ON THE UNIQUENESS OF REPRESENTATIONAL INDICES OF DERIVATIONS OF C^*-ALGEBRAS

Edward Kissin
ON THE UNIQUENESS
OF REPRESENTATIONAL INDICES
OF DERIVATIONS OF C*-ALGEBRAS

EDWARD KISSIN

The paper considers some sufficient conditions for a closed
-derivation of a C-algebra, implemented by a symmetric operator,
to have a unique representational index.

1. Introduction. Let \mathcal{A} be a C*-subalgebra of the algebra $B(H)$
of all bounded operators on a Hilbert space H, and let a dense
*-subalgebra $D(\delta)$ of \mathcal{A} be the domain of a closed *-derivation δ
from \mathcal{A} into $B(H)$. A closed operator S on H implements δ if
$D(S)$ is dense in H and if

$$AD(S) \subseteq D(S) \quad \text{and} \quad \delta(S)|_{D(S)} = i(SA - AS)|_{D(S)} \quad \text{for all} \ A \in D(\delta).$$

If S is symmetric (dissipative), it is called a symmetric (dissipative)
implementation of δ. If a closed operator T extends S and also
implements δ, then T is called a δ-extension of S. If S has no
δ-extension, it is called a maximal implementation of δ.

If δ is implemented by a closed operator, it always has an infinite set $\mathcal{I}(\delta)$ of implementations. However, not much can be said
about the structure of $\mathcal{I}(\delta)$. We do not even know whether it has
maximal implementations. The subsets $\mathcal{I}(\delta)$ and $\mathcal{D}(\delta)$ of $\mathcal{I}(\delta)$
($\mathcal{I}(\delta) \subseteq \mathcal{D}(\delta)$), which consist respectively of symmetric and of dis-
sipative implementations of δ, are more interesting. In [4] it was
shown that every symmetric implementation of δ extends to a max-
imal symmetric implementation of δ. Therefore if $\mathcal{I}(\delta) \neq \emptyset$, then
$\mathcal{I}(\delta)$ as well as the set $\mathcal{M}(\delta)$ of all maximal symmetric implement-
tions of δ are infinite sets.

If $S \in \mathcal{M}(\delta)$ and it is not selfadjoint, then the question arises
as to whether S has dissipative δ-extensions and, if so, whether there
exist maximal dissipative implementations of δ. This question was
partly answered in [5] where it was established that, under some con-
ditions on δ and S (for example, if $\max(n_-(S), n_+(S)) < \infty$), the
maximal dissipative implementations of δ do exist.
Let $\mathcal{R}(\delta)$ be the set of all J-equivalence classes of J-symmetric representations of the algebra $D(\delta)$ on Krein spaces. In [3] and [4] it was shown that the deficiency space $N(S) = N_-(S) + N_+(S)$ of every operator $S \in \mathcal{H}(\delta)$ is a Krein space and that there exists a J-symmetric representation π_S^δ of $D(\delta)$ on $N(S)$. Thus there is a mapping of $\mathcal{H}(\delta)$ into $\mathcal{R}(\delta)$, and different symmetric implementations may have corresponding representations which are J-equivalent.

The structure of the representations π_S^δ can be extremely complicated, partly due to the fact that they may have neutral invariant subspaces. In [4] it was proved that π_S^δ has no neutral invariant subspaces if and only if S is a maximal symmetric implementation of δ. If $S \in \mathcal{M}(\delta)$, we shall call the image of π_S^δ in $\mathcal{R}(\delta)$ a representational index of δ (relative to S), and denote it by i_S^δ. In this context the following problems naturally arise:

— finding simple characteristics of the representations π_S^δ;
— the description of the images of $\mathcal{H}(\delta) \text{ and } \mathcal{M}(\delta)$ in $\mathcal{R}(\delta)$;
— finding conditions on δ such that the image of $\mathcal{M}(\delta)$ in $\mathcal{R}(\delta)$ consists of only one element.

The simplest characterization π_S^δ is the pair $(n_+(S), n_-(S))$ of deficiency indices of the operator S. Different properties of these indices were considered in [6-8]. In particular, if \mathcal{A} is unital, if $S \in \mathcal{M}(\delta)$ and $\max(n_+(S), n_-(S)) < \infty$, then there are disjoint sets of irreducible $*$-representations $\{\pi_i\}_{i=1}^p$ and $\{\rho_j\}_{j=1}^q$ of \mathcal{A} such that

$$n_+(S) = \sum_{i=1}^p \dim \pi_i \quad \text{and} \quad n_-(S) = \sum_{j=1}^q \dim \rho_j.$$

Arveson [1] and Powers [12] studied the case when δ is the generator of a semigroup α_t of endomorphisms of $B(H)$ which has semigroups of intertwining isometries. If d is a generator of a semigroup $U(t)$ of such isometries, then the operator $S = id$ implements δ, it is a symmetric operator, $N_-(S) = \{0\}$, and $N(S) = N_+(S)$ is a Hilbert space. In this case $S \in \mathcal{M}(\delta)$, $n_+(S) = \infty$, and π_S^δ is a $*$-representation. Powers [12] defined the index of α_t (relative to $U(t)$) to be the multiplicity of π_S^δ. Arveson [1] gave another definition of the index of α_t and Powers and Price [13] proved that the Arveson's index is precisely the number of times the identity representation of $D(\delta)$ on H occurs in the representation π_S^δ.

Jorgensen and Price [3] studied the general case when $N(S)$ is not necessarily a Hilbert space. They introduced the V-index as the dimension of the Krein space of operators $V: H \to N(S)$, satisfying

$$VA = \pi_S^\delta(A)V, \quad V \in D(\delta).$$
In [7] a sextuple $\text{ind}(\delta, S)$ was associated with every pair (δ, S). All of its elements are either integers or infinity. If $N_-(S) = \{0\}$, one of the elements of $\text{ind}(\delta, S)$ is the Powers' index. The sextuple is stable under perturbations of δ of the form $\sigma(A) = \delta(A) + i(BA - AB)$: $\text{ind}(\sigma, S + B) = \text{ind}(\delta, S)$, where $B = B^* \in B(H)$. Under some conditions on δ, $\text{ind}(\delta, S) = \text{ind}(\delta, T)$ for all $S, T \in \mathcal{M}(\delta)$.

This paper studies the conditions on δ such that the image of $\mathcal{M}(\delta)$ in $\mathcal{R}(\delta)$ consists of only one element, i.e., all representations $\pi^\delta_S, S \in \mathcal{M}(\delta)$ are J-equivalent. Obviously, only then can one speak about the representational index of δ. In §3 we consider the following problem: given a symmetric implementation S of δ, under what conditions on π^δ_S are all the representational indices i^δ_T, which correspond to different maximal symmetric δ-extensions T of S, equal? Theorem 3.2 gives a partial solution to this problem and shows that if the representation π^δ_S is finitely Π_- or Π_+-decomposable, then all representations $\pi^\delta_T, S \subseteq T$ and $T \in \mathcal{M}(\delta)$, are J-equivalent, so that all the corresponding representational indices i^δ_T are equal.

As a corollary of this result, we obtain that if δ has a minimal implementation S, and if the representation π^δ_S is finitely Π_- or Π_+-decomposable, then, for all maximal symmetric implementations T of δ (and not only for those which δ-extend S), the representations π^δ_T are J-equivalent, so that δ has a unique representational index.

Although the conditions imposed on δ are strong, the examples of §3 demonstrate that these conditions are justified. Without assuming the existence of a minimal symmetric implementation it is difficult to “compare” different representations π^δ_T and $\pi^\delta_{T_1}, T, T_1 \in \mathcal{M}(\delta)$, and to establish whether they are J-equivalent. This is especially so if $D(T) \cap D(T_1) = \{0\}$, as in Example 2 (see [13]). In the cases studied in [1], [12] and [13] (see Example 2), minimal symmetric implementations of the generators δ of semigroups of endomorphisms of $B(H)$ do not exist. Therefore the representational indices $i^\delta_T, T = \text{id}$, where d are the generators of semigroups $U(t)$ of intertwining isometries, seem to depend on $U(t)$ [13]. On the other hand, in many interesting cases the derivations do have minimal symmetric implementations. This is so, for example, if \mathscr{A} contains the ideal of all compact operators [6] (see Theorem 3.4 and Example 3).

The condition that $\pi^\delta_S (S$ is a minimal symmetric implementation of δ) is finitely Π-decomposable is crucial for our attempt to show that all representational indices of δ are equal. For every
maximal symmetric implementation T of δ, there is a maximal neutral invariant subspace $L(T)$ in $N(S)$ such that the representation π^T_δ is J-equivalent to the quotient representation $(\Pi^S_\delta)^L(T)$ on $L(T)^[\bot]/L(T)$. Theorem 2.6 considers finitely Π-decomposable representations π and proves that, for all maximal neutral invariant subspaces L, the quotient representations π^L on L^\bot/L are J-equivalent. Therefore it follows that all representational indices of δ are equal. Example 4 shows that if π^S_δ is Π-decomposable but not finitely Π-decomposable, the derivation δ may have an infinite number of distinct representational indices.

2. J-symmetric representations of *-algebras on Krein spaces.

2.1. Preliminaries. This section considers J-symmetric representations of *-algebras on Krein spaces. For the benefit of the reader and for the sake of being reasonably self-contained, we provide some amount of detail about the theory of Krein spaces and J-symmetric representations.

Let H be a Hilbert space with a scalar product (x, y) and a norm $||x|| = (x, x)^{1/2}$. Let $H = H_- \oplus H_+$ be a decomposition of H in the orthogonal sum of subspaces H_- and H_+. The involution $J = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ defines an indefinite form $[x, y] = (Jx, y)$ on H. The space H with this indefinite form $[,]$ is called a Krein space. Let $k_d = \dim H_d$, $d = \pm$, and $k = \min(k_-, k_+)$. If $k < \infty$, then H is called a Π_k-space.

Let H be a Krein space. A subspace L in H is called
(a) nonnegative if $[x, x] \geq 0$,
(b) positive if $[x, x] > 0$, $x \neq 0$,
(c) uniformly positive if there is $r > 0$ such that $[x, x] \geq r(x, x)$,
(d) neutral (null) if $[x, x] = 0$,
for all $x \in L$. The concept of nonpositive, negative and uniformly negative subspaces are introduced analogously.

A nonnegative subspace is called maximal nonnegative if it is not properly contained in any other nonnegative subspace. In the same way this concept of maximality can be introduced for all other types of subspaces.

Law of inertia [9]. If L is a maximal nonnegative (nonpositive) subspace in H, then $\dim L = \dim H_+ - (\dim H_-)$.

The subspace
$$L^{[\bot]} = \{y \in H : [x, y] = 0 \text{ for all } x \in L\}$$
is called the J-orthogonal complement of L.
The geometry of Krein spaces is more complicated than the geometry of Hilbert spaces and the decomposition

\[H = L_+ + L_- \]

does not always exist (the symbol \([+\]) means that the sum is direct and the summands are \(J\)-orthogonal).

Theorem 2.1 [9].

(i) Let \(L\) be a nonnegative (nonpositive) subspace of \(H\). The decomposition (1) holds if and only if \(L\) is uniformly positive (negative).

(ii) If \(L\) is an indefinite space, then (1) holds if and only if \(L\) decomposes into a direct sum of two uniformly definite subspaces.

(iii) ([9], page 118) Let \(Q\) be the orthoprojection on \(L\). The decomposition (1) holds if and only if the symmetric operator \(G = QJQ\) has a bounded inverse.

(iv) (Iohvidov and Ginzburg, see [9, page 118].) Let \(k_+ = \infty\). All positive subspaces of \(H\) are uniformly positive if and only if \(k_- < \infty\).

Every subspace \(L\) is decomposable into a simultaneously orthogonal and \(J\)-orthogonal direct sum

\[L = L_- + L_0 + L_+ , \quad L_0 = L \cap L^{[-1]} \]

in which the summands are respectively negative, neutral and positive subspaces, or reduce to zero (see [9], p. 118).

A representation \(\pi\) of a \(*\)-algebra \(\mathcal{A}\) on a Krein space \(H\) is called \(J\)-symmetric if

\[\pi(A^*) = J\pi(A)^*J , \quad \text{i.e., } [\pi(A)x, y] = [x, \pi(A)^*y] , \quad x, y \in H . \]

If a subspace \(L\) is invariant for \(\pi\), then \(L^{[-1]}\) is also invariant for \(\pi\). By \(\pi_L\) we shall denote the restriction of \(\pi\) to \(L\).

Let \(N\) and \(P\) be respectively uniformly negative and uniformly positive subspaces of \(H\) invariant for \(\pi\). Then

\[(x, y)_N = -[x, y] , \quad x, y \in N \quad \text{and} \]
\[(x, y)_P = [x, y] , \quad x, y \in P \]

are definite scalar products on \(N\) and \(P\). Set

\[||x||^2_N = (x, x)_N , \quad x \in N \quad \text{and} \quad ||x||^2_P = (x, x)_P , \quad x \in P . \]

Since \(N\) and \(P\) are uniformly definite subspaces, the norms \(||\cdot||_N\) and \(||\cdot||_P\) are equivalent to the original norm \(||\cdot||\) on \(H\). Therefore \(N\) and
P are Hilbert spaces with respect to the scalar products $(\, , \,)_N$ and $(\, , \,)_P$. Then π_N and π_P are $*$-representations of \mathcal{A} on N and P with respect to these scalar products.

Let G be a bounded selfadjoint operator on a Hilbert space H. Similar to the involution J, the operator G defines an indefinite metric on H

$$[x , y]_G = (Gx , y).$$

A representation π of a $*$-algebra \mathcal{A} on H is called G-symmetric if $[\pi(A)x , y]_G = [x , \pi(A^*)y]_G$, i.e., $G\pi(A^*) = \pi(A)^*G, \quad x , y \in H$.

Lemma 2.2. Let π be a G-symmetric representation of \mathcal{A} on H.

(i) ([11], page 77). If G has a bounded inverse, then there are a new scalar product $(\, , \,)_1$ and an involution J_G on H such that the norm $\| \|_1 = (\, , \,)_1^{1/2}$ is equivalent to the original norm on H, that $[x , y]_G = (J_Gx , y)_1$ and that π is a J_G-symmetric representation of \mathcal{A}.

(ii) [8]. Let Q be the orthoprojection on a subspace L invariant for π and let $G_1 = QGQ$. The representation π_L of \mathcal{A} on L is G_1-symmetric and $[x , y]_{G_1} = [x , y]_G$.

2.2. Neutral invariant subspaces of J-symmetric representations.

In general the structure of neutral invariant subspaces of J-symmetric representations π of $*$-algebras on Krein spaces H can be very complicated. In some cases, however, it is possible to obtain some useful information about their structure.

Let π be a J-symmetric representation on H, let N be a uniformly negative (positive) invariant subspace and let $N^{[1]}$ be a Π_k-space. It is proved in [8, Lemma 3.2] that if L is a neutral invariant subspace in H, then there exist a nonnegative (nonpositive) invariant subspace P in $N^{[1]}$ and a bounded operator T from P onto an invariant subspace K of N such that

$$L = \{Tx + x : x \in P\} \quad \text{and} \quad \pi_KT = T\pi_P.$$

Lemma 2.3. Let N have no finite-dimensional invariant subspaces. If L is a maximal neutral invariant subspace in H, then $\ker T = L \cap N^{[1]}$ is a maximal neutral invariant subspace in $N^{[1]}$.

Proof. Let N be uniformly negative. Since L is a neutral space,

$$[x , x] + [Tx , Tx] = 0, \quad x \in P.$$
Hence
\[\|Tx\|_N^2 = -[Tx, Tx] = [x, x]. \]

By (2), \(P = P_0 + P_+ \), where \(P_0 \) and \(P_+ \) are neutral and positive subspaces. Since \(N^{[1]} \) is a \(\Pi_k \)-space, it follows from Theorem 2.1 (iv) that \(P_+ \) is uniformly positive. By (3), \(P_0 = \text{Ker} \; T \) and \(\|Tx\|_N = \|x\|_{P_+} \) for all \(x \in P_+ \), so that \(T \) is an isometry from \(P_+ \) onto \(K \).

Therefore
\[L = \{Tx + x : x \in P_+\} + P_0 \quad \text{and} \quad P_0 = L \cap N^{[1]}. \]

Since \(\pi_K T = T \pi_P \), \(P_0 \) is a neutral invariant subspace in \(N^{[1]} \) and we only have to prove that \(P_0 \) is a maximal invariant subspace in \(N^{[1]} \).

Assume that there exists a neutral invariant subspace \(M \) in \(N^{[1]} \) larger than \(P_0 \). Since \(P_+ \) is uniformly positive, by Theorem 2.1(i),
\[N^{[1]} = P_+ + R \quad \text{and} \quad P_0 \subseteq R \cap M, \]
where \(R \) is the J-orthogonal complement of \(P_+ \) in \(N^{[1]} \).

Let \(P^{[1]} \) be the J-orthogonal complement of \(P \) in \(N^{[1]} \). Then \(P^{[1]} \subseteq R \) and \(P^{[1]} \) is invariant for \(\pi \), since \(P \) and \(N^{[1]} \) are invariant for \(\pi \). The subspace \(R \cap M \) is J-orthogonal to \(P_+ \) and to \(P_0 \). Hence \(R \cap M \subseteq P^{[1]} \), so that \(R \cap M = P^{[1]} \cap M \). Thus \(R \cap M \) is a neutral invariant subspace. If \(P_0 \neq R \cap M \), then
\[L_1 = \{Tx + x : x \in P_+\} + (R \cap M) \]
is a neutral invariant subspace in \(H \) larger than \(L \). This contradiction shows that \(P_0 = R \cap M \).

By Law of inertia, \(\dim M \leq k \). Since \(P_+ \cap M = \{0\} \), \(M = \{z + y : y \in M_R, z \in M_P\} \), where \(M_R \) and \(M_P \) are finite-dimensional subspaces in \(R \) and \(P_+ \) respectively and where \(y = 0 \) implies \(z = 0 \). Since \(M \) is larger than \(P_0 \) and since \(P_0 = R \cap M \), \(M_P \neq \{0\} \) and \(z = 0 \) implies \(y \in P_0 \).

We shall show that the subspace \(P_0 + M_P \) is invariant for \(\pi \). Since \(M \) is a neutral subspace and since \(M_P \subseteq P_+ \), every \(y \) in \(M_R \) is J-orthogonal to \(P \). Therefore \(M_R \subseteq P^{[1]} \). Since \(P^{[1]} \) is invariant for \(\pi \) and since \(P^{[1]} \subseteq R \), \(\pi(A)y \in R \) for every \(y \in M_R \) and \(A \in \mathcal{A} \). Then, for all \(z + y \in M \),
\[\pi(A)(z + y) = \pi(A)z + \pi(A)y = z_1 + y_1 \in M, \]
so that \(\pi(A)z = z_1 = y_1 - \pi(A)y \). Since \(\pi(A)z \in P \), since \(y_1 - \pi(A)y \in R \) and since \(P \cap R = P_0 \), we have that \(\pi(A)z = z_1 \in P_0 \). Hence \(\pi(A)z \in P_0 + M_P \) and the subspace \(P_0 + M_P \) is invariant for \(\pi \).
Since T is an isometry from P_+ onto K,
\[T(P_0[+]M_P) = TM_P = \{Tx : x \in M_P\}\]
is a finite-dimensional subspace in K. Since $\pi_K T = T\pi_P$, TM_P is a finite-dimensional invariant subspace in N which contradicts the assumption that N does not have such subspaces. Hence P_0 is a maximal neutral invariant subspace in $N^{[1]}$. The proof is complete.

The following lemma compares two maximal neutral invariant subspaces.

Lemma 2.4. Let L and K be maximal neutral invariant subspaces in H. Then $L \cap K = L \cap K^\perp = L^\perp \cap K$ and $\dim L = \dim K$.

Proof. Set $M = L \cap K$. The subspace $L \cap K^\perp$ is neutral, invariant and J-orthogonal to K. If $L \cap K^\perp \subsetneq K$, then $K + (L \cap K^\perp)$ is a neutral invariant subspace larger than K. This contradiction shows that $L \cap K^\perp \subseteq K$. Therefore $M = L \cap K^\perp$. Similarly $M = L^\perp \cap K$.

If $M = \{0\}$, then $L \cap K^\perp = L^\perp \cap K = \{0\}$. Hence, for every $x \in L$ there is $y \in K$ such that $[x, y] \neq 0$ and vice versa. Therefore $\dim L = \dim K$.

If $M \neq \{0\}$, then $\dim L = \dim M + \dim(L/M) = \dim M + \dim(K/M) = \dim K$,

since L/M and K/M are maximal neutral invariant subspaces in $M^{[1]}/M$ and since $(L/M) \cap (K/M) = \{0\}$. The lemma is proved.

2.3. **Quotient J-symmetric representations.** Let π be a J-symmetric representation of a *-algebra \mathcal{A} on a Krein space H. For every neutral invariant subspace L, $L \subseteq L^{[1]}$ and we can consider the quotient representation π^L of \mathcal{A} on the quotient space $\tilde{L} = L^{[1]}/L$. Making use of Phillips’ approach ([11], Lemmas 4.2 and 4.3), it is easy to show that π^L is J-symmetric. Let L and M be different maximal neutral invariant subspaces in H. We shall investigate the question of when the representations π^L and π^M are equivalent. In order to answer this question we shall consider the following definition of equivalence of two representations.

Definition. We say that a G-symmetric representation π of \mathcal{A} on H is J-equivalent to a G_1-symmetric representation ρ of \mathcal{A} on K ($\pi \sim \rho$) if there is a bounded operator T from H onto K which
has a bounded inverse and such that $T\pi = \rho T$ and that

$$[Tx, Ty]_{G_1} = [x, y]_G$$

for all x, y in H, i.e., $T^* G_1 T = G$.

If π and ρ are *-representations of \mathcal{A}, then $G = 1_H$, $G_1 = 1_K$ and J-equivalence becomes the usual equivalence of *-representations.

Let L be an invariant neutral subspace and let x and y in $L^{[1]}$ be representatives of classes \hat{x} and \hat{y} in \hat{L}. Then the form

$$[\hat{x}, \hat{y}] = [x, y]$$

on \hat{L} does not depend on the choice of representatives.

It follows from Lemma 4.2 [11] that $L^{[1]}$ can be decomposed into three mutually orthogonal and J-orthogonal subspaces

$$L^{[1]} = L_+ + L + L_-$$

where $L_+ = H_+ \cap L^{[1]}$ and $L_- = H_- \cap L^{[1]}$. Thus the quotient space $\hat{L} = L^{[1]}/L$ is isomorphic and isometric with $L_\pm = L_+ + L_-$. We shall denote by β the orthogonal projection of $L^{[1]}$ onto L_\pm. By (5), $\beta \pi(A) \beta = \beta \pi(A)$. Therefore

$$\pi_\beta(A)y = \beta \pi(A)y, \quad A \in \mathcal{A}, \quad y \in L_\pm,$$

is a representation of \mathcal{A} on L_\pm which is J-equivalent to π^L. We shall often identify π^L and π_β. The subspace L_\pm is invariant for the involution J and the form $[\cdot, \cdot]$ does not degenerate on L_\pm, i.e., $[x, y] = 0$ for all y in L_\pm implies $x = 0$.

Lemma 2.5. (i) The representation π^L of \mathcal{A} on \hat{L} is J-symmetric. If L is a maximal neutral invariant subspace, then π^L has no neutral invariant subspaces.

(ii) If \mathcal{L} is an invariant subspace in $L^{[1]}$ such that

$$L^{[1]} = L + \mathcal{L} \quad \text{and} \quad L \cap \mathcal{L} = \{0\},$$

then the representations π^L and $\pi_\mathcal{L}$ are J-equivalent ($\pi^L \sim \pi_\mathcal{L}$).

Proof. Decomposing any y and z in $L^{[1]}$ according to (5):

$$y = y_+ + y_0 + y_-, \quad z = z_+ + z_0 + z_-,$$

we see that $\beta y = y_+ + y_-$, $\beta z = z_+ + z_-$ and that

$$[y, z] = [\beta y, \beta z] = (y_+, z_+) - (y_-, z_-).$$
It follows from (6) that, for all A in \mathcal{A} and $y, z \in L_\pm$,
\[
[\pi_\beta(A)y, z] = [\beta \pi(A)y, \beta z] = [\pi(A)y, z] = [y, \pi(A^*)z] \\
= [\beta y, \beta \pi(A^*)z] = [y, \pi_\beta(A^*)z].
\]
Therefore π_β is J-symmetric. Since $\pi^L \sim \pi_\beta$, π^L is J-symmetric. It follows from (4)–(6) that if L is maximal neutral invariant, then π^L has no neutral invariant subspaces. Part (i) is proved.

Let \mathcal{L} be an invariant subspace in $L^{[1]}$ and let Q be the orthoprojection onto \mathcal{L}. Set $G = QJQ$. By Lemma 2.2 (ii), the representation $\pi_\mathcal{L}$ of \mathcal{A} on \mathcal{L} is G-symmetric.

Now assume that $L^{[1]} = L + \mathcal{L}$ and that $L \cap \mathcal{L} = \{0\}$. Let T be the restriction of the projection β to \mathcal{L}. Since $L^{[1]} = L + \mathcal{L}$, T is a bounded operator from \mathcal{L} onto L_\pm. Since $L \cap \mathcal{L} = \{0\}$, we have that $\text{Ker} \ T = \{0\}$. Therefore T has a bounded inverse. For every $y \in \mathcal{L}$,
\[
\pi_\beta(A)Ty = \pi_\beta(A)\beta y = \beta \pi(A)\beta y = \beta \pi(A)y \\
= \beta \pi_\mathcal{L}(A)y = T\pi_\mathcal{L}(A)y,
\]

since $\pi_\mathcal{L}(A)y \in \mathcal{L}$. From (6) and from Lemma 2.2 (ii) it follows that,
\[
[Ty, Tz] = [\beta y, \beta z] = [y, z]_G,
\]
for all $y, z \in \mathcal{L}$. Therefore $\pi^L \sim \pi_\beta \sim \pi_\mathcal{L}$. The lemma is proved.

It follows from the construction of the representation π^L that it depends heavily on the choice of a neutral invariant subspace L. Even if L and M are maximal neutral invariant subspaces in H, the representations π^L and π^M are not, generally speaking, J-equivalent. In Theorem 2.6 we shall show that if π satisfies a certain condition, then for all maximal neutral invariant subspaces L and M, the quotient representations π^L and π^M are J-equivalent.

Let M be a subspace of a Krein space H and let $H = M[+]M^{[1]}$. If Q is the orthoprojection on M, it follows from Theorem 2.1 (iii) that the operator $G = QJQ$ has a bounded inverse. By Lemma 2.2 (i), there are a scalar product $(,)_1$ and an involution J_G on M such that M decomposes into an orthogonal sum $M_- \oplus M_+$ of subspaces M_- and M_+ with respect to $(,)_1$ and such that $J_G = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ with respect to this decomposition. Hence M becomes a Krein space with respect to the form $[x, y]_G = (J_Gx, y)_1$.

We shall now consider a special class of J-symmetric representations, which will play an important role in this paper.
DEFINITION. Let π be a J-symmetric representation of a $*$-algebra on a Krein space H. We say that π is Π-decomposable if $H = K[+]K^{[1]}$ where K is a uniformly negative invariant subspace and $K^{[1]}$ is a Π_k-space, $k = k_-$ (one of the summands can be zero). We say that π is finitely Π-decomposable if, in addition, the $*$-representation π_K on K decomposes in a finite orthogonal sum of irreducible representations. Similarly we can define Π_+-decomposable and finitely Π_+-decomposable representations.

Let L be a neutral invariant subspace and let Z be an invariant subspace of L. Then

$$Z \subset L \subset L^{[1]} \subset Z^{[1]}$$

and the quotient space $L_1 = L/Z$ is contained in $\hat{Z} = Z^{[1]}/Z$. It follows from (4) that $L_1^{[1]} = L^{[1]}/Z$, where $L_1^{[1]}$ is the J-orthogonal complement of L_1 in \hat{Z}. Therefore the subspaces $L_1^{[1]}/L_1$ and $L^{[1]}/L$ are isomorphic and isometric and

$$\pi_L \sim (\pi_Z)^{(L/Z)}.$$

We shall now prove the main theorem of this section.

THEOREM 2.6. Let π be a finitely Π-decomposable J-symmetric representation of a $*$-algebra \mathcal{A} on a Krein space H. If L is a maximal neutral invariant subspace in H, then the representation π_L is finitely Π-decomposable. If K is another maximal neutral invariant subspace in H, then the quotient representations π_L and π_K on $L^{[1]}/L$ and on $K^{[1]}/K$ respectively are J-equivalent.

Proof. Set $Z = L \cap K$. The quotient spaces $L_1 = L/Z$ and $K_1 = K/Z$ are contained in the quotient space $\hat{Z} = Z^{[1]}/Z$, they are maximal neutral invariant subspaces for the representation π_Z and $L_1 \cap K_1 = \{0\}$. It follows from (7) that if we prove that the representations $(\pi_Z)^{L_1}$ and $(\pi_Z)^{K_1}$ are J-equivalent, we shall also obtain that the representations π_L and π_K are J-equivalent. Thus without loss of generality we may assume that $Z = L \cap K = \{0\}$.

We shall consider 3 cases.

Case 1. Assume that H is a Π_k-space.

Then \hat{L} is a Π_n-space, $n < k$, so that π_L is finitely Π-decomposable. By Lemma 2.4 and by Law of inertia, $\dim L = \dim K \leq k$. Set $N = L + K$. Then N is invariant for π and $\dim N \leq 2k$. Since $L \cap K = \{0\}$, it follows from Lemma 2.4 that $N \cap L^{[1]} = L$. Since
\(N^{[\perp]} = L^{[\perp]} \cap K^{[\perp]} \), by Lemma 2.4,
\[
N \cap N^{[\perp]} = N \cap (L^{[\perp]} \cap K^{[\perp]}) = L \cap K^{[\perp]} = L \cap K = \{0\}.
\]
Hence, by (2), \(N = N_- + N_+ \), where \(N_- \) and \(N_+ \) are respectively negative and positive finite-dimensional subspaces. Since every definite finite-dimensional subspace is also uniformly definite, it follows from Theorem 2.1 (ii), that \(H = N[+]N^{[\perp]} \). Since \(K \cap L^{[\perp]} = \{0\} \), we have that \(L^{[\perp]} = L[+]N^{[\perp]} \). By Lemma 2.5 (ii), \(\pi L \sim \pi_{N^{[\perp]}} \).

Similarly, \(\pi K \sim \pi_{N^{[\perp]}} \), so that \(\pi L \sim \pi K \).

Case 2. Let \(H \) be finitely \(\Pi_- \)-decomposable and let \(H = M[+]M^{[\perp]} \) where \(M \) is an infinite dimensional uniformly negative invariant subspace such that \(M^{[\perp]} \) is a \(\Pi_k \)-space, \(k = k_\perp \), and such that \(\pi_M \) decomposes in a finite orthogonal sum of irreducible representations. Assume that \(M^{[\perp]} \) has no neutral invariant subspaces.

In Lemma 3.2 [8] it is proved that in this case there exist a uniformly definite invariant subspace \(L_+ \) in \(M^{[\perp]} \), a uniformly negative invariant subspace \(L_- \) in \(M \) and an isometry \(T \) from \(L_+ \) onto \(L_- \) \((\|Tx\|_{L_-} = \|x\|_{L_+})\) such that
\[
\pi T|_{L_+} = T\pi|_{L_+} \quad \text{and} \quad L = \{Tx + x : x \in L_+\}.
\]

By Theorem 3.5 [8], \(M^{[\perp]} = \mathcal{N}[+]\mathcal{S}[+]P \) where \(\mathcal{N} \) and \(P \) are maximal negative and maximal positive invariant subspaces in \(M^{[\perp]} \) and where \(\mathcal{S} \) is an invariant \(\Pi_m \)-space, \(m \leq k \), which has neither neutral nor definite invariant subspaces. It is also proved there that every positive invariant subspace of \(M^{[\perp]} \) is contained in \(P \). Hence \(L_+ \subseteq P \).

The subspace \(N = M[+]\mathcal{N} \) is uniformly negative, invariant and
\[
H = N[+]\mathcal{S}[+]P.
\]

By Law of inertia, \(\dim \mathcal{N} \leq k \). Since \(\pi_M \) decomposes in a finite orthogonal sum of irreducible representations, \(\pi_N \) also decomposes in a finite orthogonal sum of irreducible representations. Set
\[
N_L = N \cap L^{[\perp]} \quad \text{and} \quad P_L = P \cap L^{[\perp]}.
\]
Since \(N \) and \(P \) are uniformly definite subspaces, it follows that
\[
N = N_L[+]L_- \quad P = P_L[+]L_+ \quad \text{and} \quad L^{[\perp]} = N_L[+]L[+]P_L[+]\mathcal{S}.
\]
The subspaces \(N_L \) and \(P_L \) are invariant for \(\pi \). Set
\[
(8) \quad \mathcal{L} = N_L[+]P_L[+]\mathcal{S} \quad \text{so that} \quad L^{[\perp]} = \mathcal{L}[+]L.
\]
The subspace \mathcal{L} is invariant for π. Therefore, by Lemma 2.5 (ii), $\pi^L \sim \pi_{\mathcal{L}}$. Since $N_L \subset N$, π_{N_L} decomposes in a finite orthogonal sum of irreducible representations. Since $P_L[+]\mathcal{H}$ is a Π_m-space, $\pi_{\mathcal{L}}$ (and hence π^L) is a finitely Π-decomposable representation.

Similarly,

$$\mathcal{H} = N_K[+P_K[+]\mathcal{H}] \quad \text{and} \quad K^{[\perp]} = \mathcal{H}[+]K,$$

where $N_K = N \cap K^{[\perp]}$ and $P_K = P \cap K^{[\perp]}$, and $\pi^K \sim \pi_{\mathcal{H}}$.

In Theorem 2.6 [7] it is proved that in this case the $*$-representations π_{N_L} and π_{N_K} are equivalent and that the $*$-representations π_{P_L} and π_{P_K} are equivalent. Therefore there exist an isometry U from N_L onto N_K (in $\| \cdot \|_N$) and an isometry V from P_L onto P_K (in $\| \cdot \|_P$) such that

$$U\pi|_{N_L} = \pi U|_{N_L} \quad \text{and} \quad V\pi|_{P_L} = \pi V|_{P_L}.$$

Set $S = U[+]V[+]1_\mathcal{H}$. Then S is a bounded operator from \mathcal{L} onto \mathcal{H} which has a bounded inverse.

Given x and y in \mathcal{L} and decomposing them according to (8)

$$x = x_N + x_P + x_\mathcal{H}, \quad y = y_N + y_P + y_\mathcal{H},$$

we obtain that

$$[Sx, Sy] = [Ux_N + Vx_P + x_\mathcal{H}, Uy_N + Vy_P + y_\mathcal{H}]$$

$$= [Ux_N, Uy_N] + [Vx_P, Vy_P] + [x_\mathcal{H}, y_\mathcal{H}]$$

$$= [x_N, y_N] + [x_P, y_P] + [x_\mathcal{H}, y_\mathcal{H}] = [x, y].$$

We also have that

$$\pi S|_{\mathcal{L}} = \pi U|_{N_L}[+]\pi V|_{P_L}[+]\pi_\mathcal{H} = U\pi|_{N_L}[+]V\pi|_{P_L}[+]\pi_\mathcal{H} = S\pi|_{\mathcal{L}}.$$

Therefore the representations $\pi_{\mathcal{L}}$ and $\pi_{\mathcal{H}}$ are J-equivalent, so that the representations π^L and π^K are J-equivalent.

Case 3 (general case). Let $H = M[+]M^{[\perp]}$, as in Case 2. Assume that $M^{[\perp]}$ has neutral invariant subspaces.

By the assumption of the theorem, the representation π_M decomposes in a finite orthogonal sum of irreducible representations. If all of them are finite-dimensional, then H is a Π_k-space and this was considered in Case 1. Let M_f be the subspace in M which contains all finite-dimensional irreducible subrepresentations. Then M_f is finite-dimensional and $(M[-]M_f)^{[\perp]} = M_f[+]M^{[\perp]}$ is a Π_n-space, $k_- \leq n_\perp$. Considering $M[-]M_f$ instead of M, we may assume without loss of generality that π_M is a finite sum of infinite dimensional irreducible representations.
By Lemma 2.3, \(L_M = L \cap M^{[1]} \) is a maximal neutral invariant subspace in \(M^{[1]} \). Let \(L_M^{[1]} \) be the \(J \)-orthogonal complement of \(L_M \) in \(H \) and let \(\mathcal{L} = L_M^{[1]} \cap M^{[1]} \). Then \(\mathcal{L} \) is the \(J \)-orthogonal complement of \(L_M \) in \(M^{[1]} \),

\[L_M \subset \mathcal{L} \quad \text{and} \quad \mathcal{L}^{[1]}_M = M^{[+]L_M^{[1]}}. \]

We also have that \(L_M^{[1]} / L_M \) is isomorphic and isometric to \(M^{[+]}(\mathcal{L}/L_M) \) and that \(\mathcal{L}/L_M \) is a \(\Pi_n \)-space, \(n < k \), which contains no neutral invariant subspaces. Therefore the representation \(\pi^{L_M} \) on \(L_M^{[1]} / L_M \) is finitely \(\Pi \)-decomposable. The subspace \(\tilde{L} = L/L_M \) is a maximal neutral invariant subspace in \(L_M^{[1]} / L_M \) and \(\tilde{L} \cap (\mathcal{L}/L_M) = \{0\} \). It follows from Case 2 that the representation \((\pi^{L_M})\tilde{L} \) is finitely \(\Pi \)-decomposable. Since, by (7), \(\pi^L \sim (\pi^{L_M})\tilde{L} \), \(\pi^L \) is also finitely \(\Pi \)-decomposable. This concludes the proof that in all cases \(\pi^L \) is finitely \(\Pi \)-decomposable.

Now let \(K \) be another maximal neutral invariant subspace in \(H \) such that \(L \cap K = \{0\} \). Then \(K_M = K \cap M^{[1]} \) is a maximal neutral invariant subspace in \(M^{[1]} \) and \(L_M \cap K_M = \{0\} \). Set

\[N = L_M + K_M \]

and let \(N^{[1]} \) be the \(J \)-orthogonal complement of \(N \) in \(M^{[1]} \). Since \(M^{[1]} \) is a \(\Pi_k \)-space, we obtain, as in Case 1, that \(N^{[1]} \) is a \(\Pi_n \)-space \(n < k \), that it is invariant for \(\pi \) and that

\[M^{[1]} = N^{[+]N^{[1]}} \quad \text{and} \quad \mathcal{L} = L_M^{[+]N^{[1]}}. \]

Set \(H_1 = M^{[+]N^{[1]}} \). Then \(H_1 \) is an invariant \(\Pi \)-decomposable subspace of \(H \) and

\[L_M^{[1]} = M^{[+]\mathcal{L}} = M^{[+]L_M^{[1]}N^{[1]}} = L_M^{[+]H_1}. \]

Therefore it follows from Lemma 2.5 (ii) that the quotient representation \(\pi^{L_M} \) is \(J \)-equivalent to the representation \(\pi_{H_1} \). The subspace \(\tilde{L} = L/L_M \) is a maximal neutral invariant subspace for the representation \(\pi^{L_M} \). Since \(\pi^{L_M} \sim \pi_{H_1} \), there is a maximal neutral invariant subspace \(L_1 \) in \(H_1 \) such that \((\pi^{L_M})\tilde{L} \sim (\pi_{H_1})^{L_1} \). Therefore, by (7),

\[\pi^L \sim (\pi^{L_M})\tilde{L} \sim (\pi_{H_1})^{L_1}. \]

Similarly, there is a maximal neutral invariant subspace \(K_1 \) in \(H_1 \) such that \(\pi^K \sim (\pi_{H_1})^{K_1} \).
Since $N^{[\perp]}$ is J-orthogonal to L_M and since L_M is a maximal neutral invariant subspace in $M^{[\perp]}$, $N^{[\perp]}$ has no neutral invariant subspaces. Hence the subspace H_1 and the representation π_{H_1} satisfy Case 2. Thus $(\pi_{H_1})^J \sim (\pi_{H_1})^K$, so that the representations π^L and π^K are J-equivalent which concludes the proof of the theorem.

The following example shows that if π is not finitely Π-decomposable, then Theorem 2.6 does not necessarily hold.

Example 1. Let ρ be a $*$-representation of a $*$-algebra \mathcal{A} on a Hilbert space H, let

$$H_- = H_+ = \sum_{i=1}^{\infty} \bigoplus \mathcal{H}_i, \quad \text{all } \mathcal{H}_i = \mathcal{H}.$$

Set $H = H_- \oplus H_+$. If $x = x_- + x_+$ and $y = y_- + y_+$, where $x_-, y_- \in H_-$ and $x_+, y_+ \in H_+$, set

$$[x, y] = -(x_-, y_-) + (x_+, y_+).$$

Then H becomes a Krein space and the representation

$$\pi = \left(\sum_{i=1}^{\infty} \bigoplus \rho_i \right) \oplus \left(\sum_{i=1}^{\infty} \bigoplus \rho_i \right), \quad \text{all } \rho_i = \rho,$$

on H is J-symmetric. Let $x_0 = (x_1, \ldots, x_i, \ldots) \in H_-$, $x_i \in \mathcal{H}_i$, and let T_n, $n = 0, 1, \ldots$, be isometries from H_- into H_+ such that $T_n x_0 = (y_1, \ldots, y_i, \ldots) \in H_+$, $y_1 = \cdots = y_n = 0$ and $y_{n+i} = x_i$.

The subspaces $L_n = \{x_- + T_n x_- : x_- \in H_-\}$ are maximal, neutral invariant subspaces and

$$L_n^{[\perp]} = L_n + \mathcal{L}_n \quad \text{where } \mathcal{L}_n = \sum_{i=1}^{n} \bigoplus \mathcal{H}_i \subset H_+.$$

By Lemma 2.5 (ii), $\pi_{L_n} \sim \pi_{\mathcal{L}_n}$. Since all the representations $\pi_{\mathcal{L}_n}$ are different, we obtain that the quotient representations π^L depend on the choice of the maximal neutral invariant subspaces L.

3. **Representational indices of derivations of C^*-algebras.** In this section we apply the results of §2 to the investigation of derivations of C^*-algebras.

Let ρ be a $*$-representation of a C^*-algebra \mathcal{A} on a Hilbert space H. A derivation δ of A into $B(H)$ relative to ρ is a linear mapping from a dense $*$-subalgebra $D(\delta)$ of \mathcal{A} into $B(H)$ such that

(i) $\delta(AB) = \delta(A)\rho(B) + \rho(A)\delta(B)$, $A, B \in D(\delta)$;
(ii) $\delta(A^*) = \delta(A)^*$, $A \in D(\delta)$;

(iii) $\text{Ker } \rho \subseteq D(\delta)$.

The derivation is closed if $A_n \in D(\delta)$, $A_n \to A$ and $\delta(A_n) \to B$ implies $A \in D(\delta)$ and $\delta(A) = B$. If δ is closed, then $D(\delta)$ is a *-normed algebra with respect to the norm

$$\|A\|_\delta = \|A\| + \|\delta(A)\|.$$

A symmetric operator S on H implements δ if its domain $D(S)$ is dense in H and if for all $A \in D(\delta)$

$$\rho(A)D(S) \subseteq D(S) \quad \text{and} \quad \delta(A)|_{D(S)} = i(S\rho(A) - \rho(A)S)|_{D(S)}.$$

If T is a symmetric extension of S and if it also implements δ, we say that T is a symmetric δ-extension of S. If S has no symmetric δ-extensions, it is called a maximal symmetric implementation of δ.

We shall now consider briefly the link between derivations implemented by symmetric operators and J-symmetric representations on Krein spaces.

Let S be a symmetric operator and let S^* be its adjoint. Then $N_d(S) = \{x \in D(S^*) : S^*x = idx, \ d = \pm\}$ are the deficiency spaces of S and $n_d(S) = \dim N_d(S)$ are the deficiency indices of S. The scalar product

$$\langle x, y \rangle^S = \langle x, y \rangle + \langle S^*x, S^*y \rangle, \quad x, y \in D(S^*),$$

converts $D(S^*)$ into a Hilbert space and

$$D(S^*) = D(S)(+)N_-(S)(+)N_+(S)$$

is the orthogonal sum of the subspaces $D(S)$, $N_-(S)$ and $N_+(S)$. Set

$$N(S) = N_-(S)(+)N_+(S).$$

Let Q and Q_+ be the projections onto $N(S)$ and onto $N_+(S)$ in $D(S^*)$. Then $J = 2Q_+ - Q$ is an involution on $N(S)$. The space $N(S)$ becomes a Krein space with respect to the indefinite form

$$[x, y]^S = \langle Jx, y \rangle^S, \quad x, y \in N(S),$$

and it decomposes into a simultaneously J-orthogonal and orthogonal sum $N(S) = N_-(S) + N_+(S)$. We have that, for $x \neq 0$,

$$[x, x]^S = 2\langle x, x \rangle > 0, \quad x \in N_+(S), \quad \text{and}$$

$$[x, x]^S = -2\langle x, x \rangle < 0, \quad x \in N_-(S),$$

so that $N_+(S)$ and $N_-(S)$ are respectively uniformly positive and uniformly negative subspaces.
Now let S implement a derivation δ relative to ρ. Then it is easy to show that, for every A in $D(\delta)$,

$$\rho(A)D(S^*) \subseteq D(S^*) \quad \text{and} \quad \delta(A)|_{D(S^*)} = i(S^*\rho(A) - \rho(A)S^*)|_{D(S^*)}.$$

Set $\|x\|_{S}^2 = \langle x, x \rangle_{S}$ for $x \in D(S^*)$. In [3] and [5] it was shown that

$$\|\rho(A)x\|_{S}^2 \leq (\|\rho(A)\|^2 + \|\delta(A)\|^2)\|x\|_{S}^2 \leq \|A\|_{S}^2 \|x\|_{S}^2.$$

Therefore $\rho(D(\delta))$ acts as an algebra of bounded operators on $D(S^*)$. Since $D(S)$ is invariant for $\rho(D(\delta))$, we define a representation π_{S}^δ of $D(\delta)$ on $N(S)$ by the formula:

(10) \quad $\pi_{S}^\delta(A) = Q\rho(A)Q$, \quad $A \in D(\delta)$, \quad i.e.,

$$\pi_{S}^\delta(A)x = Q\rho(A)x, \quad x \in N(S).$$

Theorem 3.1 [4]. (i) (cf. [3]). The representation π_{S}^δ of the algebra $D(\delta)$ on $N(S)$ is J-symmetric and bounded with respect to the norm $\| \|$.

(ii) There is a one-to-one correspondence between closed symmetric δ-extensions T of S and neutral subspaces L in $N(S)$ invariant for π_{S}^δ: $T = S^*|_{D(T)}$, where $D(T) = D(S)(+)L$.

(iii) There is a maximal symmetric implementation T of δ which extends S. The representation π_{T}^δ has no neutral invariant subspaces.

If T is a symmetric extension of S and if $L(T)$ is the neutral subspace in $N(S)$ which corresponds to it, then, using Lemma 13 [2], we obtain that

(11) \quad $D(T^*) = D(S)(+)L(T)^{[1]}$ \quad and \quad $T^* = S^*|_{D(T^*)}$,

where $L(T)^{[1]}$ is the J-orthogonal complement of $L(T)$ in $N(S)$.

Let S be a maximal symmetric implementation of a derivation δ. By Theorem 3.1 (iii), the representation π_{S}^δ of $D(\delta)$ on $N(S)$ has no neutral invariant subspaces. We shall call the class of all representations of $D(\delta)$ J-equivalent to π_{S}^δ a representational index of δ relative to S and denote it by i_{S}^δ.

3.2. Uniqueness of representational indices. By Theorem 3.1, every derivation δ implemented by a symmetric operator has a maximal symmetric implementation S. In fact, δ always has an infinite set $\mathcal{M}(\delta)$ of maximal symmetric implementations, since, for example, for every selfadjoint operator B in the commutant $\rho(A)'$, the operator $S + B$ is also a maximal symmetric implementation of δ. In this
context the following question arises: under what conditions on \(\delta \) are all the representations \(\pi^S_\delta \), \(S \in \mathcal{M}(\delta) \), \(J \)-equivalent, so that \(\delta \) has only one representational index?

Let \(S \) and \(T \) be maximal symmetric implementations of \(\delta \). For the case when \(T = S + B \), \(B \in \rho(A)' \), it was shown in [7] that the representations \(\pi^S_\delta \) and \(\pi^S_\delta \) are \(J \)-equivalent, so that \(i^0_S = i^0_T \). It was also proved there that if \(S \) and \(T \) are isomorphic, i.e., there is a unitary operator \(V \) such that \(VS = TV \), and if \(V \in \rho(\mathcal{A})' \), then \(i^0_S = i^0_T \).

We shall now prove the main theorem of this section.

THEOREM 3.2. Let \(S \) be a symmetric implementation of a derivation \(\delta \) and let the representation \(\pi^S_\delta \) be finitely \(\Pi_- \) or \(\Pi_+ \)-decomposable. Then for all maximal symmetric \(\delta \)-extensions \(T \) and \(T_1 \) of \(S \), the representations \(\pi^T_\delta \) and \(\pi^{T_1}_\delta \) are \(J \)-equivalent, so that \(i^0_T = i^0_{T_1} \).

Proof. Let \(T \) be a maximal symmetric \(\delta \)-extension of \(S \). By Theorem 3.1, there is a maximal neutral subspace \(L(T) \) in \(N(S) \) invariant for \(\pi^S_\delta \) such that \(D(T) = D(S)(+)L(T) \). By (11), \(D(T^*) = D(S)(+)L(T)^{[1]} \) where \(L(T)^{[1]} \) is the \(J \)-orthogonal complement of \(L(T) \) in \(N(S) \). Since \(T^* = S^*|_{D(T^*)} \), we have that \((x, y)^T = (x, y)^S \), \(x, y \in D(T^*) \). Therefore \(L(T) \) and \(N(T) \) are \(J \)-orthogonal and orthogonal with respect to \((,)^S \). Since \(D(T^*) = D(T)(+)N(T) \),

\[
L(T)^{[1]} = L(T) + N(T) .
\]

Let \(Q_S \) and \(Q_T \) be the orthoprojections onto \(N(S) \) and \(N(T) \) in \(D(S^*) \) respectively. Then \(Q_T \subset Q_S \) and, by (10),

\[
\pi^S_\delta(A) = Q_S \rho(A) Q_S \quad \text{and} \quad \pi^T_\delta(A) = Q_T \rho(A) Q_T = Q_T \pi^{S}_\delta(A) Q_T , \quad A \in D(\delta) .
\]

It follows from the discussion before Lemma 2.5 that the representation \(\pi^T_\delta \) is \(J \)-equivalent to the quotient representation \((\pi^S_\delta)^{L(T)} \) of \(D(\delta) \) on \(L(T)^{[1]} / L(T) \). Since \(\pi^S_\delta \) is finitely \(\Pi \)-decomposable, it follows from Theorem 2.6 that all quotient representations \((\pi^S_\delta)^L \) of \(D(\delta) \) on \(L^{[1]} / L \), where \(L \) are maximal neutral subspaces in \(N(S) \) invariant for \(\pi^S_\delta \), are \(J \)-equivalent. Therefore all the representations \(\pi^T_\delta \), where \(T \) are maximal symmetric \(\delta \)-extensions of \(S \), are \(J \)-equivalent. The theorem is proved.

REMARK. The condition that the representation \(\pi^S_\delta \) is finitely \(\Pi \)-decomposable is a strong one. If, however, \(\pi^S_\delta \) is not \(\Pi \)-decompos-
able, there is hardly anything we can say about J-equivalence of the representations π^{δ}_{τ}, $S \subseteq T$ and $T \in \mathcal{MS}(\delta)$. Even if π^{δ}_{S} is Π-decomposable, but not finitely Π-decomposable, S may have an infinite number of maximal δ-extensions T such that the corresponding representations π^{δ}_{T} are all not J-equivalent, so that δ has an infinite number of different representational indices \imath^{δ}_{τ}, $S \subseteq T$ (see Example 4). On the other hand, in many interesting cases this condition is fulfilled. If, for example, $k = \min(n_{+}(S), n_{-}(S)) < \infty$, then $N(S)$ is a Π_{k}-space and π^{δ}_{S} is Π-decomposable. In the case, studied by Powers [12] and Arveson [1] (see Example 2), when δ is the generator of a semigroup of endomorphisms of $B(H)$ which has a semigroup of intertwining isometries, $k = 0$ and $N(S) = N_{+}(S)$ is a Hilbert space, so that π^{δ}_{S} is Π-decomposable. Below we consider derivations δ_{S} from C^{*}-subalgebras \mathcal{A}_{S} of $B(H)$ into $B(H)$ generated by symmetric operators S on H. We also consider the restrictions δ of this derivation to some C^{*}-subalgebras of \mathcal{A}_{S}. If $\min(n_{+}(S), n_{-}(S)) < \infty$, then the representations π^{δ}_{S} are finitely Π-decomposable and Theorem 3.2 holds.

Let T and T_{1} be maximal symmetric implementations of δ. If there exists a symmetric implementation S of δ such that $S \subseteq T$ and $S \subseteq T_{1}$ then Theorem 3.2 gives sufficient conditions for the representations π^{δ}_{T} and $\pi^{\delta}_{T_{1}}$ to be J-equivalent. If, however, such an implementation S does not exist, it becomes extremely difficult to establish whether π^{δ}_{T} and $\pi^{\delta}_{T_{1}}$ are J-equivalent. Therefore in order to be able to decide whether δ has a unique representational index or not, we have to impose another condition on δ which will allow us to “compare” different maximal symmetric implementations of δ.

Definition. Let δ be a derivation of \mathcal{A} relative to a representation ρ. We say that a symmetric implementation S of δ is minimal if, for every symmetric implementation T of δ, there is a selfadjoint operator B in the commutant $\rho(\mathcal{A})'$ such that $S \subseteq T + B$.

Theorem 3.3. Let S be a minimal symmetric implementation of a derivation δ of a C^{*}-algebra \mathcal{A} relative to a representation ρ. If the representation π^{δ}_{S} is finitely Π-decomposable, then, for all maximal symmetric implementations T of δ, the representations π^{δ}_{T} are J-equivalent, so that δ has a unique representational index.

Proof. Let R and T be maximal symmetric implementations of δ. Then there are B, $C \in \rho(\mathcal{A})'$ such that $S \subseteq R + B$ and $S \subseteq
The operators $R + B$ and $T + C$ are also maximal symmetric implementations of δ. By Theorem 3.2, π_{R+B}^δ is J-symmetric to π_{T+C}^δ. By Theorem 3.6 [7], π_{R}^δ and π_{R+B}^δ are J-equivalent and π_{T}^δ and π_{T+C}^δ are J-equivalent. Hence π_{R}^δ and π_{T}^δ are J-equivalent.

Remark. The existence of a minimal symmetric implementation is another strong condition imposed on δ. However, without this assumption it is difficult to test the representations π_{S}^δ, $S \in \mathcal{MS}(\delta)$, on J-equivalence. In Example 2 below a minimal symmetric implementation does not exist and, therefore, it is not clear whether the representations π_{S}^δ and $\pi_{S_1}^\delta$, $S, S_1 \in \mathcal{MS}(\delta)$, which correspond to different intertwining semigroups of isometries, are J-equivalent [13]. In many cases the derivations do have minimal symmetric implementations. In [6], for example, it was shown that if $\rho(\mathcal{A})$ contains the ideal $C(H)$ of all compact operators on H, then δ has a minimal symmetric implementation. Example 4 considers a derivation δ from \mathcal{A} into $B(H)$ such that \mathcal{A} does not contain $C(H)$ and that δ has a minimal symmetric implementation.

Example 2. Powers [12] and Arveson [1] studied a special case when δ is the generator of a semigroup α_t of endomorphisms of $B(H)$ and when there exists a semigroup $U = \{U(t): t \geq 0\}$ of isometries which intertwine $\alpha_t: U(t)A = \alpha_t(A)U(t), A \in B(H)$. Then δ is a \ast-derivation from a C^*-subalgebra \mathcal{A}_α of all $A \in B(H)$ such that

$$||\alpha_t(A) - A|| \to 0 \quad \text{as } t \to 0^+$$

into $B(H)$. If d is the generator of U, then the operator $S = id$ implements δ, it is symmetric, $N_-(S) = \{0\}$ and $N(S) = N_+(S)$ is a Hilbert space. Therefore S is a maximal symmetric implementation of δ and the \ast-representation π_{S}^δ is Π_--decomposable. Powers and Price [13] showed that if $\{V(t): t \geq 0\}$ is another semigroup of isometries which intertwine α_t and if d_1 is its generator, then $D(d) \cap D(d_1) = \{0\}$. In this case, obviously, δ has no minimal symmetric implementations and, therefore, there is no reason to think that the representational indices i_{S}^δ and $i_{S_1}^\delta$, where $S_1 = id_1$, are equal. From the above remark it also follows that \mathcal{A}_α does not contain $C(H)$.

We shall now consider derivations δ which have minimal symmetric implementations S such that the representations π_{S}^δ are finitely Π-decomposable, so that Theorem 3.3 holds.
Let S be a densely defined symmetric operator on a Hilbert space H. Set

$$\mathcal{B}_S = \{ A \in B(H) : AD(S) \subseteq D(S), \quad A^*D(S) \subseteq D(S) \}
$$

and $(SA - AS)|_{D(S)}$ extends to a bounded operator}. Then \mathcal{B}_S is a *-algebra. For every $x, y \in H$, we denote by $x \otimes y$ the rank-1 operator $z \mapsto (z, x)y$. Then $(x \otimes y)^* = y \otimes x$ and if $x, y \in D(S)$, then $x \otimes y \in \mathcal{B}_S$. By \mathcal{A}_S we denote the norm closure of \mathcal{B}_S. Then \mathcal{A}_S is a C^*-algebra and it contains $C(H)$. The operator S defines a closed *-derivation from \mathcal{A}_S into $B(H)$

$$\delta_S(A)|_{D(S)} = i(SA - AS)|_{D(S)}$$

and $D(\delta_S) = \mathcal{B}_S$. Since $C(H) \subseteq \mathcal{A}_S$, δ_S has a minimal implementation. In fact, S is a minimal implementation of δ_S. In order to prove this we assume that T also implements δ_S. Then for all $x, y \in D(S)$,

$$(x \otimes y)D(T) \subseteq D(T),$$

so that $D(S) \subseteq D(T)$. We also have that for all $z \in D(S)$,

$$(S - T)(x \otimes y)z = (x \otimes y)(S - T)z.$$

Therefore $T|_{D(S)} = (S + \lambda I)|_{D(S)}$, $\lambda \in \mathbb{C}$, so that S is a minimal implementation of δ_S.

Let \mathcal{A} be a unital C^*-subalgebra of \mathcal{A}_S which contains $C(H)$ and such that $\mathcal{B}_S \cap \mathcal{A}$ is dense in \mathcal{A}. Then δ_S generates a derivation $\delta = \delta_S|_{\mathcal{A}}$ on \mathcal{A} and $D(\delta) = \mathcal{B}_S \cap \mathcal{A}$. Since all rank-1 operators $x \otimes y, x, y \in D(S)$, belong to $D(\delta)$, the operator S is still a minimal implementation of δ.

If $n_-(S) = 0$ or $n_+(S) = 0$, then S has no symmetric extensions at all and, therefore, S is a maximal symmetric implementation of δ_S and of any derivation δ generated by δ_S considered above. Another example of a symmetric operator S, which is also a maximal symmetric implementation of δ_S, was given in [7]:

$$S = i\frac{d}{dx} \text{ on } L_2(0, a), \quad a < \infty, \quad \text{and} \quad n_-(S) = n_+(S) = 1.$$

In general, however, we do not know whether S is a maximal implementation of δ_S or not. Even if S is a maximal symmetric implementation of δ_S, it is not necessarily a maximal symmetric implementation of a derivation $\delta = \delta_S|_{\mathcal{A}}$ generated by δ_S on a C^*-subalgebra \mathcal{A} of \mathcal{A}_S considered above. If $\min(n_+(S), n_-(S)) < \infty$, then $N(S)$ is a Π_k-space, so that the representation π_S^δ of $D(\delta)$ is finitely Π-decomposable. Therefore from Theorem 3.3 we obtain the following theorem.
Theorem 3.4. Let \(\min(n_+(S), n_-(S)) < \infty \). Let \(\mathcal{A} \) be a unital \(C^* \)-subalgebra of \(\mathcal{A}_S \) such that \(C(H) \subset \mathcal{A} \) and \(\mathcal{B}_S \cap \mathcal{A} \) is dense in \(\mathcal{A} \). Let \(\delta = \delta_\mathcal{S}|_\mathcal{A} \) and \(D(\delta) = \mathcal{B}_S \cap \mathcal{A} \). Then for all maximal symmetric implementations \(T \) of \(\delta \), the representations \(\pi^\delta_T \) of \(D(\delta) \) are \(J \)-equivalent, so that there exists a unique representational index of \(\delta \).

The following example illustrates Theorems 3.3 and 3.4.

Example 3. Let \(\min(n_+(S), n_-(S)) < \infty \), let \(\mathcal{A} = C(H) + CI_H \) and let \(\delta = \delta_\mathcal{S}|_\mathcal{A} \). Then \(D(\delta) = \mathcal{B}_S \cap C(H) + CI_H \). Assume that \(n_-(S) \leq n_+(S) \) and let \(T \) be a maximal symmetric implementation of \(\delta \). For the case when \(n_+(S) < \infty \), it was proved in [4], and, for the case when \(n_+(S) = \infty \), it was proved in [10] that

\[
 n_-(T) = 0, \quad n_+(T) = n_+(S) - n_-(S) \quad \text{and} \quad \ker \pi^\delta_T = \mathcal{B}_S \cap C(H).
\]

From this it follows immediately that all representations \(\pi^\delta_T, \ T \in \mathcal{M}(\delta) \), of \(D(\delta) \) are \(* \)-equivalent (since all the deficiency spaces \(N(T) = N_+(T) \) are Hilbert spaces, \(J \)-equivalence coincides with \(* \)-equivalence). Thus \(\delta \) has a unique representational index which fits well with Theorems 3.3 and 3.4.

The following example shows that if the representation \(\pi^\delta_S \) (\(S \) is a minimal symmetric implementation of \(\delta \)) is \(\Pi \)-decomposable but not \(\textit{finitely} \) \(\Pi \)-decomposable, then \(\delta \) may have an infinite number of distinct representational indices.

Example 4. Let \(S_1 \) and \(S_2 \) be symmetric operators on \(H_1 \) and \(H_2 \) respectively. Set \(H = H_1 \oplus H_2 \) and \(S = S_1 \oplus S_2 \). Then \(S^* = S_1^* \oplus S_2^* \),

\[
 D(S) = D(S_1) \oplus D(S_2) \quad \text{and} \quad D(S^*) = D(S_1^*) \oplus D(S_2^*).
\]

For \(x = x_1 + x_2 \) and \(y = y_1 + y_2, \ x_i, y_i \in D(S_i^*), \ i = 1, 2, \) let

\[
 \langle x, y \rangle^S = \langle x, y \rangle + (S^*x, S^*y) = \langle x_1, y_1 \rangle^{S_1} + \langle x_2, y_2 \rangle^{S_2}.
\]

Therefore

\[
 N(S) = N(S_1)(+)N(S_2) \quad \text{and} \quad N_{\pm}(S) = N_{\pm}(S_1)(+)N_{\pm}(S_2).
\]

Let \(J_i, \ i = 1, 2, \) be the involutions on \(N(S_i) \), as in §3.1, and let \(J = J_1 \oplus J_2 \). Then \(J \) is an involution on \(N(S) \) and \(N(S_1) \) and
$N(S_2)$ are J-orthogonal with respect to the form

$$[x, y]^S = (Jx, y)^S.$$

Let $\mathcal{A} = (C(H_1) \oplus C(H_2)) + CI_H$. The operator S defines a derivation $\delta = \delta_S|\mathcal{A}$ on \mathcal{A} where

$$D(\delta) = \mathcal{B}_S \cap \mathcal{A} = [(B_{S_1} \cap C(H_1)) \oplus (B_{S_2} \cap C(H_2))] + CI_H$$

and

$$\delta(A)|_{D(\delta)} = i(SA - AS)|_{D(\delta)}, \quad A \in D(\delta).$$

Since all operators $(x_1 \otimes y_1) \oplus (x_2 \otimes y_2)$, $x_i, y_i \in D(S_i)$, belong to $D(\delta)$, the operator S is a minimal symmetric implementation of δ. Assume now that

$$n_+(S_1) = n_-(S_2) = \infty \quad \text{and} \quad n_-(S_1) = n_+(S_2) = 0,$$

so that

$$N_+(S) = N_+(S_1) = N(S_1) \quad \text{and} \quad N_-(S) = N_-(S_2) = N(S_2).$$

Let $A_i \in \mathcal{B}_S \cap C(H_i)$. Then

$$\pi^\delta_S(A_1 \oplus A_2) = \pi^\delta_S(A_1)(+)\pi^\delta_S(A_2).$$

Therefore $\pi^\delta_S|_{\mathcal{B}_S \cap C(H_i)}$ are *-representations of $\mathcal{B}_S \cap C(H_i)$ on Hilbert spaces $N(S_i)$ respectively. Hence they extend to *-representations π_i of $C(H_i)$ on $N(S_i)$. Let $x_i, y_i \in D(S_i)$. For every $z_i \in D(S_i^*)$

$$(x_i \otimes y_i)z_i = (z_i, x_i)y_i \in D(S_i).$$

Therefore

$$\pi^\delta_S((x_1 \otimes y_1) \otimes (x_2 \otimes y_2)) = 0.$$

Hence $\pi_i(x_i \otimes y_i) = 0$, for all $x_i, y_i \in D(S_i)$, and, therefore, $\pi_i = 0$. Thus

$$\pi^\delta_S((A_1 \oplus A_2) + tI_H) = tI_{N(S)}, \quad t \in \mathbb{C},$$

for all $A_i \in \mathcal{B}_S \cap C(H_i)$. We shall now proceed as in Example 1. Let $\{e_i\}_{i=1}^\infty$ be a basis in $N_+(S)$ and let $\{f_j\}_{j=1}^\infty$ be a basis in $N_-(S)$. For $0 \leq n < \infty$, set

$$L_n = \{e_i + f_{i+n} : 1 \leq i < \infty\}.$$

Then L_n are maximal neutral subspaces invariant for π^δ_S and

$$L_n^{[1]} = L_n[+]L_n, \quad \text{where} \quad L_n = \{f_k : 1 \leq k \leq n\}.$$

By Theorem 3.1, for every L_n, there is a maximal symmetric implementation T_n of δ. It follows from the discussion in Theorem 3.2
that the representations π^n_δ are J-equivalent to the quotient representations $(\pi^n_S)^{L_n}$ of $D(\delta)$ on $L_n^{[\perp]}/L_n$. Since $\dim(L_n^{[\perp]}/L_n) = \dim_{\mathcal{L}} = n$, all π^n_δ are not J-equivalent. Therefore δ has an infinite number of distinct representational indices.

REFERENCES

Received October 11, 1991 and in revised form April 13, 1992.

The University of North London, Holloway
London N7 8DB, Great Britain
Semisimplicity of restricted enveloping algebras of Lie superalgebras

JEFFERY MARC BERGEN

A classification of certain 3-dimensional conformally flat Euclidean hypersurfaces

OSCAR J. GARAY

Braided groups of Hopf algebras obtained by twisting

D. GUREVICH and SHAHN MAJID

Flat connections, geometric invariants and the symplectic nature of the fundamental group of surfaces

K. GURUPRASAD

Spin models for link polynomials, strongly regular graphs and Jaeger’s Higman-Sims model

PIERRE DE LA HARPE

On the uniqueness of representational indices of derivations of C*-algebras

EDWARD KISSIN

On infinitesimal behavior of the Kobayashi distance

MYUNG YULL PANG

Vertex operator construction of standard modules for $A_n^{(1)}$

MIRKO PRIMC

Bergman and Hardy spaces with small exponents

KEHE ZHU