Vol. 163, No. 1, 1994

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Curvature characterization of certain bounded domains of holomorphy

Fangyang Zheng

Vol. 163 (1994), No. 1, 183–188
Abstract

In this note, we study the relation between the existence of a negatively curved complete hermitian metric on a complex manifold M and the product structure of (or contained in) M. We introduce the concept of geometric ranks and give a curvature characterization of the rank one manifolds, which generalizes the previous results of P. Yang and N. Mok (see below). In the proof, we used the old techniques of Yau’s Schwartz lemma and Cheng-Yau’s result on the existence of Kähler-Einstein metrics.

Mathematical Subject Classification 2000
Primary: 32D05
Secondary: 32C17, 32L07, 53C55
Milestones
Received: 18 March 1992
Published: 1 March 1994
Authors
Fangyang Zheng
Department of Mathematics
The Ohio State University
Columbus OH 43201
United States