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OF THE FUNDAMENTAL GROUP OF SURFACES

K. GURUPRASAD

In this paper we associate a new geometric invariant to the space
of flat connections on a G (= SU(2))-bundle on a compact Riemann
surface M and relate it to the symplectic structure on the space
Hom(z; (M), G)/G consisting of representations of the fundamental
group 7;(M) of M into G modulo the conjugate action of G on
representations.

Introduction. Our setup is as follows. Let G = SU(2) and M be a
compact Riemann surface and E — M be the trivial G-bundle. (Any
SU(2)-bundle over M is topologically trivial.) Let & (resp. ©*) be
the space of all (resp. irreducible) connections and # (resp. ¥ *) the
subspace of all (resp. irreducible) flat connections on this G-bundle.
We put the Fréchet topology on % and the subspace topology on % .

Given a loop g: S! — %, we can extend ¢ to the closed unit
disc 6: D* — #, since % is contractible. On the trivial G-bundle
E x D?* — M x D? we define a “tautological” connection form ¥, as
follows.

ﬁgl(e,t) =6(t) Ve, t)eEXx D2,

Clearly restriction of ¥, to the bundle E x {t} — M x {t} is &(¢)
Vte D?. Let K(6,) be the curvature form of 9, . Evaluation of the
second Chern polynomial on this curvature form K(3J,) gives a closed
4-form on M x D?, which when integrated along D? yields a 2-form
on M. This 2-form is closed since dim M = 2 and thus defines an
element in H%(M, R) ~ R. It is seen that this class is independent of
the extension of o. We thus have a map

1:QUF) - H*(M,R)~R

where Q(F) is the loop space of F .
It is seen that y induces a map

X QF*%) - R/Z
where ¥ = Map(M , G) is the gauge group of the G-bundle E — M .
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It is well known that ¥ /¥ ~ Hom(m;(M), G)/G and the space
Hom(m(M), G)/G carries a symplectic structure. Under this identi-
fication #*/Z gets identified with the space Hom'™(n;(M), G)/G of
conjugacy classes of irreducible representations of =;(M). Moreover
when genus of M > 3, Hom™(n;(M), G)/G is simply connected.
Let w be the symplectic form on & /% = Hom(xn,(M), G)/G. For
o € QF*/Z) choose a surface S in F*/Z such that 9§ = o.
Since F*/Z is simply connected when genus of M > 3 and ® has
integral periods, Tsw € R/Z is independent of S. The main result
of this paper (after suitable normalisation) is

THEOREM. ¥(0) = [@.
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1. Construction of the basic map. In this paper we suppose M is a
compact Riemann surface of genus g, G = SU(2) with Lie algebra
® = su(2) and E — M is the trivial G-bundle on M. & is the
space of all connections and .¥ the subspace of flat connections on
E — M. We sometimes replace & (resp. #) by &* (resp. F*),
the space of all (resp. flat) irreducible connections on E — M . The
space Map(M , G) of all maps from M to G is the gauge group and
will be denoted by & . D? is the closed unit disc in R? and dD? = §!
is the unit circle. Q(¥) = Map(S', F) is the loop space of F .

Given a loop o: S! — % weextend ¢ to 6: D* - & (% is
contractible). On the trivial G-bundle E x D? — M x D? define the
connection form 39, as

Bsle,.y =6(Dley V (e, 1) €ExD?;

i.e., restriction of J, on the subbundle E x {t} — M x {t} is the
connection form (¢) V¢t € D*. Let K(8,) be the curvature 2-form
of ¥, and C, be the second-Chern polynomial on & = su(2). The
specific formula for C, shows that

Cy(A) = 8-71; trace(A4%) for 4 € su(2).
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Evaluation of C; on K(3§,) gives the closed 4-form C,(K(3d;)) on
E x D? which projects to the closed 4-form C,(K(d,)) on M x D?.

Integrating C,(K(6,)) along D? yields a closed 2-form on M
(dim M = 2) and thus defines a cohomology class in H?>(M , R), i.e.

R.

Q

{[ e} emonr

LEMMA 1.1. {[: C2(K(05))} is independent of the extension of
6:S'>F t06:D>>F%.

Proof. Let &, &' be two extensions of ¢ with corresponding con-
nection forms ¥,, ¥/ and curvature forms K(3d,), K(9,) on the
bundle E x D*? - M x D?.

We claim [}, Co(K(85)) — [,: C2(K (%)) is an exact form on M .
On E x D? we have

dTCy(0s) = Cr(K(D5)),  dTCy(9,) = CL(K(D))

where TCy(9), TCy(9,) are the Chern-Simons secondary forms
with respect to ¥, , ¥/ respectively (cf. [CS, §3]).
Therefore

| CE®) - R = [ d(TCx(8s) - TCa(05).
D D

By the Stokes theorem for integration along fibers (cf. [GS, Lemma
2.3]) we have (d denotes ext. differentiation in E x D? and df in
E)

[ acaon) - 1Cx(8,)

= /SI(TCZ(ﬁa)IExSI - TCZ(ﬁ,aNExsl)

+dg [ (TC80) - TC8))).

But 9, =9, on E x S!.
Therefore TCy(8;) = TCy(¥,) on E x S! and the first integral
vanishes. Therefore

[ (&) - R = ds [ (TCx(85) - TC(8,)
D D

is exact as a form on E.
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+{ [ awen} -{ [ axep}emreE.»

= {/;2 Cz(K(l%))} = {/;2 CZ(K(I%))}

since n*: H*(M , R) — H*(E, R) is an isomorphism

and this proves the lemma.
We thus have a map

(1.2) QF) L HX(M,R)~R,
o 1@ ={ [ CkED} ..

where Q(%) is the loop space of & . It is easy to check that
x(cdod’) = x(a)+ x(a’) where g oad’ is the composite of two loops
in & .

2. The symplectic structure on ¥ /¥ ~ Hom(n,(M), G)/G. The
quotient ¥ /¥, i.e., the space of G-equivalence class of flat connec-
tions on E — M can be identified with Hom(n,(M), G)/G. We
describe the symplectic structure on % /& following the approach
by Atiyah and Bott ([AB, [W]). € is an affine space with the space
AY(M, su(2)) of su(2)-valued 1-forms on M as its group of trans-
lations. In particular each tangent space T4(%) is identified with
AV (M, su(2)).

Let B:su(2) x su(2) - R, (X,Y) — trace(XY) be the Killing
form on su(2). Then the pairing

(n, p)— /M B.(nAw) = /M trace(n A p)

(n, u € AY(M, su(2)) ~ T4(C)) defines an exterior 2-form @ on
the infinite dimensional affine space % . Since its definition does not
involve A explicitly, it is invariant under the translations of % and
is thus closed.

If d4 is the covariant differential corresponding to 4 then A € ¥
iff d40d, = 0. Differentiating this equation with respect to a tangent
vector n € A!(M, su(2)) one finds that the tangent vectors in <#
are precisely those n € A/(M, su(2)) with dyn =0, i.e. T4(F) =
ZY(M, su(2)).

The exterior 2-form @ on % restricts to a closed 2-form on % .
However on % this is degenerate. In fact the subspace of T4(%)
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which annihilates @ is precisely B'(M, su(2)) ¢ ZY(M, su(2)).
BY(M , su(2)) is the image of A%(M, su(2)) = Map(M, su(2)) un-
der d4(2). A%, su(2)) is the Lie algebra of the gauge group & =
Map(M , SU(2)). o restricts to a closed non-degenerate exterior 2-
form on % /& thus giving a symplectic structure on ¥ /&, which is
identified with

Hom(x;(M), SU(2))/ SU(2).

LEMMA 2.1. When genus of M > 3, Hom'™(z,; (M), SU(2))/ SU(2)
is simply connected.

Proof. */% ~ Hom™(n,(M), SU(2))/SU(2) can be identified
with the moduli space .#;' of stable vector bundles of rank 2 and
trivial determinant on M by a theorem of Narasimhan and Seshadri
[NS]. In fact by a theorem of Seshadri [S], & /Z is a complete com-
plex algebraic variety—the moduli space.#; of (s-equivalence classes
of) semistable vector bundles—in which .Z;* sits as the smooth part.
The singular part .4 — #;' = K is a Kummer variety of complex
dimension g (=genus of M).

It is known [AB] that the moduli space .#) of stable vector bundles
of rank 2 and degree 1 with fixed determinant is simply connected and
has complex dimension 3g—3. Let P be the projective Poincaré bun-
dle over # x {x} for a fixed point x in .#]. Since P — £ x {x}
is a nice fibration [NRa] with standard fibre as the projective space
P!, it follows by looking at the homotopy exact sequence that P is
simply connected and has complex dimension 3g — 2. There is also
a global map f: P — # x {xo} (xo €.#) which is not a nice fibra-
tion. However, the restriction f: P — f~1(K) — .#3' x {xo} is a nice
fibration. We claim P — f~!(K) is simply connected when g > 3.
Assuming the claim, it follows again by looking at the homotopy ex-
act sequence that ;' ~ F*/& = Hom" (m,(M), SU(2))/SU(2) is
simply connected.

K is the Kummer variety of complex dimension g. If x is a
smooth point of K, f~!(x) looks like two copies of the projective
space Pé-! intersecting at a point. If x is a singular point of K then-
f~1(x) looks like a nonreduced P&~!. Therefore complex dimension
of f~Y(K) = g+g—-1=2g—1. Since complex dimension of
P = 3g —2, and P is smooth, complex codimension of f~!(K) =
(3g—2)—(2g—1) = g—1. Clearly real codimension of f~!(K) > 3 if
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g > 3 and therefore P — f~1(K) is simply connected and the lemma
follows. O

It is also known that w has integral periods. Given a loop o: S! —
F*|% we assign w(o) € S! as follows. Since #*/% is simply con-
nected we can choose a surface S in & */& which bounds the loop
o . Integrating @ on S gives a real number. Choosing another sur-
face S in & */& which bounds the loop ¢ and integrating on S
give a real number which differs from | s @ by an integer since w has

integral periods, i.e.
/w: </~w> mod Z.
S S

(2.2) @: QF*)%) - S' =R/Z...

_ 1
UHQ)(U)— (mLCL)) modZ
is well defined.

3. The Coulomb connection on #* — &*/& . &* is the space of
irreducible connections on the trivial SU(2)-bundle £ — M. It is
well known that

&*={AdeZ|ds: A°(M, su(2)) — A (M, su(2)) is injective}.

The Poincaré metric on M and the metric given by the Killing form
on su(2) induces inner products on A%(Mf, su(2)) and Al(M, su(2)).
Let d%: AY(M, su(2)) — A%(M , su(2)) be the adjoint of d 4.
We now define a connection on #*: We take the horizontal space
at A € ©* to be the space

Hy=Kerd); ={Be%,d;B=0}.

Clearly Kerd ~ AY(M, su(2))/(d4(A°(M, su(2)))) = T.4(%*/%)
where [4A] € €*/Z is the equivalence class of A4 under gauge group
action.

Let Ay =d}ody: A°(M, su(2)) - A%(M, su(2)) be the covariant
Laplacian.

It is easily seen that the connection form of this connection at
A € &* is given by A‘ od’; . (For more details refer to [NR].) We call
this connection form as the Coulomb connection. Clearly #*/¥ is
contained in ¥*/% . Pulling back the Coulomb connection to 7 */%
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gives a connection on ¥ * — % */% . This restricted connection is
also called the Coulomb connection.

4. Construction of the map y: Q(¥*/%) — R/Z. In §1, we can
replace # by . *, the space of all irreducible flat connections and
construct the map x: Q(¥*) — R.

Given a loop a: [0, 1] - F*/Z with a(0) = o(1) we can lift it
horizontally to a path &: [0, 1] — % * using the Coulomb connec-
tion on F* — F*/% . Clearly 6(0) and 6(1) are gauge-equivalent
connections, i.e, they lie in the same fibre over ¢(0). Since & =
Map(M , SU(2)) is connected, (1) can be joined to 6(0) by a path
¢ . The path ¢ from &(0) to (1) followed by the path ¢ from &(1)
to 6(0) defines a loop G, based at 6(0) in F* and x(G,) € R. If
¢' is another path joining (1) and &(0) then x(6,) need not be
equal to x(d,). However we claim x(G,) = x(6,,) modZ. We then
set x(o) = x(6,), where x(G,) is the image of x(G,) in R/Z. To
prove the claim we need the following lemma.

LEMMA 4.1. Let n € F be a fixed flat connection and y: S! —
& = Map(M , SU(2)) (also thought of as a map w: S' x M — SU(2))
be a loop in the gauge group. The action of & on % defines a loop
wy based at n in F . Then x(y,) = degree of y .

REMARK 4.2. Thus two homotopically equivalent loops in the same
fibre (gauge orbit) of F — F /¥ map under y to the same integer.
Assuming the lemma we prove the claim

X(Gp) = x(6,,) modZ.
¢~ lo’ defines a loop Ws(0) based at ¢(0) for appropriate y: S — % .
From the definition of y, it follows that
x(G,) = x(Gp © Ws(0))-

Therefore

o) = X(8p) + X(Ws(0)) = x(G,) + degree y
= X(&q;’) = X(é’w) mod Z.

x(

Proof of Lemma 4.1. Let
H=( i ﬂ2+i#3)
—do+ius  —ipy
be the Maurer-Cartan form on SU(2).
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duy = —2u3 A us,
dp=—-puAp=< duy=-2u3 Ay,
dus = =21 A lp.
One knows that

4—7115,u1 A ly A us is the volume form on SU(2).

Hence

1 * * *
(4.3) —2/ Wy Aw*uy A w*us = degree of y....
4nc Js'xm

We first explicitly compute x (o) for any loop o: S! — & .
For t e S!, let

_ ia(t) B(t) +iy(1)
0= (_garenn ")
where o(t), B(t), y(¢) are real valued 1-forms on M foreach ¢t € S!.
ot)eF =do(t) = %[a(t), o(t)]=—-a(t)Na(t)
da(t) = =2B() A (D),
=< dB(t) =-2y(t) N (1),
dr(t) = =2a(t) A B(2).
We extend ¢ to 6: D? — % in the obvious way.

Let (s, t) be the polar coordinates on D? = {(s,7),0<s<1,0<
t<2mn},

. _ isa(t) sB(t) + isy(¢)
"(s”):“(’)“(—sﬂ(t)+isy(t) Zisa(?) )

The curvature K(9?) of the connection form 37 on the bundle
E x D? — M x D? is given by
K(99) = do° + 1[97, 9]

=dy’% +9° NY°

=dg9° +dpd? +9° N9

=d9° + K(6(s, 1))

where K(G(s, t)) is the curvature of G(s, ?).
It can be checked that C,(K(9?)) is cohomologous to the form

@4) 10)= gz [ (@0 Na(0) + BO AB®) + 50 Ay ...

~ 4n2

where a(f) = La(t).
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Thus

x(0) = {3—}; /S (6(2) A a(2) + B(2) A B(2) + 7(8) Ay(2)) dt}
€ H* (M ,R) ~R.

"2( in nz+in3)
-y +ing  —m

be an arbitrary but fixed flat connection.

Clearly wy(t) = y(8) - n = w(®)'n-yw(@) + y()*'u Yt € S
st4 F(t w(t)-n) defines a loop in & .

After writing down the formula (4.4) for %(yy,) it can be checked
that

Let

kv 1 * * *
X(‘//n)=57;5/gzlllﬂ1/\'//#2/\¥/ U3 + exact

=> X(¥y) = degree of y . This proves Lemma 4.1.
Thus x: Q(F*) — R induces

(4.5) 7 QF*/Z) = R/Z=S"...

5. Relation between the map 7: ¥ */& — R/Z and the symplectic
structure on ¥ /& .

THEOREM 5.1. Let E — M be the trivial SU(2) bundle over a
compact Riemann surface M of genus > 3, F (resp. F*) be the
space of all (irreducible) flat connections and & be the gauge group.
Let 7: Q(F*/%) — S! and @: Q(F*/%) — S' be as defined in
(4.5) and (2.2) respectively. Then

x(0)=w(c) VoeF*/Z.

Proof. Lift ¢ toaloop & in & * asin §4; i.e. first lift o to a path
in ¥ * and join the end-points using a path in & . Asin §2, let w be
the exterior 2-form on the infinite dimensional affine space % . Since
% is contractible and w is closed we can write w = dv for some
I-formon # and [;w = f;v for any surface S which bounds & in
% .

Define v as follows:

For ne @, v,: A{(M, su(2)) — R is given by

(1) = — /M tr(nAu) for u e AL (M, su(2)).
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We claim
(5.2) dv=w....

We check dv=w at ne€?#.
For uy, py, € Ty(%) = AL(M, su(2)) (extend u;, up to vector
fields in the obvious way).

dv(uy, H2) = 3w (pa) — pov(uy) —v(luy, #21);

since % is affine, we can assume [u;, u3] =0 at g

v () = dv(uz)(11)

where v(u,) is treated as a function
v(u): € - R,
v(a)(9) = [ tr(uz A ).
M

Since v(u,) is a linear function dv(u,) = v(u;) so that uyv(u) =

— [y tr(pa A py) . Similarly uov(uy) = — f3,tr(uy A p2) .
Therefore

%{NIV(M) pov(11)} ——/ {tr(ua A ) — tr(ur A p2)}
= [ w2 A) since tr(ua A ) = = tr(us A )

=+ / (i A ).
M

Therefore dv(uy, u2) = [y, tr(ug A pa) = w(uy, 42) and this proves
(5.2).
Clearly

/,, _/ Vo (6(t) d /S tr(6() A (1)) dt

/S 1(6(1) A6 (1) dt
= [ (@ nat) + By A B0+ 50 Ar(©)d)

~ i) B+ in)
o) = (ﬂ(t)+w(t) Zia(1) )

Hence [,v =4n2x(6) = x(6) = ;= 3V = 32 Js® = X(0) = ®(0)
and this proves the theorem.

where
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REMARK 5.3. In [RSW], the authors prove the existence of a natural
hermitian line bundle on ¥ /% . Restricted to .# */Z , this line bundle
carries a natural connection whose curvature is (up to a factor of i) the
standard symplectic form. It is easy to check that @: Q(F*/%) — S!
is then (up to a constant) the holonomy of this connection.

[AB]
(CS]
[GS]

[NRa]

[NR]
[NS]
[N]
[NRW]
(S}

(Wi
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