A SPECTRAL THEORY FOR SOLVABLE LIE ALGEBRAS OF OPERATORS

E. Boasso and Angel Rafael Larotonda
A SPECTRAL THEORY FOR SOLVABLE LIE ALGEBRAS
OF OPERATORS

E. BOASSO AND A. LAROTONDA

The main objective of this paper is to develop a notion of joint spectrum for complex solvable Lie algebras of operators acting on a Banach space, which generalizes Taylor joint spectrum (T.J.S.) for several commuting operators.

I. Introduction. We briefly recall the definition of Taylor spectrum. Let $\bigwedge(C^n)$ be the complex exterior algebra on n generators e_1, \ldots, e_n, with multiplication denoted by \wedge. Let E be a Banach space and $a = (a_1, \ldots, a_n)$ be a mutually commuting n-tuple of bounded linear operators on $E_{(m,c,o.)}$. Define $\bigwedge_k(E) = \bigwedge_k(C^n) \otimes_C E$, and for $k \geq 1$, D_{k-1} by:

$$D_{k-1} : \bigwedge_k(E) \to \bigwedge_{k-1}(E)$$

$$D_{k-1}(x \otimes e_{i_1} \wedge \cdots \wedge e_{i_k})$$

$$= \sum_{j=1}^{k} (-1)^{j+1} x \cdot a_{i_j} \otimes \cdots \otimes e_{i_1} \wedge \cdots \wedge \hat{e}_{i_j} \wedge \cdots \wedge e_{i_k}$$

where $\hat{}$ means deletion. Also define $D_k = 0$ for $k \leq 0$.

It is easily seen that $D_kD_{k+1} = 0$ for all k, that is, $\{\bigwedge_k(E), D_k\}_{k \in \mathbb{Z}}$ is a chain complex, called the Koszul complex associated with a and E and denoted by $R(E, a)$. The n-tuple a is said to be invertible or nonsingular on E, if $R(E, a)$ is exact, i.e., $\text{Ker} D_k = \text{ran} E_{k+1}$ for all k. The Taylor spectrum of a on E is $\text{Sp}(a, E) = \{\lambda \in \mathbb{C}^n : a - \lambda$ is not invertible}.

Unfortunately, this definition depends very strongly on a_1, \ldots, a_n and not on the vector subspace of $L(E)$ generated by then ($= \langle a \rangle$).

As we consider Lie algebras, and then naturally involve geometry, we are interested in a geometrical approach to spectrum which depends on L rather than on a particular set of operators.

This is done in II. Given a solvable Lie subalgebra of $L(E)$, L, we associate to it a set in L^*, $\text{Sp}(L, E)$.
This object has the classical properties. \(\text{Sp}(L, E) \) is compact. If \(L' \) is an ideal of \(L \), then \(\text{Sp}(L', E) \) is the projection of \(\text{Sp}(L, E) \) in \(L'^* \). \(\text{Sp}(L, E) \) is non-empty.

Besides, it satisfies other interesting properties.

If \(x \in L^2 \), then \(\text{Sp}(x) = 0 \). If \(L \) is nilpotent, one has the inclusion

\[
\text{Sp}(L, E) \subset \{ f \in [L, L]^1 | \forall x \in L, |f(x)| \leq \|x\| \}.
\]

However the spectral mapping property is ill behaved.

II. The joint spectrum for solvable Lie algebras of operators. First of all, we establish a proposition which will be used in the definition of \(\text{Sp}(L, E) \).

From now on, \(L \) denotes a complex finite dimensional solvable Lie algebra, and \(U(L) \) its enveloping algebra.

Let \(f \) belong to \(L^* \) such that \(f([L, L]) = 0 \), i.e., \(f \) is a character of \(L \). Then \(f \) defines a one dimensional representation of \(L \) denoted by \(C(f) \). Let \(\varepsilon(f) \) be the augmentation of \(U(L) \) defined by \(f \):

\[
\varepsilon(f): U(L) \rightarrow C(f),
\varepsilon(f)(x) = f(x) \quad (x \in L).
\]

Let us consider the pair of spaces and maps \(V(L) = (U(L) \otimes \Lambda L, \overline{d}_{p-1}) \), where \(\overline{d}_{p-1} \) is the map defined by:

\[
\overline{d}_{p-1}: U(L) \otimes \Lambda^p L \rightarrow U(L) \otimes \Lambda^{p-1} L.
\]

If \(p \geq 1 \)

\[
\overline{d}_{p-1}(x_{i_1} \cdots x_{i_p}) = \sum_{k=1}^{p} (-1)^{k+1} (x_{i_k} - f(x_{i_k}))x_{i_1}x_{i_2}x_{i_3} \cdots \hat{x}_{i_k} \cdots x_{i_p}
\]

\[
+ \sum_{1 \leq k < l \leq p} (-1)^{k+l} \langle [x_{i_k}, x_{i_l}]x_{i_1}x_{i_2}x_{i_3} \cdots \hat{x}_{i_k} \hat{x}_{i_l}x_{i_p} \rangle
\]

where \(\hat{\cdot} \) means deletion. If \(p \leq 0 \), we also define \(\overline{d}_p = 0 \). Then

Proposition 1. The pair of spaces and maps \(V(L) \) is a chain complex. Furthermore, with the augmentation \(\varepsilon(f) \), the complex \(V(L) \) is a \(U(L) \)-free resolution of \(C(f) \) as a left \(U(L) \) module.

We omit the proof of Proposition 1 because it is a straightforward generalization of Theorem 7.1 of [3, XIII, 7].

Let \(L \) be as usual, from now on, \(E \) denotes a Banach space on which \(L \) acts as right continuous operators, i.e., \(L \) is a Lie subalgebra
of $L(E)$ with the opposite product. Then, by [3, XIII, 1], E is a right $U(L)$ module.

If f is a character of L, by Proposition 1 and elementary homological algebra, the q-homology space of the complex, $(E \otimes \wedge \ell, d(f))$ is $\text{Tot}^q_U(E, \mathcal{C}(f)) = H_q(L, E \otimes \mathcal{C}(f))$.

We now state our definition.

Definition 1. Let L and E be as above the set \{\(f \in L^*, f(L^2) = 0|H_*((L, E \otimes \mathcal{C}(f))\) is non-zero\}, is the spectrum of L acting on E, and is denoted by $\text{Sp}(L, E)$.

By Proposition 1 and Definition 1, it is clear that, if L is a commutative algebra $\text{Sp}(L, E)$ reduces to Taylor joint spectrum.

Let us see an example. Let $(E, \|\|)$ be $(C^2, \|\|_2)$ and a, b the operators

\[
a = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}, \quad b = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}.
\]

It is easily seen that $[b, a] = b$, and then, the vector space $\mathcal{C}(b) \oplus \mathcal{C}(a) = L$ is a solvable Lie subalgebra of $L(C^2)$.

Using Definition 1, a standard calculation shows that $\text{Sp}(L, E) = \{f \in (C^2)^*|f(b) = 0; f(a) = \frac{1}{2}, f(a) = -\frac{3}{2}\}$.

Observe that, $\|a\| = \frac{1}{2}$; however, $\text{Sp}(L, E)$ is not contained in $\{f \in (C^2)^*|\forall x \in C^2 |f(x)| \leq \|x\|\}$.

III. Fundamental properties of the spectrum. In this section, we shall see that the most important properties of spectral theory are satisfied by our spectrum.

Theorem 2. Let L and E be as usual. Then $\text{Sp}(L, E)$ is a compact set of L^*.

Proof. Let us consider the family of spaces and maps $(E \otimes \wedge^i L, d_{i-1}(f)) f \in L^{2\pm}$, where $L^{2\pm} = \{f \in L^*|f(L^2) = 0\}$. This family is a parameterized chain complex on $L^{2\pm}$. By Taylor [6, 2.1] the set $\{f \in L^{2\pm}|(E \otimes \wedge^i L, d_{i-1}(f))$ is exact} = $\text{Sp}(L, E)^c$ is an open set in $L^{2\pm}$. Then, $\text{Sp}(L, E)$ is closed in $L^{2\pm}$ and hence in L^*.

To verify that $\text{Sp}(L, E)$ is a compact set we consider a basis of L^2 and we extend it to a basis of L, $\{X_i\}_{1 \leq i \leq n}$. If $K = \text{dim} L^2$ and $n = \text{dim} L$ let L_i be the ideal generated by $\{X_j\}_{1 \leq j \leq n, j \neq i}, i \geq K + 1$.

Let f be a character of L and represent it in the dual basis of $\{X_i\}_{1 \leq i \leq n}$, $\{f_i\}_{1 \leq i \leq n}$ $f = \sum_{i=K+1}^n \xi_i f_i$. For each i, there is a positive
number r_i such that if $\xi_i \geq r_i$,

$$\text{Tor}^U_p(E, C(f)) = H_p \left(E \otimes \bigwedge^i L, d_{i-1}(f) \right) = 0 \quad \forall \rho .$$

To prove our last statement, we shall construct an homotopy operator for the chain complex $(E \otimes \bigwedge^p L, d_{p-1}(f))$ ($f(L^2) = 0$).

First of all we observe that

$$E \otimes \bigwedge^p L = \left(E \otimes \bigwedge^p L_i \right) \oplus \left(E \otimes \bigwedge^{p-1} L_i \right) \bigwedge \langle X_i \rangle .$$

As L_i is an ideal of L, $d_{p-1}(E \otimes \bigwedge^p L_i) \subseteq E \otimes \bigwedge^{p-1} L_i$. On the other hand, there is a bounded operator L_{p-1} such that

$$d_{p-1}(f)(a \wedge \langle X_i \rangle) = (d_{p-1}(f)a) \wedge \langle X_i \rangle + (-1)^p L_{p-1}a \quad \left(a \in E \otimes \bigwedge^{p-1} L_i \right).$$

It is easy to see that, for each p, there is a basis of $\bigwedge^p L_i$, $\{ V_j \}$ $1 \leq j \leq \dim \bigwedge^p L_i$, such that if we decompose

$$E \otimes \bigwedge^p L_i = \bigoplus_{1 \leq j \leq \dim \bigwedge^p L_i} E\langle V_j \rangle ,$$

then L_p has the following form

$$L_{p_{ij}} = \begin{cases}
\alpha_{ij}^p & i < j, \\
X_i - \xi_i + \alpha_{jj}^p & i = j, \\
0 & i > j \quad \text{where } \alpha_{ij} \in \mathbb{C}.
\end{cases}$$

Besides, let K_p be a positive real number such that

$$\bigcup_{1 \leq j \leq \dim \bigwedge^p L_i} \text{Sp}(X_i + \alpha_{jj}^p) \subseteq B[0, K_p]$$

and $N_i = \max_{0 \leq p \leq n-1} \{ K_p \}$. Then, as L_p has a triangular form, a standard calculation shows that L_p is a topological isomorphism of Banach spaces if $\xi_i \geq N_i$.
Outside $B[0, N_i]$ we construct our homotopy operator

$$\text{Sp}: E \otimes \bigwedge^{p} L \rightarrow E \otimes \bigwedge^{p+1} L,$$

$$\text{Sp}: E \otimes \bigwedge^{p-1} L_i \wedge \langle X_i \rangle = 0,$$

$$\text{Sp}: E \otimes \bigwedge^{p} L_i \rightarrow E \otimes \bigwedge^{p} L_i \wedge \langle X_i \rangle$$

$$\text{Sp} = (-1)^{p+1} L^{-1}_p \wedge \langle X_i \rangle.$$

From the definition of L_p, we have the following identity:

$$(-1)^{p+2} \text{Sp}_{p-1} d_{p-1}(f)L_p = d_{p-1}(f) \wedge \langle X_i \rangle.$$

The above identity and a standard calculation shows that Sp in an homotopy operator, i.e., $d_p \text{Sp} + \text{Sp}_{p-1} d_{p-1} = I$ and then $\text{Sp}(L, E)$ is a compact set.

Theorem 3 (Projection property). Let L and E be as usual, and I an ideal of L. Let π be the projection map from L^* onto I^*, then

$$\text{Sp}(I, E) = \pi(\text{Sp}(L, E)).$$

Proof. By [2, 5, 3], there is a Jordan Hölder sequence of L such that I is one of its terms. Then, by means of an induction argument, we can assume $\dim(L/I) = 1$.

Let us consider the connected simply connected complex Lie group $G(L)$ such that its Lie algebra is L [5, LG, V].

Let Ad^* be the coadjoint representation of $G(L)$ in L^*: $\text{Ad}^*(g)f = f \text{Ad}(g^{-1})$, where $g \in G(L), f \in L^*$ and Ad is the adjoint representation of $G(L)$ in L.

Let f belong to $\text{Sp}(I, E)$. Then, as I is an ideal of L, by [7, 2.13.4], $\text{Ad}^*(g)f$ belongs to I^*; besides, it is a character of I. Then, one can restrict the coadjoint action of $G(L)$ to I^*. Moreover, $\text{Sp}(I, E)$ is invariant under the coadjoint action of $G(L)$ in I^*, i.e.: if $f \in \text{Sp}(I, E), \text{Ad}^*(g)f \in \text{Sp}(I, E) \forall g \in G(L)$.

In order to prove this fact, it is enough to see:

$$(I) \quad \text{Tor}^*_{U(I)}(E, C(f)) \cong \text{Tor}^*_{U(I)}(E, C(h))$$

where $h = \text{Ad}^*(g)f, g \in G(L)$.

Let Γ be the ring $U(I)$ and ϕ the ring morphism

$$\phi = U(\text{Ad} g): U(I) \rightarrow U(I).$$
Let us consider the augmentation modules \((C(f), E(f))\) and \((C(h), E(h))\).

Then, a standard calculation shows that the hypothesis of [3, VIII, 3.1] are satisfied, which implies (I).

Thus, if \(f \in \text{Sp}(I, E)\), the orbit \(G(L) \cdot f \subseteq \text{Sp}(I, E)\). However, \(\text{Sp}(I, E)\) is a compact set of \(I^*\).

As the only bounded orbits for an action of a complex connected Lie group on a vector space are points; \(G(L) \cdot f = f\).

Let \(\overline{f}\) be an extension of \(f\) to \(L^*\), and consider \(\alpha = G(L) \cdot \overline{f}\), the orbit of \(\overline{f}\) under the coadjoint action of \(G(L)\) in \(L^*\).

As \(G(L) \cdot f = f\), as an analytic manifold

\[
\dim \alpha \leq 1.
\]

Now suppose \(\overline{f}\) is not a character of \(L\): i.e., \(\overline{f}(L^2) \neq 0\).

Let \(L^\perp\) be the following set: \(L^\perp = \{ x \in L | \overline{f}([X, L]) = 0 \}\), and let \(n\) be the dimension of \(L\).

As \(I\) is an ideal of dimension \(n - 1\), \(f(I^2) = 0\) and \(f(L^2) \neq 0\), by [2, 5, 3], [1, IV, 4.1] and [4, 1, 1.2.8], we have: \(L^\perp \subseteq I\), and \(\dim L^\perp = n - 2\).

Let us consider the analytic subgroup of \(G(L)\) such that its Lie algebra is \(L^\perp\).

As the Lie algebra of the subgroup \(G(L)_\overline{f} = \{ g \in GL | \text{Ad}^*(g) \overline{f} = \overline{f} \}\) is \(L^\perp\), the connected component of the identity of \(G(L)_\overline{f}\) is \(G(L^\perp)\).

However, by [7, 2.9.1, 2.9.7] \(\alpha = G(L) \cdot \overline{f}\) satisfies the following properties: \(\alpha \cong G(L)/G(L)_\overline{f}\), and \(\dim \alpha = \dim G(L) - \dim G(L)_\overline{f} = \dim G(L) - \dim(G(L^\perp)) = \dim L - \dim L^\perp = 2\), which contradicts (II).

Then \(\overline{f}\) is a character of \(L\).

Thus, any extension \(\overline{f}\) of an \(f\) in \(\text{Sp}(I, E)\) is a character of \(L\).

However, as in [6], there is a short exact sequence of complexes

\[
0 \to \left(\bigwedge^* I \otimes E, d(f) \right) \to \left(\bigwedge^* L \otimes E, d(\overline{f}) \right) \to \left(\bigwedge^* I \otimes E, d(f) \right) \to 0.
\]

As \(U(I)\) is a subring with unit of \(U(L)\) and the complex involved in Definition 1 differs from the one of [6] by a constant term, Taylor's argument of [6, 13, 3.1] still applies and then \(\text{Sp}(I, E) = \Pi(\text{Sp}(L, E))\).

As a consequence of Theorem 3 we have
THEOREM 4. Let L and E be as usual. Then $\text{Sp}(L, E)$ is non-void.

IV. Some consequences. In this section we shall see some consequences of the main theorems.

Let E be a Banach space and L a complex finite dimensional solvable Lie algebra acting on E as bounded operators.

One of the well known properties of Taylor spectrum for an n-tuple of m.c.o. acting on E is $\text{Sp}(a, E) \subseteq \Pi B[0, \|a_i\|]$. In the noncommutative case, as we have seen in §II, this property fails.

However, if the Lie algebra is nilpotent, it is still true.

PROPOSITION 5. Let L be a nilpotent Lie algebra which acts as bounded operators on a Banach space E.

Then, $\text{Sp}(L, E) \subseteq \{f \in L^* | |f(x)| \leq \|x\|, \ x \in L\}$.

Proof. We proceed by induction on $\dim L$. If $\dim L = 1$, we have nothing to verify.

We suppose true the proposition for every nilpotent Lie algebra L' such that $\dim L' < n$.

If $\dim L = n$, by [2, 4, 1], there is a Jordan Hölder series $S = (L_i)_{0 \leq i \leq n}$, such that $[L, L_i] \subseteq L_{i-1}$.

Let $\{X_i\}_{1 \leq i \leq n}$ be a basis of L such that $\{X_j\}_{1 \leq j \leq i}$ generates L_i.

Let L'_{n-1} be the vector subspace generated by $\{X_i\}_{1 \leq i \leq n}$. As $[L, L'_{n-1}] \subseteq L_{n-2} \subset L'_{n-1}$, L'_{n-1} is an ideal. Besides, $L_{n-1} + L'_{n-1} = L$.

Then, by means of Theorem 4 and the inductive hypothesis, we complete the inductive argument and the proposition.

Now, we deal with some consequences of the projection property.

PROPOSITION 6. Let L and E be as usual.

If I is an ideal contained in L^2, then $\text{Sp}(I, E) = 0$. In particular $\text{Sp}(L^2, E) = 0$.

Proof. By the projection property, $\text{Sp}(I, E) = \Pi(\text{Sp}(L, E))$, where Π is the projection from L^* on I^*. However, as $\text{Sp}(L, E)$ is a subset of characters of L, $f|_I = 0$, if $I \subseteq L^2$.

PROPOSITION 7. Let L and E be as in Proposition 5.

If $\text{Sp}(L, E) = 0$, then $\text{Sp}(x) = 0 \ \forall x \in L$.

Proof. By means of an induction argument, the ideals L_{n-1}, L'_{n-1} of Proposition 5 and Theorem 3, we conclude the proof.
PROPOSITION 8. Let L and E be as usual. Then, if $x \in L^2$: $\text{Sp}(x) = 0$.

Proof. First of all, recall that if L is a solvable Lie algebra, L^2 is a nilpotent one. Then by Proposition 6 $\text{Sp}(L^2, E) = 0$, and by Proposition 7 $\text{Sp}(x) = 0 \ \forall x \in L^2$.

V. Remark about the spectral mapping theorem. Note that the example of §II shows that the projection property fails for subspaces which are not ideals (take $I = \langle x \rangle$). Clearly this implies that the spectral mapping theorem also fails in the noncommutative case.

REFERENCES

Received September 17, 1990 and in revised form January 22, 1992.

UNIVERSIDAD DE BUENOS AIRES
1428 Nufiez, Buenos Aires, Argentina
PACIFIC JOURNAL OF MATHEMATICS
Founded by

EDITORS

V. S. VARADARAJAN
(Managing Editor)
University of California
Los Angeles, CA 90024-1555
vsv@math.ucla.edu

F. MICHAEL CHRIST
University of California
Los Angeles, CA 90024-1555
christ@math.ucla.edu

HERBERT CLEMENS
University of Utah
Salt Lake City, UT 84112
ckens@math.utah.edu

THOMAS ENRIGHT
University of California, San Diego
La Jolla, CA 92093
tenright@ucsd.edu

NICHOLAS ERCOLANI
University of Arizona
Tucson, AZ 85721
ercolani@math.arizona.edu

R. FINN
Stanford University
Stanford, CA 94305
finn@gauss.stanford.edu

VAUGHAN F. R. JONES
University of California
Berkeley, CA 94720
vfr@math.berkeley.edu

STEVEN KERCKHOFF
Stanford University
Stanford, CA 94305
spk@gauss.stanford.edu

MARTIN SCHARLEMANN
University of California
Santa Barbara, CA 93106
mgscharl@henri.ucsb.edu

HAROLD STARK
University of California, San Diego
La Jolla, CA 92093

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF MONTANA
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY

UNIVERSITY OF OREGON
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
Determinant identities

GEORGE W. EYRE ANDREWS and WILLIAM H. BURGE

A spectral theory for solvable Lie algebras of operators

E. BOASSO and ANGEL RAFAEL LAROTONDA

Simple group actions on hyperbolic Riemann surfaces of least area

S. ALLEN BROUGHTON

Duality for finite bipartite graphs (with an application to II_{1} factors)

MARIE CHODA

Szegő maps and highest weight representations

MARK GREGORY DAVIDSON and RON STANKE

Optimal approximation class for multivariate Bernstein operators

ZEEV DITZIAN and XINLONG ZHOU

Witt rings under odd degree extensions

ROBERT FITZGERALD

Congruence properties of functions related to the partition function

ANTHONY D. FORBES

Bilinear operators on \(L^{\infty}(G) \) of locally compact groups

COLIN C. GRAHAM and ANTHONY TO-MING LAU

Nonuniqueness of the metric in Lorentzian manifolds

GEOFFREY K. MARTIN and GERARD THOMPSON

Index theory and Toeplitz algebras on one-parameter subgroups of Lie groups

EFTON PARK