SOLUTIONS OF THE STATIONARY AND NONSTATIONARY
NAVIER-STOKES EQUATIONS IN EXTERIOR DOMAINS

ZHI MIN CHEN
SOLUTIONS OF THE STATIONARY AND NONSTATIONARY NAVIER-STOKES EQUATIONS IN EXTERIOR DOMAINS

Zhi-Min Chen

It is shown that a nonstationary exterior Navier-Stokes flow tends to a small stationary flow in L^2 like $t^{-3/4}$ as $t \to \infty$.

0. Introduction. In this paper we are concerned with the stationary Navier-Stokes equations

\begin{equation}
(w \cdot D)w - \Delta w + D\bar{p} = f, \quad D \cdot w = 0 \quad \text{in } G,
\end{equation}

\begin{equation}
w = 0 \quad \text{on } \partial G \quad (D = \text{grad}),
\end{equation}

and the nonstationary Navier-Stokes equations

\begin{equation}
v_t + (v \cdot D)v - \Delta v + D\bar{p} = f \quad \text{in } G \times (0, \infty),
\end{equation}

\begin{equation}
D \cdot v = 0 \quad \text{in } G \times (0, \infty),
\end{equation}

\begin{equation}
v = 0 \quad \text{on } \partial G \times (0, \infty),
\end{equation}

\begin{equation}
v|_{t=0} = a + w \quad \text{in } G \quad (v_t = \partial v/\partial t).
\end{equation}

Here and in what follows G denotes a smooth exterior domain of R^3, $f = f(x)$ is a prescribed vector field, and \bar{p} (resp. \bar{p}) represents unknown stationary (resp. nonstationary) scalar pressure which can be determined by the stationary solution w via (0.1) (resp. nonstationary solution v via (0.2)).

As is well known, it was shown by Finn [8, 9] that (0.1) admits a small solution

\begin{equation}
w \in L^\infty(G; R^3), \quad Dw \in L^3(G; R^3),
\end{equation}

\begin{equation}C_0 = \sup_{x \in G} |x| |w(x)| < \infty.
\end{equation}

If $C_0 < 1/2$ the Finn’s solution w may be formed as a limit of a nonstationary solution v as $t \to \infty$ in local or global L^2-norms (cf. Heywood [15, 14], Galdi and Rionero [11], Miyakawa and Sohr [23]) and in other norms (cf. Heywood [16], Masuda [20]). Moreover it has recently proved (cf. Borchers and Miyakawa [4]) that every weak solution of (0.2) tends the Finn’s solution in $L^2(G; R^3)$.
like \(t^{-(3/p-3/2)/2} \) with \(6/5 < p < 2 \), provided \(C_0 < 1/2 \) and \(a \in L^2(G; R^3) \cap L^p(G; R^3) \).

In this paper we are only interested in the case \(w \in L^3(G; R^3) \), \(Dw \in L^3(R^3; G) \), or \(Dw \in L^r(G; R^9) \cap L^p(G; R^3) \) with \(1 < r < 3/2 < p < 2 \). Under certain smallness assumptions on \(w \) we show now that every weak solution of (0.2) tends to the stationary solution \(w \) in \(L^2(G; R^3) \) like the sharp decay rate \(t^{-3/4} \).

1. Notation and main result. In this paper we use the following spaces.

\(L^p = \) the Lebesgue spaces \(L^p(G; R^3) \), with \(\| \cdot \|_p \) the associated norm,
\(C^\infty = \) the set of compactly supported solenoidal in \(C^\infty(G; R^3) \),
\(W^{k,p} = \) the Sobolev space \(W^{k,p}(G; R^3) \),
\(J^p = \) the completion of \(C^\infty \) in \(L^p \),
\(W^{1,p} = \) the completion of \(C^\infty \) in \(W^{1,p} \),
\(\widehat{W}^{1,p} = \) the completion of \(C^\infty \) under the norm \(\| D \cdot \|_p \),
\(\widehat{W}^2,p = \) the space \(\{ u \in \widehat{W}^{1,3p/(3-p)}; D^2 u \in L^p(G; R^{27}) \} \) for \(1 < p < 3 \),
\(W^{-1,2} = \) the dual of \(W^{1,2} \),
\(\widehat{W}^{-1,p} = \) the dual of \(\widehat{W}^{1,p/(p-1)} \), with \(\| \cdot \|_{-1,p} \) the associated norm.

Moreover for \(1 < r < \infty \) and \(n \geq 1 \), we denote by \(r' \) the real \(r/(r-1) \), by \((\cdot, \cdot) \) the inner product in \(L^2(G; R^n) \), by \(P \) the bounded projection from \(L^r \) onto \(J^r \) (cf. [22]), by \(A \) the Stokes operators \(-P\Delta \) with the domain \(W^{1,r} \cap W^{2,r} \), by \(\overline{A} \) the Laplacian \(-\Delta \) with the domain \(W^{2,r}(R^3; R^3) \), and by \(C \) a positive constant which may vary from line to line, but is always independent of the quantities \(t, T, u, v, w, f, u_k \), and \(a \).

Now we make preparations for stating our main result. The existence of the stationary solutions \(w \) is guaranteed by the following.

Lemma 1.1. Let \(1 < r \leq 3/2 < p < 2 \), and \(f \in C^\infty \). Then there is a small \(h > 0 \) such that (0.1) admits a unique solution within the class

\[\{ w \in \widehat{W}^{1,r} \cap \widehat{W}^{1,p}; \| Dw \|_{3/2} \leq h \}, \]

provided that \(\| f \|_{-1,3/2} \leq h^2 \). Moreover

\[\| Dw \|_r + \| Dw \|_p \leq C(\| f \|_{-1,r} + \| f \|_{-1,p}). \]
From (0.1) and (0.2) we see that $u = v - w$ and $\dot{p} = \bar{p} - \bar{p}$ solve the problem

$$
(1.1) \quad u_t + (u \cdot D)u - \Delta u + (u \cdot D)w + (w \cdot D)u + D\dot{p} = 0,
$$

$$
D \cdot u = 0 \quad \text{in } G \times (0, \infty),
$$

$$
u = 0 \quad \text{on } \partial G \times (0, \infty),
$$

$$
u|_{t=0} = a \quad \text{in } G.
$$

Weak solutions are given in the following sense.

Definition 1.1. Let $a \in J^2$, and $w \in \dot{W}^{1,3/2}_\sigma$ solve (0.1). A weakly continuous function $u: [0, \infty) \to J^2$ is said to be a weak solution of (1.1) if $u(0) = a$, $u \in L^\infty(0, \infty; J^2) \cap L^2(0, \infty; \dot{W}^{1,2}_\sigma)$,

$$
(1.2) \quad \|u(t)\|_2^2 + \int_s^t \|Du(z)\|_2^2 \, dz \leq \|u(s)\|_2^2,
$$

$$
(1.3) \quad (u(t), g(t)) + \int_s^t ((Du, Dg) + ((u \cdot D)w, g)
$$

$$
+ ((w \cdot D)u, g) - (u, g_z)) \, dz
$$

$$
= (u(s), g(s)) - \int_s^t ((u \cdot D)u, g) \, dz
$$

for all $t > s \geq 0$ and all $g \in C([0, \infty); W^{1,2}_\sigma) \cap C^1([0, \infty); J^2)$, where $g_z = \partial g / \partial z$.

The existence of weak solutions to (1.1) is guaranteed by the following.

Lemma 1.2. Let $a \in J^2$, and $w \in \dot{W}^{1,3/2}_\sigma$ such that $\|Dw\|_{3/2} < 1/8$. Then (1.1) admits a weak solution.

We are now in a position to state our main result.

Theorem 1.1. Let $1 < r < 3/2 < p < 2$, $a \in J^2 \cap L^1$, and let $w \in W^{1,r}_\sigma \cap W^{1,p}_\sigma$ such that w solves (0.1) and $\|Dw\|_r + \|Dw\|_p$ is sufficiently small. Then every weak solution of (1.1) possesses the sharp decay property

$$
\|u(t)\|_2 = O(t^{-3/4}).
$$

Section 2 is concerned with the proof of Lemmas 1.1 and 1.2. In [23], it has been obtained an existence result on weak solutions of (1.1) with w the Finn's solution such that $C_0 < 1/2$. However,
the argument of [23] heavily depends on the property (0.3). In §3, with the use of the approach developed from [7], we shall show sharp decay estimates of solutions to the linearized equations of (1.1). If w only satisfies (0.3) and $C_0 < 1/2$, such estimates seem unavailable. Theorem 1.1 will be proved in §4 by making use of the estimates carried out in §3 and studying the time average $t^{-1} \int_0^t \|u(s)\|_2 \, ds$. A similar technique has been used in [23, 4]. However, we have not used the spectral decomposition of the Stokes operator A in L^2 as usually used in earlier work concerning the L^2 decay problem. Moreover our proof seems much simpler.

It should be noted that the L^2 decay problem of (1.1) with $w = 0$ stems from Leray [19], and has affirmatively been solved (cf. [24, 3, 2] and the references therein). If $1 < p < 2$ and u is a weak solution of (1.1) with $w = 0$, it has been proved that $\|u(t)\|_2 = O(t^{-(3/p - 3/2)/2})$ provided $u(0) \in J^2 \cap L^p$ (cf. [2]), and $\|u(t)\|_2 = O(t^{-3/4})$ provided $u(0) \in J^2 \cap L^1$ and $\|e^{-tA}a\|_2 \leq Ct^{-3/4}\|a\|_1$ (cf. [3]).

2. Proof of Lemmas 1.1, 1.2. To begin with we give the estimate (cf. [2, Theorem 3.6] or [12, 18] for a similar consideration)

\begin{equation}
\|Du\|_p \leq C \sup \{|(Du, Dv)|; v \in C_\sigma^\infty, \|Dv\|_{p'} = 1\}
\end{equation}

for $1 < p < n$, $u \in \hat{W}_\sigma^{1,p}$,

and the Sobolev inequality (cf. [13])

\begin{equation}
\|u\|_{3p/(3-p)} \leq 2p(3-p)^{-1}3^{-1/2}\|Du\|_p
\end{equation}

for $1 < p < n$, $u \in \hat{W}_\sigma^{1,p}$.

Proof of Lemma 1.1. Let r and p be given in Lemma 1.1. We rewrite (0.1) in the abstract form $Aw + P(w \cdot D)w = f$, $w \in \hat{W}_\sigma^{1,r} \cap \hat{W}_\sigma^{1,p}$. Since the proof of [5, (3.1)] implies that A can be extended as a bounded and invertible operator from $\hat{W}_\sigma^{2,q}$ onto J^q with $1 < q < 3/2$, we can set

$H: \hat{W}_\sigma^{1,r} \cap \hat{W}_\sigma^{1,p} \to \hat{W}_\sigma^{2,3p/(6-p)}$ such that $Hw = A^{-1}(f - P(w \cdot D)w)$.

Let $w \in \hat{W}_\sigma^{1,r} \cap \hat{W}_\sigma^{1,p}$, $r < s < p$, and $v \in C_\sigma^\infty$ with $\|Dv\|_{s'} = 1$. Integrating by parts and using the divergence condition $D \cdot w = 0$, we have

$(DHw, Dv) = (f, v) - ((w \cdot D)w, v)$
\begin{align*}
= (f, v) + ((w \cdot D)v, w) \\
\leq (f, v) + \|w\|_3 \|w\|_{3s/(3-s)} \|Dv\|_{s'}
\end{align*}
that is, by (2.1)–(2.2),
\[\|DHw\|_s \leq C(\|f\|_{-1,s} + \|Dw\|_s \|Dw\|_{3/2}). \]

Similarly, for \(w, w^* \in W^{1,r}_\sigma \cap W^{1,p}_\sigma \) we have
\[\|DHw - DHw^*\|_s \leq C(\|Dw\|_{3/2} + \|Dw^*\|_{3/2}) \|Dw - Dw^*\|_s. \]

Consequently, the desired assertion follows immediately from the contraction mapping principle. The proof is complete.

In [23], Miyakawa and Sohr proved that (1.1) admits a weak solution in case \(w \) is the Finn’s solution and \(C_0 < 1/2 \). However, as for our case, the argument of [23] does not work somewhere. Now we give our proof in a slightly different way. Similar to [23], we also study approximate solutions of (1.1) by applying a technique developed from [6].

Proof of Lemma 1.2. Let \(k > 1 \). We set \(J_k = k(k + A)^{-1} \) and \(I_k = k(k + A)^{-1}E \), where \(E \) denotes the extension operator such that \(Eu = u \) in \(G \) and \(Eu = 0 \) outside \(G \). With the use of the notation above, we have
\[
\begin{align*}
(2.3) \quad &\|J_k u\|_p \leq C(k)\|u\|_r, \quad \|I_k u\|_p \leq C(k)\|u\|_r, \\
&\text{for } 1 < r < p \leq \infty, \ u \in J^r, \\
(2.4) \quad &\|I_k u\|_r \leq \|u\|_r, \quad \|J_k u\|_r \leq C\|u\|_r, \quad \text{for } 1 < r < \infty, \ u \in J^r,
\end{align*}
\]
where \(C \) is independent of \(k \). (2.3) is a consequence of the Sobolev embedding theorem and \(L^r \)-estimates. The first inequality in (2.4) follows from the proof of [1, Lemma 10.1], and the second one from [2, Theorem 1.2].

Now we proceed to the evolution equation
\[
(2.5) \quad (d/dt)u_k + Au_k = F_k(u_k), \quad u_k(0) = J_k a \quad \text{in } J^2,
\]
where \(F_k(u) = F_k(u, u) \) with
\[
F_k(u, v) = -P(J_k u \cdot D)v - P(J_k w \cdot D)u - P(I_k u \cdot D)I_k w.
\]

For \(u, v \in W^{1,2}_\sigma \), we have
\[
(2.6) \quad \|F_k(u, v)\|_2 + \|P(J_k u \cdot D)v\|_2 \leq \|J_k u\|_\infty \|Dv\|_2 + \|J_k w\|_\infty \|Du\|_2 + \|I_k u\|_6 \|DI_k w\|_3 + \|J_k v\|_\infty \|Du\|_2 \leq C(k)(\|u\|_6 \|Dv\|_2 + \|w\|_3 \|Du\|_2 + \|u\|_6 \|I_k DEw\|_3 + \|v\|_6 \|Du\|_2), \quad \text{by } (2.3),
\]
\[
\leq C(k)\|Du\|_2(\|Dv\|_2 + \|Dw\|_{3/2}), \quad \text{by } (2.2).
\]
On the other hand, given \(k \) and \(T > 0 \), we suppose that \(u_k \) solve (2.5) over \([0, T)\), and \(u_k \in L^2(0, T; W^{1,2}_\sigma \cap W^{2,2}) \cap W^{1,2}(0, T; J^2) \). Then multiplying (2.5) by \(2u_k \) and \(2Au_k \), respectively, we have
\[
\frac{d}{dt}\|u_k\|_2^2 + 2\|Du_k\|_2^2 = 2(F_k(u_k), u_k),
\]
\[
\frac{d}{dt}\|Du_k\|_2^2 + 2\|Au_k\|_2^2 = 2(F_k(u_k), Au_k).
\]

The estimation of the right-hand side terms of the preceding identities can be achieved as follows.

\[
2(F_k(u_k), u_k) = 2((I_k u_k \cdot D)u_k, I_k w),
\]
since \(D \cdot J_k u_k = D \cdot J_k w = D \cdot I_k u = 0 \),
\[
\leq 2\|I_k u_k\|_6 \|Du_k\|_2 \|I_k w\|_3,
\]
\[
\leq (12/3^{-1/2}) \|w\|_3 \|Du_k\|_2^2, \quad \text{by (2.4) and (2.2),}
\]
\[
\leq 8 \|Dw\|_{3/2} \|Du_k\|_2^2, \quad \text{by (2.2),}
\]
\[
\leq \|Du_k\|_2^2, \quad \text{by setting } \|Dw\|_{3/2} < 1/8,
\]

\[
2(F_k(u_k), Au_k)
\]
\[
\leq 2\|Au_k\|_2 (\|J_k u_k\|_\infty \|Du_k\|_2 + \|J_k w\|_\infty \|Du_k\|_2
\]
\[
+ \|I_k u\|_\infty \|I_k Dw\|_2)
\]
\[
\leq C(k) \|Au_k\|_2 \|Du_k\|_2 (\|u_k\|_2 + \|Dw\|_{3/2} + \|Dw\|_{3/2})
\]
\[
\leq C(k) \|Au_k\|_2 \|Du_k\|_2 (\|u_k\|_2 + \|Dw\|_{3/2})
\]
\[
\leq 2\|Au_k\|_2^2 + C(k) \|Du_k\|_2^2 (\|u_k\|_2^2 + \|Dw\|_{3/2}^2).
\]

Consequently, we have
\[
(2.7) \quad \|u_k(t)\|_2^2 + \int_s^t \|Du_k(z)\|_2^2 \, dz \leq \|u_k(s)\|_2^2, \quad 0 \leq s < t < T,
\]
\[
(2.8) \quad \|Du_k(t)\|_2^2
\]
\[
\leq \|DJ_k a\|_2^2 + C(k) \int_0^t \|Du_k(s)\|_2^2 (\|u_k(s)\|_2^2 + \|Dw\|_{3/2}^2) \, ds
\]
\[
\leq \|DJ_k a\|_2^2 + C(k) \|J_k a\|_2^2 (\|J_k a\|_2^2 + \|Dw\|_{3/2}^2), \quad \text{by (2.7)}
\]

Thus, following the same way as in the proof of [23, Proposition 3.4] by making use of (2.6)–(2.8), we conclude that (2.5) admits a unique global solution \(u_k \) satisfying (2.6), and \(u_k \in L^2(0, T; W^{1,2}_\sigma \cap W^{2,2}) \cap W^{1,2}(0, T; J^2) \) for all \(T > 0 \).
To obtain a weak solution of (1.1), we need to study compactness of the sequence u_k. Let $v \in W^{1,2}_\sigma$. Applying (2.2) and (2.4) repeatedly, we have, from (2.5),

\[
((d/dt)u_k, v) \leq ||D u_k||_2 ||D v||_2 + ||D I u_k||_6 ||D I_k w||_3/2 ||v||_6
\]

\[
\leq ||D u_k||_2 ||D v||_2 + C ||v||_6 (||u_k||_3 ||D u_k||_2 + ||w||_3 ||D u_k||_2
\]

\[
+ ||u_k||_6 ||D E w||_3/2)
\]

\[
\leq C ||D v||_2 (||D u_k||_2 + ||u_k||_2^{1/2} ||D u_k||_2^{3/2} + ||D u_k||_2 ||D w||_3/2)
\]

\[
\leq C ||D v||_2 (1 + ||a||_2^{1/2} + ||D w||_3/2)(||D u_k||_2 + ||D u_k||_2^{3/2}),
\]

by (2.7) and (2.4),

with C independent of k. This together with (2.7) implies that the sequence u_k is bounded in

$L^\infty(0, \infty; J^2) \cap L^2(0, \infty; \widetilde{W}^{1,2}_\sigma) \cap W^{1,4/3}(0, T; W^{-1,2})$

for all $0 < T < \infty$. From [26, Theorem 2.1 in Chapter III] it follows readily that there are a function u and a subsequence of u_k, denoted again u_k, satisfying

\[
u_k \overset{w^*}{\rightharpoonup} u \text{ in } L^\infty(0, \infty; J^2),
\]

\[
u_k \overset{w}{\rightharpoonup} u \text{ in } L^2(0, \infty; \widetilde{W}^{1,2}_\sigma),
\]

\[u_k \rightharpoonup u \text{ strongly in } L^2_{\text{loc}}(G \times (0, \infty)).
\]

As in [21], we can check that the limit u is a weak solution of (1.1). The proof is complete.

3. Decay estimates. In this section, we let $t > 0$, $1 < r < 3/2 < p < 2$, and w be a solution of (0.1) such that $w \in \widetilde{W}^{1,r}_\sigma \cap \widetilde{W}^{1,p}_\sigma$, and set

\[L u = Au + P(u \cdot D)w + P(w \cdot D)u,
\]

\[B^* u = -p(w \cdot D)u + P \sum_{i=1}^n u_i Dw_i,
\]

\[L^* u = Au + B^* u.
\]

Thus, we see that

\[(Lu, v) = (u, L^* v) \text{ for } u, v \in W^{1,2}_\sigma \cap W^{2,2}_\sigma,
\]
and the linearized equation of (1.1) can be stated in the form
\[(d/dt)v + Lv = 0, \quad v(0) = u.\]
Denote by \(e^{-tL}u\) the solution of the preceding equation. It is the purpose of this section to prove the following.

Proposition 3.1. Suppose that \(\|Dw\|_r + \|Dw\|_p\) is sufficiently small. Then there holds

\[\|e^{-tL}Pu\|_2 \leq Ct^{-3/4}\|u\|_1\]
for \(u \in L^1 \cap L^{6/5}\).

The preceding proposition is based on the following decay estimates.

\[\|e^{-tA}u\|_\infty \leq Ct^{-1/4}\|u\|_6 \quad \text{for } u \in J^6,\]
\[\|e^{-tA}u\|_s \leq Ct^{-(3q-3s)/2}\|u\|_q \quad \text{for } 1 < q \leq s < \infty, \quad u \in J^q,\]
\[\|De^{-tA}u\|_s \leq Ct^{-(1+3q-3s)/2}\|u\|_q \quad \text{for } 1 < q \leq s \leq 3, \quad u \in J^q.\]

The estimates (3.3) and (3.4) were recently obtained by Iwashita (cf. [17, Theorems 1.2, 1.3]). (3.2) will be proved in the Appendix by using the argument of [17].

With the use of (3.2)–(3.4), we can now prove the following.

Lemma 3.1. Let \(u \in C^\infty_0\). Then there hold

\[\|e^{-tA}u\|_\infty \leq Ct^{-3/4}\|u\|_2,\]
\[\|e^{-tA}B^*u\|_\infty + \|De^{-tA}B^*u\|_3 \leq Ct^{-3/2p}(t + 1)^{-(3/r-3/p)/2}\|u\|_\infty + \|Du\|_3)\]
\[\|Dw\|_r + \|Dw\|_p).\]

Proof. From (3.2), (3.3), (2.2) and the semigroup property of \(e^{-tA}\) we get (3.5) and
\[\|e^{-tA}B^*u\|_\infty \leq Ct^{-3/2b}\|B^*u\|_b \leq Ct^{-3/2b}\|Dw\|_b(\|u\|_\infty + \|Du\|_3)\]
for \(b = r, \ p\). Moreover (3.4) and (2.2) yield
\[\|De^{-tA}B^*u\|_3 \leq Ct^{-3/2b}\|Dw\|_b(\|u\|_\infty + \|Du\|_3) \quad \text{for } b = r, \ p.\]
Collecting terms, we get readily (3.6) and complete the proof.

Proof of Proposition 3.1. Setting \(v(t) = e^{-tL}u\) with \(u \in C^\infty_0\), we have obviously that \(v \in C([0, \infty); L^\infty \cap W^1_\sigma)\) and
\[v(t) = e^{-tA}u + \int_0^t e^{-(t-s)A}B^*v(s)\, ds.\]
This gives, by (3.4)–(3.6),
\[\|v(t)\|_\infty + \|Dv(t)\|_3 \]
\[\leq Ct^{-3/4}\|u\|_2 + C \int_0^t (t-s)^{-3/2p} (t-s+1)^{-3(r-3/p)/2} \]
\[\times (\|v\|_\infty + \|Dv\|_3) \, ds (\|Dw\|_r + \|Dw\|_p). \]

Setting \(\|v\|_t = \sup_{0 \leq s \leq t} s^{3/4}(\|v(s)\|_\infty + \|Dv(s)\|_3) \), we have
\[\|v(t)\|_\infty + \|Dv(t)\|_3 \]
\[\leq Ct^{-3/4}\|u\|_2 + C \int_0^t (t-s)^{-3/2p} (t-s+1)^{-3(r-3/p)/2} s^{-3/4} \, ds \]
\[\leq Ct^{-3/4}\|u\|_2 + Ct^{-3/4}(\|Dw\|_r + \|Dw\|_p)\|v\|_t \]
\[\times \int_0^t s^{-3/2p}(s+1)^{-3(r-3/p)/2} \, ds \]
\[+ Ct^{1/4-3/2p}(t+1)^{-3(r-3/p)/2}(\|Dw\|_r + \|Dw\|_p)\|v\|_t, \]
where we have used the condition \(r < 3/2 < p \). Hence, if we presuppose that
\[(3.7) \quad C(\|Dw\|_r + \|Dw\|_p) < 1/2 \]
with the constant \(C \) given in the last term above, we obtain
\[(3.8) \quad \|e^{-tL^*}u\|_\infty \leq Ct^{-3/4}\|u\|_2. \]

Now we take \(u \in L^1 \cap L^{6/5} \) and \(v \in L^2 \). By (3.8) we have
\[(e^{-tL}Pu, v) = (u, e^{-tL^*}PV) \leq \|u\|_1 \|e^{-tL^*}PV\|_\infty \leq Ct^{-3/4}\|u\|_1\|v\|_2 \]
and therefore the validity of (3.1). The proof is complete.

4. Proof of Theorem 1.1. In this section we always suppose that the stationary solution \(w \in \widetilde{W}^{1,r}_\sigma \cap \widetilde{W}^{1,p}_\sigma \) with \(1 < r < 3/2 < p < 2 \) such that (3.7) holds. Let \(u \) be a weak solution of (1.1). Then (1.2) implies
\[(4.1) \quad \|u(t)\|_2 \leq t^{-1} \int_0^t \|u(s)\|_2 \, ds. \]

On the other hand, taking \(v \in C^\infty_\sigma \) and applying (1.3) with \(g(z) = e^{-(t-z)L^*}v \), we have
\[(u(t), v) + \int_0^t (Lu(s), e^{-(t-s)L^*}v) \, ds - \int_0^t (u(s), L^*e^{-(t-s)L^*}v) \, ds \]
\[= (a, e^{-tL^*}v) - \int_0^t ((u \cdot D)u, e^{-(t-s)L^*}v) \, ds, \]
that is,

\[(u(t), v) = (e^{-tL}a, v) - \int_0^t (e^{-s}L P(u \cdot D)u(s), v) \, ds\]

\[\leq \|e^{-tL}a\|_2 \|v\|_2 + \int_0^t \|e^{-s}L P(u \cdot D)u(s)\|_2 \, ds \|v\|_2\]

\[\leq C \|v\|_2 \left(t^{-3/4} \|a\|_1 + \int_0^t (t-s)^{-3/4} \|u(s)\|_2 \|Du(s)\|_2 \, ds \right),\]

where we have used (3.1). We then get

\[\|u(s)\|_2 \leq Cs^{-3/4} \|a\|_1 + C \int_0^s (s-z)^{-3/4} \|u(z)\|_2 \|Du(z)\|_2 \, dz.\]

Integrating the above inequality from 0 to \(t\), we have

\[\int_0^t \|u(s)\|_2 \, ds \leq Ct^{1/4} \|a\|_1 + C \int_0^t d z \int_z^t (s-z)^{-3/4} \|u(z)\|_2 \|Du(z)\|_2 \, ds\]

\[\leq Ct^{1/4} \|a\|_1 + Ct^{1/4} \int_0^t \|u(s)\|_2 \|Du(s)\|_2 \, ds\]

\[\leq Ct^{1/4} \|a\|_1 + Ct^{1/4} \|a\|_2 \left(\int_0^t \|u(s)\|_2^2 \, ds \right)^{1/2}, \text{ by (1.2).}\]

Combining this with (4.1), we have

\[\|u(t)\|_2 \leq Ct^{-3/4} \|a\|_1 + Ct^{-3/4} \|a\|_2 \left(\int_0^t \|u(s)\|_2^2 \, ds \right)^{1/2},\]

that is,

(4.2) \[\|u(t)\|_2 \leq C_1 t^{-3/4} \left(1 + \left(\int_0^t \|u(s)\|_2^2 \, ds \right)^{1/2} \right),\]

where and in what follows \(C_1 = C_1(\|a\|_1, \|a\|_2)\) may vary from line to line.

Now we apply (4.2) and (1.2) to complete our proof via a bootstrap iteration argument.

Note that

(4.3) \[\|u(t)\|_2 \leq C_1, \text{ by (1.2),}\]

and

(4.4) \[\|u(t)\|_2 \leq C_1 t^{-3/4} (1 + t^{1/2}), \text{ by (4.2) and (4.3).}\]

Combining (4.4) with (4.3), we have

(4.5) \[\|u(t)\|_2 \leq C_1 t^{-1/4}.\]
Moreover, taking (4.2) and (4.5) into account, we have
\[\|u(t)\|_2 \leq C_1 t^{-3/4}(1 + t^{1/4}). \]

This together with (4.3) implies
\[(4.6) \quad \|u(t)\|_2 \leq C_1 (t + 1)^{-1/2}. \]

Similarly, (4.2) and (4.6) yield
\[\|u(t)\|_2 \leq C_1 t^{-3/4}(1 + \ln(t + 1)), \]
and so, by (4.3),
\[(4.7) \quad \|u(t)\|_2 \leq C_1 (t + 1)^{-2/3}. \]

Finally, by (4.2) and (4.7), we arrive at the desired estimate
\[\|u(t)\|_2 \leq C_1 t^{-3/4} \]
and complete the proof.

Remark 4.1. It should be noted that the validity of the assumption of Lemma 1.2 follows from the inequality \(\|Dw\|_{3/2} \leq \|Dw\|_{r} + \|Dw\|_{p} \) and (2.7).

Appendix: Proof of (3.2). Let \(Q \) be a domain of \(R^3 \). By \(\| \cdot \|_{k,p,Q} \) and \(\| \cdot \|_{p,Q} \) we denote respectively the norms of the Sobolev space \(W^{k,p}(Q;R^3) \) and the Lebesgue space \(L^p(Q;R^3) \). Of course, \(\| \cdot \|_{k,p} = \| \cdot \|_{k,p,G} \) and \(\| \cdot \|_{p} = \| \cdot \|_{p,G} \). \(\overline{P} \) is the bounded projection from \(L^p(R^3;R^3) \) onto \(J^p(R^3;R^3) \), where \(J^p(R^3;R^3) \) denotes the completion of the set of compactly supported solenoidal in \(C^\infty(R^3;R^3) \). Let \(h \) be a constant such that \(|x| < h - 1 \) for \(x \in \partial G \), and let \(g \in C^\infty(R^3;R) \) be a fixed function such that \(g = 1 \) for \(|x| > h \) and \(g = 0 \) for \(|x| < h - 1 \). Moreover we set \(G_h = \{ x \in G; |x| < h \} \).

In arriving at (3.2), we need the following lemmas.

Lemma A.1. Let \(1 < p \leq q < \infty \), \(t > 0 \), \(v \in L^p(R^3;R^3) \cap L^q(R^3;R^3) \), \(n \geq 1 \), and \(u \in J^6 \). Then we have
\[(A.1) \quad \|e^{-tA}v\|_{\infty,R^3} \leq C t^{-3/2q}(t + 1)^{-(3/p-3/q)/2}(\|v\|_{p,R^3} + \|v\|_{q,R^3}), \]
\[(A.3) \quad \|e^{-tA}u\|_{2n,6} \leq C(t^{-n} + 1)\|u\|_6. \]

(A.1) is deduced immediately by an elementary calculation. (A.2) is a consequence of \(L^p \)-estimates (cf. [25]) and the Sobolev embedding theorem. One can also refer to [17] for details.
LEMMA A.2 ([17, Lemmas 5.3, 5.4] and (A.2)). Let \(t > 0, \ v \in J^6, \) and \(P^* \) be a certain pressure such that \(p^* = Ae^{-(t+1)A}v + \Delta e^{-(t+1)A}v. \) Then

\[
\|e^{-(t+1)A}v\|_{2,6,\mathcal{G}_h} + \|A e^{-(t+1)A}v\|_{2,6,\mathcal{G}_h} + \|p^*(t)\|_{3,6,\mathcal{G}_h} \leq Ct^{-1/4}\|v\|_6.
\]

LEMMA A.3 ([17, (5.18)] and (A.2)). Let \(v \in J^6, \) and \(t > 0. \) Then there is a function \(v^* \) such that

\[
D \cdot v^* = D \cdot (ge^{-(t+1)A}v),
\]

\[
\text{supp} v^*(t) \subset \{x \in R^3; h - 1 < |x| < h\},
\]

\[
\|v^*(t)\|_{2,6} + \|\left(\partial / \partial t\right)v^*(t)\|_6 \leq C(t + 1)^{-1/4}\|v\|_6.
\]

LEMMA A.4. Let \(t > 0, \ v \) and \(v^* \) be given in Lemma A.3. Then we have

\[
\|ge^{-(t+1)A}v - v^*(t)\|_\infty \leq C(t + 1)^{-1/4}\|v\|_6.
\]

Proof. Set \(u(t) = ge^{-(t+1)A}v - v^*(t), \ u_0 = u(0), \) and

\[
F(t) = p^*(t)Dg - 2(Dg \cdot D)e^{-(t+1)A}v - (\Delta g)e^{-(t+1)A}v
+ \Delta v^*(t) - (\partial / \partial t)v^*(t),
\]

where \(p^* \) is given in Lemma A.2. By Lemmas A.2, A.3 we have that the support of \(F(t) \) is contained in \(\{x \in R^3; h - 1 < |x| < h\}, \) and

(A.3) \[
(t + 1)^{1/4}\|F(t)\|_6 + \|u_0\|_{1,6,\mathcal{G}_h} \leq C\|v\|_6,
\]

\[
u_t - \Delta u + D(gp^*) = F, \quad D \cdot u = 0 \text{ in } R^3 \times (0, \infty).
\]

We thus rewrite \(u \) in the integral form

(A.4) \[
u(t) = e^{-tA}u_0 + \int_0^t e^{-(t-s)A}PF(s) \, ds.
\]

From (A.1), (A.3), and Sobolev's embedding theorem it follows that

\[
\|e^{-tA}u_0\|_{\infty, R^3} \leq C(t + 1)^{-1/4}(\|u_0\|_{\infty} + \|u_0\|_6) \leq Ct^{-1/4}\|v\|_6,
\]
and
\[
\left\| \int_0^t e^{-(t-s)\hat{A}} PF(s) \, ds \right\|_{\infty, R^3} \\
\leq C \int_0^t (t-s)^{-1/2}(t-s+1)^{-3/4}(\| F(s) \|_3, G_h + \| F(s) \|_6, G_h) \, ds \\
\leq C \int_0^t (t-s)^{-1/2}(t-s+1)^{-3/4} \| F(s) \|_6 \, ds \\
\leq C \| v \|_6 \int_0^t (t-s)^{-1/2}(t-s+1)^{-3/4}(s+1)^{-1/4} \, ds \\
\leq C(t+1)^{-1/4} \| v \|_6.
\]

Taking (A.4) into account, we have the desired estimate and complete the proof.

Proof of (3.2). Let \(v \in J^6 \). By Lemmas A.1, A.2, A.3, Sobolev inequality, and Gagliardo-Nirenberg inequality (cf. [10]), we have
\[
\| e^{-(t+1)A}v \|_\infty \leq \| ge^{-(t+1)A}v \|_\infty + \| e^{-(t+1)A}v \|_{1,6}, G_h \\
\leq \| ge^{-(t+1)A}v - v^*(t) \|_\infty + C \| v^*(t) \|_{1,6} \\
+ C \| e^{-(t+1)A}v \|_{1,6}, G_h \\
\leq C(t+1)^{-1/4} \| v \|_6 \quad \text{for } t > 0,
\]
\[
\| e^{-tA}v \|_\infty \leq C \| e^{-tA}v \|_{3/4,6}^{3/4} \| e^{-tA}v \|_{1/4,6}^{1/4} \\
\leq C(t^{-1} + 1)^{1/4} \| v \|_6 \leq Ct^{-1/4} \| v \|_6
\]
for \(1 > t > 0 \). The proof is complete.

The author would like to thank T. Miyakawa for sending [2, 3, 4]. He would also like to thank the referee for his valuable suggestions.

REFERENCES

Received October 7, 1991 and in revised form March 13, 1992.

TIANJIN UNIVERSITY
TIANJIN 300072
PEOPLE’S REPUBLIC OF CHINA
L_p-integrability of the second order derivatives of Green potentials in convex domains

Vilhelm Adolfsson

Solutions of the stationary and nonstationary Navier-Stokes equations in exterior domains

Zhi Min Chen

Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov

Michel Coornaert

Differential-difference operators and monodromy representations of Hecke algebras

Charles F. Dunkl

Between the unitary and similarity orbits of normal operators

Paul Guinand and Laurent Walsh Marcoux

Skeins and handlebodies

W. B. Raymond Lickorish

The Plancherel formula for homogeneous spaces with polynomial spectrum

Ronald Leslie Lipsman

On the uniform approximation problem for the square of the Cauchy-Riemann operator

Joan Manuel Verdera Meレンチョン