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Of course the circle is the least-perimeter way to enclose a region of
prescribed area in the plane. This paper proves that a certain standard
"double bubble" is the least-perimeter way to enclose and separate two
regions of prescribed areas. The solution for three regions remains
conjectural.

1. Introduction. Soap bubbles naturally tend to minimize surface
area for given volumes. This paper considers the two-dimensional
analog of soap bubbles, seeking the way to fence in prescribed ar-
eas using the least amount of perimeter. For one prescribed quantity
of area, the answer is of course a circle. This paper shows that for
two prescribed quantities of area, the unique answer is the "standard
double bubble" of Figure 1.0.1, and not the non-standard competitors
admitted by the general existence theory ([Al], [M]) with disconnected
bubbles or exterior (see Figure 1.0.2).

FIGURE 1.0.1. The standard double-bubble is the
unique least-perimeter way to enclose and separate
two prescribed areas.

A B C

FIGURE 1.0.2. Some non-standard double-bubbles.
(A) has connected bubbles but the exterior is dis-
connected. (B) has a connected exterior, but its B\
bubble is disconnected. (C) has both disconnected
bubbles and a disconnected exterior.
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FIGURE 1.0.3. It is an open question whether the
standard triple bubble is the least-perimeter way to
enclose and separate three prescribed areas.

FIGURE 1.0.4. It is an open question whether the
standard double bubble is the least-area way to en-
close and separate two given volumes in R3 .

For three or more areas, the question remains open (see Figure
1.0.3). In R3 it is also an open question whether the standard double
bubble is the least-area way to enclose and separate two prescribed
volumes (see Figure 1.0.4).

Proofs 1.1. The proofs first treat the case when there are no bounded
components of the exterior trapped inside the configuration (Lemma
2.4). In this case, the bubble must be a combinatorial tree. In a non-
standard double bubble, part of an extreme bubble can be reflected to
contradict known regularity (cf. Figure 1.1.1).

The general case involves filling presumptive bounded components
of the exterior to obtain a contradiction of certain monotonicity prop-
erties of the least-perimeter function.

Existence 1.2. F. J. Almgren [Al, Theorem VI.2] and [M] have estab-
lished the existence of perimeter-minimizing bubble clusters in general
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FIGURE 1.1.1. In the proof, presumptive extreme
extra components can be reflected to contradict
regularity. In the pictured reflection, there is a for-
bidden meeting of four arcs at the point t.

dimensions. Their results admit the possibility of disconnected bub-
bles and exterior. In the category of clusters with connected bubbles
and connected exterior, existence remains open, although it is an easy
mistake to think it obvious (cf. [B]).

The following regularity theorem, proved for R3 by Jean Taylor
([Ta], [ATa]), appears in [M].

REGULARITY THEOREM 1.3. A perimeter-minimizing bubble cluster
in R2 consists of arcs of circles (or line segments) meeting in threes at
angles of 120°.

DEFINITIONS 1.4. A cluster of bubbles (or bubble cluster) in Rn is a
collection of finitely many pairwise disjoint open sets, B\, 2?2 ? ^3 ? ?
Bk . Each open set B\, , Bk is called a bubble. We do not require
bubbles to be connected.

Call a cluster of exactly two bubbles a double bubble and a cluster
of exactly three bubbles a triple bubble.

In R2, a standard double bubble has three circular arcs (in this
paper, a line segment is a circular arc) meeting at two vertices at angles
of 120°.

The perimeter of a cluster is given by the one-dimensional Hausdorff
measure of the topological boundaries of the bubble:

Haus1

A cluster is perimeter-minimizing if no other cluster enclosing the same
areas has less perimeter.
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2. The double bubble in R2. Theorem 2.3 establishes the existence
and uniqueness of the standard double bubble enclosing any two pre-
scribed quantities of area. Lemma 2.4 shows that, if the exterior
is connected, a perimeter-minimizing double bubble has connected
bubbles. Proposition 2.8 shows that a perimeter-minimizing double
bubble must have a connected exterior. Finally, the Main Theorem
2.9 establishes the standard double bubble as the unique perimeter-
minimizing enclosure for two prescribed quantities of area.

We begin with some basic formulas and omit the easy computations.

PROPOSITION 2.1. Let S be an edge of a perimeter-minimizing bub-
ble cluster in R 2 . Define C to be the distance between the endpoints
of S, with θ the angle between S and the line segment connecting its
endpoints (see Figure 2.1.1). Then the radius of curvature R of S, the
area A of the region between S and the line segment connecting its
endpoints, and the length L of S are given by

c AM r\ C2(θ-sin(θ)cos(θ))
A{0C) = , ana, 2

4sur(0)

1 c '
FIGURE 2.1.1. The circular arc S has radius of
curvature R, area A and length L.



DOUBLE BUBBLES 51

PROPOSITION 2.2. If a perimeter-minimizing double bubble in R2

has connected bubbles and a connected exterior, then it is a standard
double bubble.

Proof. The whole cluster must be connected. Otherwise, sliding
components together until their boundaries are tangent yields a con-
tradiction of the Regularity Theorem 1.3.

In addition, Euler's formula concerning the vertices, edges, and
faces of a planar graph gives V - E + F = 1. Since each vertex
has degree 3, 2E = 3V. We also know that F = 2. Solving these
equations yields that V = 2 and E = 3. By the Regularity Theorem
1.3, the cluster indeed consists of three circular arcs all meeting in two
points at angles of 120°.

THEOREM 2.3. For any two prescribed quantities of area, there exists
a unique standard double bubble.

REMARK. The proof shows that given a family of standard double
bubbles with vertices a fixed distance apart, increasing the curvature
on the separator arc decreases the area enclosed by the smaller bubble
and increases the area enclosed by the larger bubble.

Proof. We will show that given any λ with 0 < λ < 1, there exists,
up to congruence, a unique standard double bubble B\, Bι such that
the ratio (area(J?i))/area(2?2)) of the two areas it encloses is λ.

Consider a standard double bubble with the distance between its
two vertices fixed to be 1. Note that its edges are circular arcs that
meet at these two vertices. For the area underneath an arc of our
enclosure, Proposition 2.1 yields

A straightforward calculation shows that

„ = 20(2 + cos(2fl))-3(sin(2fl))
1 ] 4sin 4 0

It can be routinely shown that A"(θ) > 0 on (0, π).
For any θ e [0, π/3), an angle formed by a circular arc and the

line segment of distance 1 that joins its endpoints, one can construct
a standard double bubble (see Figure 2.3.1).
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FIGURE 2.3.1. For any θ, one can construct a stan-
dard double bubble.

The enclosed areas satisfy

(1)
area Bx = A((2π/3) -θ) + A(θ),

area B2 = A((2π/3) + θ) - A(θ).

For θ e[0, π/3), any ratio of A\ to A2 will be uniquely represented.
Indeed, let F{θ) = (area(5!))/(area(52)). Since A"(θ) > 0 for θ
in (0, π) , in (0, π/3), area ^i = A((2π/3) - θ) + A(θ) is strictly
decreasing and area B2 = A((2π/3) + θ) - A(θ) is strictly increasing.
In general, increasing θ will decrease the area enclosed by the smaller

FIGURE 2.3.2. As θ varies, a unique standard
double bubble represents every possible ratio of
area(2?i) to area(i?2).
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bubble and increase the area enclosed by the larger bubble. Thus F(θ)
is strictly decreasing on the interval [0, π/3). In addition, F(0) = 1
and F(θ) -> 0 as θ -> π/3. Thus F: [0, π/3) -+ (0, 1] is bijective
(see Figure 2.3.2). Since F is bijective, a standard double bubble
enclosing any two prescribed quantities of area uniquely exists for
every value of θ e [0, π/3).

We now have to show that any double bubble that contains bounded
components of the exterior or disconnected bubbles is not perimeter-
minimizing.

LEMMA 2.4. A perimeter-minimizing double bubble whose exterior
is connected must be standard.

Proof. Let U be a perimeter-minimizing double bubble with con-
nected exterior. If U is not standard, by Proposition 2.2, U has a dis-
connected bubble. We will show that U is not perimeter-minimizing.

Consider a graph formed by placing a vertex inside each bubble
component of U, with an edge between vertices of adjacent compo-
nents. For any U with a connected exterior, the corresponding graph
has no cycles. Thus there will be a component of U that lies at an
endpoint of the corresponding graph. It must have exactly two edges
and exactly two vertices (see Figure 2.4.1).

FIGURE 2.4.1. Since the exterior is assumed to be
connected as in A, the associated graph has an
endpoint in a component with two edges and two
vertices. If the exterior were disconnected, then a
cycle as in B could result.
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\

FIGURE 2.4.2. An extreme component F bounded
by only two edges.

Let F be a component of U that has exactly two edges and exactly
two vertices, r and q. Let t be a vertex of U that is adjacent to
r but is not a vertex of F (see Figure 2.4.2). Let S be the edge
connecting r and t.

Let p = r and define a new bubble cluster, Up, by replacing the
component F by its reflection across the perpendicular bisector of
the line segment qp (= qr). If we let the point p move continuously
along arc S from point r to point t and reflect component F and
arc rp across the perpendicular bisector of line qp, the bubble cluster
changes, but initially the perimeter and enclosed quantities of area
remain constant.

FIGURE 2.4.3. The reflected component F may
touch another component, contradicting regular-
ity.
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FIGURE 2.4.4. Otherwise the reflected component
F eventually touches t, also contradicting regular-
ity.

As p varies continuously from r to t, two things could happen:
either there will be a point p for which the reflection will result in
the touching of another bubble component and the creation of a new
vertex with four edges leading to it (see Figure 2.4.3), or p will even-
tually coincide with point t , and there will be an instance of four
edges meeting at a vertex (see Figure 2.4.4).

This operation creates a new bubble cluster of the same perime-
ter, enclosing the same prescribed quantities of area, that contradicts
regularity. Therefore, the original bubble itself must not be perimeter-
minimizing.

We will soon show that a perimeter-minimizing double bubble must
have a connected exterior.

LEMMA 2.5. Increasing the larger of the two prescribed areas enclosed
by a standard double bubble will increase total perimeter.

Proof. From Proposition 2.1, the length function for a circular arc
with endpoints distance 1 apart and with θ, the angle between the
segment connecting the endpoints and the arc, is

The perimeter of the standard double bubble with angle θ between
the line segment connecting its vertices (distance 1 apart) and the arc
separating its two bubbles is given by

perim (θ) = L(θ) + L{(2π/3) + θ) + L((2π/3) - θ).
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A routine calculation shows that

, sin0-0cos0
L W =

sm z0

sin2 0 + 20 cos2 0 - sin 2(9
ΓTί

sπr 0
It can easily be shown that L'(θ) > 0 on (0, π), and thus L(θ) is
increasing on [0, π/3). In addition, Z/'(0) > 0 on (0, π); thus on
[0, π/3), L((2π/3) + 0) 4- L((2π/3) - 0) is increasing. This implies
that perim(0) is increasing on [0, π/3).

Thus increasing 0 will increase the total perimeter. In addition, it
follows from Theorem 2.3 (cf. Remark) that increasing 0 will decrease
the area enclosed by the smaller bubble and increase the area enclosed
by the larger bubble. By scaling up the double bubble until the smaller
bubble contains its original area, only the area enclosed by the larger
bubble will increase. In the process, total perimeter also increases.

DEFINITION 2.6. For two prescribed quantities of area, A\ and A2 ?

let P(Aχ, A2) be the perimeter of the least-perimeter double bubble
enclosing areas A\ and A2 . Let P§(A\, A2) be the perimeter of the
standard double bubble enclosing areas of size A\ and A2 .

LEMMA 2.7. For any fixed A\, A2 > 0, the function P(A, A2) has
a minimum for A e [A\, oo).

Proof. By the isoperimetric inequality, P(AyA2) > perim(Z)),
where D is a disk of area A. Hence P(A, A2) —• oo as A —• oo.
Since P is continuous, P has a minimum for A e [Aι, oo).

PROPOSITION 2.8. The exterior of a perimeter-minimizing double
bubble must be connected.

Proof. Given two quantities of area, A\ and A2, without loss of
generality assume A\ > A2 . Suppose that the exterior of a perimeter-
minimizing double bubble B\, B2 enclosing A\ and A2 is discon-
nected. By Lemma 2.7, we can choose some A\ e [A\, oo) that min-
imizes P(A\, A2). In particular, P(A\, A2) < P(A{, A2).

We now show that if B[, B2 is the perimeter-minimizing enclosure
of the quantities of area A[ and A2, respectively, then the exterior
of B[, B2 is connected. Suppose, to obtain a contradiction, that the
exterior is disconnected. By incorporating the bounded components
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of the exterior into the bubble B[ and then removing the edges that
were separating the bounded components of the exterior from B[,
a new double bubble, B", B2, with less perimeter than B[, B2 is
formed. This contradicts the choice of A\.

Thus B[ Φ Bx and hence Aλ < A\. By Lemma 2.5, P0(Aι, A2) <
P0(A[, A2). By Lemma 2.4, P0(A[, A2) = P(A\, A2). By definition,
P(A\, A2) < PQ(A\ , A2). In summary:

P{AX, ^ 2 ) < Po(Ax, ^ 2 ) < P o ( 4 , A2) = P ( 4 , ^ 2 ) < ^ ( ^ i , ^2)

This is a contradiction. We conclude that the exterior must be con-

nected.

MAIN THEOREM 2.9. For any two prescribed quantities of area, the
standard double bubble is the unique perimeter-minimizing enclosure
of the prescribed quantities of area, {See Figure 2.9.1.)

FIGURE 2.9.1. Theorem 2.9 shows that a perimeter-
minimizing double bubble must look like the first
one, not the second two, which have disconnected
bubbles or exteriors.

Proof. By Theorem 1.6, we know that a perimeter-minimizing dou-
ble bubble exists. By Proposition 2.8, the exterior of this double bub-
ble must be connected. Then, by Lemma 2.4, the bubble cluster must
be standard. Therefore, only a standard double bubble is perimeter-
minimizing. By Theorem 2.3, it exists uniquely for any two prescribed
quantities of area.

Lemma 2.5 showed that increasing the larger quantity of area en-
closed by a standard double bubble increases perimeter. It follows
from our main theorem that increasing either quantity of area en-
closed by a standard double bubble increases perimeter.

COROLLARY 2.10. Increasing either given area A\, A2 increases the
perimeter of the perimeter-minimizing double bubble.
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FIGURE 2.10.1. After we shorten an outside arc,
the resulting double bubble has less perimeter, and
2?i has less area.

Proof. If not, for some A\, A2 some slight increase in, say, A\ de-
creases the least perimeter of the minimizing double bubble. Now A\
can be decreased back to its original value by shortening an outside
arc, as in Figure 2.10.1, and further decreasing perimeter, contradict-
ing the minimizing property of the original double bubble.

Added in proof. There has been recent progress on the existence of
connected bubbles [M] and on the triple bubble:

Chris Cox, Lisa Harrison, Michael Hutchings, Susan Kim, Janette
Light, Andrew Mauer, Meg Tilton, The shortest enclosure of three con-
nected areas in R2, NSF SMALL undergraduate research Geometry
Group, Williams College, 1992.

Also see the survey:
Frank Morgan, Mathematicians, including undergraduates, look at

soap bubbles, Amer. Math. Monthly, (1993), in press.
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