Vol. 159, No. 1, 1993

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
The standard double soap bubble in R2 uniquely minimizes perimeter

Joel Foisy, Manuel Alfaro Garcia, Jeffrey Farlowe Brock, Nickelous Hodges and Jason Zimba

Vol. 159 (1993), No. 1, 47–59
Abstract

Of course the circle is the least-perimeter way to enclose a region of prescribed area in the plane. This paper proves that a certain standard “double bubble” is the least-perimeter way to enclose and separate two regions of prescribed areas. The solution for three regions remains conjectural.

Mathematical Subject Classification 2000
Primary: 53A10
Secondary: 49Q05
Milestones
Received: 12 August 1991
Published: 1 May 1993
Authors
Joel Foisy
Department of Mathematics
SUNY Potsdam
44 Pierrepont Avenue
Potsdam NY 13676
United States
http://www2.potsdam.edu/foisyjs/
Manuel Alfaro Garcia
Jeffrey Farlowe Brock
Nickelous Hodges
Jason Zimba