A NONEXISTENCE RESULT FOR THE n-LAPLACIAN

TILAK BHATTACHARYA
A NONEXISTENCE RESULT FOR THE n-LAPLACIAN

Tilak Bhattacharya

Let P be a point in \mathbb{R}^n, $n \geq 2$; then the problem

$$\text{div}(|\nabla u|^{n-2}\nabla u) = e^u \quad \text{with} \quad u \in W^{1,n}_{\text{loc}} \cap L^\infty_{\text{loc}} \quad \text{has no subsolutions in} \quad \mathbb{R}^n \setminus \{P\}.$$

Introduction. Let $P = P(x_1, x_2, \ldots, x_n)$ be a point in \mathbb{R}^n, $n \geq 2$, and $\Omega = \mathbb{R}^n \setminus \{P\}$. Without any loss of generality we will take P to be the origin. Consider the problem

$$\begin{cases}
L_p u = e^u & \text{in } \Omega, \\
u \in W^{1,p}_{\text{loc}}(\Omega) \cap L^\infty_{\text{loc}}(\Omega), & p > 1.
\end{cases}$$

Here $L_p u \equiv \text{div}(|\nabla u|^{p-2}\nabla u)$ is the p-Laplacian with $1 < p < \infty$. By a subsolution u of (1.1) we will mean that $u \in W^{1,p}_{\text{loc}}(\Omega) \cap L^\infty_{\text{loc}}(\Omega)$, and

$$\int_{\Omega} |\nabla u|^{p-2}\nabla u \cdot \nabla \psi + \int_{\Omega} e^u \psi \leq 0, \quad \forall \psi \in C^\infty_0(\Omega) \text{ and } \psi \geq 0.$$

It is known that for $1 < p < n$, (1.1) has no subsolutions in the exterior of a compact set [AW]. However, for $p = n$ there exist radial subsolutions for large values of $|x|$. We show that (1.1) has no subsolutions in Ω, thus extending the results of [AW], namely

Theorem 1. The following problem

$$L_n u = e^u \quad \text{in } \Omega, \quad n \geq 2,$$

has no subsolutions in $W^{1,n}_{\text{loc}}(\Omega) \cap L^\infty_{\text{loc}}(\Omega)$.

The proof of Theorem 1 will be a consequence of a comparison principle and nonexistence of global radial solutions. The proof is presented in §4.

2. Preliminary results.

Lemma 2.1. Consider

$$C(x) = \frac{(1 + x)^{1/n}}{1 + x^{1/n}} \quad \text{in} \quad 0 \leq x \leq 1.$$

Then $C(x)$ is decreasing on $[0, 1]$.

19
Proof. Elementary computations show that
\[
\frac{dC}{dx} = \frac{(1+x)^{1/n}(1-x^{(1-n)/n})}{n(1+x^{1/n})^{2}(1+x)} \leq 0
\]
in \(0 \leq x \leq 1\). Furthermore, \(C(0) = 1\) and \(C(1) = 2^{1-n/n}\), and \(C(x) \to 1\) as \(x \to 0\).

We now state an elementary inequality that is easy to prove
\[
(2.1) \quad x^n - b^n \geq (x - b)^n, \quad \text{for } x \geq b \geq 0.
\]

Lemma 2.2. Suppose \(u(r) \in C^1\) satisfies the following differential inequality in \((a, R)\),
\[
\dot{u} \geq A \left(e^{u/n} + \frac{B - b}{R - r} \right),
\]
where \(\dot{u}\) represents differentiation with respect to \(r\), \(0 < A < 1\), \(0 < b < 1\), \(0 < a < R\) and \(B \geq \frac{n}{A} + b\). Then there is an \(\bar{r}\) in \((a, R)\) such that \(u(r) \to \infty\) as \(r \to \bar{r}\).

Proof. Setting \(v = e^{-u/n}\), we obtain that
\[
\dot{v} + \frac{c}{R - r} v \leq -\frac{A}{n}, \quad a < r < R,
\]
where \(c = \frac{A(B-b)}{n}\). Using the integrating factor \(\phi(r) = \left(\frac{1}{R-r}\right)^c\) and setting \(Z = v(r)\phi(r) - v(a)\phi(a)\), we obtain
\[
Z \leq \begin{cases}
\left(-\frac{A}{n} \right) \ln \frac{R - a}{R - r}; & c = 1, \\
\left(-\frac{A}{n} \right) \left(\frac{1}{c - 1} \right) \left\{ \left(\frac{1}{R - r} \right)^{c-1} - \left(\frac{1}{R - a} \right)^{c-1} \right\}; & c > 1.
\end{cases}
\]

It is clear that for each \(c \geq 1\), there is an \(\bar{r} \in (a, R)\) such that \(v(r) \to 0\) as \(r \to \bar{r}\), and hence \(u(r) \to \infty\) as \(r \to \bar{r}\). \(\Box\)

We present a comparison lemma; please refer to [AW] for its proof.

Lemma 2.3. In a region \((\Omega) \subseteq \mathbb{R}^n\), \(n \geq 2\), suppose \(u, v \in W^{1,p}_\text{loc}(\Omega) \cap L^{\infty}_\text{loc}(\Omega)\), and \((u - v)^+ \in W^{1,p}_0(\Omega)\). If \(g\) is a nondecreasing function and
\[
L_p u \geq g(u) \quad \text{in } D'(\Omega),
\]
\[
L_p v \leq g(v) \quad \text{in } D'(\Omega),
\]
then \(u \leq v\) a.e. in \((\Omega)\).
3. Nonexistence of radial subsolutions. Consider the following problem

\[(n - 1)|\dot{u}|^{n-2} \left(\dot{u} + \frac{\dot{u}}{r} \right) = e^u, \quad 0 < r < \infty, \]

\[u(R) = a, \quad \text{and} \quad \dot{u}(R) = b; \quad a, b \in R. \]

Lemma 3.1. For the problem in (3.1), there exists a \(C^1 \) radial solution \(u(r) \) such that at least one of the following occurs.

(i) There is an \(\bar{r} \) in \((0, R)\) such that \(u(r) \to \infty \) as \(r \to \bar{r} \).

(ii) There is an \(\bar{r} \) in \((R, \infty)\) such that \(u(r) \to \infty \) as \(r \to \bar{r} \).

Furthermore, there are values of \(b \) for which both (i) and (ii) occur.

Proof. We divide the proof into three parts.

Case 1. Take \(b = 0 \). Let \(u(r) \) be the solution defined by

\[u(r) = a + \int_R^r \frac{1}{t} \left\{ \int_R^t s^{n-1} e^{u(s)} \, ds \right\}^{1/(n-1)} \, dt, \]

in \(r > R \). The existence and uniqueness in a small interval follows from Picard’s iteration. It can be shown by differentiating that \(u \) solves (3.1). From (3.2) it is clear that \(r\dot{u} \) is increasing and thus \(\dot{u} \geq 0 \) in \((R, r)\), and hence \(u \) is increasing. Continue \(u \) by (3.2). By differentiating (3.2) once,

\[\dot{u}(r) = \frac{1}{r} \left\{ \int_R^r s^{n-1} e^{u(s)} \, ds \right\}^{1/(n-1)}. \]

Thus,

\[\frac{d}{dr} \left\{ \frac{\dot{u}^{n-1}}{r} \right\} = \frac{r^n e^{u(r)} - n \int_R^r s^{n-1} e^{u(s)} \, ds}{r^{n+1}} \geq \frac{r^n e^{u(r)} - e^{u(r)} (r^n - R^n)}{r^{n+1}} \geq 0. \]

By simplifying the left side of the foregoing inequality,

\[(n - 1)\dddot{u} \geq \frac{\dot{u}}{r}. \]

Note that \(u \) is \(C^2 \) except possibly where \(\dot{u} = 0 \). Noting that \(\dot{u} \geq 0 \),

(3.1) yields

\[n(n - 1)(\dddot{u})^{n-1} \geq e^u, \quad R < r < \infty. \]
Multiplying both sides by \(\dot{u} \) and integrating once from \(R \) to \(r \),

\[
(\dot{u})^n \geq \frac{e^u - e^a}{n - 1}.
\]

For \(\varepsilon > 0 \), small enough, it follows from (3.2) and the fact that \(u \) is increasing that

\[
u(r) > a + \int_{R+\varepsilon}^r \frac{1}{t} \left\{ \int_R^{R+\varepsilon} s^{n-1}e^{u(s)} ds \right\}^{1/(n-1)} dt.
\]

Hence for some appropriate constant \(A > 0 \),

\[
u(r) > a + A \ln \frac{r}{R+\varepsilon}
\]

implying that \(u(r) \to \infty \) as \(r \) gets large. Thus in (3.3) we may take \(r > R_1 \), where \(R_1 \) is large enough so that \(e^u/2 \leq e^u - e^a \) for \(r > R_1 \). If \(u(r) \to \infty \) as \(r \to R_1 \), then we are done. Otherwise, continue \(u \) using (3.2) past \(r = R_1 \). Hence

\[
\dot{u} \geq Ce^{u/n}, \text{ in } r > R_1,
\]

for some \(C > 0 \). Integrating,

\[
\int_{u(R_1)}^{u(r)} e^{-u/n} du \geq C(r - R_1).
\]

It is clear that there exists an \(\bar{r} > R \), such that \(u(r) \to \infty \) as \(r \to \bar{r} \). The case \(b > 0 \) follows similarly.

Case 2. Without any loss of generality, take \(a = 0 \). Take \(b < 0 \). Now \(\dot{u}(r) < 0 \) near \(r = R \), so we obtain that \(\dot{u}(r) \) satisfies

\[
(3.4) \quad \dot{u}(r) = -\frac{1}{r} \left\{ |bR|^{n-1} - \int_R^r t^{n-1}e^{u(t)} dt \right\}^{1/(n-1)},
\]

in \(r > R \). We show that there is \(\bar{b} < 0 \) such that if \(\bar{b} < b < 0 \), there is an \(\hat{r} > R \) such that \(\dot{u}(r) \to 0 \) as \(r \to \hat{r} \). It follows from (3.4) that \(r\dot{u} \) is increasing and thus

\[
\frac{bR}{r} \leq \dot{u} \leq 0, \text{ for } r > R.
\]

Set \(c = bR \). Integrating, we find

\[
e^u \geq r^c,
\]

and so (3.4) yields

\[
\dot{u}(r) \geq -\frac{1}{r} \left\{ |c|^{n-1} - \int_R^r t^{n-1+c} dt \right\}^{1/(n-1)}.
\]
Therefore,
\[\dot{u}(r) \geq \begin{cases} \left\{ -\frac{1}{r} \left(|c|^{n-1} - \frac{r^{n+c} - R^{n+c}}{n+c} \right) \right\}^{1/(n-1)} ; & \quad -n < c < 0, \\ - \frac{1}{r} \left\{ |c|^{n-1} - \ln \frac{r}{R} \right\}^{1/(n-1)} ; & \quad c = -n. \end{cases} \]

It is clear that there is an \(\hat{r} > R \) for which \(\dot{u}(r) \to 0 \) as \(r \to \hat{r} \). Now, take \(c < -n \), satisfying

\[|c|^{n-1} - \frac{1}{|c| - n} \left(\frac{1}{R} \right)^{|c|-n} < n^{n-1}. \]

Now, (3.4) yields

\[\dot{u}(r) \geq - \frac{1}{r} \left[|c|^{n-1} - \frac{1}{|c| - n} \left\{ \left(\frac{1}{R} \right)^{|c|-n} - \left(\frac{1}{r} \right)^{|c|-n} \right\} \right]^{1/(n-1)}. \]

Using (3.5), there is an \(\hat{r} \) such that \(\dot{u}(r) \geq - \frac{n}{\hat{r}} \) for \(r > \hat{r} \). If \(\dot{u}(r) \to 0 \) as \(r \to \hat{r} \), then we are done. Otherwise, continue \(u \) past \(r = \hat{r} \). Repeating the arguments preceding (3.5), we see that \(\dot{u}(r) \to 0 \) as \(r \to \hat{r} \) for some \(\hat{r} > R \). Continuing \(u \) past \(r = \hat{r} \) using

\[u(r) = u(\hat{r}) + \int_{\hat{r}}^{r} \frac{1}{t} \left\{ \int_{\hat{r}}^{t} s^{n-1} e^{u(s)} \, ds \right\}^{1/(n-1)} \, dt, \]

we may show, as in Case 1, that there is an \(\bar{r} > R \) where \(u \) blows up.

Case 3. We may again take \(a = 0 \). Let \(c < -n \), \(t = R - r \), and \(v(t) = u(r) \), where \(0 < r \leq R \). Then \(\dot{v}(t) = -\dot{u}(r) \), where \(\dot{v} \) represents differentiation with respect to \(t \). Then

\[(n - 1)|\dot{v}|^{n-2} \left(\dot{v} - \frac{\dot{v}}{R - t} \right) = e^{v}, \quad 0 \leq t \leq R, \]

\[v(0) = 0 \quad \text{and} \quad \dot{v}(0) = -b. \]

A solution of (3.6) is given by

\[v(t) = \int_{0}^{t} \frac{1}{R - s} \left\{ |c|^{n-1} + \int_{0}^{s} (R - w)^{n-1} e^{v(w)} \, dw \right\}^{1/(n-1)} \, ds. \]

Equation (3.6) yields that \(\frac{d}{dt}((R - t)\dot{v}) \geq 0 \), thus \(\dot{v} \geq 0 \) in \(t > 0 \). Integrating this inequality from 0 to \(t \), we obtain

\[\dot{v}(t) \geq \frac{|c|}{(R - t)}. \]
Hence,

\[e^{v(t)} \geq \left(\frac{1}{R - t} \right)^{|c|}. \]

Let \(0 < \varepsilon_0 < 1 \) be such that

\[|c| \geq n \left\{ \frac{1 + \varepsilon^{1/n}}{(1 + \varepsilon)^{1/n}} \right\} + \varepsilon \]

for every \(\varepsilon \) in \((0, \varepsilon_0)\). It follows from (3.7) that there is a \(t_1 < R \) such that

\[\left(\frac{|c|}{R - t} \right)^n e^{-v(t)} < \varepsilon_0, \]

for \(t > t_1 \). If \(v(t) \to \infty \) as \(t \to t_1 \), then we are done; otherwise continue \(v(t) \) past \(t = t_1 \). Furthermore, we may take \(t_1 \) such that \(R - t_1 < \varepsilon_0 \). Rearranging the terms in (3.6), and multiplying by \(\dot{v}(t) \) yields

\[(n - 1)(\dot{v})^{n-1}\dot{v} = e^v \dot{v} + \frac{n - 1}{R - t}(\dot{v})^n, \quad 0 \leq t < R. \]

Integrating both sides from \(0 \) to \(t \), and noting that \(\dot{v} \geq \frac{|c|}{R - t} \), we find

\[(\dot{v})^n \geq e^v - 1 + \left(\frac{|c|}{R - t} \right)^n, \quad 0 \leq t < R. \]

By the definition of \(t_1 \), it follows that

\[(\dot{v})^n \geq e^v + \left(\frac{|c| - \varepsilon_0}{R - t} \right)^n, \quad t_1 < t < R. \]

Setting

\[x = \left(\frac{|c| - \varepsilon_0}{R - t} \right)^n e^{-v}, \]

the above may be rewritten as

\[(\dot{v})^n \geq e^v \{1 + x\}. \]

Hence,

\[\dot{v} \geq e^{v/n} \{1 + x\}^{1/n}. \]

Using Lemma 2.1 and the definition of \(t_1 \),

\[\dot{v} \geq C(\varepsilon_0)e^{v/n} \{1 + x^{1/n}\}. \]

Thus we obtain

\[\dot{v} \geq C(\varepsilon_0) \left\{ e^{v/n} + \frac{|c| - \varepsilon_0}{R - t} \right\}, \quad t_1 < t < R. \]
By Lemma 2.2, there is a \(t_2 > t_1 \) such that \(\nu(t) \to \infty \) as \(t \to t_2 \). Hence there is an \(\bar{r} \in (0, R) \) for which \(u(r) \to \infty \) as \(r \to \bar{r} \). Thus for every \(c < -n \), we have a vertical asymptote in \((0, R)\). It is clear from (3.5) that there are values of \(b \) for which both (i) and (ii) happen. Call one such value to be \(b_R \).

For the case \(a \neq 0 \), we introduce the following change of variables. Let \(v(r) = u(r) - a \); then

\[
(n - 1)|\dot{v}|^{n-2} \left(\dot{v} + \frac{n-1}{r} \dot{v} \right) = e^a e^v.
\]

Setting \(t = re^{a/n} \), and \(w(t) = v(r) \), and differentiating with respect to \(t \), we have

\[
(n - 1)|\dot{w}|^{n-2} \left(\dot{w} + \frac{n-1}{t} \dot{w} \right) = e^w,
\]

\[
w(\bar{R}) = 0 \quad \text{and} \quad \dot{w}(\bar{R}) = e^{-a/n} \frac{b}{\bar{R}},
\]

where \(\bar{R} = e^{a/n} R \). There is a \(b_{\bar{R}} \) so that the corresponding solution which we continue to call \(w(t) \), blows up near zero and at a point past \(\bar{R} \). Then \(u(t) = a + w(e^{-a/n} t) \) is such a solution for the original problem.

4. Proof of Theorem 1. This follows easily from Lemma 2.3 and Lemma 3.1.

Proof of Theorem 1. Assume to the contrary. Let \(U(x) \) be such a subsolution in (1.2). Let

\[
a = \inf_{1/2 \leq |x| \leq 3/2} U(x).
\]

By Lemma 3.1, there is a radial solution \(u(r) \) such that \(u(1) = a - 1 \), and \(u(r) \) blows up at some \(r \in (0, 1) \) and \(\bar{r} \in (1, \infty) \). Let

\[
M = \sup_{r \leq |x| \leq \bar{r}} U(x),
\]

\(r \in (r, 1) \) and \(\bar{r} \in (1, \bar{r}) \) be such that \(u(r), \ u(\bar{r}) \geq M + 1 \). Using Lemma 2.3, \(u(x) \geq U(x) \) in \(r \leq |x| \leq \bar{r} \), a contradiction.

Remark. In Theorem 1, \(1 < p \leq n \) is the best possible. For \(p > n \), take \(u = \ln(\beta^{|x|^p}) \), where \(0 < A \leq (p - n) p^{p-1} \). Then

\[
L_p u = \frac{(p-n) p^{p-1}}{r^p} \geq A_{r^p}.
\]
REFERENCES

Received January 22, 1990.

INDIAN STATISTICAL INSTITUTE
NEW DELHI-110 016 INDIA
CONTENTS

G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Inequalities for quasi-conformal mappings in space .. 1
T. Bhattacharya, A nonexistence result for the n-Laplacian 19
J. A. Cima, K. Stroethoff, and K. Yale, Bourgain algebras on the unit disk 27
J. A. Fridy and C. Orhan, Lacunary statistical convergence 43
D. Grenier, On the shape of fundamental domains in $GL(n, \mathbb{R})/O(n)$ 53
B. Jiang and J. Guo, Fixed points of surface diffeomorphisms 67
P. Lejarraga, The moduli of rational Weierstrass fibrations over \mathbb{P}^1: singularities 91
G. J. Martin, On discrete isometry groups of negative curvature 109
T. Nakashima, Adjoint linear systems on a surface of general type in positive characteristic ... 129
B. Ralph, A homotopy transfer for finite group actions 133
Y. Rong, Maps between Seifert fibered spaces of infinite π_1 143
J.-Y. Shi, Some numeric results on root systems 155
E. Spanier, Singular homology and cohomology with local coefficients and duality for manifolds .. 165
Inequalities for quasiconformal mappings in space

Glen Douglas Anderson, Mavina Krishna Vamanamurthy and Matti Vuorinen

1

A nonexistence result for the \(n \)-Laplacian

Tilak Bhattacharya

19

Bourgain algebras on the unit disk

Joseph A. Cima, Karel M. Stroethoff and Keith Yale

27

Lacunary statistical convergence

John Albert Fridy and Cihan Orhan

43

On the shape of fundamental domains in \(\text{GL}(n, \mathbb{R})/\text{O}(n) \)

Douglas Martin Grenier

53

Fixed points of surface diffeomorphisms

Boju Jiang and Jianhan Guo

67

The moduli of rational Weierstrass fibrations over \(\mathbb{P}^1 \): singularities

Pablo Lejarraga

91

On discrete isometry groups of negative curvature

Gaven Martin

109

Adjoint linear systems on a surface of general type in positive characteristic

Tohru Nakashima

129

A homotopy transfer for finite group actions

William J. Ralph

133

Maps between Seifert fibered spaces of infinite \(\pi_1 \)

Yongwu Rong

143

Some numeric results on root systems

J. Y. Shi

155

Singular homology and cohomology with local coefficients and duality for manifolds

Edwin Spanier

165