BILINEAR OPERATORS ON $L^\infty(G)$ OF LOCALLY COMPACT GROUPS

COLIN C. GRAHAM AND ANTHONY TO-MING LAU
BILINEAR OPERATORS ON $L^\infty(G)$ OF LOCALLY COMPACT GROUPS

COLIN C. GRAHAM AND ANTHONY T. M. LAU

Let G and H be compact groups. We study in this paper the space $\text{Bil}^\sigma = \text{Bil}^\sigma(L^\infty(G), L^\infty(H))$. That space consists of all bounded bilinear functionals on $L^\infty(G) \times L^\infty(H)$ that are weak* continuous in each variable separately. We prove, among other things, that Bil^σ is isometrically isomorphic to a closed two-sided ideal in $\text{BM}(G, H)$. In the case of abelian G, H, we show that Bil^σ does not have an approximate identity and that $\hat{G} \times \hat{H}$ is dense in the maximal ideal space of Bil^σ. Related results are given.

0. Introduction. Let V and W be Banach spaces over the complex numbers, and let $\text{Bil}(V, W)$ denote the space of bounded bilinear functions $F: V \times W \to C$. Then this is a Banach space under the usual vector space operators and the norm

$$\|F\| = \sup\{|F(x, y)| : x \in V, y \in W, \|x\| = \|y\| = 1\}.$$

Furthermore $\text{Bil}(V, W)$ may be identified with the dual space of $V \hat{\otimes} W$, the projective tensor product of V and W. When X and Y are locally compact Hausdorff spaces, then elements in $\text{Bil}(C_0(X), C_0(Y))$, also denoted by $\text{BM}(X, Y)$, are called bimeasures (see Graham and Schreiber [7] and Gilbert, Ito and Schreiber [4]).

If V and W are dual Banach spaces, we let $\text{Bil}^\sigma(V, W)$ denote all $F \in \text{Bil}(V, W)$ such that $x \mapsto F(x, y)$ and $y \mapsto F(x, y)$ are continuous when V and W have the weak*-topology. Then, as readily checked, $\text{Bil}^\sigma(V, W)$ is a norm-closed subspace of $\text{Bil}(V, W)$. It is the purpose of this paper to study $\text{Bil}^\sigma(L^\infty(G), L^\infty(H))$ when G and H are compact groups.

In §1, we shall give some general results on

$$\text{Bil}^\sigma(L^\infty(X, \mu), L^\infty(Y, \nu))$$

when X, Y are locally compact Hausdorff spaces and μ, ν are positive regular Borel measures on X and Y, respectively. In §2, we show that if G and H are compact groups, then $\text{Bil}^\sigma = \text{Bil}^\sigma(L^\infty(G), L^\infty(H))$.
is isometrically isomorphic to a closed ideal in $BM(G, H)$ with multiplication as defined in [2]. Furthermore, Bil^σ has a dense subset consisting of bilinear functionals F such that their Grothendieck measures μ_g, ν_g are such that $d\mu_g/dm_G$ and $d\nu_g/dm_H$ are bounded away from 0 and from infinity (here m_G and m_H denote Haar measure on the respective groups). In §3, we shall concentrate on the case when G and H are both compact and abelian. We shall show that in this case $\widehat{G} \times \widehat{H}$ is dense in the maximal ideal space of Bil^σ and that Bil^σ is a symmetric Banach algebra. Furthermore Bil^σ does not have an (even unbounded) approximate identity when G and H are infinite, compact. In §4, we shall list some open problems related to Bil^σ.

The space $Bil^\sigma(U, V)$ has been studied in a different context by Effros [3]. A consequence of Theorem 3.7 (below) is that Bil^σ has no virtual diagonals; see the Remark following Theorem 3.7.

1. The space Bil^σ. If X is a locally compact Hausdorff space, we let $L^\infty(X)$, $C(X)$, $C_0(X)$, and $C_{00}(X)$ be the spaces of bounded functions on X which are, respectively, Borel measurable, continuous, continuous with limit zero at infinity and continuous with compact support. The supremum norm on each of those spaces will be denoted by $\| \cdot \|_\infty$. If X and Y are locally compact Hausdorff spaces, we write $V_0(X, Y) = C_0(X) \hat{\otimes} C_0(Y)$, the projective tensor product of $C_0(X)$ and $C_0(Y)$. Then the space $BM(X, Y)$ may be identified with the dual Banach space of $V_0(X, Y)$.

Throughout this section X and Y will denote locally compact Hausdorff spaces and μ, ν will denote positive regular Borel measures on X and Y constructed from a fixed positive functional on $C_{00}(X)$ and $C_{00}(Y)$, respectively (see [9, §11]). We will write $L^\infty(\mu)$ and $L^\infty(\nu)$ for $L^\infty(X, \mu)$ and $L^\infty(Y, \nu)$ respectively. In this case, $L^\infty(\mu) = L^1(\mu)^*$, and $L^\infty(\nu) = L^1(\nu)^*$. We will write Bil^σ for $Bil^\sigma(L^\infty(\mu), L^\infty(\nu))$. As usual, the norms for spaces L^p, $1 \leq p < \infty$, will be denoted by $\| \cdot \|_p$. When G is a locally compact group, $L^p(G)$ will denote the L^p-space defined with respect to a fixed left Haar measure m_G on G.

Proposition 1.1. Bil^σ consists exactly of the bilinear functionals F such that, for all $x \in L^\infty(\mu)$ and all $y \in L^\infty(\nu)$, $f \mapsto F(f, y)$, for $f \in L^\infty(\mu)$, is given by integration against an element of $L^1(\mu)$ and $g \mapsto F(x, g)$, for $g \in L^\infty(\nu)$, is given by integration against an element of $L^1(\nu)$.
Proof. Let $F \in \text{Bil}^\sigma$. Fix $y \in L^\infty(\nu)$. Since $f \mapsto F(f, y)$ is weak* continuous in f, $f \mapsto F(f, y)$ must belong to the dual space of $L^\infty(\mu)$, when $L^\infty(\mu)$ is given the weak* topology, that is, $f \mapsto F(f, y)$ belongs to $L^1(\mu)$. The same argument applies to $g \mapsto F(x, g)$, for $g \in L^\infty(\nu)$.

On the other hand, suppose that, the bilinear functional F is such that for all $x \in L^\infty(\mu)$, $y \in L^\infty(\nu)$, $f \mapsto F(f, y)$, for $f \in L^\infty(\mu)$, is given by integration against an element of $L^1(\mu)$ and $g \mapsto F(x, g)$, for $g \in L^\infty(\nu)$, is given by integration against an element of $L^1(\nu)$. Then for each fixed $y \in L^\infty(\nu)$, $f \mapsto F(f, y)$ is weak* continuous in f, and for each fixed $x \in L^\infty(\mu)$, $g \mapsto F(x, g)$ is weak* continuous in g. Hence, $F \in \text{Bil}^\sigma$.

Proposition 1.2. Let ω be a non-negative, finite regular Borel measure on $X \times Y$. Then $\omega \in \text{Bil}^\sigma$ if and only if the projection of ω onto X is absolutely continuous with respect to μ and the projection of ω onto Y is absolutely continuous with respect to ν.

Proof. If ω has the projection property, then it obviously has the weak* continuity property that is required for membership in Bil^σ.

On the other hand, suppose that $\omega \in \text{Bil}^\sigma$. Then $f \mapsto \int (f \otimes 1) \, d\omega$ is a non-negative, locally finite, regular Borel measure on X that is the projection of ω on X. Also, $f \mapsto \int (f \otimes 1) \, d\omega$ is weak* continuous from $L^\infty(\mu)$ to C. If the projection of ω (let us call it ω') were not absolutely continuous with respect to μ, then we could find a sequence of functions f_n in $C(X)$ such that $0 \leq f_n \leq 1$, $f_n \to 0$ a.e. $d\mu$ and $\int f_n \, d\omega' \neq 0$. Of course, that sequence $f_n \to 0$ weak* in $L^\infty(\mu)$, so

$$\int (f \otimes 1) \, d\omega \to 0,$$

a contradiction. [More abstractly, we could just point out that any linear functional on $L^\infty(\mu)$ that is weak* continuous is necessarily given by integration against an element of $L^1(\mu)$, by general Banach space duality.]

A similar argument shows that the projection of ω on Y is absolutely continuous with respect to μ.

Lemma 1.3. Let R, S be von Neumann algebras, and let A, B be weak* dense C^*-subalgebras of R, S, respectively. Then the mapping given by restricting $\text{Bil}^\sigma(R, S)$ to $(A \hat{\otimes} B)$ is an isometry; that is, $\text{Bil}^\sigma(R, S)$ may be identified with a closed subspace of $(A \hat{\otimes} B)^*$.
Proof. Let \(F \in \text{Bil}^\sigma(R, S) \), \(\varepsilon > 0 \), and let \(x \in R \), \(y \in S \) be of norm one such that \(|F(x, y) - \|F\|| < \varepsilon/3 \). By the Kaplansky density theorem [14, Theorem 4.8], there exist nets \(x_\alpha \to x \) and \(y_\beta \to y \) with \(x_\alpha \) all belonging to the unit ball of \(A \) and \(y_\beta \) all in the unit ball of \(B \). By the weak*-weak* continuity of \(F \), \(F(x, y) = \lim_\alpha F(x_\alpha, y) \). Hence, for some \(\alpha_0 \) we have \(|F(x_\alpha_0, y) - F(x, y)| < \varepsilon/3 \). Similarly, there exists a \(\beta_0 \) such that \(|F(x_\alpha_0, y_\beta_0) - F(x_\alpha_0, y)| < \varepsilon/3 \). Hence \(|F(x_\alpha_0, y_\beta_0) - \|F\|| < \varepsilon \), and the result follows. \(\square \)

Corollary 1.4. The restriction of elements of \(\text{Bil}^\sigma(L^\infty(\mu), L^\infty(\nu)) \) to the space \(C_0(X) \otimes C_0(Y) \) is an isometry. In particular, \(\text{Bil}^\sigma \) may be identified with a closed subspace of \(\text{BM}(X, Y) \).

We define \(L^\infty(X) \) to be the space of all bounded Borel functions on \(X \).

If \(\varphi_X \in L^\infty(X) \), and \(f_1 = f_2 \) locally \(\mu \)-a.e., then \(\varphi_X f_1 = \varphi_X f_2 \) locally \(\mu \)-a.e. In particular, for any \(f \in L^\infty(\mu) \), \(\varphi_X f \) defines an element in \(L^\infty(\mu) \), and the map \(f \mapsto \varphi_X f \) is weak*-weak* continuous.

Given \(\varphi_X \in L^\infty(X) \), \(\varphi_Y \in L^\infty(Y) \), and \(F \in \text{Bil}^\sigma \) we define a bounded bilinear functional \(\varphi \cdot F \) on \(L^\infty(\mu) \times L^\infty(\nu) \) by

\[
\langle \varphi \cdot F, (f, g) \rangle = \langle F, (\varphi_X f, \varphi_Y g) \rangle
\]

for \(f \in L^\infty(X) \) and \(g \in L^\infty(\nu) \). Then \(\varphi \cdot F \in \text{Bil}^\sigma \) and

\[
\|\varphi \cdot F\| \leq \|F\| \|\varphi_X\| \|\varphi_Y\|.
\]

We recall that the support of a bimeasure is the smallest closed subset \(Q \) in \(X \times Y \) such that \(\langle h, F \rangle = 0 \) for all \(h \in V_0(X, Y) \) for which \(h \equiv 0 \) in a neighborhood of \(Q \).

The following three results are variants (as indicated) of known facts. The proofs are essentially identical to those cited.

Proposition 1.5 [7, Lemma 1.4]. The set of elements of \(\text{Bil}^\sigma \) that have compact support is norm dense in \(\text{Bil}^\sigma \).

Proposition 1.6 [7, Lemma 1.5]. Let \(X' \) (resp. \(Y' \)) be a closed subspace of \(Y \) (resp. \(Y \)) and \(\mu', \nu' \) denote the restrictions of \(\mu, \nu \) to those closed subspaces. Then there is a projection of norm one from \(\text{Bil}^\sigma(L^\infty(\mu), L^\infty(\nu)) \) onto the space \(\text{Bil}^\sigma(L^\infty(\mu'), L^\infty(\nu')) \).

The image in \(\text{Bil}^\sigma(L^\infty(\mu'), L^\infty(\nu')) \) of a bimeasure is called the restriction of the bimeasure to \(X' \times Y' \) and is written \(F|_{X' \times Y'} \).
COROLLARY 1.7. Let G (resp. H) be a locally compact group and G' (resp. H') an open subgroup. Then there is a norm one projection from $\text{Bil}^\sigma(L^\infty(G), L^\infty(H))$ onto $\text{Bil}^\sigma(L^\infty(G'), L^\infty(H'))$.

A bimeasure F is *discrete* if there exist sequences of finite subsets A_n of X and B_n of Y such that $F = \lim_n F|_{A_n \times B_n}$ (norm limit). A bimeasure is *continuous* if its restriction to every product of finite sets is zero. Obviously, BM_c and BM_d are norm closed vector spaces. The set of discrete bimeasures is denoted $\text{BM}_d(X, Y)$ and the set of continuous bimeasures is denoted $\text{BM}_c(X, Y)$. Graham and Schreiber showed that topologically $\text{BM}(X, Y) = \text{BM}_d(X, Y) \oplus \text{BM}_c(X, Y)$ [7, Theorem 1.8].

PROPOSITION 1.8. If either μ or ν is a continuous measure, then Bil^σ is contained in $\text{BM}_c(X, Y)$. In particular, Bil^σ is a proper subset of $\text{BM}(X, Y)$.

Proof. Let $F \in \text{Bil}^\sigma$. By Proposition 1.5, we may assume that F is supported on a compact set $X' \times Y'$, so we will not distinguish between F and $F|_{X' \times Y'}$. We write $F = F_1 + F_2$, where F_1 is continuous and F_2 is discrete. Let $A_n \subset X'$ (resp. $B_n \subset Y'$) be increasing sequences of finite subsets such that $F_2 = \lim_n F|_{A_n \times B_n}$. Let $A = \bigcup A_n$. Suppose that μ is a continuous measure. Then $\mu(A) = 0$. By Lusin’s Theorem [12, p. 54], (and enlarging A if necessary) there exists a sequence of continuous functions $\{f_j\}$ such that $0 \leq f_j \leq 1$ for all j, $f_j \to 0$ on A, $f_j \to 1$ on $X \setminus A$ (pointwise in both cases), and the f_n are supported in a common compact superset of $X' \times Y'$. It follows that for each integer n, every $f \in C_0(X)$ and every $g \in C_0(Y)$,

$$F(f, g) = \lim_j F(f_j f, g) = \lim_j (F_1 + F_2)(f_j f, g),$$

and

$$F_2|_{A_n \times B_n}(f, g) = \lim_j F_2(f_j f, g) = 0.$$

The first equality above follows from the weak* continuity of F and the second from the fact that $f_j f \to 0$ on A_n combined with the dominated convergence theorem. Thus, $F_2(f, g) = 0$ for all f, g, so $F_2 = 0$. \hfill \Box

LEMMA 1.9. Let μ and ν be non-negative, locally finite, regular Borel measures on the locally compact spaces X, Y, respectively. Then
for any $F \in \text{Bil}^\sigma$ there exist $p \in L^1(\mu)$ and $q \in L^1(\nu)$ such that $p \geq 0$, $q \geq 0$, $\|p\|_1 = \|q\|_1 = 1$ and

$$(1.1) \quad |F(f, g)| \leq K\|F\| \left(\int |f|^2 p \, d\mu \right)^{1/2} \left(\int |g|^2 q \, d\nu \right)^{1/2}$$

for all $f \in L^\infty(\mu)$ and $g \in L^\infty(\nu)$, where K is a universal constant.

Proof. Suppose that $F \in \text{Bil}^\sigma$. By Proposition 1.5, we know that F has σ-compact support. We thus may assume that μ and ν are σ-finite (since they are locally finite). [Indeed, let the support of F be $\bigcup_{j=1}^\infty X_j \times Y_j$, where the X_j, Y_j are compact. Let μ_j (resp. ν_j) be the restriction of μ to X_j (resp. Y_j). The assumption of local finiteness implies that μ_j, ν_j are σ-finite measures.] Of course, $L^\infty(\mu)$ does not change if we replace μ by an equivalent probability measure. Also, weak* topologies on the L^∞ space induced by the two measures (the probability measure and the original measure) are identical, by the uniqueness of the predual of $L^\infty(\mu)$ (see [14, p. 135]). Let the support of F be $\bigcup_{j=1}^\infty X_j \times Y_j$, where the X_j, Y_j are compact. Let μ_j (resp. ν_j) be the restriction of μ to X_j (resp. Y_j). The assumption of local finiteness implies that μ_j, ν_j are finite measures. We may assume that μ_1 and ν_1 have norm $\frac{1}{2}$ and that $\|\mu_{j+1} - \mu_j\| = 2^{-j}$ and similarly for the ν_j for all j. Hence, $F \in \text{Bil}^\sigma(L^\infty(\sum \mu_j), L^\infty(\sum \nu_j))$. Thus, we may assume that μ and ν are probability measures.

Let a Grothendieck measure pair μ', ν' for F be given. Then the pair μ', ν' has the property that

$$(1.2) \quad |F(f, g)| \leq K\|F\| \|f\|_{L^2(\mu')} \|g\|_{L^2(\nu')}$$

for all $f \in C(X)$, $g \in C(Y)$, where K is the usual complex Grothendieck constant. Furthermore, μ' is a probability measure on X' and ν' is a probability measure on Y'.

Let $\mu' = \mu_a + \mu_s$, where μ_a is absolutely continuous with respect to μ and μ_s is singular with respect to μ. Let A, B be a partition of X into two disjoint Borel sets such that $\mu(B) = 0$, and

$$\mu_a(E) = \mu'(A \cap E) \quad \text{and} \quad \mu_s(E) = \mu'(B \cap E) \quad \text{for all Borel } E \subset X.$$

Let $f \in L^\infty(\mu)$ have norm one. By Lusin's Theorem [12, p. 54], there exists a sequence $\{f_n\}$ in $C(X)$ such that $\|f_n\| \leq 1$ for all n and $f(x)\chi_A(x) = \lim_{n \to \infty} f_n$ pointwise a.e. $d(\mu + \mu_s)$. We note that $f\chi_A = f$ μ-a.e. and $f\chi_A = 0$ $d\mu_s$-a.e. Hence, for each $h \in L^1(\mu)$,
$f_n \cdot h \to f \cdot h$ pointwise $d\mu$-a.e. and $|f_n \cdot h| \leq |f \cdot h|d\mu$-a.e. for all n. By the dominated convergence theorem (and here we need the actual finiteness of μ), $\int f_n \cdot h \, d\mu \to \int f \cdot h \, d\mu$. That is,

(1.3) \quad f_n \to f$ in the weak* topology of $L^\infty(\mu)$.

Since $f_n \to 0$ pointwise a.e. $d\mu_s$, $|f_n| \to 0$ pointwise a.e. $d\mu_s$. Since $|f_n|^2 \leq 1$, the dominated convergence theorem again implies that

(1.4) \quad \int |f_n|^2 \, d\mu_s \to \int |f|^2 \, d\mu_s = 0 \quad \text{and} \quad \int |f_n|^2 \, d\mu_a \to \int |f|^2 \, d\mu_a.$

Hence $\int |f_n|^2 \, d\mu' \to \int |f_n|^2 \, d\mu_a$. Also, by (1.2),

(1.5) \quad |F(f_n, g)| \leq K\|F\| \|f_n\|_{L^2(\mu')} \|g\|_{L^2(\nu')} \quad \text{for all } g \in C(Y).

Now, $F(f_n, g) \to F(f, g)$ by (1.3) and

\[
\|f_n\|_{L^2(\mu)}^2 = \int |f_n \chi_A|^2 \, d\mu' \\
\quad \quad \quad \quad \quad \to \int |f|^2 \, d\mu' \\
\quad \quad \quad \quad \quad = \int |f|^2 \, d\mu_a + \int |f|^2 \, d\mu_s \\
\quad \quad \quad \quad \quad = \int |f|^2 \, d\mu_a,
\]

by (1.4). Therefore,

\[
|F(f, g)| \leq K\|F\| \|f\|_{L^2(\mu_a)} \|g\|_{L^2(\nu')},
\]

by (1.5).

A similar argument applied to $g \in L^\infty(\nu)$ gives

\[
|F(f, g)| \leq K\|F\| \|f\|_{L^2(\mu_a)} \|g\|_{L^2(\nu_a)}. \quad \Box
\]

Let f be a Borel function on the locally compact space X, and ω be a non-negative, locally finite, regular Borel measure on X. We say that f is bounded away from 0 and ∞ if there exist constants $0 < c < C < \infty$ such that $c \leq f(x) \leq C$ a.e. $d\omega$.

Lemma 1.10. Let μ and ν denote regular Borel locally measures on the locally compact spaces X and Y. Then Bil^σ has a dense subset consisting of the bilinear functionals F such that their Grothendieck
measures μ_g, ν_g are such that $d\mu_g/d\mu$ and $d\nu_g/d\nu$ are bounded away from zero and away from ∞.

Proof. Let $F \in \text{Bil}^\sigma$. We may assume that μ and ν are probability measures and that we have a Grothendieck measure pair μ_g, ν_g for F with $\mu_g \ll \mu$ and $\nu_g \ll \nu$. The validity of this second assumption follows from Lemma 1.9.

Now, by (1.1, and using the notation of Lemma 1.9.), if A is a Borel subset of X and B is a Borel subset of Y, then

$$|\langle f \chi_A \otimes g \chi_B, F \rangle| \to 0 \quad \text{as } \mu(A) \to 0, \text{ and/or } \nu(B) \to 0,$$

by the Lebesgue dominated convergence theorem.

Thus, given $n > 0$, define the Borel sets A_n, B_n by

$$A_n = \{x \in X : p(x) \notin [1/n, n]\}$$

and

$$B_n = \{y \in Y : q(x) \notin [1/n, n]\},$$

where p, q are as in Lemma 1.9.

Then $\mu(A_n) \to 0$ and $\nu(B_n) \to 0$ as $n \to \infty$.

Let $\delta > 0$ be given. Then there exists $n > 0$ such that

$$|\langle f \chi_{A_n} \otimes g \chi_{B_n}, u \rangle| \leq \frac{\delta}{4} \|f\|_{\infty} \|g\|_{\infty} \quad \text{for all } f \in L^\infty(\mu), \ g \in L^\infty(\nu).$$

We let $F_1 = (\chi_{A_n} \otimes \chi_{B_n})\mu \times \nu + ((1 - \chi_{A_n}) \otimes (1 - \chi_{B_n}))F$. It is then clear that $\|F - F_1\| \leq \delta$.

2. Locally compact groups. In this section, G and H will be locally compact groups, not both discrete. We now write Bil^σ in place of $\text{Bil}^\sigma(L^\infty(G), L^\infty(H))$. We study the properties of the particular space Bil^σ, where we are already using the group structure to define Bil^σ. We remind the reader that we continue the identification of Bil^σ with a closed subspace of $\text{BM}_c(G, H)$ (see Corollary 1.4 and Proposition 1.8).

Furthermore, by Proposition 1.1, Bil^σ consists of the bilinear functionals F such that, for all $x \in L^\infty(m_G), y \in L^\infty(m_H), f \mapsto F(f, y)$ ($f \in L^\infty(m_G)$) is given by integration against an element of $L^1(\mu)$ and $g \mapsto F(x, g)$ ($g \in L^\infty(m_H)$) is given by integration against an element of $L^1(\nu)$.

We note that $\text{Bil}(L^\infty(m_G), L^\infty(m_H))$ is a $(L^\infty(m_G), L^\infty(m_H))$ module in the sense that the (obviously bounded) operations $(g \cdot F)$
and $F \cdot f$ are defined by
$$(g \cdot F)(h, k) = F(h, gk) \quad \text{and} \quad (F \cdot f)(h, k) = F(fh, k)$$
for all $F \in \text{Bil}(L^\infty(m_G), L^\infty(m_H))$, $f, h \in L^\infty(m_G)$ and $g, k \in L^\infty(m_H)$.

Also, Bil^σ is a closed submodule of the $\text{Bil}(L^\infty(m_G), L^\infty(m_H))$.

We define $L^\infty(\mu) \hat{\otimes}^\sigma L^\infty(\nu) = \text{def} (\text{Bil}^\sigma)^*$. Then $L^\infty(\mu) \hat{\otimes}^\sigma L^\infty(\nu)$ is
a dual $(L^\infty(m_G), L^\infty(m_H))$-module when the operations are defined by
$$\langle g \cdot M, F \rangle = \langle M, g \cdot F \rangle \quad \text{and} \quad \langle M \cdot f, F \rangle = \langle M, F \cdot f \rangle,$$
where $M \in L^\infty(\mu) \hat{\otimes}^\sigma L^\infty(\nu)$, $F \in \text{Bil}^\sigma$, $f \in L^\infty(\mu)$ and $g \in L^\infty(\nu)$.

A dual module is normal if the mappings
$$f \mapsto f \cdot M \text{ from } L^\infty(\mu) \to L^\infty(\mu) \hat{\otimes}^\sigma L^\infty(\nu) \quad \text{and}$$
$$g \mapsto M \cdot g \text{ from } L^\infty(\nu) \to L^\infty(\mu) \hat{\otimes}^\sigma L^\infty(\nu)$$
are both weak*—weak* continuous.

Theorem 2.1. Let G and H be locally compact groups. Then Bil^σ is an ideal in $BM(G, H)$. Also, Bil^σ is a normal $(L^\infty(G), L^\infty(H))$ module.

Proof. Immediate from Lemma 1.9 and the facts that (i) $BM(G, H)$ is an algebra under convolution (see [7, 2.5] or [4, 2.4]) and (ii) that the Grothendieck measures for a convolution product may be taken to be the convolutions of the Grothendieck measures of the factors [4, loc. cit].

The last assertion is a consequence of [3, Lemma 2.2] and Lemma 1.9 above. \[\square\]

Remarks 2.2. (a) Note that the mapping
$$\theta : L^\infty(G) \otimes L^\infty(H) \to L^\infty(G) \hat{\otimes}^\sigma L^\infty(H)$$
defined by $\theta(f \otimes g)(F) = F(f, g)$ is one-to-one. Hence, we may identify the space $L^\infty(G) \otimes L^\infty(H)$ with its image in $L^\infty(G) \hat{\otimes}^\sigma L^\infty(H)$. That image is weak* dense.

Furthermore, if $M \in L^\infty(G) \hat{\otimes}^\sigma L^\infty(H)$ of norm one, then there is a net $M_\alpha = \sum \lambda_i^\alpha (f_i^\alpha \otimes g_i^\alpha)$, with the f_i's and g_i's in their respective unit balls, the λ_i^α's nonnegative with sum one, such that $M_\alpha \to M$ in the weak* topology. (See [3, p. 139 and p. 141].)

(b) There is a unique weak*-continuous extension to $L^\infty(G) \otimes L^\infty(H)$ of the multiplication map
$$\pi : L^\infty(G) \otimes L^\infty(G) \to L^\infty(G)$$
given by $f \otimes g \mapsto f \cdot g$ (see [3, p. 142]).
Theorem 2.3. Let G and H be compact groups. Then Bil^σ has a dense subset consisting of the bilinear functionals F such that their Grothendieck measures μ, ν are such that $d\mu/dm_G$ and $d\nu/dm_H$ are bounded away from zero and away from ∞.

Proof. Immediate from Lemma 1.10. □

Lemma 2.4. Let μ and ν be continuous probability measures on the locally compact spaces X and Y respectively. Then there is a projection of norm one from $\text{BM}(X, Y)$ onto Bil^σ.

Proof. It is well-known (and easy to see) that $\text{BM}(X, Y)$ may be imbedded isometrically in $\text{Bil}(M(X)^*, M(Y)^*)$. Let $f_0 \in M(X)^*$, be such that f_0 is one a.e. with respect to (the image of) μ and zero with respect to (the image of) all measures on X that are singular with respect to μ. Define $g_0 \in M(X)^*$ analogously. Then the composition of $F \mapsto (f_0 \times g_0)F$ with the restriction of the resulting element to $C(Y) \times C(Y)$ is a linear norm-reducing mapping P of $\text{BM}(X, Y)$. Furthermore, $PF = F$ for all $F \in \text{Bil}^\sigma$. Finally, (straightforward computations show that) $f \mapsto PF(f, g)$ is absolutely continuous with respect to μ for all $g \in C(Y)$ and that $g \mapsto PF(f, g)$ is absolutely continuous with respect to μ for all $f \in C(X)$. That is, $PF \in \text{Bil}^\sigma$. It follows that P is the required projection. □

Theorem 2.5. Let G and H be locally compact groups. Then there is no projection from Bil^σ onto the closed subspace of Bil^σ generated by $L^1(G \times H)$.

Proof. This is immediate from [7, Theorem 1] and Lemma 2.4 above. □

Lemma 2.6. Let G be a compact group and U an open subset of G. Then there exists an integer $n \geq 1$ such that U^n is an open subgroup of G.

Proof. Let $y \in U$. The closed semigroup H generated by y is a compact semigroup. Therefore H contains an idempotent [2, 1.8]; that idempotent is necessarily the identity of G. (Alternatively, we can apply the fact [2, 1.10] that a compact subsemigroup of a group is a subgroup, so $e \in H$, which is, in fact, a group.) In any case, e is in the closure of $\{y^l\}$.
Let V be any symmetric neighborhood of e. We may assume that V is so small that $yV \subseteq U$. Then

$$y^l V \subseteq (yV)^l \subseteq U^l.$$

Since $\{y^l\}$ accumulates at e, there are large l's such that $y^l \in V^{-1} = V$. Therefore $y^{-l} \in V$, so

$$e = y^l y^{-l} \in y^l V \subseteq U^l.$$

That is, $e \in U^l$. Thus, we may assume $e \in U^{lm}$ for all $m > 0$. In particular, the sets U^{lm} are increasing. Again, consider the closed subgroup H generated by $y \in U^{lm_0}$ for some $m_0 > 0$. (H is a subgroup by [2, 1.10].) If that closed subgroup is finite, then eventually it is contained in U^{lm} for some $m \geq m_0$. Otherwise, every element of it is an accumulation point of the set $\{y^n : n > 0\}$. (That also follows from the fact that a compact semigroup in a compact group is necessarily a group.) Hence, every element of H belongs to some U^{lm}. This argument applies to every element of $\bigcup_{m \geq 1} U^{lm}$. That is, the group $K = \bigcup_{m \geq 1} U^{lm}$.

Since $\bigcup_{m \geq 1} U^{lm}$ is a group, and open, it is also a closed subgroup, and therefore it is compact. Therefore $\bigcup_{m \geq 1} U^{lm} = U^{lm(0)}$ for some $m(0)$.

By the monotonicity of the U^{lm}, $K = U^{lm(0)}$.\qed

We can now give a variant of Lemma 1.10.

Theorem 2.7. (1) Let G, H be compact and connected groups. Then the set of those $u \in \text{Bil}^\sigma$ for which there is an $n \geq 1$ for which the Grothendieck measures for u^n are Haar measure is a dense subset of Bil^σ.

(2) Let G, H be compact groups. Then the set of those $F \in \text{Bil}^\sigma$ for which there is an $n \geq 1$ for which the Grothendieck measures for F^n are Haar measure on an open subgroup of G is a dense subset of Bil^σ.

Proof. Let μ, ν be Grothendieck measures for F. Then $\mu = (f + g)m_G$, where f is continuous and $\|g\|$ is small. Similarly for ν. Then the Grothendieck measures for F^n are μ^n and ν^n. By Lemma 2.6, $f^n > 0$ on an open subgroup of G. We may throw away the terms involving g in $(f + g)^n$, thus obtaining the required conclusion for both (i) and (ii).\qed
3. Compact abelian groups. Suppose that G and H are compact abelian groups with character groups \widehat{G} and \widehat{H}, respectively.

Let $u \in \text{BM}(G, H)$. The Fourier transform \hat{u} of u is defined by

$$\hat{u}(\gamma, \rho) = \langle \gamma \otimes \rho, u \rangle, \quad \text{for all } \gamma \in \widehat{G}, \ \rho \in \widehat{H}.$$

Then \hat{u} is well-defined and $\|\hat{u}\|_\infty \leq \|u\|$ (see [7, p. 97]).

Remark. The multipliers of Bil^σ are exactly the elements of $\text{BM}(G, H)$.

This is immediate upon taking weak* limits, since the unit ball of Bil^σ is dense in the unit ball of BM, even though (see below) Bil^σ does not have an approximate identity. Here are some details.

We first note that the measures in the unit ball of Bil^σ are weak* dense in that ball (one proof of that is known as Riemann sums for double integrals; another is known as “bounded spectral synthesis” for sets whose union is a Kronecker set [13, Corollary 4]). The argument in the “bounded spectral synthesis” form easily adapts to the case of approximation by measures belonging to a fixed L-space that is weak* dense in $M(G \times H)$. Hence, the measures in the unit ball of Bil^σ are dense in the unit ball of $\text{BM}(G, H)$.

Suppose that ϕ is a function defined on $\widehat{G} \times \widehat{H}$ such that $\phi \hat{u}$ is the Fourier transform (see below) of an element of Bil^σ for all $u \in \text{Bil}^\sigma$. Then $\|\phi \hat{u}\| \leq C \|u\|$ for all u and some constant C. We note that the set Fourier-Stieltjes transform of $\text{BM}(G, H)$ is closed under bounded pointwise convergence (that follows from a diagonalization argument and the fact that the unit ball of $\text{BM}(G, H)$ is compact in the weak* topology). By taking weak* limits (within the unit ball), we conclude that ϕ is a multiplier of $\text{BM}(G, H)$. Since $\text{BM}(G, H)$ has an identity, the remark follows. □

Suppose that we have a u whose Grothendieck measures μ, ν are such that $d\mu/dm_G$ and $d\nu/dm_H$ are bounded away from zero and away from ∞. Then, by using that and the Plancherel Theorem, we can identify $L^2(\mu)$ with $L^2(\widehat{G})$ and $L^2(\nu)$ with $L^2(\widehat{H})$. Using those identifications, we can explicitly compute the linear mapping $T: L^2(\widehat{G}) \to L^2(\widehat{H})$. Here, T is the mapping associated with the Grothendieck measures. Of course, we have lost information about the constant in the Grothendieck inequality. The new mapping T is given by:

$$(T \hat{f})(\rho) = \sum_\gamma \hat{u}(\gamma, \rho) \hat{f}(\gamma),$$
where \(\hat{f} \in L^2(\hat{G}) \). That follows at once from the fact that
\[
\langle u, f \otimes g \rangle = \sum_{\gamma, \rho} \hat{u}(\gamma, \rho) \hat{f}(\gamma) \hat{g}(\rho),
\]
for all \(f \in C(G) \), \(g \in C(H) \),
which, in turn, is an easy calculation from
\[
\langle u, f \otimes g \rangle = \left\langle u, \left(\sum \hat{f}(\gamma) \hat{g}(\rho) \right) \otimes \left(\sum \hat{g}(\rho) \hat{p} \right) \right\rangle.
\]
The norm of the new \(T \) is now bounded by the product of three numbers: the norm of the old \(T \), the supremum of \(d\mu/dm_G \), and the reciprocal of the infimum of \(d\nu/dm_H \).

Proposition 3.1. Let \(G \) and \(H \) be compact abelian groups. Let \(u \in \text{Bil}^\sigma \). Suppose that \(u \) has \(\mu, \nu \) for its Grothendieck measures with \(d\mu/dm_G \) and \(d\nu/dm_H \) both bounded away from zero and away from \(\infty \). Then there exists a constant \(C > 0 \) such that \(\sum_{\gamma} |\hat{u}(\gamma, \rho)|^2 < C \) for every fixed \(\rho \in \hat{H} \) and \(\sum_{\rho} |\hat{u}(\gamma, \rho)|^2 < C \) for every fixed \(\gamma \in \hat{G} \).

Proof. By the discussion preceding the statement of Proposition 3.1, we see that there is a linear transformation \(T: L^2(G) \to L^2(H) \) such that
\[
\langle u, f \otimes g \rangle = \langle Tf, g \rangle \quad \text{for all } f \in C(G) \text{ and all } g \in C(H).
\]
(This transformation is the composition of the transformation discussed above with two Plancherel transformations.) Then
\[
\sum_{\gamma} |\hat{u}(\gamma, \rho)|^2 \leq \|T^*(\rho)\|_2^2 \leq \|T\|.
\]

Corollary 3.2. Let \(u \in \text{Bil}^\sigma \), where \(G, H \) are compact abelian groups. Then for every \(\varepsilon > 0 \) there exists \(N > 0 \) such that for each \(\rho \in \hat{H} \),
\[
\text{Card}\{\gamma : |\hat{u}(\gamma, \rho)| > \varepsilon\} \leq N.
\]

Proof. We fix \(\varepsilon > 0 \). Let \(v \) be such that \(\|u - v\| < \varepsilon/3 \) and such that \(v \) satisfies the hypotheses of Proposition 3.1. We let \(N \) be any integer greater than \(9C/\varepsilon^2 \) (the \(C \) is from Proposition 3.1 applied to \(v \)). Then \(|\hat{u}(\gamma, \rho)| > \varepsilon \) implies \(|\hat{v}(\gamma, \rho)| > \varepsilon/3 \), and that can occur at most \(9C/\varepsilon^2 \) times.

Theorem 3.3. Let \(u \in \text{Bil}^\sigma \), where \(G, H \) are compact abelian groups. Then the spectral radius of \(u \) is
\[
\sup_{\gamma \in \hat{G}, \rho \in \hat{H}} |\hat{u}(\gamma, \rho)|.
\]
Proof. By Theorem 2.3, we may assume that there is a Grothendieck measure pair μ, ν for u such that $d\mu/dm_G$ and $d\nu/dm_H$ are both bounded away from zero and infinity. Thus, we may assume that there is bounded linear transformation $T: L^2(G) \to L^2(H)$ such that $\langle u, f \otimes g \rangle = \langle Tf, g \rangle$ for all $f \in C(G)$ and $g \in C(H)$. Furthermore, for all continuous f on G, g on H,

$$\sum_{\gamma, \rho} |\hat{u}(\gamma, \rho)||\hat{f}(\gamma)||\hat{g}(\rho)| = |\langle u \ast \hat{u}, f \otimes g \rangle| \leq C'\|u\|^2\|f\|_2\|g\|_2,$$

where C' is the product of four numbers: K (the Grothendieck constant), the norm of u, the supremum of $d\mu/dm_G$, and the reciprocal of the infimum of $d\nu/dm_H$.

Let f_1 denote the Radon-Nikodym derivative $d\mu/dm_G$. Then f_1 has L^1-norm 1 and is bounded away from zero and infinity. Therefore, the nth convolution powers of f_1 converge to 1 uniformly, by Lemma 3.4 below. The same applies to $g_1 = d\nu/dm_H$.

That means that the Grothendieck measures (call them μ_n, ν_n) for u^n become closer and closer to Haar measures, so the norm of the isomorphisms (and of their inverses) between $L^2(\mu_n)$ and $L^2(\hat{G})$ on the one hand, and $L^2(\nu_n)$ and $L^2(\hat{H})$ on the other hand, approach one. Thus, for sufficiently large n, we may assume that

$$\|u^n\|_{\text{Bil}^r} \leq C \sup\{|\langle u^n, f \otimes g \rangle| : \|f\|_2\|g\|_2 \leq 1\},$$

where C does not depend on n, and the supremum is taken over all f, g of uniform norm one.

But

$$\langle u^n, f \otimes g \rangle = \sum_{\gamma, \rho} \hat{u}^n(\gamma, \rho)\hat{f}(\gamma)\hat{g}(\rho).$$

Therefore

$$|\langle u^n, f \otimes g \rangle| \leq \|\hat{u}^{n-2}\|_\infty \sum_{\gamma, \rho} |\hat{u}^2(\gamma, \rho)||\hat{f}(\gamma)||\hat{g}(\rho)|.$$

It follows that

$$\|u^n\|_{\text{Bil}^r} \leq C \|\hat{u}^{n-2}\|_\infty \sup_{\gamma, \rho} \sum |\hat{u}^2(\gamma, \rho)||\hat{f}(\gamma)||\hat{g}(\rho)|,$$

where C does not depend on n, and the supremum is taken over all f, g of uniform norm one. By (3.1),

$$\sup_{\|f\|_\infty \leq 1, \|g\|_\infty \leq 1} \sum_{\gamma, \rho} |\hat{u}^2(\gamma, \rho)||\hat{f}(\gamma)||\hat{g}(\rho)| = \sup |\langle u \ast \hat{u}, f \otimes g \rangle| \leq C'\|u\|^2\|f\|_2\|g\|_2,$$

so $\|u^n\|_{\text{Bil}^r} \leq C''\|\hat{u}^{n-2}\|_\infty$ for all n.

The conclusion about the spectral radius now follows easily. □

Lemma 3.4. Let \(f \) be a bounded non-negative Borel function on the compact group \(G \) that is bounded away from zero and has \(L^1 \)-norm one. Then the sequence of convolution powers of \(f \) converges uniformly to 1.

Proof. Since \(f \) is bounded, \(f \in L^2(G) \) and \(\hat{f} \in L^2(\hat{G}) \). Therefore \(f^2 = f*f \) has an absolutely convergent Fourier series, so, in particular, \(\hat{f} \in c_0(\hat{G}) \). Since \(f > 0 \) and \(\|f\|_1 = 1 \), \(\hat{f}(0) = 1 \). We apply the Lebesgue Dominated Convergence Theorem to \(\hat{f}^n \) (with \(|\hat{f}|^2 \) being the dominating function and \(n > 2 \)) to conclude that \(\hat{f}^n \) converges in \(l^1 \)-norm to a function \(f' \) that is equal to the characteristic function of a finite subset of \(\hat{G} \) (finite because \(\hat{f} \in c_0(\hat{G}) \)). Of course, that means that \(f^n \) converges uniformly to a function \(f_1 \) that is non-zero everywhere (the infimum of \(f^n \) is increasing with \(n \)). Thus, \(f_1 m_G \) is an idempotent probability measure. By [11, 3.2.4], \(f_1 m_G \) is Haar measure on a compact subgroup of \(G \). Since \(\hat{f}_1 = f' \) has finite support, that subgroup has finite index. If the index were greater than 1, \(f_1 \) would be zero somewhere, a contradiction. Therefore \(f_1 = 1 \) everywhere. □

Corollary 3.5. Let \(G \) and \(H \) be compact abelian groups. Then \(\hat{G} \times \hat{H} \) is dense in the maximal ideal space of \(\text{Bil}^\sigma \) and \(\text{Bil}^\sigma \) is a symmetric Banach algebra

Proof. This is a standard argument: the result is more or less immediate from Theorem 3.3. Here are the details.

We first note that \(\text{Bil}^\sigma \) is self-adjoint. For if \(S \in \text{Bil}^\sigma \) is such that its Gelfand transform \(\hat{S} \) is real on \(\hat{G} \times \hat{H} \), but not real on all of \(\Delta \text{Bil}^\sigma \) (the maximal ideal space), then for an appropriate \(k > 1 \), \(\exp(ikS) \) has Gelfand transform larger than one at that non-real value, but has Fourier-Stieltjes transform at most one, thus contradicting Theorem 3.3.

Since the space of Gelfand transforms \(\text{Bil}^{\sigma-} \) is self-adjoint and separating, it is uniformly dense in \(C_0(\Delta \text{Bil}^\sigma) \). If \(\hat{G} \times \hat{H} \) were not dense in \(\Delta \text{Bil}^\sigma \), then there would be a continuous function \(f \) on \(\Delta \text{Bil}^\sigma \) such that \(\|f\|_\infty = 1 \) and \(|f| < 1/2 \) on \(\hat{G} \times \hat{H} \). By estimating \(f \) uniformly by an element of \(\text{Bil}^\sigma \), we again contradict Theorem 3.3. □
We now give an example of an element of Bil^σ. The example is simple; we use it to show that Bil^σ does not have approximate identities, even unbounded ones.

Let μ and ν denote regular Borel probability measures on the locally compact spaces X and Y. Suppose that $\{\gamma_\alpha\}$ is an orthonormal basis for $L^2(\mu)$, and that $\{\rho_\beta\}$ is an orthonormal basis for $L^2(\nu)$. Let subsequences of those bases be chosen. Let $F(\gamma_\alpha, \rho_\beta)$ be defined by

$$F(\gamma_\alpha, \rho_\beta) = \begin{cases} 2^{-k/2}, & 2^k \leq j \leq 2^{k+1} - 1 \text{ and } j \geq 1 \\ 0, & \text{otherwise,} \end{cases}$$

and

$$F(\gamma_\alpha, \rho_\beta) = 0 \text{ if there is no pair } j, k \text{ with } \alpha = \alpha_j \text{ and } \beta = \beta_k.$$

Proposition 3.6. With the above hypotheses,

1. F is a bilinear functional on $L^2(\mu) \times L^2(\nu)$ that is bounded by 1;
2. F represents an element of Bil^σ; and
3. Grothendieck measures for F are given by μ, ν.

Proof. For the first part, let $x, y \in L^2(\mu) \times L^2(\nu)$, and let $x_j = \langle x, \gamma_\alpha \rangle$ for all j and $y_k = \langle y, \rho_\beta \rangle$ for all k. Let also $F_{j,k} = F(\gamma_\alpha, \rho_\beta)$. Then

$$F(x, y) = \sum_{k} \sum_{j=2^k}^{2^{k+1}-1} F_{j,k} x_j y_k.$$

We may assume that the x_j and y_k are non-negative. For each k,

$$\sum_{j=2^k}^{2^{k+1}-1} F_{j,k} x_j \leq \left(\sum_{j=2^k}^{2^{k+1}-1} x_j^2 \right)^{1/2},$$

by the Cauchy-Schwarz inequality. Therefore,

$$|F(x, y)| \leq \sum_k \left(\sum_{j=2^k}^{2^{k+1}-1} x_j^2 \right)^{1/2} y_k \leq \left(\sum_k \sum_{j=2^k}^{2^{k+1}-1} x_j^2 \right)^{1/2} \left(\sum_k y_k^2 \right)^{1/2}.$$
That is,

\[F(x, y) \leq \|x\|_{L^2(\mu)} \|y\|_{L^2(\nu)}. \]

For the second assertion, by the first part and the fact that \(\mu, \nu \) are probability measures, \(|F(x, y)| \leq \|x\|_{\infty} \|y\|_{\infty} \) for all \(x \in L^\infty(\mu), y \in L^\infty(\nu) \). Hence \(F \) represents an element of \(\text{Bil}(L^\infty(\mu), L^\infty(\nu)) \). We must show that \(F \) is weak* continuous in each variable separately. Suppose that \(x_\lambda \to x \) weak* in \(L^\infty(\mu) \) and that \(y \in L^\infty(\nu) \). Note that \(L^\infty(\mu) \subseteq L^2(\mu) \subseteq L^1(\mu) \). By the latter containment, \(x_\lambda \) converges weak* in \(L^2(\mu) \) Since \(L^\infty(\mu) \) is dense in \(L^2(\mu) \),

\[x_\lambda \to x \text{ weakly in } L^2(\mu). \]

Let

\[z = \sum_k \langle y, \rho_{\beta_k} \rangle \left(\sum_{j=2^k}^{2^{k+1}-1} \langle x, \gamma_{\alpha_j} \rangle \gamma_{\alpha_j} \right). \]

Then \(z \in L^2(\mu) \) and \(\langle w, z \rangle = F(w, y) \) for all \(w \in L^\infty(\mu) \). Since \(z \in L^2(\mu) \),

\[\lim_{\lambda} F(x_\lambda, y) = \lim_{\lambda} \langle x_\lambda, z \rangle = \langle x, z \rangle = F(x, y). \]

The weak* continuity in \(y \) is proved identically.

For the last assertion, we just apply (3.2) that \(\mu \) and \(\nu \) have the required property.

Theorem 3.7. Let \(G \) and \(H \) be infinite compact abelian groups. Then \(\text{Bil}^\sigma \) does not have an (even unbounded) approximate identity.

Remark. A virtual diagonal for a Banach algebra \(A \) is a bounded net \(\{m_\alpha\} \) in \(A \otimes A \) such that \(\lim_\alpha (m_\alpha a - \alpha a) = 0 \) and \(\lim \pi(m_\alpha)a = a \) for each \(a \in A \), where \(\pi(a \otimes b) = ab \). The Banach algebra \(A \) is amenable if and only if \(A \) has a virtual diagonal. If \(A \) is amenable, then \(A \) has a bounded approximate identity. Hence, \(\text{Bil}^\sigma \) is never amenable when \(G, H \) are compact abelian groups. See [1, p. 243] and [10, p. 50, Ex. 36].

Proof. Let the elements of \(\widehat{G} \) be denoted by \(\gamma_\alpha \) and the elements of \(\widehat{H} \) be denoted by \(\rho_\beta \). We apply the example of Proposition 3.6, only replacing \(\mu \) with \(m_G \) and \(\nu \) with \(m_H \). Suppose that \(L \in \text{Bil}^\sigma \) were such that \(\|L \ast F - F\| \leq \frac{1}{2K} \), where \(K \) is the usual complex Grothendieck constant.
By [4, 2.4], Grothendieck measures for a convolution of bimeasures are the convolution of Grothendieck measures of the factors. Combining that with the third item of Proposition 3.6, we see that Grothendieck measures for \(L \ast F - F = (L - \delta_0) \ast F \) are exactly Haar measure. That is, for all \(x \in L^2(G) \) and \(y \in L^2(H) \),

\[
(3.3) \quad |\langle L \ast F - F, x \otimes y \rangle| \leq K \|L \ast F - F\| \|x\|_2 \|y\|_2.
\]

For simplicity, denote \(F(\gamma_{\alpha_j}, \rho_{\beta_k}) \) by \(F_{j,k} \) and \(L(\gamma_{\alpha_j}, \rho_{\beta_k}) \) by \(L_{j,k} \). For each \(k \), let us compare the values of \(L \ast F \) and \(F \) at \(\gamma_{\alpha_j}, \rho_{\beta_k} \), for \(2^k \leq j \leq 2^{k+1} - 1 \).

We will apply when \(x \) is the element of \(L^2(G) \) such that the Fourier transform of \(x \) is \(2^{-k/2} e^{-\theta(j,k)} \), where \(\theta(j,k) \) is the argument of \(L_{j,k} - 1 \) if that difference is non-zero, and zero otherwise and \(y = \rho_{\beta_k} \). Then

\[
(3.4) \quad \langle L \ast F - F, x \otimes y \rangle = \sum_{j=2^k}^{2^{k+1}-1} |L_{j,k} - 1| 2^{-k} \\
\leq K \|L \ast F - F\| \|x\|_2 \|y\|_2 \leq \frac{1}{2}.
\]

Therefore, for at least half the terms in (3.4), \(|L_{j,k} - 1| \leq \frac{1}{2} \). That means that

\[
(3.5) \quad |L_{j,k}| \geq \frac{1}{2}
\]

for at least \(2^{k-1} \) terms. For \(k \) sufficiently large, that contradicts Corollary 3.2.

When \(G \) is a compact abelian group, \(L^1(G) \) has a dense subset consisting of elements whose Fourier transforms have finite support. That is not possible for \(\text{Bil}_G \), since the characteristic function of any graph of a one-to-one function from \(\hat{G} \) to \(\hat{H} \) is the Fourier transform of an element of \(\text{Bil}_G \). In view of Corollary 3.2, one might hope that “finitely supported” could be replaced by “summable on sets of the form \(\gamma \times \hat{H} \), with uniform bound on the sums.” That is not possible, as the next result asserts.

Theorem 3.8. Let \(G \) and \(H \) be compact abelian groups. Then the set of elements \(L \) in \(\text{Bil}_G \) for which \(\sup_{\rho} \sum_{\gamma} |L(\gamma, \rho)| < \infty \) is not dense.

Proof. We adapt the proof of Theorem 3.7, using the same \(F \) as there.
Suppose that \(L \in \text{Bil}^\sigma \) is close to \(F \). Then the Grothendieck measures for \(L \) must be close (in an \(L^2 \) sense) to those of \(F \), that is they must be near to the respective Haar measures. That means that if \(\| F - L \| \) is sufficiently small, then

\[
|\langle F - L, x \otimes y \rangle| \leq 2K\|F - L\|\|x\|_2\|u\|_2
\]

for all \(x \in L^2(G), y \in l^2(G) \).

Suppose that \(\| L - F \| < \frac{\varepsilon}{2K} \). Suppose also that \(\sup_{\rho} \sum_{\gamma} |L(\gamma)| < \infty \). Then for sufficiently large \(k \), \(|L_j, k| < 2^{-1-k/2} \) for at least half the \(j \) in the range \(2^k \leq j \leq 2^{k+1} - 1 \). Then

\[
\sum_{2^k \leq j \leq 2^{k+1} - 1} |L_j, k - F_j, k|2^{-k/2} \geq 2^{-k/2} \frac{1}{2} 2^{-k/2} 2^{k-1} = 2^{-2} \]

(evaluate at the same \(x, y \) as in the proof of Theorem 3.7). That implies that \(|L_j, k - 2^{-k/2}| < \varepsilon \), which is impossible for small \(\varepsilon \).

\(\square \)

4. Problems. We list in this section some open questions.

(1) What happens if \(L^\infty \) is replaced with \(LUC(G) \) or \(C(G) \)? [And one looks at the corresponding spaces defined via weak* limits?]

(2) What happens when we replace \(L^\infty \) with \(VN(G) \)?

(3) Does either \(\text{Bil}^\sigma \) or \(\text{Bil}(L^\infty(m_G), L^\infty(m_H)) \) characterize the underlying groups? (Wendel’s Theorem.)

(4) Same question for \(\text{BM}(G, H) \).

(5) What is the dual of \(\text{Bil}(L^\infty(m_G), L^\infty(m_H)) \)?

References

Received October 30, 1990 and in revised form February 1, 1992. Research partially supported by grants from the NSERC.

LAKEHEAD UNIVERSITY
THUNDER BAY, ONTARIO, CANADA P7B 5E1
E-mail address: ccgraham@thunder.lakeheadu.ca

AND

UNIVERSITY OF ALBERTA
EDMONTON, ALBERTA, CANADA T6G 2G
E-mail address: usertlau@ualtamts.ca
PACIFIC JOURNAL OF MATHEMATICS

Volume 158 No. 1 March 1993

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determinant identities</td>
<td>1</td>
</tr>
<tr>
<td>George W. Eyre Andrews and William H. Burge</td>
<td></td>
</tr>
<tr>
<td>A spectral theory for solvable Lie algebras of operators</td>
<td>15</td>
</tr>
<tr>
<td>E. Boasso and Angel Rafael Larotonda</td>
<td></td>
</tr>
<tr>
<td>Simple group actions on hyperbolic Riemann surfaces of least area</td>
<td>23</td>
</tr>
<tr>
<td>S. Allen Broughton</td>
<td></td>
</tr>
<tr>
<td>Duality for finite bipartite graphs (with an application to II_1 factors)</td>
<td>49</td>
</tr>
<tr>
<td>Marie Choda</td>
<td></td>
</tr>
<tr>
<td>Szegő maps and highest weight representations</td>
<td>67</td>
</tr>
<tr>
<td>Mark Gregory Davidson and Ron Stanke</td>
<td></td>
</tr>
<tr>
<td>Optimal approximation class for multivariate Bernstein operators</td>
<td>93</td>
</tr>
<tr>
<td>Zeev Ditzian and Xinlong Zhou</td>
<td></td>
</tr>
<tr>
<td>Witt rings under odd degree extensions</td>
<td>121</td>
</tr>
<tr>
<td>Robert Fitzgerald</td>
<td></td>
</tr>
<tr>
<td>Congruence properties of functions related to the partition function</td>
<td>145</td>
</tr>
<tr>
<td>Anthony D. Forbes</td>
<td></td>
</tr>
<tr>
<td>Bilinear operators on $L^\infty(G)$ of locally compact groups</td>
<td>157</td>
</tr>
<tr>
<td>Colin C. Graham and Anthony To-Ming Lau</td>
<td></td>
</tr>
<tr>
<td>Nonuniqueness of the metric in Lorentzian manifolds</td>
<td>177</td>
</tr>
<tr>
<td>Geoffrey K. Martin and Gerard Thompson</td>
<td></td>
</tr>
<tr>
<td>Index theory and Toeplitz algebras on one-parameter subgroups of Lie groups</td>
<td>189</td>
</tr>
<tr>
<td>Efton Park</td>
<td></td>
</tr>
</tbody>
</table>