution in \(\mathbb{E}^3 \) whose component functions in \(\mathbb{E}^3 \) are eigenfunctions of its Laplacian with possibly distinct eigenvalues. In a second step, in [Gar90], Garay found that the only Euclidean hypersurfaces whose coordinate functions are eigenfunctions for its Laplacian are open pieces of a minimal hypersurface, a hypersphere or a generalized circular cylinder.

More recently, in [DPV90], Dillen-Pas-Verstraelen pointed out that Garay’s condition is not coordinate invariant as a circular cylinder in \(\mathbb{E}^3 \) shows. Then they study and classify the surfaces in \(\mathbb{E}^3 \) which satisfy \(\Delta x = Ax + B \), where \(\Delta \) is the Laplacian on the surface, \(x \) represents the isometric immersion in \(\mathbb{E}^3 \), \(A \in \mathbb{E}^{3\times3} \) and \(B \in \mathbb{R}^3 \).

It is well known that when the ambient space is the 3-dimensional
Lorentz-Minkowski space \(\mathbb{L}^3 \), then the surface \(M_2^2 \) can be endowed with a Riemannian metric (spacelike surface) or a Lorentzian metric (Lorentzian surface) and therefore, as we pointed out in [FL90], a richer classification is hoped. So, the following geometric question seems to be coming up in a natural way:

"Which are the surfaces in \(\mathbb{L}^3 \) satisfying the condition \(\Delta x = Ax + B \), where \(A \) is an endomorphism of \(\mathbb{L}^3 \) and \(B \) is a constant vector?"

To solve this question we follow the same way of reasoning as in [FL90], which is quite different than that used by Dillen-Pas-Verstraelen in [DPV90]. We would like to remark that our proof also works in the Riemannian case, so that the Theorem in [DPV90] can be obtained as a consequence of our main result.

1. Some examples. Let \(f: \mathbb{L}^3 \to \mathbb{R} \) be a real function defined by

\[
f(x, y, z) = -\delta_1 x^2 + y^2 + \delta_2 z^2,
\]

where \(\delta_1 \) and \(\delta_2 \) belong to the set \(\{0, 1\} \) and they do not vanish simultaneously. Taking \(r > 0 \) and \(\varepsilon = \pm 1 \), the set \(f^{-1}(\varepsilon r^2) \) is a surface in \(\mathbb{L}^3 \) provided that \((\delta_1, \delta_2, \varepsilon) \neq (0, 1, -1)\).

A straightforward computation shows that the unit normal vector field is written as \(N = (1/r)(\delta_1 x, y, \delta_2 z) \) and the principal curvatures are

\[
\mu_1 = -\delta_1/r \quad \text{and} \quad \mu_2 = -\delta_2/r.
\]

Then the mean curvature is given by

\[
\alpha = (\varepsilon/2)(\mu_1 + \mu_2) = (-\varepsilon/2r)(\delta_1 + \delta_2)
\]

and by using the well-known formula \(\Delta x = -2H = -2\alpha N \) we obtain \(\Delta x = Ax \), where

\[
A = \frac{\varepsilon(\delta_1 + \delta_2)}{r^2} \begin{pmatrix} \delta_1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \delta_2 \end{pmatrix}.
\]

The adjoint table collects all the above possibilities.
2. Setup. Let M^2_s be a surface in \mathbb{L}^3 with index $s = 0, 1$. Throughout this paper we will denote by σ, S, H, ∇ and $\overline{\nabla}$ the second fundamental form, the shape operator, the mean curvature vector field, the Levi-Civita connection on M^2_s and the usual flat connection on \mathbb{L}^3, respectively. Let N be a unit vector field normal to M_s^2 and let α be the mean curvature with respect to N, i.e., $H = \alpha N$.

Let $x: M^2_s \to \mathbb{L}^3$ be an isometric immersion satisfying the equation

$$\Delta x = Ax + B,$$

where A is an endomorphism of \mathbb{L}^3 and B is a constant vector in \mathbb{L}^3. If we take a covariant derivative in (2.1) and use the well-known equation $\Delta x = -2H$, by applying the Weingarten formula we have

$$AX = 2\alpha SX - 2X(\alpha)N,$$

for any vector field X tangent to M^2_s. From here and the self-adjointness of S one easily gets

$$\langle AX, Y \rangle = \langle X, AY \rangle,$$

for any tangent vector fields X and Y.

The covariant derivative in (2.3) yields

$$\langle A\sigma(X, Z), Y \rangle - \langle A\sigma(Y, Z), X \rangle = \langle \sigma(X, Z), AY \rangle - \langle \sigma(Y, Z), AX \rangle.$$
Now, by applying the Laplacian on both sides of (2.1) and taking into account the formula for ΔH obtained in [FL90], we have

\[(2.5) \quad AH = 2S(\nabla \alpha) + 2\varepsilon \alpha \nabla \alpha + \{\Delta \alpha + \varepsilon \alpha |S|^2\}N,\]

where $\nabla \alpha$ stands for the gradient of α and $\varepsilon = \langle N, N \rangle$.

As for the structure equations we would like to set the notation that will be used later on. Let $\{E_1, E_2, E_3\}$ be a local orthonormal frame and let $\{\omega^1, \omega^2, \omega^3\}$ and $\{\omega^i\}_{i,j}$ be the dual frame and the connection forms, respectively, given by

$$
\omega^i(X) = \langle X, E_i \rangle, \quad \omega^i_j(X) = \langle \nabla_X E_i, E_j \rangle.
$$

Then we have

\[d\omega^i = -\sum_{j=1}^{3} \varepsilon_j \omega^j \wedge \omega^i, \quad d\omega^i_j = -\sum_{k=1}^{3} \varepsilon_k \omega^j_k \wedge \omega^i_k.\]

3. The characterization theorem. All exhibited examples in §1 have constant mean curvature. It seems reasonable to ask for surfaces in \mathbb{L}^3 satisfying (2.1) having non constant mean curvature. The answer is negative as the following proposition shows.

Proposition 3.1. Let $x: M^2_3 \to \mathbb{L}^3$ be an isometric immersion satisfying $\Delta x = Ax + B$. Then M^2_3 has constant mean curvature.

Proof. Let us start with the open set $\mathcal{U} = \{p \in M^2_3 : \nabla \alpha^2(p) \neq 0\}$. We are going to show that \mathcal{U} is empty. Otherwise, we have

$$
\sigma(X, Y) = \varepsilon \frac{\langle SX, Y \rangle}{\alpha} H,
$$

for any tangent vector fields on \mathcal{U}. Then from (2.5) we obtain

\[(3.6) \quad \langle A \sigma(X, Y), Z \rangle = 2\frac{\langle SX, Y \rangle}{\alpha} (\varepsilon SZ(\alpha) + \alpha Z(\alpha)).\]

Now, by applying (2.2), (2.4) and (3.6) we get

\[(3.7) \quad TX(\alpha)SY = TY(\alpha)SX,\]

where T is the self-adjoint operator given by $TX = 2\alpha X + \varepsilon SX$.

Case 1. $T(\nabla \alpha) \neq 0$ on \mathcal{U}. Then there exists a tangent vector field X such that $TX(\alpha) \neq 0$, which implies by using (3.7) that S has rank one on \mathcal{U}. Thus we can choose a local orthonormal frame $\{E_1, E_2, E_3\}$ with $SE_1 = 2\varepsilon \alpha E_1$, $SE_2 = 0$ and $E_3 = N$. From here and again from (3.7) we have $E_2(\alpha) = 0$. Let $\{\omega^1, \omega^2, \omega^3\}$ and $\{\omega^i\}_{i,j}$ be the dual frame and the connection forms, respectively. It is easy to see that
Taking exterior differentiation in (3.8) and using (3.10) and the structure equations we obtain \(d\omega^1 = 0 \) and therefore we locally have \(\omega^1 = du \), for a certain function \(u \). Now, from (3.10) we get \(d\alpha \wedge du = 0 \) and then \(\alpha \) depends on \(u \), \(\alpha = \alpha(u) \), and therefore \(E_1(\alpha) = \varepsilon_1\alpha'(u) \).

Taking into account (3.9) and \(d\omega^1 = 0 \) we deduce \(\omega_1 = 0 \). Then we have

\[
\Delta \alpha = -\sum_i \varepsilon_i \{E_i E_i(\alpha) - \nabla_{E_i} E_i(\alpha)\} = -\varepsilon_1 E_1(\alpha) = -\varepsilon_1 \alpha''.
\]

On the other hand, from (2.2), (2.5) and (3.11) the associated matrix to the endomorphism \(A \) with respect to \(\{E_1, E_2, N\} \) is given by

\[
\begin{pmatrix}
4\varepsilon_\alpha^2 & 0 & 6\varepsilon_\alpha' \\
0 & 0 & 0 \\
-2\varepsilon_1\alpha' & 0 & -\varepsilon_1 \frac{\alpha''}{\alpha} + 4\varepsilon \alpha^2
\end{pmatrix}.
\]

By considering the invariant elements of \(A \), we obtain the following differential equations:

\[
\begin{align*}
\varepsilon_1\alpha'' &= 8\varepsilon\alpha^3 - \lambda_1 \alpha, \\
-4\varepsilon_1\alpha \alpha'' + 16\alpha^4 + 12\varepsilon\varepsilon_1(\alpha')^2 &= \lambda_2,
\end{align*}
\]

where \(\lambda_1 \) and \(\lambda_2 \) are two real constants.

Let us take \(\beta = (\alpha')^2 \). Then \(d\beta / d\alpha = 2\alpha'' \) and from (3.12) we have

\[
\beta = 4\varepsilon_\varepsilon_1\alpha^4 - \lambda_1\varepsilon_1\alpha^2 + C,
\]

where \(C \) is a constant.

Now, from (3.12) and (3.13) we get

\[
12\beta = \lambda_2\varepsilon_1 + 16\varepsilon_1\alpha^4 - 4\lambda_1\varepsilon_1\alpha^2.
\]

Finally, we deduce from (3.14) and (3.15) that \(\alpha \) is locally constant on \(\mathcal{U} \), which is a contradiction.

Case 2. There exists a point \(p \) in \(\mathcal{U} \) such that \(T(\nabla\alpha)(p) = 0 \). Thus from (2.2) and (2.5) we have

\[
(ACH, X)(p) = -2\varepsilon_\alpha(p)X(\alpha)(p) = (H, AX)(p),
\]

which implies, jointly with (2.3), that \(A \) is a self-adjoint endomorphism in \(L^3 \). Then the above equation remains valid everywhere on
and therefore we get

\[S(\nabla \alpha) = -2\varepsilon \alpha \nabla \alpha. \]

Since \(-2\varepsilon \alpha\) is an eigenvalue of \(S\) and \(\text{tr} S = 2\varepsilon \alpha\) then \(S\) is diagonalizable and we can choose a local orthonormal frame \(\{E_1, E_2, E_3\}\) such that \(E_3 = N\), \(SE_1 = -2\varepsilon \alpha E_1\) with \(E_1\) parallel to \(\nabla \alpha\) and \(SE_2 = 4\varepsilon \alpha E_2\). Let \(\{\omega^1, \omega^2, \omega^3\}\) and \(\{\omega^i\}_i\) be the dual frame and the connection forms, respectively. Then

\[\omega^1 = 2\varepsilon \alpha \omega^1, \]
\[\omega^2 = -4\varepsilon \alpha \omega^2, \]
\[d\alpha = \varepsilon_1 E_1(\alpha) \omega^1. \]

Taking again exterior differentiation in (3.17) and using the structure equations we have \(d\omega^1 = 0\). Therefore one locally has \(\omega^1 = du\), for some function \(u\), and thus \(\alpha\) depends on \(u\), \(\alpha = \alpha(u)\) and \(E_1(\alpha) = \varepsilon_1 \alpha'\).

By exterior differentiation in (3.18) and using again the structure equations we obtain

\[3\varepsilon_1 \alpha \omega^1_2 = 2\alpha' \omega^2. \]

A straightforward computation from (3.20) leads to

\[3\alpha'' = 5(\alpha')^2 - 36\varepsilon \varepsilon_1 \alpha^4. \]

If we put \(\beta = (\alpha')^2\) then the last equation can be rewritten as

\[\frac{3}{2} \alpha \frac{d\beta}{d\alpha} = 5\beta - 36\varepsilon \varepsilon_1 \alpha^4, \]

whose solution is given by

\[\beta = C\alpha^{10/3} - 36\varepsilon \varepsilon_1 \alpha^4, \]

where \(C\) is a constant.

On the other hand, from the definition of \(\Delta \alpha\), the fact that \(E_1\) is parallel to \(\nabla \alpha\) and (3.20) we obtain

\[\alpha \Delta \alpha = -\varepsilon_1 \alpha \alpha'' + \frac{2\varepsilon_1}{3} (\alpha')^2. \]

Now, from (2.2) and (2.5) it is easy to get

\[\alpha \Delta \alpha = \lambda \alpha^2 - 24\varepsilon \alpha^4, \quad \lambda = \text{tr}(A), \]

\(w\)
that jointly with (3.24) yields

\begin{equation}
3\alpha \alpha'' = 72e\varepsilon_1 \alpha^4 - 3\lambda \varepsilon_1 \alpha^2 + 2(\alpha')^2.
\end{equation}

Finally, a similar reasoning as in Case 1 by using now (3.21), (3.23) and (3.25) leads to \(\alpha \) is locally constant on \(\mathcal{U} \), which is again a contradiction with the definition of \(\mathcal{U} \).

Anyway, we deduce \(\mathcal{U} \) is empty and then \(M^2_s \) has constant mean curvature.

Now, we are ready to show the main theorem of this paper.

Theorem 3.2. Let \(x: M^2_s \to \mathbb{L}^3 \) be an isometric immersion. Then \(\Delta x = Ax + B \) if and only if one of the following statements holds true:

1. \(M^2_s \) has zero mean curvature everywhere.
2. \(M^2_s \) is an open piece of one of the following surfaces: \(\mathbb{L} \times S^1(r), H^1(r) \times \mathbb{R}, S^1_1(r) \times \mathbb{R}, H^2(r), S^2_1(r) \).

Proof. Let \(M^2_s \) be a surface in \(\mathbb{L}^3 \) such that \(\Delta x = Ax + B \). From Proposition 3.1 we know \(M^2_s \) has constant mean curvature \(\alpha \). If \(\alpha = 0 \) there is nothing to prove. So, suppose \(\alpha \neq 0 \). Then from (2.2) and (2.5) we get

\begin{equation}
\begin{cases}
AX = 2\alpha SX, \\
AN = \varepsilon |S|^2 N
\end{cases}
\end{equation}

and therefore

\[\text{tr}(A) = 2\alpha \text{tr}(S) + \varepsilon |S|^2 = 4\varepsilon \alpha^2 + \varepsilon |S|^2, \]

from which we deduce \(|S|^2 \) is constant and then \(M^2_s \) is an isoparametric surface. If \(s = 0 \), \(M \) is an open piece of \(H^2(r) \) or \(H^1(r) \times \mathbb{R} \). When \(s = 1 \), it follows from [Mag85] that \(M \) is an open piece of one of the following surfaces: \(S^2_1(r), S^1_1(r) \times \mathbb{R}, \mathbb{L} \times S^1(r) \) and a \(B \)-scroll. However a straightforward calculation shows that the \(B \)-scroll does not satisfy the condition \(\Delta x = Ax + B \). \(\square \)

As we have pointed out in the Introduction, our proof also works when the ambient space is \(\mathbb{E}^3 \). Then the Theorem of Dillen-Pas-Verstraelen in [DPV90] can be viewed as a consequence of our Theorem:

Corollary 3.3. Let \(x: M^2 \to \mathbb{E}^3 \) be an isometric immersion. Then \(M \) satisfies \(\Delta x = Ax + B \) if and only if it is an open piece of a minimal surface, a sphere or a circular cylinder.
REFERENCES

Received April 30, 1991. The first author was supported by an FPI Grant, DGICYT, 1990. The second and third authors were partially supported by a DGICYT Grant No. PS 87-0115-C03-03.

DEPARTAMENTO DE MATEMÁTICAS
UNIVERSIDAD DE MURCIA
CAMPUS DE ESPINARDO
30100 ESPINARDO, MURCIA, SPAIN
PACIFIC JOURNAL OF MATHEMATICS
Founded by

EDITORS

V. S. VARADARAJAN (Managing Editor)
University of California
Los Angeles, CA 90024-1555
vsv@math.ucla.edu

HERBERT CLEMENS
University of Utah
Salt Lake City, UT 84112
clemens@math.utah.edu

F. MICHAEL CHRISt
University of California
Los Angeles, CA 90024-1555
christ@math.ucla.edu

THomas ENRIGHT
University of California, San Diego
La Jolla, CA 92093
tenright@ucsd.edu

Nicholas ERCOLANI
University of Arizona
Tucson, AZ 85721
ercolani@math.arizona.edu

R. FINN
Stanford University
Stanford, CA 94305
finn@gauss.stanford.edu

VAUGHAN F. R. JONES
University of California
Berkeley, CA 94720
vfr@math.berkeley.edu

STEVEN Kerckhoff
Stanford University
Stanford, CA 94305
spk@gauss.stanford.edu

C. C. MOORE
University of California
Berkeley, CA 94720

MARTIN Scharlemann
University of California
Santa Barbara, CA 93106
mgscharl@henri.ucsb.edu

HAROLD Stark
University of California, San Diego
La Jolla, CA 92093

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF OREGON
UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAI'I
MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the 1991 Mathematics Subject Classification scheme which can be found in the December index volumes of Mathematical Reviews. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024-1555.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These charges are expected to be paid by the author's University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics (ISSN 0030-8730) is published monthly except for July and August. Regular subscription rate: $190.00 a year (10 issues). Special rate: $95.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924 (ISSN 0030-8730) is published monthly except for July and August. Second-class postage paid at Carmel Valley, California 93924, and additional mailing offices. Postmaster: send address changes to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Copyright © 1992 by Pacific Journal of Mathematics
Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying $\Delta x = Ax + B$

LUIS AlÍAS, ANGEL FERRANDEZ and PASCUAL LUCAS

Lie algebras of type D_4 over number fields

BRUCE ALLISON

Subsemigroups of completely simple semigroups

ANNE ANTONIPILLAI and FRANCIS PASTIJN

Studying links via closed braids. VI. A nonfiniteness theorem

JOAN BIRMAN and WILLIAM W. MENASCO

Minimal orbits at infinity in homogeneous spaces of nonpositive curvature

MARÍA J. DRUETTA

Generalized horseshoe maps and inverse limits

SARAH ELIZABETH HOLTE

Determinantal criteria for transversality of morphisms

DAN LAKSOV and ROBERT SPEISER

Four dodecahedral spaces

PETER LORIMER

Semifree actions on spheres

MONICA NICOLAU

Conformal deformations preserving the Gauss map

ENALDO Vergasta

Hecke eigenforms and representation numbers of arbitrary rank lattices

LYNNE WALLING