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WEIGHTED MAXIMAL FUNCTIONS AND DERIVATIVES
OF INVARIANT POISSON INTEGRALS OF POTENTIALS

PATRICK AHERN AND WILLIAM COHN

In this paper we prove LP estimates for weighted maximal func-
tions of invariant Poisson integrals of potentials. From this it follows
that the exceptional sets of the Poisson integrals of potentials are sets
of zero Hausdorff capacity.

Let S denote the boundary of Bn , the unit ball in Cn , and let dσ
be the unusual rotation invariant measure defined on S. If £ is a
function belonging to the usual Lebesgue space Lx(dσ) of functions
defined on the sphere then by P[g] we will mean the invariant Poisson
integral of g defined by the equation

where z e Bn.
In this paper we will continue the work of Ahern and Cascante [ACa]

and study invariant Poisson integrals of potentials of distributions in
the atomic Hardy spaces H%t where 0 < p < 1. Precisely, if v
denotes a distribution in the space H%t defined by Garnett and Latter
and if 0 < β < n and ζ G S define the (non-isotopic) potential of υ

Let f(z) = P[IβV](z) and denote by f* the admissible maximal
function of / defined on the sphere S associated with the admissible
approach region of aperture a. Thus, for each fixed a > 1

= sup |/(^)|,
wera(ζ)

where Γa(ζ) is the admissible approach region

Γ α ( C ) = {weBn:\l- (w,ζ)\ < f (1 - M 2 ) } .

Suppose that μ is a positive measure on S satisfying the condition

(1) to
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for every Koranyi ball

B{ζ;δ) = {ηeS:\l-{η9ζ)\<δ}

centered at ζ of radius δ contained in S. In [ACa] the following
result is proved.

THEOREM 1. Suppose that β is an integer between 0 and n -1. Let
μ be a positive measure satisfying condition (1). Then with υ and f
related as above, there is a positive constant C, depending on a but
independent of v, such that

i \H>

In this paper we will remove from Theorem 1 the restriction that β
be an integer. In order to explain the method we pursue we first recall
the basic idea used to establish Theorem 1.

For z eBn let JR be the operator given by

7=1

where Dj = £- and let R be the operator given by

7=1

where T)j• = g=-. If z = rζ where ζ e S then it is easily verified that

£-(rf(rζ)) = (R + R +id) f(z).

From this it follows that

(2) (k - l)!/(z) = j l log*"1 Q ) (R + R + id)kf(tz) dt.

In [ACa] it is shown that if v e Hp

at and / = P[h^], then the ad-
missible maximal function of (R + R + id)kf(z) belongs to LP . The
argument used in [A] then can be applied to derive the conclusion of
Theorem 1. For the case we are considering, that is, / = P[IβV] where
β is not an integer, in order to use an argument patterned on the one
above, we must find a suitable replacement for equation (2). The dif-
ficulty we face is that if we tailor the definition of (R + R + id)kf(z)
for non-integral k in such a way that equation (2) still holds then
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the methods of [ACa] are no longer sufficient by themselves to show
the other fact that is needed, namely that the admissible maximal
function of {R + Λ + id)kf(z) is in LP . (This problem does not oc-
cur if v belongs to the Hardy space Hp of holomorphic functions;
see [A].) We circumvent this obstacle in the following fashion. With
f(z) = P[Iβ](z) let

where k is an integer greater than β but less than n. It can be
verified that

(3) (k - l)\\z\f(z) = £l (log(^)) {\-tγ-ku{tζ)dt9

where z = rζ, and ζ e S. The main result of this paper will be the
following theorem.

THEOREM 2. Let v e Hp

at, 0 < β < n - 1, and f = P[IβV].
If k is an integer greater than β but less than n, then the function
u(z) = (1 - \z\)k~P(R+TΪ+id)kf(z) has admissible maximal function
in LP.

Theorem 2 and the representation given by equation (3) can be used
to apply the method of [A] to estimate f* the idea is that the factor
(log(ψ))k-ι(l - tγ~k will serve just as well as the factor (log(j)/-1

appearing in (2). We thus obtain the following corollary.

COROLLARY 1. Theorem 1 remains true for all values of β between
0 and n-\.

We will need to make use of the following objects. Let ζ £ S and
for 1 < j , k < n define the complex tangential vector field

T 7 d Ύ d

and let T, *. be the conjugate of Tj>k. Furthermore, let

and
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If / is a function defined on Bn then for z e Bn with z = rζ and
ζ e S we define

where the right-hand side is computed by holding r fixed and inter-
preting f(rζ) as a function defined on the sphere. Then other opera-
tors above are also extended to act on functions on the ball in a similar
fashion. We will need the following observations. Suppose that g is
a smooth function of one complex variable. Let ζ and η range over
the sphere S. Then

(4) Lζg{(ζ9η))=τηg((ζ9η))9

where the subscripts on the operators denote which variable the deriva-
tives are taken with respect to. Furthermore, there is a second func-
tion, h, of one complex variable, such that

(5) Lζg((ζ,η)) = h((ζ,η)).

In fact, direct calculation shows that formula (4) is valid and that both
expressions are equal to

(1 - | ( C , η)\2)DDg{(ζ, η)) - (n - l)(ζ, η)Dg((ζ, η))9

where D and Z) denote the usual operators D = \{jfc - i-j^) and

+ i-jjy) - This proves the second assertion as well.
The following variants of the Poisson kernel used by Geller in [G]

will also be of importance. For integers j and / let PJJ be the kernel

(1 - \z\2)n+J+ι

P / ( Z η) =

These kernels will concern us when j and / are non-positive integers
whose sum is greater than -n. Notice that PQ,O is the usual Poisson
kernel.

Before proceeding to the proof of Theorem 2 we will need some
preliminary results. We remark that in what follows we will follow the
custom of using the letter C to stand for a positive constant which
changes its value from one appearance to another while remaining
independent of the important variables.

LEMMA 1. Let g and h be bounded functions defined on the unit
ball in C1 and suppose ζ and η are points on the sphere in Cn . Then

[ g((ζ, ω»λ«ω, η))dσ(ω) = [h((ζ, ω))g((ω9 η))dσ(ω).
s Js
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Proof. Denote by L(ζ, η) the left-hand integral in the statement
of the theorem and by R(ζ, η) the right-hand integral. For each
ζ both expressions are continuous functions in the variable η. The
desired conclusion will therefore follow if we show that for any smooth
function φ defined on the sphere we have the equality

/ φ(η)L(ζ, η) dσ(η) = f φ(η)R(ζ, η) dσ{η).
Js Js

This in turn will follow if we show it to be true for all functions φ
belonging to the space H(p, q) of restrictions to S to homogeneous
harmonic polynomials of bidegree (p, q) for all p and q. Now,

/φ(η)L(ζ,η)dσ(η)
s

= f g((ζ,ω)) fh{(ω,η))φ(η)dσ(η)dσ{ω).
Js Js

Let the inside integral of the right-hand side of the last equation define
the operator

T(φ)(ω)= ίh((ω,η))φ(η)dσ{η).
Js

It is easily checked that T commutes with the usual action of the
group of unitary operators on S. By Theorem 12.3.8 in [R] it follows
that for all φ e H(p, q)

where Q is a constant depending only on h, p and q. Therefore

/ φ(η)L(ζ, η) dσ(η) = Ch f g((ζ, ω))φ(ω) dσ{ω)
Js Js

and by the same reasoning it follows that

'S

An identical argument gives the formula

[φ{η)R(ζ9η)dσ(η) = C
Js

for all φ G H(p 9q)9 where the constants Cg and Q are the same as
before. This completes the proof. D

REMARK. The hypothesis that h and g be bounded is clearly not
the weakest on h and g which allows some version of the conclu-
sion of Lemma 1 to hold. If, for example, we assume only that the
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functions used in the proof are integrable on the sphere and therefore
permit the application of Fubini's theorem, the argument will show
that the equality of Lemma 1 holds almost everywhere dσ(ζ) dσ(η).
In what follows, we will use this version of Lemma 1 whenever the
hypotheses on g and h satisfy these less restrictive conditions.

While there is no natural group structure that allows us to define
convolution, the Hermitian inner product provides a well-known sub-
stitute. If £ is a function defined on the unit ball in C1 and ζ e S
for a function F defined on the sphere let F * g be given by

F*g(ζ)= ίF(η)g((ζ9η))dσ(η).
Js

The integral will be well-defined whenever F e Lι(dσ) and g(ζ\) €
Lι(dσ). Here, of course, by ζ\ we mean the first coordinate of the
variable ζ e Cn. As a corollary of Lemma 1 we have the following
result.

COROLLARY 2. Let g and h be functions defined on the unit ball in
C1 such that both g(ζx) and h(ζx) are in L{(dσ). Let F eLι(dσ).
Then

(F*g)*h = (F*h)*g.

Proof. The proof is accomplished through Fubini's theorem and the
remark following Lemma 1. D

We will also need to notice that "convolution" commutes with the
operators L and L.

LEMMA 2. Let F be a smooth function on S and g a smooth
function of one complex variable. Let X be either L or L. Then

Proof. Use integration by parts and formula (4) to compute that

X(F * g)(ζ) = Xζ I F(η)g((ζ, η)) dσ(η)
Js

= ίF(η)Xζg((ζ,η))dσ(η)
Js

= ίF(η)Xηg((ζ9η))dσ(η)
Js

= fxF(η)g{(ζ9η))dσ(η)
Js

= {XF*g)(ζ),

as claimed.
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We will also need pointwise estimates on the derivatives of an in-
variant harmonic functions. See Theorem 1.2 of [G] for the analogous
estimates associated with the Heisenberg group. Let a e Bn and for
e > 0 define

Q(a;e) = {weBn:\l-{w,a)\<e}.

LEMMA 3. Let U be an invariant harmonic function defined on Bn.
IfaeBn let

(a) = sup{U+(a) = sup{|C/(tι/)| :

Then for each pair of non-negative integers j and I there is a constant
C = C(j, /) independent of a or U such that

\RjRιU(a)\ < C(l - \a\)-j-ιU*{a).

Proof. The proof is based on the same idea as the proof of Theorem
1.2 in [G]. For each a e Bn let φa be the automorphism of the ball
given on page 25 of [R]. Let ψ be a smooth nonnegative function of
a real variable supported on the interval [0,5*]. We may choose s so
small that for all a φa maps the ball in Cn centered at the origin
of radius s into Q(a ^ l ) . Next, let Ψ(w) = ψ(\w\) for w eBn.
The argument used in [G, p. 130] (see also [ACa, equation 1.2]) shows
that there is a constant C independent of U or a such that

U(a) = C ί U(w)Ψ(φa(w))dv(w),

where dv is the invariant measure

dV(w)
dv{w) =

and dV is Lebesgue measure on Cn. The desired estimate fol-
lows now by first differentiating under the integral sign, then using
the fact that Ψ(φa(w)) is supported on the set Q[a\ ^~γ^) together
with the formula for φa(w) to bound the resulting expressions by
C(l — \a\)~J~ι, and finally observing that the invariant measure of
Q(a; ^—^-) is bounded by a constant independent of a. This com-
pletes the proof. D

We are now ready to give the proof of Theorem 2.
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Proof of Theorem 2. At times we will simplify the notation by sup-
pressing the dependence of the admissible maximal function on the
parameter a determining its aperture. The atomic decomposition of
Garnett and Latter shows that Theorem 2 is a consequence of the
following assertion.

Claim. Let a be a (p, oo) atom in Hp

ai. Suppose / = P[Ipa]
and u(z) = (1 - \z\)k-P(R + R)kf(z). Then there is a constant C
depending only o n α , fc, and p, but not a such that

Is (u*aYdσ<C.
s

We first give a detailed proof of the claim for the case where 0 <
β < 1 and k = 1. Since all the ideas necessary to establish the
claim in full are present in this situation we will only sketch how the
argument goes in general. Assume then that 0 < β < 1, k = 1, and a
is a (p, oo) atom in Hp

at. We may assume that a is an atom centered
at e\ supported in the Koranyi ball

where ex = (1, 0, . . . , 0). Recall that

\a\<δ~nlp,

and that a has vanishing moments up to a certain order depending
on p see [GL] for details. We note for later use that the construction
of the atomic decomposition given in [GL] shows that this order may
actually be taken to be arbitrarily large. Let

For λ a complex number in the unit disk and r < 1 define

(1 -r2)n

P r W = \l - rλ\i» '

If z = rζ with ζ G S and F e Lι(dσ) then we may write

By Corollary 2 it follows that

P[Iβa](z) = (a * Iβ) * Pr(ζ) = (a * Pr) * Iβ(ζ).

Let V be the invariant harmonic function given by V = P[a]. Since
R + R = r§-r it follows that

(6) (R + R)P[Iβa](z) =(r—a*Pr\* Iβ(ζ).
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The right-hand side may be rewritten as

Notice that the operator R + R now acts on the variable rη. We may
therefore write u as the sum of

(7) Uι(z) = (1 - Izl) 1 -

and a similar expression, U2(z), which is obtained from the formula
for u\ by replacing R by ]?. We proceed to show that there is a
constant C independent of a such that

/\u\)pdσ<C.
Js

The same argument will establish the same inequality for 112, and
complete the proof for the case we are considering.

We first split U\ into two parts. Let ψ be a non-negative ^ ^
function supported on the disk in the complex plane centered at the
origin of radius \ which is identically 1 on the disk centered at the
origin of radius \. For 0 < r < 1 and ζ and η in S let

Then

uχ(z) = Jι(z) + J2(z),

where

(8)

and

(9) h

.(*) = ( ! -

( z ) = ( l -

Consider first J\. Let ξ eS and suppose that z = rζ e. Ta(ξ) for
some aperture α. Since the integrand in J\ vanishes for |1 —(C> /̂)l >
\{ 1 — r) it is easy to see that on the support of ψr(ζ, 7/) we may apply
Lemma 3 to RV(rη) to get the estimate

(10) \RV(rη)\<C(l-r)-ιV*(ζ),
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provided that the maximal function F* is taken with respect to an
aperture equal to a fixed constant c times a, where c is independent
of the atom a. It follows that

If we use again the fact that ψr(ζ, η) is supported on a Koranyi ball
centered at ζ of radius 1 - r then the integral in the last inequality
may be estimated as in [ACo, p. 427] to yield the conclusion that

\Jι{z)\<CV*{ξ).

From this it follows easily from the fact that a is a (p, oo) atom that

f(Jΐ)pdσ < C ί(Vηpdσ < C;
Js Js

see [GL].
The analysis necessary to handle Jι will be more complicated. We

first make use of Theorem 1 and Lemma 1.4 from [ACa] together with
Lemma 2 above to write

(11) -(n

We remark that the equality of the first and last terms above may be
verified directly by showing that

In any event, let

(1 -

°r{λ) =

so

-{n - \)RV{rη) = RP[a)(rη) = ZJ>0,-i[«]("/) = L(a * Gr)(η)

Next let

-(n - l)Kr(λ) ={l-ψ ( 7 3 7 ) ) I1 " λ\ β~ n

Then we may write

Integration by parts shows that

(L(a * Gr)) * Kr(ζ) = I L(a * Gr(η))Kr((ζ, η)) dσ(η)
Js

= f{a*Gr{η))LKr((ζ9η))dσ(η).
Js
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By formula (5) TKr((ζ, η)) is, for fixed r, a function of (ζ, η). In
fact, a calculation shows that LKr((ζ, η)) is the sum of

and three other terms each of which has a factor which is a derivative
of ψ. Now, differentiating ψ yields a function which is supported
on the region

These terms can then be handled in the same fashion as J\ above.
We therefore are left with the final task of estimating the admissible
maximal function of

L\l-(ζ,η)f-n(a*Gr(η))dσ.

To simplify the notation, let

Qr((ζ, η)) = (1 -rγ~β [\-ψ ( ^ ^ Z l l - (ζ, η)\β~*,

where Qr is a function of one complex variable; equation (5) shows
that this is possible. We therefore obtain the formula

J3{z) = (a*Gr)*Qr(ζ).

Recall that the atom a is supported on the Koranyi ball

B(eι;δ) = {ηeS:\l-ηι\<δ}9

where e\ = (1, 0, . . . , 0). We will need to partition unity in a manner
that lets us take advantage of the support of α. It is possible to
find smooth functions φo and φ defined on the complex plane such
that φo is supported on the unit disk, φ is supported on the annulus
{ A G C 1 : 1 / 2 < | A | < 2 } and

1 = 1 _
7=0

For η and τ € S and rη e Bn let
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and for j = 1, 2, . . . , TV let

It follows that
N

7=0

where TV is a sufficiently large integer which depends only on δ.
We now write

N

a * Gr{η) = P0,-ι[a](rη) = Y^Aj(rη),
7=0

where

Aj(rη) = / P0,-i(rη, τ)Φj(rη, τ)a(τ)dσ(τ).
Js

We claim that there is an integer m that we may choose to be
arbitrarily large (and whose choice will depend on p) such that

(i) A$(rη) is supported on the set

{rη:\l-rηι\<32δ};

(ii) \Ao{nj)\<Cδ-»/P 9

(iii) For j = 1, ... , N, Aj(rη) is supported on the set

{rη : V~ιδ < |1 - r ^ | < 32 Vg}d\

(iv) For j=l,...,N

\Aj(rη)\ < C{2j)-n-m+nlp{Vδ)-nlp.

Properties (i), (ii) and (iii) follow immediately from the definition
of Φj, the support and size of the atom a, and the triangle inequal-
ity for the pseudometric d(z, w) = |1 - (z, w)\ιl2 proved in [R]?

Proposition 5.1.2. To verify property (iv) we must use the cancella-
tion properties of the atom a in the usual way. For 2j~ιδ < |1 - rηχ\
estimate that

\Aj(rη)\ < \Ja(τ)[Pθ9-ι(rη, τ)Φj(rη, τ) - Γm(τ? ex)]dσ(τ)

where for each fixed rη, Tm(τ,e{) is the non-isotropic Taylor poly-
nomial for Poy_ι(rη, τ)Φj(rη, τ) expanded about β\ of degree m;
see [GL] for the precise details. Since
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we may estimate that

δm

, τ)Φjirη, τ) - Tm(τ, ex)\ < C(2^

It follows that

as claimed.
We now write

7=0

where

Fj(rζ)= ί Aj(rη)Qr(ζ,η)dσ(η)
Js

and proceed to estimate FJ for each j . From the formula for Qr(ζ, η)
it is not hard to see that

[\Qr(ζ,η)\dσ(η)<C
Js

for a constant C independent of r we have used the fact that Qr(ζ, η)
vanishes identically on the Koranyi ball centered at ζ of radius 1 - r
as well as the estimates found in [R] Proposition 1.4.10. It follows
therefore that for each j

\\Fj\\oo <

and therefore

(12) \\Fj\\oo < C{V)-n-m+n!p{2jδ)-nlp .

Recall that the admissible maximal region depends on the parameter
a which controls its aperture. Set M — 1000a. We will use inequality
(12) above to estimate FJ on the set {ξeS:\\-ξ\\< MVδ] .

Assume then that |1 - ξ\\ > M2Jδ, and let rζ e Γa(ξ). From
properties (i) and (iii) it follows that Fj(rζ) vanishes unless 1 — r <
32 2jδ so we may as well assume that 1 - r < 32 2jδ . Let

Uj9r((η, τ))=P0,-i(rη, τ)Φj{rη, τ ) ,

where, for each fixed r, UjfΓ is a function of one complex variable;
notice that the definition of Φ/(π/, τ) makes this possible. Then by
Corollary 2
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Thus

Fj(rζ)= fa*Qr(η)Uj9r((ζ,Ί))dσ(η).
Js

Notice that, since Uj,r((ζ, η)) vanishes if | l - r ( £ , η)\ > 16 2 7 J, and
since rζ e Γa(ξ) with 1 - r < 32 Vδ, it follows from the triangle
inequality of [R], Proposition 5.1.2 that Uj9r((ζ, η)) — 0 unless η e
B(ξ9 l2Sa2J'δ). For each such η use the cancellation properties of a
to write

a*Qr(η)= fa(τ)Qr((η,τ))dσ(τ)
Js

= ( a{τ){Qr{(η,τ))-Tm{τ^eγ)]dσ{τ),
Js

where for each fixed η, Tm(τ, e\) is the non-isotropic Taylor polyno-
mial for Qr((η9 τ)) expanded about e\ of degree m. From the for-
mula Qr((η, τ)) and the facts that τ e B(e{ δ) 9 ηeB(ζ; ^
and 11 — £i I > M2Jδ it can be seen that

Therefore with f/ as above

From this it follows that
gm+n-n/p

)\<C

and therefore, if 11 - ζ\ \ > MVδ, then

)

We now specify that m > n/p - n . Then the estimates in (12) and
(13) show that

f{Fjy dσ= ί (F y do + / {Fjγ da,
JS JB{eχ\M2Jδ) JS-B{eχ\M2Jδ)

where the first integral on the right-hand side is dominated by

and the second integral is less than

f ( 2 J δ ) p p

Γ(2J)~np~mp+n / ^ u> Aπ
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Since 0 < p < 1 we may use the triangle inequality to conclude that

N

7=0
oo

This completes the proof of the claim for the special case where k = 1.

The proof of the claim for the arbitrary case where 0 < β < k <
n - \ proceeds in an analogous fashion; we point out some of the
minor differences. Since equation (6) will be replaced by

(R + R)kP[Iβa](z)= Ur^Jka*PΛ (7,(C),

instead of U\ as given by equation (7), we will have to consider a sum
of terms of the form

We split each such item into two pieces J\ and J2 as given by equa-
tions (8) and (9) with 1 - β replaced by k - β and RV replaced by
RJRk~JV. To handle J\ we use the pointwise estimates of Lemma 3
in place of inequality (10). To handle J2, in place of equation (11)
we use Theorem 1 from [ACa] and Lemma 2 to get the fact that

RjRk~JP[a]= £ Ql9m(L9T)Plfm[a]9

where Qιm is a polynomial in two variables of degree no greater than
k. This lets us write J2 as a sum of terms of the form

where
(1 _ r2\n-t-s

where j +1 < n - 1 and t and s are non-positive integers such that
|ί| + | ί | < / ί — 1. The remainder of the argument proceeds without
difficulty. This completes the proof of Theorem 2. D
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FANO BUNDLES AND SPLITTING THEOREMS
ON PROJECTIVE SPACES AND QUADRICS

V I N C E N Z O A N C O N A , T H O M A S P E T E R N E L L

A N D JAROSLAW A. WISNIEWSKI

The aim of this paper is to describe the structure of Fano bundles
in dimension > 4.

Introduction. In this paper rank 2 vector bundles E on projective
spaces Ψn and quadrics Qn are investigated which enjoy the addi-
tional property that their projectized bundles Ψ(E) are Fano mani-
folds, i.e. have negative canonical bundles. Such bundles are shortly
called Fano bundles. Up to dimension 3 Fano bundles are completely
classified by [SW], [SW], [SW"], [SSW]. The aim of this paper is to
describe the structure of Fano bundles in dimension > 4. Namely we
prove the following

MAIN THEOREM. Let E be a rank 2 Fano bundle on Ψn or Qn,
n > 4. Then up to some explicit exceptions on Q4 and Q$ (see ex.
(2.1), (2.2), (2.3)), E splits into a direct sum of line bundles.

A rank 2 bundle E on Ψn is Fano if and only if the "Q-vector
bundle" E <g> (det£*)/2 ® &{?ψ) is ample, i.e.

( ® 0 {^γ~\) i s a m P l e

If we normalize E in the following sense: EQ = E ® (detl?*)/2, so
that C\(EQ) = 0; then E is Fano iff EQ(J^-) is ample. Similarly on
quadrics. In other words, we show that bundles with Eo(!L^) ample
must split (on ¥n, n > 4). In other words: ample bundles with
Cχ(E)<n + l split.

We prove even more:

THEOREM (9.1). Let F be an ample 2-bundleon Fn. Then F splits
if one of the following assumptions hold:

(1) π = 4, cx(F)<6,
(2) n = 5

17
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(3) /i = 6 or 7,
(4) n > 8

For testing the well-known conjecture of Hartshorne, that every 2-
bundle on PΛ (n > 5, or 6, or 7) should split, it would certainly be
interesting to prove better bounds than in (9.1).

It is equally interesting to prove splitting theorems assuming only
information of E on the lines in Ψn. The archaeopteryx of these
theorems is the uniform splitting theorem. In the last section we prove
among other things:

THEOREM (10.11). Let E be a 2-bundle on P π . Assume for every
line LcFn:

with \aλ(L) - a2{L)\<%- \.
Then E splits.

1. Preliminaries. In this section we fix notations, give basic defini-
tions and some elementary propositions which will be frequently used
in the later sections.

(1.1) We will consider vector bundles only on the projective space
P n and on the ^-dimensional quadric Qn . If E is a vector bundle,
we let Ψ(E) be its associated projective bundle—taking hyperplanes
in the fibers of E. We always let

ξ = cι(&nE)(l)) and η = π*(cι(0x(l))),

where π: ¥(E) -> X is the projection and X = Ψn or Qn . If E is a
2-bundle on X, we denote by Ci(E) its Chern classes, / = 1, 2 and
consider them as numbers. Since we work only in dimension at least
4, we have

with the possible exception of Q4 in this case

and we fix generators Hi, H2 and identify c2{E) = aHγ + bH2 with
the pair (α, b).

DEFINITION 1.2. Let E be a vector bundle on a projective mani-
fold X.
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(1) E is said to be a Fano bundle if Ϋ{E) is a Fano manifold, i.e.
-Kp(E) is ample.

(2) E is said to be nef ("numerically effective") if ^P>(£)(1) is a nef
line bundle, i.e.:

for all curves C c Ψ(E).

REMARK 1.3. Let r = rk£\ Since

- * P ( 2 0 = <*{E)(r) <g> π * ( - ^ x ® det£*),

E is Fano iff the "Q-vector bundle"

r

is ample, i.e. the Q-Cartier divisor

is ample. We will often abbreviate E <g> (det E*)/r by Eo we have

PROPOSITION 1.4. (A) Lei F be a nef 2-bundle on an n-dimensional
projective manifold X with bι{X) = 1, b^{X) = 1 where the square
of a generator of H2(X, Z) generates H4(X, Z). Let c, = ct{F) (as
numbers). Then:

(1) c2>0,
(2) c\>2c2 ifn>3,
(3) cj>3c2 ifn>5,

(4) C 2 > ( 2

(5) c 2 > ( 5

( 6 ) c 2 > ( 2 + v

/ 3 ) c 2 if n > I I .

If F is ample, all inequalities are strict.
(B) Let F be a nef 2-bundle on Q4. Write C\ = cx{F), c2 =

c2(F) = {a,b). Then:
(1) a>0, b>0,
(2) c\>a, c\>b,
(3) a2 + b2 - 3c2(a + b) + 2c4

ι>0.
Again the inequalities are strict for F ample.

Proof. (1) in (A) or (B) is well known. The other inequalities follow
from positivity of the Segre classes for ample or nef bundles ([FL],
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[Fu]) and the following computations for the Segre classes s, = Si(F)

= c\-c2,

sη = dicj - 2c2){c\ - (2 - ^c2)){c\ - (2 + yfl)c2)

- 7>c2){c\ - (2

(3) is just the semi-positivity of s* .

Later we will also use s^ on Qβ :

= 2cf - \Qc\c2 + bc\c\ - c\.\

An important tool will be le Potier's vanishing theorem [SS]:

THEOREM 1.5. Let X be aprojective manifold, E an ample vector
bundle of rank r. Them

Hi(X,E®Kx) = 0 fori>r.

We will also use

PROPOSITION 1.6. Let F be a 2-bundle on X = Ψn or on X = Qn

with n > 5.
Assume

and that c2{F) < 1. Then F splits.
The same holds for X = Q4, provided a < 0 or b < 0 or a = b = 0

where c2(F) = (a, b).

Proof Take s e H°{F), s φ 0, and let Z = {s = 0}. If Z = 0,
clearly i 7 splits. If Z ^ 0, then Z is of pure codimension 2, and

By our assumption on c2(F), we obtain a contradiction.
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(1.7) A rank 2-bundle E on Ψn or Qn (n > 3) is called (semi-)
stable if for every line bundle 3> c E:

ψ< („(*) <

c2

ι{E)Λω2<4 f c2

1(E)Aω2

If E is stable on Fn , it is well known that

(*) c2(E) < 4c2(E)

([Ba]). This is also true for quadrics Qn observe that for n Φ 4, (*)
is just an inequality of numbers, for n = 4 (*) means

f c1(E)Aω2

4 Q,

for every Kahler form ω on Q4 .
In order to see (*) for quadrics, one can proceed as follows. If

E is semistable then E carries an "approximate" Hermite-Einstein
connection and hence

c2(E)<4c2(E);

see [Ko].
Now assume c\ = 4<?2. Since we may also assume C\ (E) = 0, we

have C2(E) = 0. But it is obvious that such an E cannot be stable.
Thus a stable bundle satisfies c\ < 4c2 .

(1.8) Some further notations: h\X, &) will always be the dimen-
sion of H\X, &) Kx will denote canonical line bundle of the com-
plex manifold X [x] denotes the integral part of x.

2. Statement of the main result. Before stating our main result we
shortly review some facts on special rank 2 vector bundles on quadrics.

EXAMPLE 2.1. We denote by S! and S" the two "spinor bundles"
on the 4-dimensional quadric Q4 . These are bundles of rank 2 with
Chern classes a(S') = cι(S") = - 1 and c2(S') = (1,0) , c2{S") =
(0, 1). Since Sf(l) and S"(l) are globally generated, they are Fano
bundles, i.e. P(S') and P(S*') are Fano manifolds (see [Otl]). We will
need in the sequel the following fact due to Ottaviani ([Otl, Remark
3.4]): Every stable 2-bundle on Q4 with Chern classes C\ = - 1 and
c2 = (1, 0) (resp. (0, 1)) is isomorphic to Sf (resp. S").

EXAMPLE 2.2. Applying the Serre correspondence (see e.g. [OSS])
to the union of two disjoint planes in Q4 we can construct a family
of stable rank 2-bundles F with
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Their moduli space can be identified with Ψj\Qβ ([Ot2, Remark 3.4]).
By [OT2], F(2) is generated by global sections and thus F is a Fano
bundle. Moreover: every stable 2-bundle on ζ?4 with Chern classes
C\ = - 1 and Ci = (1, 1) is isomorphic to some F described above.

EXAMPLE 2.3. On Q5 there is a family of stable 2-bundles C with
C\(C) = - 1 , C2(C) = 1. These were introduced in [Ot2], where they
are called Cayley bundles. Again C(2) is globally generated; hence
Cayley bundles are Fano. Moreover we have by [Ot2, main theorem
and Theorem 3.2]: Every stable rank 2-bundle on Q5 with Chern
classes C\ — - 1 , C2 = 1 is isomorphic to a Cayley bundle. No Cayley
bundle extends to Qβ.

We are now able to state the main result of this paper.

MAIN THEOREM 2.4. (1) Let E be a Fano bundle of rank 2 on Ψn,
n>4. Then E splits as a direct sum of two line bundles.

(2) Let E be a Fano bundle of rank 2 on Qn, n>4. Then either
E splits or:

(a) n = 4 and E is—up to a twist—a spinor bundle or one of the
bundles described in (2.2)

(b) n = 5 and E is—up to a twist—a Cayley bundle {Example
(2.3)).

Fano 2-bundles on Ψn or Qn with n < 3 are classified in [SW] and
[SSW]. Let E be a 2-bundle on X = Fn or Qn . Since E is Fano if
and only if E® (detE*)/2®—Kχ/2 is ample, we can restate Theorem
2.4 as follows.

COROLLARY 2.5. (1) Let E be a normalized 2-bundle on Ψn, n >
4. If C\(E) = 0 assume that E(nψ-) is ample. If C\(E) = - 1 , assume
that E(*ψ) is ample. Then E splits.

(2) Let E be a normalized 2-bundle on Qn, n > 4. If c\ (E) = 0,
assume that ls(§) is ample. If C\(E) = - 1 , assume that E(lL^-) is
ample. Then either E splits or E is as in 2.4 (2)(a), (b).

The rest of this section is devoted to the proof of the following
important technical result.

PROPOSITION 2.6. Let E be a normalized Fano bundle of rank 2
on Vn, n>4. Then:

(1) // cχ{E) = - 1 and n is odd, then £([§] + 3) is generated by
global sections and E([%] + 2) is ample.
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(2) In the other cases, £([§] + 2) is generated by global sections and
£([§] + 1) is ample.

In particular, in all cases E(n) is generated by global sections and
ample.

Proof. The ampleness statements are just translations of (1.3).
(1) The le Potier vanishing Theorem (1.5) gives

Hi(Ψn,E(t)) = 0

for / > 2 and t > k + 2 - (n + 1) = -k with k = [f ].
In particular:

H\Ψn , E(k + 3 - 0) = 0 for i > 2.

Now we claim that this holds also for / = 1.
Consider on Ψ(E) the divisor

D is clearly ample; hence by Kodaira vanishing

i.e. 0 = Hι(F{E) ,ξ + (k + 2)η) = Hι{Ψn, E(k + 2)), whence our
claim.

Now E(k + 3) is globally generated by the Castelnuovo-Mumford
lemma.

(2) We treat shortly the case n = 2k and C\ (E) = 0 leaving the
remaining cases to the reader.

The le Potier vanishing theorem gives now

while the Kodaira vanishing theorem applied to the ample divisor
3ξ + {3k + 2)η yields

Hi(Ψn,E(k+l)) = 0.

Thus E(k + 2) is globally generated.

The corresponding result for Qn reads

PROPOSITION 2.7. Let E be a normalized Fano bundle of rank 2
on Qn, n>4. Then:

(1) // a(E) = 0 and n is even, E(%) is ample and £(§ + 1) is
globally generated.
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(2) In the other cases, £([§] +1) is ample and £([§] + 2) is globally
generated. In particular, E(n-1) is ample and generated in all cases.

The proof of (2.7) is just an adaptation of (2.6) and will be omitted.
The proof of Main Theorem 2.4 will be given in the subsequent

sections; several cases have to be treated separately.

3. The case P n , c\(E) > 4c2(E). In this section we shall prove

P R O P O S I T I O N 3 . 1 . Let E beaFano 2-bundleon Ψn, n>4. Assume

Cχ(E) > 4c2(E). Then E splits.

The proof rests on the following result due to Holme and Schneider
[HS, Theorem 4.2].

PROPOSITION 3.2. Let F be a 2-bundle on Ψn admitting a section
whose zero locus is of pure codimension 2. If F is not stable and if
moreover

(3.2.1) c2(F)<(n-l)(c1(F)-n + 2),

then F splits.

COROLLARY 3.3. Let F be a globally generated 2-bundleon Fn. If
F is not stable and if (3.2Λ) holds, then F splits.

Proof. Let s e H°(F) be a general section. Then Z = {s = 0} is
either empty (hence F splits) or Z is smooth of codimension 2. In
this second case now apply (3.2).

Proof of (3.1). We may assume E to be normalized. E is unstable
by [Ba], because of the inequality c\(E) > 4cι{E) (which is invariant
under twists). Put F = E(n). Then by (2.6) F is globally generated.
Since c2(E) < 0 and cλ(F) = cx(E) + 2n, we have

Ci(F) = c2(E) + a (E)n + n2<Cι (E)n + n2

hence (3.2.1) holds as is easily verified. Thus F—as well as E—splits
by (3.3).

4. The case Qn, n > 5, and c\(E) > 4c2(E). We now treat the
analogous case to §3 for quadrics Qn, n > 5. The case Q4 will be
done later.
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PROPOSITION 4.1. Let E be a Fano 2-bundle on Qn, n > 5. As-
sume c\(E) > 4c2(E). Then E splits. In order to prove (4.1) we need
the following analogy to (3.2):

PROPOSITION 4.2. Let F be a 2-bundle on Qn, n > 5, admitting
a section whose zero locus is of pure codimension 2. If F is unstable
and if moreover

(4.2.1) c2(F) < (/i - 2){cx{F) -n + 2) + n-3,

then F splits.

Postponing the proof of (4.2) for a moment we have as in §3 the
immediate

COROLLARY 4.3. Let F be a globally generated 2-bundle on Qn,
n> 5. If F is unstable and if (4.2.1) holds, then F splits.

Proof of'4.1. Let E be normalized. Since c\(E) > Ac2(E), E is
unstable (1.7). By (2.7), F — E(n- 1) is generated by global sections.
Now

c2(F) = c2(E) - Cl{E)(n - 1) + (n - I ) 2 < c{(E)(n - 1) + (n - I ) 2 ,

so (4.2.1) holds. Hence F (and E) splits by (4.3).

Proof of 4.2. The proof of (4.2) follows the same lines as that one
of (3.2), so we give only a sketch, following [Ra] and [HS]. We may
assume that our section vanishes in codimension 2, so we have a se-
quence

where C\ = C\(F) and X = {s = 0} is a locally complete intersection
of codimension 2 in Qn and of degree d — c2 — c2(F). For t eZ let

For a fixed point p e Qn let Sp be the set of lines / c Qn with p e /,
and let

Σk = Σk,p = {le Sp\ length(/ ΠX)>k}

be the set of /c-secant lines through p contained in Qn .
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Then we have (compare [Ra]).

PROPOSITION 4.3.1. Assume k < n - 3 and e(0)-e(l) e(k) Φ
0. Then dimΣ^+ 1 >n-k-2. In particular, ΣkJrl Φ 0 .

Proof of 4.3Λ. Since ΣQ = Sp ~ Qn-2 it suffices by induction on
k to show the following. If C c Σ^ is an irreducible curve with
CnΣfc+1 = 0 and with min{length(/nX)|/ e C} = k, then e(k) = 0.
But this is proved by easily adapting the proof of the proposition in
[Ra] to our situation.

Arguing as in [Ra] we obtain

LEMMA 4.3.2. If cx{F) > c2{F)/(n-3) + n-3 or if c2(F) < / ι - 3 ,

then F splits.

Finally, the proof of Theorem (4.2) in [HS] can be copied almost
word for word to give a proof of (4.2) (note that the inequality (4.2.1)
is equivalent to e(n - 2) < n - 3).

5. The case Ψn, n > 6, and c\{E) < 4c2(E).

PROPOSITION 5.1. There is no Fano 2-bundle E on Ψn, n > 6,
with c\{E) < 4c2(E).

The proof of (5.1) will be based on the following result of [HS]
(Corollary 3.4 and Proposition 6.1).

PROPOSITION 5.2. Let F be a 2-bundle on Fn admitting a sec-
tion whose zero locus is smooth and of pure codimension 2. Assume
c\{F) < 4 c 2 ( F ) . Then:

(1) Cχ(F) > 2n + 3 for n>6,
(2) cx(F)>3n for n > 8 .

Actually only (1) is used at this place but (2) will be needed later.

Proof of '5.1. Assume E to be a normalized Fano bundle of rank
2 o n P w , n > 6 , with c\{E) < 4c2(E). By (2.6) E(n) is glob-
ally generated. Now take a general section of E(ή) which vanishes
along a smooth 2-codimension subvariety (of course the zero locus
is non-empty). Hence cx{F) > 2n + 3 by 5.2(i); hence cλ{E) > 3,
contradicting the fact that E is normalized.
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6. The case: Qn, n > 12, and c\(E) < 4c2(E).

PROPOSITION 6.1. There are no Fano 2-bundles on Qn, n > 12,
with c2(E) < 4c2{E).

In order to prove (6.1) we must have a substitute of (5.2) which is
given by

PROPOSITION 6.2. Let F be a 2-bundle on Qn, n>\2, admitting
a section whose zero locus is smooth and of pure codimension 2.

Assume c\{F) < 4c2{F). Then

71 / . π Y2

First we show how (6.1) is derived from (6.2).

Proof of'6.1. Suppose again E to be normalized and let F = E{j+\)
if C\(E) = 0 and n even, F = E([%] + 2) otherwise. In any case
CiCF) < n + 3, E being normalized. By (1.4), we have c\(F) >
3c2(F) thus

F being globally generated (2.7), (6.2) applies to F. Hence (6.2.1)
leads to a contradiction, since for n > 12 we have an inequality

- 2
1

for n > 12.

Proof of 6.2. We mimic step by step the proof of the corresponding
Theorem 2.2 of [Sch] on Ψn . Note that the Segre class s^E) can be
written as

sk(E) = sk(E)hk

with SjζiE) G Z and h the class of a hyperplane section of Qn . Ac-
cording to the fact that the normal bundle of a submanifold of Qn is
always globally generated, we find as in [Sch, Corollary 1.2] that

sk{E) > 0 for k <n-2.

Now write

Cι(E) = δ + δ9 c2(E) = \δ\2

with δ = reiφ , r > 0 , -π <φ <π.
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Repeating the proof of Proposition 2.1 of [Sch] we get

LEMMA 6.2.1.
i i π

Now put F(Qn) = min{m e N\m = 4c2(G) - c\(G), with G a
topological 2-bundle on Qn}, analogously F(Fn).

As in [Sch] we obtain from (6.2.2)

Since n > 12, we find a linearly embedded Ψ^ in Qn hence

F(Qn)>F(Ψ6).

By [Sch]: F(P 6) > 71, hence

F(Qn)> 71,

finishing the proof of (6.2).

7. The case P π , n = 4, 5, and c\{E) < 4c2(E). This is the last
case to finish the main theorem for projective spaces.

PROPOSITION 7.1. There are no Fano 2-bundles on ¥n, n = 4, 5
with c\{E) <4c2(E).

Proof. Assume E is such a Fano 2-bundle. We may assume E to
be normalized. Let c; = C/(2?) and introduce the Q-vector bundle

The fact that E is Fano can be expressed as EQ(J) (if n = 4) resp.
2SQ(3) (if Λ = 5) to be ample.

As usual let ξ be the class of * % E ) ( 1 ) , >? the class of the pull-back
of the hyperplane divisor.

(1) n = 4. Applying (1.4) to £Ό(f) gives (by c? > 2c2)

c2(EQ)<—;

hence c2 = C2(£r) < 6 (and of course we also have c2 > 0). Moreover

0 < *
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Both inequalities easily imply

c2(E)<3.

By the Schwarzenberger conditions

c2(c2 +I) = 0(12) ( i f c ! = 0 ) ,

2) = 0(12) ( i f d = - l ) ,

we conclude that only the case C\(E) = 0, C2(E) — 3 is left.
By Riemann-Roch we obtain

The le Potier vanishing theorem applied to E(3) yields

//'(P 4,£(-2)) = 0, i>2.

Hence
/f °(P 4 ,£(-2))^0,

and consequently ζ - 2η is an effective divisor on Ψ(E). Thus

On the other hand one computes easily

a contradiction. Thus also the case C\ = 0, c2 = 3 is excluded.
(2) n = 5. This case is even simpler. The ampleness of EQ(3) gives

by c\ > 3c2 (1.4):

c2(E)<3 i f c i = 0 ,

c2(E)<3 if ci = - 1 .

The claim follows again by using the Schwarzenberger conditions on

8. The case: Qn, 4 < n < 11. We now treat the final case of low-
dimensional quadrics in order to finish the proof of the main theorem.

PROPOSITION 8.1. Let E be a Fano 2-bundle on Q4. Then either
E splits or is—up to a twist—a spinor bundle or one of the bundles of
Example (2.2).

Proof. As usual we assume E to be normalized and let c, = Cj(E),
% . Moreover let c = c2(E0), ζo = ζ-
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We write C2 = (α, b), c = (#o, &o) > s o that (a, b) =
^o + ̂ i/4). We will use Riemann-Roch on Q4:

2)) = ±(a(a + l)

χ(E(-l)) = ±(a(a - 1) + b(b - 1)) if cx{E) = - 1 .

The Fano condition says that £Q(2) is ample. Hence by (1.4):

c2(E0(2)) > 0, c?(Eo(2)) > 2c2(^o(2)),

and consequently we obtain the bounds

- 3 < α < 3 , - 3 < Z > < 3 ( i f d = 0 ) ,

- 3 < α < 4 , - 3 < Z > < 4 (if ci = - 1 ) .

LEMMA 8.1.1. Suppose χ{Q^\ E) > 0 and moreover:
(1) if cx = 0 : a+ 1 < 0 or b + 1 < 0 or a = b = -l
(2) if cι=-l: a + 2<0orb + 2<0ora = b = -2.

Then E splits.

Proof. (1) Assume C\ = 0. So E{2) is ample. By le Potier vanish-
ing:

Hi{Q^E(t-2)) = 0 f o r / > 2 , ί > 0 .

Hence

Since /(£) > 05 we conclude h°(E) φ 0.
By duality: tf°(E(-2)) - if4(£(-2)) = 0.
If now i/°(E(-l)) ^ 0 , then by (1.6) E splits, since c2(E(-l)) =

(a+l,b+l). If/ί°(£(-l)) = 05use(1.6)for E instead of £(»1).
(2) The case c\ = -1 is done in the same way starting with the

ample bundle E(3). We omit the details.

Since the condition χ(E) > 0 is always satisfied if a + b < 0 (by
Riemann-Roch), the following cases are settled by Lemma 8.1.1:

c\ = 0: a < -\, b <2 and α < 2, 6 < -1 and (fl,fc) =
(-1,-1) .

d = - 1 : <z < - 2 , & < 3, and a < 3, 6 < - 2 , and (α,fc) =
(-2,-2) .

(a) Suppose now c\ = 0.
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Riemann-Roch on <23 and Q4 for the bundle E gives the following
congruences:

a + b = 0 (2), -23(α + b) + a2 + bx = 0 (12).

Hence (α, ft) must be one of the following: (—1,3), ( 3 , - 1 ) ,
( 0 , 0 ) , ( 2 , 2 ) , ( 3 , 3 ) .

In the first two cases we have

hence ζ cannot be effective, i.e.

H°(E) = 0.

In particular E is stable. This is a contradiction because for (a, b) =
(-1,3) or (3,-1) the discriminant c\ - 4c2(E) > 0.

(a2) Let now (a,b) = (0, 0). Then χ(E) = 2. By le Potier
vanishing we get h°(E) φ 0. On the other hand h°(E(-l)) = 0,
since

Now apply (1.6) to obtain the splitting of E.
(a3) If (a,b) = (2,2) then χ{E{-2)) = 1 by Riemann-Roch;

hence le Potier vanishing gives H°(E(-2)) Φ 0, contradicting

(a4) If (α, 6) = (3, 3), we have

(Co + 2η)5 =a2

0 + bl- 40(α0 + bo) + 160 < 0

(observe (a, b) = (CIQ, bo)), which is in contradiction to the ample-
ness of E{2).

(b) We consider now the case C\ = — 1. We have a congruence

Thus the only possible values for (a, b) are: (4, - 3 ) , ( - 3 , 4),
( 3 , - 2 ) , ( - 2 , 3 ) , (0 ,0) , (1 ,0) , (0 ,1) , (1 ,1) , (0 ,4) , (4 ,0) ,
(1 ,4) , (4, 1), (3 ,3) , (4, 4). The first two cases are settled by
(8.1.1) since then χ(E) = 2. In the next three ones, we have χ(E) >
0, hence h°(E) by le Potier vanishing; moreover h°(E(-l)) = 0 since

So E splits by (1.6).
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I n t h e case ( 0 , 0 ) , ( 1 , 0 ) or ( 0 , 1 ) , E m u s t be stable because
H°(E) = 0 by

ζ(ζo + 2η)4<O.

So E is as in (2.1) or (2.2).
The case (0,4) , (4, 0) are ruled out as in a\. The remaining cases

finally contradict

PROPOSITION 8.2. Let E be a Fano 2-bundle on Qn, 5 < n < 11,
with c\(E) < 4c2(E). Then n = 5 and E is—up to a twist—a Cay ley
bundle (2.3).

Proof. Again suppose E to be normalized. Let Eo = E(-C\/2). E
being Fano, 2so(§) is an ample Q-vector bundle. By positivity of the
Segre classes of 2so(§ ) w e obtain

with
(3 for n — 5, 6,

2 + v^2 Λ = 7 , 8 ,

(see [FL], [FU]).
Hence: n2 > a(c2(E0) + n2/4).
Since C2(EQ) > 0, we easily obtain

with the exception n — 6, C\ (E) = — 1.
Let us first consider this exceptional case. Then we have only

Ci{E) < 3. Assume c2 — 3. Then we compute

{ G
contradicting ampleness of 2s(3).

So we may assume c2(E) < 2 in all cases. The case c2 = 2 is ruled
out as follows: if C\{E) — 0 (resp. C\(E) = -1) take a β 5 c &
(resp. β4 c Qn) and Riemann-Roch gives /(Q5, E\Q5) φ Z (resp.

By observing /(Q4, £|β4) ^ Z, also the case Ci(.E) = 0, C2(2s) = 1
is impossible. It remains to consider the case Ci(2s) = - 1 , c2(E) = 1.



FANO BUNDLES AND SPLITTING THEOREMS 33

If E is unstable, apply (4.2) to the bundle F = E(n - 1) which
is globally generated by (2.7) (the condition (4.2.1) is immediately
verified). So E splits.

If E is stable, the restriction E\Q5 to a generic linear Q5 c Qn is
stable again with c\ = —I, C2 = 1. Hence by (2.3), E\Q5 is a Cayley
bundle.

Since no Cayley extends to Qβ (Ottaviani, see 2.3), we must have
n = 5 . The proof of (8.2) is now complete.

Combining all results of §§3-8 gives a proof of the Main Theorem.

9. Generalizations. The Main Theorem for projective spaces can
be improved considerably (we will not consider the case of quadrics
here):

THEOREM 9.1. Let F be an ample 2-bundle on Ψn. Then F splits
under one of the following assumptions.

(1) i = 4, c1(F)<69

(2) /i = 5, Ci(F)<8,
(3) n = 6 or 7, c{(F) <
(4) π > 8 , &±

REMARK. (9.1) can be reformulated as follows. Assume that F
is a Q-vector bundle with C\(F) = 0. Then e.g. (1) says that in
case n = 4, F splits if F(3) is ample. We should also mention the
Horrocks-Mumford bundle H in this context. It has c\(H) = -1
and C2(H) = 4; moreover H(4) is generated by global sections. So
the statement (1) or (9.1) is almost sharp, see also (9.2) below.

Part (1) of Theorem 9.1 will follow from the more general state-
ment:

PROPOSITION 9.2. Let E be a 2-bundle on P 4 . Let Eo = E ®
(det£*/2). If Eo(3) is nef then E splits.

For the proof of (9.2) we will need

LEMMA 9.3. Let E be a normalized 2-bundleon Ψn such that E{m)
is nef for some m e Q. Let r eZ be the maximal number such that

Then either E splits or
(a) r<m-2 (ifcl(E) = 0) or
(b) r < m - 3 (ifCι(E) = -l).
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Proof. We treat only the case C\ (E) = 0, the other case being simi-
lar. Let s e H°(E(-r))9 sφO, and let Z = {s = 0} If Z = 0 , E
splits. So assume Z Φ 0 . By our assumptions, Z is locally a com-
plete intersection of codimension 2. If degZ = 1, Z is a complete
intersection and E splits. So let degZ > 2. Then take a 2-secant
line L of Z with L ^ Z .

Then ls(—r)|L has a section with at least two zeros; hence

E(-r)\L = @L{2 + k)® &L{-2r -2-k)

for some k > 0. Hence

E(m)\L = @L{2 + k + r + m)® @L{m -r-2-k)

and by nefness of E(m)\L we conclude.

Proof of 9.2. We may assume E to be normalized.
(a) First let c2(E) < 0. So E is unstable. Let r be the biggest

positive integer such that

H°(Ϋ4,E(-r))φ0.

Assume that E does not split. Then we deduce from (9.3): r < I in
case C\ (E) = 0 r < \ if C\ (E) = - 1 . In the second case r < 0 we
must have r = 1, and thus E(—\) has a section whose zero locus Z
is either empty or of codimension 2 with degZ = cι{E) + 1 < 1. But
then clearly E splits.

(b) Now we consider the case C2(E) > 0. Let c = C2(EQ). By
nefness of Eo(3) we obtain

0 < d (£ 0(3)) 2 - 2c2(E0(3)) = 36 - 2(c + 9)

hence c < 9. On the other hand, the highest Segre class 54(^0(3)) >
0 hence c2 - 90c + 405 > 0, which together with c > 9, proves
c < 45 - 7Ϊ620 < 5.

Hence c2(E) < 4 if c{(E) = 0 and c2(E) < 5 if Ci(£) = - 1 . By
the Schwarzenberger conditions we find:

= 3 or

In both cases a short computation shows

hence H°(E) = 0 and E is thus stable.
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By [BE] there is no stable 2-bundle on P 4 with C\ = 0, c2 = 3
by [DS] the only stable 2-bundle on P 4 with c\ = - 1 , c2 = 4 is the
Horrocks-Mumford bundle for which it is easy to see that EQ(3) is
not nef (restrict to jumping lines). This completes the proof of (9.2).

REMARK. (1) In the proof of (9.2) one shows also the following
stronger statement: let E be an unstable 2-bundle on P 4 , assume
J?o(3) to be nef on every line L c P 4 . Then E splits.

(2) It would be interesting to do the next step in (9.2): assume only
EQ(4) to be nef. This leads to some interesting problems. Let e.g. E
be a (semi-stable) 2-bundle on P 4 with c\ = - 1 , c2 = 6 and assume
£o(4) even to be generated by global sections. Take a general section
with smooth zero locus X. Then

i.e. X is a "half-canonical" surface in P 4 with degX = 1 8 . Half-
canonical surfaces are investigated in [DPPS] and it is shown that they
cannot exist (or are complete intersections) with possible exceptions
in degree 18 and 22 (and some other restrictions). "Of course" one
expects that half-canonical surfaces are complete intersections in these
degrees, too.

Part (2) of (9.1) will be a consequence of

PROPOSITION 9.4. Let E be a 2-bundle on P 5 such that E0(4) is
nef. Then E splits.

Proof. As usual we suppose E normalized.
(a) Assume C2{E) < 0; so E is not stable. Let r be the maximal

positive integer such that

By (9.3): r < 2 if cx(E) = 0; r < § if cx{E) = - 1 . If cx(E) = - 1
we have r = 1, so by c2(E(-l)) = c2(E) <0,E splits (1.6). This
argument settles also C\ (E) = 0 and r = 1. Finally let C\ (E) = 0 and
r = 2. Then (1.6) settles the case c2(E) < - 3 . Take a linear P 4 c P 5

and use the Schwarzenberger condition for 2s|P4 to obtain c2{E) = 0
or - 1 . But in both cases:

contradicting the nefness of ζ + 4η.



36 VINCENZO ANCONA ET AL.

(b) Assume now C2(E) > 0. From c\(E${4)) > 3C2(EQ(4)) we
deduce c2(E) < 5. Now the Schwarzenberger condition for 2?|P4

implies:

cl(E) = 09 c2(E) = 3, or cι(E) = -l, c2(E) = 4.

In both cases:

hence H°(E) = 0, and consequently E is stable.
Now for a general linear P 4 c P5, E\Ψ4 is again stable with the

same Chern classes, so C\ (E) = 0, c2(E) = 3 is ruled out by [BE] and
the other case by [DS], since the Horrocks-Mumford bundle does not
extend to P 5 .

Proof of 9.1, parts (3) and (4). Let a = Ci(F). If cx < n + 1, F is
a Fano bundle and hence F splits by the Main Theorem. So assume
now c\ > n + 2.

First let us show that
(1) F(cι-n) is generated by global sections. In fact, Hi(ΫnF(t)) =

0 for / > 2, t > -n - 1 by le Potier vanishing; moreover by Kodaira
vanishing for the divisor ζF :

0 = Hι(V(F), 3ζF+Kv{F)) - H\ψn, F(cx - n - l ) ) .

So (1) follows from the Castelnuovo-Mumford lemma. As a conse-
quence we obtain

(2) c\{F)>4c2{F).
In fact, if c\(F) < 4c2(F) we can apply—using (1)—Proposition

5.2 for F(c\ - n) conflicting our assumptions.
We suppose c\ to be even, the odd case being treated similarly. Let

E = F(—c\/2). Let r be the maximal integer such that

Since E is unstable by (2), r must be positive.
Since Hn(Ψn , F(-n-l)) = 0 we have by duality H°(Fn , E(-c{/2))

= 0; hence r < C\/2.
Since c2(E) < 0, we have moreover c2{E{-r)) < r2 < c\jA, so our

assumption yields
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Since any section of E{-r) vanishes nowhere or in codimension 2, E
splits by [HS, 4.7].

10. Numerical splitting of rank 2-bundles on Ψn. In the previous
sections we considered Fano bundles E on Fn , i.e. £ Ό ( ^ ) is ample,
EQ denoting the normalization E(c\(E*)/2). Here we want only to
make an assumption on the behaviour of E on the lines and try to
get some information.

Let E always denote a vector bundle of rank 2 on Fn .

10.1. DEFINITION. (1) For a line L c Ψn put

δL(E) = δL = a2-au

if E\L = @(aχ)®@{a2) with ax < a2.
(2) For xeΨn define

jmax _ m a x { j L | £ a ϋ n e through x} and

<J™in = min{<JL|L a line through JC} .

10.2. DEFINITION. For x eΨn let P* be the variety of lines through
x. Write δ™in = δ0 < δx < < δr = δ™x, where ί, are the "splitting
types" realized by E on some line passing through x.

Define F^ = {L e Ψx\δL = <*,•}.

10.3. REMARK. We have clearly:
( a ) F J o = P x ?

(b) K^^uu^n^).

10.4. DEFINITION. If δ^ > 0 5 the ruled surface P(JF|L) has a
unique exceptional section C^ (i.e. C\ < 0). We define a map (for
fixed x eΫn)

by setting

It is easy to check that Φ<? is holomorphic.
The key to this section is

10.5. THEOREM. Assume that for some δi the map φ# has a fiber
containing a compact curve. Then E splits numerically:

a + b, c2{E) = ab, where E\Lδi = 0{a) Θ0{b) .

In other words E has the same Chern classes as a decomposable bundle.
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REMARK. The assumption means that there is a "compact" family
(Lt)teT of lines through x with T compact, such that Q, Π Ψ(EX)
does not depend on t.

Proof. After normalizing T we obtain a compact curve C and
a geometrically ruled surface p: S —> C with a map ψ: S -^ Ψ(E)
such that ^ ( p " 1 ^ ) ) = CL, where c is a point in C over ί. By our
assumption the ruled surface contains a section, say Q , such that

for any teT.

Now consider the relative Euler sequence

0 - ωp^/p^l) -> π*(£) -^ ^ ) ( 1 ) ^ 0

where Ψ(E) is the projective bundle taking hyperplanes and n

is the relative dualizing sheaf.
Since cop^/p (1) — ̂ p(£)(-l) ® π*(<f(a\ + aι)) we obtain by ten-

soring with π*(σ(—a\)):

0 -

Now we have

this has only to be checked on Q (obvious!) and on a fiber p~λ(c).
But for this it is sufficient to see

which is clear since

and since Q, is the exceptional section (see [Ha, Chap. V.2]).
Since π o ψ is generically finite, (*) implies

c2(£(-fl!)) = c2{ψ*{π*{E{-ax)))) = 0.

Hence C2(J?) = a\a,2.
An obvious consequence of 6.5 is
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10.6. COROLLARY. Assume that E does not split numerically. Then
(1) dimϊ̂ max < 1 and

(2) dim F ^ - dim(F^ n U7>/ Vδ)<2, for δt < δ™*.

10.7. THEOREM. Assume that there is some x e Fn such that

^

Then E splits numerically.

Proof. First observe that in general

<\{δrδr) + \<

by our assumption.
On the other hand (10.6) implies: 2 #{J^} > n, if E does not

split numerically. Both inequalities being incompatible, E has to
split numerically.

For n — 3 Theorem 10.7 says that every uniform (w.r.t. lines
through x) 2-bundle E numerically splits. Of course it is well known
that E in fact splits. But already for n = 5, the assumption of 10.7
is less restrictive than uniformity.

Another immediate consequence of 10.5 is

10.8. COROLLARY. If there is some x eΨn and some i such that
Vδ contains a compact surface, then E splits numerically.

10.9. COROLLARY. Assume that E is a semi-stable 2-bundle on
P« > n > 4, with c\ (E) = 0. Assume that there is some x e Ψn

and some a > 0 such that for all L e Ψx either E\L = & ® & or
E\L = @(a)®@{-a).

Then E splits numerically.

Proof. Of course we may assume that E\L = @{a) Θ tf(-a) for
some line. Since C\ (E) — 0, the jumping lines of E form a divisor
D in G(l9n) (=lines in Ψn , see e.g. [OSS]). Hence D n Ϋx— which
is the set of jumping lines through x—is a divisor in Ψx . Therefore
we obtain a compact surface in Vδ = V$ = Vja , since n > 4.

In order to prove splitting criteria rather than merely criteria for
numerically splitting we prove
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10.10. PROPOSITION. Let E be a 2-bundle on Ψn. Choose x e Ψn

generic such that <5™ax is minimal If dim Vδ™ > § , then there is

s e H°{E({-cι + <5™ax)/2)) with s(x) φθ.

Proof, (a) We claim that φ := φδ«™: V := ϊ̂ max —• Ψ(EX) is con-
stant. In fact, otherwise by our assumption φ would have fibers of
dimension > f - 1. On the other hand we have F c P x ^ Pn_i so
algebraic sets in V of dimension > f - 1 must meet, contradiction.

(b) Let D = \J{CL\X e P π , LeΨx and δL = δfax} c Ϋ(E). If x
is general, then D n F(EX) consists of one point by (a). Hence there
is an irreducible component Do c D and some d eZ such that

Taking a line L through our general x and observing

we conclude

d =

10.11. THEOREM. Let E be a 2-bundle on Ψn. Assume δL<\-\
for every line L c¥n. Then E splits.

Proof. This follows from (the proof of) Proposition 10.10 since our
condition implies

dim Vf™ > -
x Z

for every x hence the section constructed in the proof of 10.10 does
not vanish at any point and consequently E splits.

Again 10.11 can be viewed as a generalization of the fact that uni-
form 2-bundles on Ψn , n > 3, split.

10.12. REMARK. Most of the above can be applied to manifolds
containing "plenty of lines" if we only can control their cohomology.
For example, if X is a Fano manifold of index r > ^dimX + 1
(recall that the index r is the largest integer dividing ~Kχ in Pic(X)
and that for r > \ dimX + 1, we have Pic(X) = Z by [Wi]) then
through every point of X there passes a line (i.e. a rational curve



FANO BUNDLES AND SPLITTING THEOREMS 41

whose intersection with the ample generator H of Pic(X) is 1). For
a 2-bundle E on X we can define (via normalization) the splitting
type of E on any such line. Similarly we can define δ™x, δ™m.
Then we obtain an equivalent of 10.7.

10.13. THEOREM. Let X and E be as above, let moreover b^{X) =
1. // δ™x - δ™in <r-3 for some xeX, then E splits numerically,
i.e. cχ(E) = (a + b)cι(H), c2(E) = (ab)cι(H)2 for some a, b e Z.
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A TRANSVERSE STRUCTURE
FOR THE LIE-POISSON BRACKET

ON THE DUAL OF THE VIRASORO ALGEBRA

GLORIA MARI BEFFA

KdV equations can be described as Hamiltonian systems on the
dual of the Virasoro algebra with the canonical Lie-Poisson (also
called Berezin-Kirillov-Kostant) bracket. In this paper we give an
explicit transverse structure for this Poisson manifold along a finite
dimensional submanifold. The structure is linearizable and equivalent
to the Lie-Poisson structure on sl(2, R)*. This problem is closely
related to the classification of Hill's equations.

1. Introduction and main definitions. It was known since Lie's time
that if a manifold has a Poisson structure and the rank of the Poisson
tensor is constant around a point (that is, the point is regular), then
the manifold can be locally described at such a point as foliated into
leaves of maximum rank or symplectic leaves. If the Poisson manifold
is the dual of a Lie algebra with its Lie-Poisson bracket, then the sym-
plectic leaves coincide with the orbits under the coadjoint action of
the group. If the point is singular the local description can be achieved
by finding a section which is transversal to the orbit of the point and
which is endowed with a Poisson structure induced by the global Pois-
son bracket. This induced bracket, or transverse structure, was initially
introduced by A. Weinstein for finite dimensional Poisson manifolds
(see [20]) and it describes the relation between the symplectic struc-
tures on the different leaves as we cross them transversally to the orbit
of a singular point. Weinstein also proved that transverse structures
were unique in the following sense: if we have two sections transversal
to the orbit of a singular point with Poisson brackets induced on them
and with dimensions equal to the codimension of the orbit, then there
exists a Poisson isomorphism of the manifold, defined between two
neighbourhoods of the intersections with the orbit, which will clearly
preserve the two transverse structures.

The aim of this paper is to show the geometrical description of
the coadjoint orbits on the dual of the Virasoro algebra as we move
transversally through them and to use this description to find an ex-
plicit transverse structure for its Lie-Poisson bracket. Descriptions

43
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and classifications of the coadjoint orbits have been given by different
authors (see [8], [9], [17], or [21]). The problem is closely related to
finding normal forms for HilΓs equations as we will see later.

In §2 we try to find a suitable transversal section in which we will
define our structure. This direction might have a role in this work. In
the case of the Virasoro algebra (a Frechet manifold) there are no re-
sults on uniqueness of transverse structures available to us, so that, in
principle, the transverse structure we get might not have been canon-
ically chosen. We will show that it is enough to describe a transverse
structure for constant potentials of the form p = \ , for all integers
n (these are analogous to singular points in finite dimensions). An
orbit that does not contain such a potential will automatically possess
a trivial transverse structure (potentials on these orbits are analogous
to finite dimensional regular points). A direction transversal to an
orbit which goes through a potential of the form /? = y is given by
a 3-dimensional submanifold which is isomorphic to sl(2, R). In §3
we find a transverse structure along that section and we show how,
although it is nonlinear, it can be linearized along the submanifold
and therefore it is equivalent to the standard Lie-Poisson structure on
sl(2, R)*. We also discuss how this fact does not imply a uniqueness
result. The definition of transverse structure is also revised, to make
it easier to adapt to the infinite dimensional case.

In the last section we provide an expression for the Taylor expan-
sion of the transverse structure in terms of the even moments corre-
sponding to a certain moment functional. This linear functional is
defined as follows: the symplectic structure on the intersection of the
coadjoint orbits with the transverse section can be, in some sense, rep-
resented by a Jacobi matrix. There exists a Jacobi fraction (continued
fraction) associated to such a matrix and its corresponding partial de-
nominators can be described as orthogonal polynomials with respect
to certain discrete measure. The linear functional we are looking for
is given by integrating against that measure.

Finally we show how the transverse structure can also be expressed
in terms of the Fourier coefficients of a periodic solution of a nonho-
mogeneous equation whose homogeneous part is given by the coad-
joint action of the algebra on its dual.

This paper is part of the author's Ph.D. thesis at the University of
Minnesota. The author wishes to express her gratitude to J. F. Conn
for introducing her to Poisson Geometry and infinite dimensional Lie
algebras and for sharing with her his ideas about the subject. She
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would also like to thank D. Stanton, S. Angenent and especially Peter
Olver. This work benefited very much from her talks with them.

Central extensions: The Virasoro algebra and the Lie-Poisson struc-
ture on its dual.

Let G be a Lie group, g its associated Lie algebra and g* the dual
space of g. We define the Chevalley - Eilenberg complex associated to
a representation (V, p) for g, as the chain complex given by

with the coboundaries defined as

Sι(a)(ξιAξ2) = p(ξι)a(ξ2) - P(ζ2)a(ξι) - a([ξ{, ξ2]),

S2(β)(ζl Λξ2Λξ3)=Σ P^x)β(ξa2 Λ ίσ3) + £ β{ζaχ Λ [ ^ , & J ) ,
σeA3 σeA3

and where £ i, ξ2, £3 E g, [ , ] is the Lie bracket in the algebra, and
A$ is the space of cyclic permutations of {1, 2, 3} .

In particular, if (K, p) = (R, 0), the conditions above become

S2(β)(ξι Λ ξ2 Λ ζ3) =

We will denote by H2(g, (V, p)) = H2(g, V) the second cohomol-
ogy group associated to the Chevalley-Eilenberg complex.

Given a nontrivial 2-cocycle c e H2(g, R), define the Lie algebra
go = g θ R with Lie bracket

go is called a central extension for g .
Let S 1 be the unit circle and G be the group of diffeomorphisms of

S 1 , diff(iS1), with the composition o as the operation of the group.
We can naturally identify g with the space of vector fields of the
circle, vect^ 1 ) (for more information about infinite dimensional Lie
algebras see [14] and [16]). The Lie bracket on g is given by the usual
commutator

and the adjoint action of the group is carried out through a simple
change of variables in the vector field, Ad(φ)(ξ(θ)jg) = {φ'ζ)°Φ~ljQ -
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On the other hand, g* can be identified with the space of 2-tensors
on Sι acting as

lp{θ)dθ®dθ,ξ{θ)^Ξ\= I πp(θ)ξ(θ)dθ,
\ oV/ Jo

and the coadjoint action of the group is then given by Ad(φ)(p{θ) dθ2)
= -jL ° Φ~ι dθ2, which is the usual change of variable for 2-tensors.

It is known that H2(γect(Sι), R) = R and a generator is given by

/ft ft \ /»2ττ p27i

c is the so-called Gelfand-Fuks cocycle.
In the case when g = vect(5'1) and c is the Gelfand-Fuks cocycle,

the central extension g0 is called the Virasoro algebra.
c can be integrated to a cocycle in the group

B(9,Φ)= [
Jo

called BotVs cocycle. The group Go = diff(Sι) x R with operation

is the Lie group that has go as its corresponding Lie algebra. It is
called the Virasoro group. Finally, #Q can be viewed as

g* = {(p(θ) dθ2, s), p(θ) 2π-periodic function, s e R} = g* Θ R,

acting on go a s

where, for convenience, we have denoted p(θ) dθ ® dθ and
by p and ξ, as we will often do from now on.

Let <%* be an element of C°°(g*). Define the gradient of & to
be the element of g given by δpβ^(θ)jQ e g, where δpβ^(θ) is a
2π-periodic function such that

9e ε = 0

f2π

εh)= / h{θ)δp%?{θ)dθ,

for any 2π-ρeriodic function h.
This definition establishes a correspondence between elements of

C°°(g*) and elements of the Lie algebra. We can define the classical
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Lie-Poisson structure on g* as the one induced on g* by the Lie
bracket on g through the correspondence above, i.e.

for any %T, & e C°°(g*), and any a eg*.
If we denote by βf and & two elements of C°°{gl), their gra-

dients will have two partial components {δpβf, δtβ?). By definition,
the Lie-Poisson bracket on g£ is given by

= / π[δpβ?,δp&>]p(θ)dθ-
Jo

for all β?, 30 e C°°(go). Since the expression above does not depend
on the value of %? and & in the central direction, we can rewrite it
in the usual way

The KdV equation ut = 3uux - uxxx can be interpreted as a Hamil-
tonian system with respect to { , }o in the following sense:

Consider the evaluation operator 2# defined as 2f(p) — p(θ). That
is, 3f has Dirac's delta function as gradient (Dirac's delta function
does not give rise to a diίferentiable operator but it can be expressed
as a series of differential kernels, so we view it in such an approximate
way). If we consider the Hamiltonian operator β? defined as

= \ Γp2(θ)dθ,
2 Jo

it is straightforward to check that the KdV equation is equal to the
Hamiltonian system ut = {%*\ &}o(u), with central charge s = - 1
(for more information see [1], [2], [6] or [7]).

2. A transverse section to the orbits: Classification of Hill's equa-
tions. An explicit expression for the coadjoint action of the Virasoro
group on the dual of the Virasoro algebra can be found in Kirillov's
paper [8] and it is given by

(2.1) K*(φ)(p ,s)=[ τ^-1 o φ ι , s

where S(φ) denotes the Schwartz derivative of φ, S(φ) =
(φ'"φ' - \φia)jφa. One can obtain the coadjoint action of the Vi-
rasoro algebra on its dual by differentiating the expression (2.1)

(2.2) k*(ξ)(p, s) = (sC - 2pξf - p'ξ, 0).
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The central charge s remains invariant under the action, that is, g£
stratifies into a family of Poisson submanifolds with constant central
parameter. Each one of them is isomorphic to g* with Poisson struc-
ture given as in (1.1) and they are all geometrically equivalent, except
for the case s = 0. This is the usual change in the Poisson Geometry
of the dual of a Lie algebra, produced by a central extension. Let's fix
once and for all an adequate hyperplane inside g£ , namely s = - 1 .

Define the stabilizer of a point p to be the set of diffeomorphisms
of the circle that fix the point p under the coadjoint action, i.e.,

Stab(/?) = {φe diff{Sι) such that K*(φ)(p, -1) = (p, -1)} .

From (2.2) we deduce that the tangent of the stabilizer of p at the
identity element is given by the vector space

(2.3) Γid(Stab(/7))

= Iξjβ e vect(Sι) such that ζ"f + 2pξ'+p'ξ = θ | .

A classification of the stabilizers of potentials was given in [8], It was
shown there that the set of solutions of (2.3) has a structure of Lie
algebra which is isomorphic to sl(2, R), and that, furthermore, the
number of periodic solutions of (2.3) is either 1 or 3, i.e., Stab(p) is
either 1 or 3 dimensional. This dimension coincides with the codi-
mension of the coadjoint orbit.

Let g be a Lie algebra with Lie bracket [ , ] . If ad(£)(μ) = [ζ, μ]
is the usual adjoint action of the algebra, we define the Killing form of
g to be the bilinear form B(ξ, μ) = tr(ad£(adμ)), for any ζ, μ e g.

PROPOSITION 2.1. In the case of codimension 3, the coadjoint orbit

contains a point of the form ^- dθ2 for some integer n.

Proof. Assume that the codimension is three and let us consider
7]d(Stab(/?)) with its sl(2, Restructure. An expression for its Killing
form was given in [8] and it is equal to

We know that the Killing form of sl(2, R) takes positive, negative
and zero values; so does the Killing form of 7id(Stab(p)). If ξ is a
periodic function with simple zeros we obtain

ξξw+pξ2-^ξa = ~ξl2<0.
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If ξ has double zeros then I(ζ) = 0, so that I{ξ) > 0 implies that ζ
never vanishes.

For such a nonvanishing vector field ξ e 7id(Stab(/?)) choose φ to
be equal to

A dθ,φ(θ) = I
Jo

A = constant chosen so that φ(2π) = 2π.
It is immediate that Kά(φ)(ξ) = {φ'ζ)°φ~x = A (remember that we

denote by Ad(^) the coadjoint action of dit^S 1 )). It is straightfor-
ward to check that the constant A should be a solution of the equation
μ!" + 2K*(φ)(p)μf + [K*(φ)(p)]'μ = 0, and therefore K*(φ)(p) = px

is also constant. Since the number of periodic solutions of (2.3) is
preserved along the orbit, the equation μm + 2p\μ' = 0 must have
three independent periodic solutions. The only choice is p\ = \ for
some integer n and we are done. D

This last result entitles us to restrict the problem of finding a trans-

verse structure to the case p = \: if the orbit does not go through

Y for some n, the transverse section would be 1-dimensional and

the transverse structure trivial. In fact, the codimension of the or-

bit is constant around a point different from p = \ , and therefore

we can refer to them as regular potentials. Furthermore, if Or(/?)

goes through y for some n we can immediately obtain a transverse

structure at p translating from \ to p using the coadjoint action.

When p = \ , three independent solutions for equation (2.3) are
ζ\ = cos(n0), £2 = ύn{nθ), £3 = constant. Consider the linear
section

(2.4) Qn = \ (γ + acos(nθ) + bsin(nθ) + c)dθ2,

α, b, c e R , \c\, \a\, \b\ < δ \

for some fixed integer n and some small δ that we will fix later on.

PROPOSITION 2.2. Qn is transversal to the orbit of ^ at ^ .

Proof. Denote the orbit through p by Or(p) and define the anni-
hilator of Γid(Or(/?)) as the subset of g0 given by

Άά{Oτ{p))L = {ξeg0 such that (ξ, k*[y){p)) = 0 for all v e go}.
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It is easy to see that T^O^p))1 = kernel of k*(p), since

Jsι

Besides, the pairing

is nondegenerate, so that Qn has to necessarily be transversal to

Since the Virasoro algebra is a Frechet manifold, there are no gen-
eral inverse function theorems we could apply at this point to deduce
straightforwardly that Qn intersects all nearby orbits. This is an im-
portant condition on Qn if we wish to describe the Poisson structure
around \ . To avoid this problem we need a description of the in-
variants of the coadjoint orbits to later check that they are all locally
reached along Qn . The classification of the orbits has been studied
by several authors. Kirillov gave a classification of the stabilizers in
his paper [8]. Lazutkin and Pankratova provided a partial description
in [9]. Later on, Segal [17] pointed out a discrete invariant that was
missing in [9] and gave the complete set of invariants which we are
going to describe next.

First of all, we can identify g£ with the space of Hill's operators
associating to a tensor pdθ2 the equation

(2.5) £" + | £ = o.

If ^ is a solution of (2.5), it is straightforward to prove that its
Liouville-Green transform, μ = [(φ')ι^2ξ] o φ~ι, is a solution of

Moreover, this is the only transform which preserves Hill's equations.
In that sense we will view our manifold as the manifold of Hill's op-
erators and the coadjoint action as a change of variable in the corre-
sponding equation. Using this interpretation it is immediate to check
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that, if Fp is the Floquet matrix or monodromy associated to (2.5),
then RFpR~ι is the monodromy associated to (2.6) where

o λ
/1/2)(2*)eSL(2,R).

That is, the SL(2, R)-conjugation class of the monodromy matrix is
preserved along the coadjoint orbit. This is one of the invariants of
the orbit, in fact the only one that changes continuously. There exists
a second invariant which we can describe in the following way:

Consider u: R —• R2\{0} to be an immersion given by two inde-
pendent solutions of (2.5); we can assume that M(0) = (1,0) and
w'(0) = (0,1) . Let ύ: R -+ Sι be its radial projection and let np be
the number of complete turns that u makes in a period. np is an-
other invariant of the orbit, called a discrete invariant since it does not
change continuously (again we can easily check that np is invariant
using a Liouville-Green's transformation).

THEOREM 2.1. Let u\ and Uι be two orientation-preserving immer-
sions given as above by the solutions of two equations ζ" + ̂ ξ = 0 and
ζ" + %ζ = 0, respectively. If nPχ = nPi = m and FPχ = RFPiR~l for
some R e SL(2, R), then p\ is in the same orbit as p^ . That is, up to
a Liouville-Green transformation, each Hill's equation corresponds to
a different conjugacy class of the universal covering space of SL(2, R)
under the SL(2, R)-action.

Proof. 1st case. Assume that Fp = FPi= F.
Then U\ and ύι make the same number of turns in a period and

ύ\(2π) = #2(2π). Divide the interval [0, 2π] into several subintervals
[0, θχ]9 . . . , [θi9 ΘM], . . . , [0 w _i, θm], [θm, 2π], such that ύx cov-
ers a complete turn on Sλ at each subinterval, except for [θm, 2π].
Repeat the subdivision for #2- Then φ = ύ^ι o U\ is smooth and
well defined if we map each one of the ύ\-subintervals diίfeomorphi-
cally into the corresponding ά2-subinterval, that is, following in the
mapping a natural order.

Because of the condition FPχ = FPi = F, we get that φ(θ + 2π) =
φ(θ) + 2π, and therefore φ is a diffeomorphism of the circle with
u2 o φ = u\.

Finally, since ύs(θ) is the radial projection of us(0), s — 1,2,
we obtain that u\(θ) = f(θ)(ti2oφ)9 for some diίferentiable and
real-valued function / . Both u\ and Uι were given by solutions
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of HilΓs equations. Through a straight substitution in the equations
one can check that this condition imposes a unique possible choice,
/ = φ'-χl2 . Therefore, p\ = K*(φ)p2 and this case is proved.

2nd case.

FP2=RFPιR~ι.

We know that

(2.7) ύi(θ + 2π) = (FpuiΓ(θ), / = 1 , 2 .

Therefore

(R-ιu2Γ(θ + In) = (FpR-ιu2Γ(θ).

Denote the image of u as subset of R2 by Im(w). It is not hard
to check that R can be chosen so that Im(fii) and Im(R~ιU2)~
intersect at some point. In fact, we could use above -R instead
of R if they do not intersect (the sets Im(fii) Π Im(i?~1W2)^ and
Im(#i) Π Im(-i?~1W2)^ cannot be simultaneously void). By transla-
tion in the argument, we can make the initial values coincide. R~ιu2

and any translation of it is given by solutions of the same Hill's equa-
tion as u2. We can now obtain this case as a corollary of the previous
one. D

PROPOSITION 2.3. The space of Hill's equations, up to Green-Liou-
ville's transformations, is in one-to-one correspondence with the space
of SL(2, R) conjugation classes of the Universal covering space of
SL(2, R), with the point (Identity, n = 0) removed.

Proof. First of all notice that if a matrix M e SL(2, R) has two
different eigenvalues (that is, | trace(Af )| > 2), then its GL(2, R) and
SL(2, R) conjugation classes coincide. If trace(M) = ± 2 , then the
two different SL(2, R)-Jordan forms are ± ( * j) a n d ± ( J ~ | ) , and
if |trace(Af)| < 2, then both eigenvalues are imaginary and there
are also two different SL(2, R)-Jordan forms, namely ±(_£ b

a) and

± ( g - * ) , α , a > o .
Next, consider the potential

and consider its associated Hill's equation ζ" +pa βξ = 0. A funda-
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- ξ"+ pίl ξ=0

FIGURE 1

mental matrix of solutions for it is given by X = XiX\ where

χ _ ( cos(aθ0) isin(α6Ό)λ
1 \ —a sin(α^o) cos(α#o) / '

/ cosh(£(2π - θ0)) j sinh(£(2π - θ0)) \
V^sinh(^(2τr - θ0)) cosh(yS(2π - θ0)) ) P ψ '2 \β

2π -

The rotation number (in the above sense) of this equation is aθo/2π
plus an angle ωo with tan(ωo) < i and which is, in any case, less
than §. Next, we will show that, for different values of a, β and
ΘQ we obtain all possible SL(2, R)-Jordan forms, with all possible
rotation numbers, except for the case of no complete turns (rotation
number 0) and monodromy equals the identity.

If θ0 = 2π, then

y I ^*K27ta) - sin(2ττα:)

~" \-o:sin(2πα) cos(2πα)

We can therefore cover the four possible Jordan forms correspond-
ing to complex conjugated eigenvalues by choosing different values of
a from the intervals [0, | ] , [|, j ] , [\, | ] and [|, 2], respectively.
Considering values ma with m being an integer m > 1, we would
obtain the same Jordan forms but the rotation number would be m-1.
The identity matrix is reached here whenever a is a nonzero whole
number. It is never reached for rotation number equals zero, since
the solution curve is in this case periodic and it should, at least, give
a complete turn around Sι.
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If 0O = π and a = 2, 4, . . . , then trace(X) = e2πP + e~2πP > 2.
Changing the values of β and a we will reach all possible values of
the trace and all rotation numbers. If #o = π a n d α = l , 3 , 5 , . . . ,
then trace(X) = -(e2πβ + e~2πβ) < - 2 and the same result holds.

Therefore, we are left with the classes which have Jordan forms
± ( J ί ) and ± ( o ~ { ) . If θ0 = α> α = 0, 2, 4, . . . and β = 0, we
obtain the classes with Jordan form (* }) (and - ( Q }) f°Γ the choices
α = l , 3 , 5 , . . . ) and all different rotation numbers.

Finally, consider 0O = § and a = 3, 7, . . . . Then,

/cosh(Y) }sinh(Y)\ /0 - I
V ^ i ( Y ) co3h(ψ))\« O

has a double eigenvalue whenever (f - ^ ) 2 s i n h 2 ( ^ ) = 4. Its eigen-

values would be ±1 = ±j(y - £) s i n h ( ^ ) depending on the sign of

(y - f) s i n h ( ^ ) . In this case, X will have Jordan form ±( J "}).

On the other hand,

lim (SL - I) sinh [ ^ 1 = ^ > 2

lim ( — - — ] sinh ( :

J-H-OO \β a) \

\ 2
and

From here it is obvious that this last case is also covered.
If we approximate paj by C°° periodic functions we will imme-

diately obtain the claim of the proposition. D

Using this geometrical description it is easy to prove the following
theorem.

THEOREM 2.2. The transverse section Qn (see (2.4)) intersects all

orbits nearby the one going through the potential \ dθ2.

Proof. It suffices to prove that the map Qn —> SL(2, R), which as-
sociates to each potential the monodromy of equation (2.5), is locally
surjective. If we expand the monodromy as a function of (α, b, c)
we obtain

Fp = Identity + π < ί j _ (

+ higher order terms,

which has maximal rank.
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f = 0

FIGURE 2

Assume that p = \ + c + a cos(nθ) + b sin(nθ) e Qn . We can also
calculate the Taylor expansion of A(p) in a, b and c up to second
order (see [10]). We are required to solve two ordinary second order
differential equations for each Taylor coefficient we want to find.

After some long calculations one gets

+ higher order terms in (a, b, c).

Let us have a closer look to the real function f(x, y, z) = x2+y2-z2.
Its level sets are given as in Figure 2. Recall that / is a nontrivial
Casimir element for the Lie-Poisson bracket of si (2, R)*.

Recall also that A(p) is constant along each orbit, in particular along
each intersection of the orbit with Qn . If there exists a transverse
structure for (go, { , }o) o n Qn , say { , }Q , one expects the Kirillov
leaves of { , }Q to be such an intersection. Since a function that is
constant along the symplectic leaves is a Casimir function, A(p) would
be a Casimir for { , }Q. Therefore, we can make a guess and claim
that (Qn, { , }Q) is locally isomorphic to sl(2, R)* with its canonical
Lie-Poisson structure. This is actually one of the main results in the
next section.

Theorem 2.2 partially proves a claim by Lazutkin and Pankratova
about normal forms of Hill's equations. In their paper ([9]) they claim
that any Hill's equation has normal form ξ"+(d+e cos(nθ))ξ = 0, for
some real numbers d and e. This normal form can be achieved under
a Liouville-Green transformation. From Theorem 2.2 any potential p
can be taken to the intersection of the leaf with Qn using the coadjoint



56 GLORIA MARI BEFFA

action, as far as it belongs to an orbit close enough to Or(^-), for some
integer n. Besides c + a cos(nθ) + b sin(n0) = c + β cos(nθ + a) for
some α, β e R. The result follows. The methods used on ([9]) are
different from the ones in this paper.

3. A transverse structure for g£, { , }o.

3.1. Induced Poisson structures: Transverse structures and Dirac for-
malism. Transverse structures in infinite dimensions. In the finite di-
mensional case, transverse structures were introduced by A. Weinstein
[20] and they were proved to be unique. Some results have already
been proved in the infinite dimensional case, whenever the manifold
is modelled by a Hubert or Banach space (see [11]). That is not our
case either since vect^ 1) is a Frechet manifold (it is not only that the
Fourier series of an element has to converge, but all the series of its
derivatives). Therefore, we now encounter one of the obstacles in this
work: it is not clear how to induce a Poisson structure in this kind of
space.

The idea we will follow is to imitate the finite dimensional proce-
dure, covering any gap we find in some appropriate way. In particular,
we will find the analogue of Dirac's formula for transverse structures
in finite dimensions and we will check that it actually defines a Pois-
son structure on Qn which is induced by the Lie-Poisson structure
of the Virasoro algebra (for more information about induced Poisson
structures see for example [12], [18], or [13], or [20]).

DEFINITION. Let Lp = Qn nθr(/?). Assume (1) { , }o induces a
nondegenerate (symplectic) structure on Lp, for all p eQn.

(2) There exists a smooth (resp. analytic) Poisson structure on Qn ,
{ , }Q , that induces the same structure as { , }o on Lp .

{ , }Q is called a smooth (resp. analytic) transverse structure for
(SoΛ > }o) in the direction of Qn .

THEOREM 3.1 [20] (Induced Poisson structures in finite dimensions).
Let M be a finite dimensional Poisson manifold with Poisson tensor
P. Let Q be an immersed submanifold of M. Assume that, for all
xeQ,

(a) P(x)(Tx(Q)±)nTx(Q) =

(b) Ker(P(x))nTx(Q)± = 0.

Then Q canonically inherits a Poisson structure from M, which we
will denote by PQ .
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We will make some comments on how the induced Poisson structure
is found.

Using (a) and (b) it is not hard to show that

Tx(M) = Tx(Q)®P(x)(Tx(Q)±)

which provides itself a smooth projection π: TX(M) -> TX(Q) when-
ever x e Q. The induced Poisson structure is then defined as

In other words, given a Hamiltonian function a G TX{Q)* we
can find an extension of it, π*(α) = ά G TX(M)*. The vector field
P(x)(ά) G TX(M) has a component on TX(Q). Such a component is
the value of PQ{X)(OL) , and it is found taking away from P(x)(ά) a
linear combination of elements in P(x)(Tx(Q)±).

In local coordinates the idea is as follows:
Let {z\, . . . , z2s} be independent defining functions for Q near

x. That is, Q = {x e M: zx(x) = z2(x) = ••• = zls(x) = 0 } .
Denote by C(y) = {Cij{y)) the matrix Ctj(y) = {z;, zj){y)9 with
/, j = 1, . . . , 2s and y G Q. This matrix has smooth (resp. analytic)
entries and it is nonsingular. Let C~ι(y) = (Cij(y)) be its inverse
matrix, which also has smooth (resp. analytic) entries. Let / be a
smooth function on Q and / be any extension of / to ¥ . Due
to the invertibility of C one can easily show that there exist unique
smooth functions {gi(y)}jίι defined on a neighbourhood of x such
that, if

2s

then PQ(f)(y) G Ty(Q) for all y e Q in a neighbourhood of x.
Imposing the tangency condition on PQ{/) we can uniquely solve for
gi in terms of the entries of C~ι.

The final expression for PQ is

2s

(3.1) {/, g}Q(y) = {/, g}(y) 4- £ { / , z/}(y)C^'(y){z7 , g}(y),

for all y G Q around x. This formula is referred as Dirac's formula
for induced structures.

PQ immediately induces a structure on Q whose symplectic leaves
coincide with the intersection of Q and the symplectic leaves of P.
Notice that, in order to find an expression for PQ , we need not only
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nondegeneracy of the bracket along the coadjoint orbits but also to
invert it locally.

PROPOSITION 3.1. For δ small enough, { , }Q(P) is nondegenerate
{symplectic) on Tp{Qn)

L, for all p e Qn, and locally invertible when
considered as a linear operator from I2 to I2 (δ as in (2.4)). Coor-
dinates can be chosen such that { , }o and its inverse are represented
by infinite matrices with analytic entries.

Proof. Consider Fourier coefficients as coordinates for the dual of
the Virasoro algebra, εm: g£ —• R defined as

1 ί2π

em(p) = — / eimθp(θ) dθ, for any integer m,
2π Jo

Qn is locally defined as the zero set of {εm}mφ±n^.
In order to prove the proposition, we need to check that the lin-

ear operator C: I2 —> I2, represented by the infinite matrix C(p) =
({εm, ekh(p))m,kϊ±n,o>is invertible for any peQn.

Assume that p = \ + c + acos(nθ) + bsin(nθ) G QW) so that

*o(p) = τ + c> *n(P) = j(a + bi), e-n(p) = \(a-bi) (i2 = -1).
Straightforwardly, one can show that

(3.2) {ε_k, εk}0(p) = ^

(2Λ: - ft)

{£m, βfc}o(p) = 0, otherwise.

To invert the matrix above is equivalent to solve for {ym}t^-oo
the system

(3.3)

for all k, and for some B = {b^} given. Let us assume that {%} and
are elements of I2. We can rescale so that system (3.3) becomes

(3.4) γ-kk(2e0(p) - k2) + γ-{n+k)(2k + n)ε-n(p)

+ γn-k(2k - ή)εn{p) = bk,

for any integer k.
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Observe that the system (3.4) can be divided into a finite number
of autonomous subsystems. Each one of them involves only the y's
whose subindices belong either to the set {k = sn + r, s = 1,2, ...}
for a fixed integer r φ 0, -n < r < n or to the set {k = In,
s = 2, 3 , . . . } . There are a finite number of subsystems so that it is
enough to prove that each one can be solved in I2. The reasoning is
the same for any one of them. We will prove it here only for the system
given by the subindices {k = sn, s = 2, 3, ...} . For simplicity call
γ_sn = γs since no confusion is possible from now on.

We can rewrite the system to solve as A(p)γ = b, where A(p) is
given by the infinite tridiagonal matrix (Jacobi matrix)

(s - l)(2εQ(p) - [[s - \]nf) [2s - l ] ε _ » 0

[25 - l ] ε » s(2εo(p) - [sn]2) [2s + \]ε_n(p)

0 [2s + l]εn(p) (s + l)(2eo(p) - [[s + l]n]2)

Observe that A{\) is a diagonal matrix with nonvanishing diago-

nal entries. Therefore, A(*γ) is an invertible matrix and its inverse

is a diagonal matrix with diagonal entries 2_
1 ^ , s = 2, 3, . . . .

Although A(γ) does not take I2 into I2, its inverse does.
Observe also that, if we define the matrix D(p) through the relation

A(p) = A{\) + D(p), to solve the system A(p)γ = b is equivalent to
solve for γ in

where ^(^-)~ 1 is the inverse matrix of A{\). The matrix
is given by the tridiagonal matrix

: : \
(s-\)(2ε^p)-[[s-\]nf) [2s-l]ε_n(p) Q

(\-{s-\)2)(s-l)n2 (l-(s-\)2)(s-\)n2

[2j-l]g» s(2£()(p)-[sn]2) [2s+l]ε_n(p)
s(l-s2)n2 s(l-s2)n2 s(l-s2)n2

[s+l](2εo(p)-[[s+l]n]2)

: i \ l
The infinite dimensional operator A{\)~lD{p): I1 —• I2 repre-

sented by this matrix is clearly bounded with norm bounded by |<5|
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(δ as in (2.4)). We can apply standard theorems on invertibility of
linear operators on Hubert spaces that are perturbations of the iden-
tity to obtain that, for δ small enough, the matrix / + A(γ)~ιD(p)
is invertible, for any p e Qn .

The matrix / + A(γ)D(p) has analytic entries in βo > £n and ε_π .

Therefore, A(p)~ι = [/ + A{\)~xD{p)]-χA{\)~1 also has analytic

entries and the result of the proposition is now proved. D

Denote by (ClJ(p)) = C~ι the inverse matrix of C as in Proposi-
tion 3.1.

LEMMA 3.1. Let p = (α, b, c) = (eo(p), εn(p), ε-n(p)) e Qn, and
let C~2n2n(p) be the entry in place {-In, 2ή) of C " 1 .

Then, ^[C~2n2n is a real analytic function of (εo(p), (εn(p)ε-n(p))).
That is, it depends only on c and the ratio a2 + b2.

Proof. This lemma is a corollary of §3.2, Theorem 3.7, in which we
give an explicit Taylor expansion for it. A shorter proof can be given
but we will avoid it. D

THEOREM 3.2. A transverse structure for the dual of the Virasoro
algebra at the point \ dθ2 is given locally by an antisymmetric tensor,
{ , }Q, defined as

n , x

? ε-n}Q(p) =

1 Γ C~2n2n(n)l

{en , e-n}Q(p) = ̂ 7 [-2/ιβo(p) + n3 - 9n2εn(p)ε-n(pΓ 2 π z j .

The structure is analytic in {εo, εn, β_w}, linearizable and equivalent
to the Lie-Poisson structure on sl(2, R)*.

Proof. Notice that we are actually copying the formula in coordi-
nates given by Theorem 3.1. Define { , }Q as

, βj}o(p).

Applying commutation relations (3.2), the formula above gives the
expression in the statement of the theorem. This expression is found
following formally the finite dimensional reasoning in Theorem 3.1.
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On the other hand, since this is only a formal approach we will have
to check straightforwardly that PQ defines a Poisson structure on Qn

and that the intersections of Qn with the symplectic leaves are sym-
plectic with respect to both structures. Notice also that (a) and (b) on
Theorem 3.1 are also true here due to the nondegeneracy of { , }o
along the leaves. Nevertheless, one cannot get the splitting of the tan-
gent space into a direct sum as it happened in the finite dimensional
case.

Leibniz's rule is obvious from the definition. To check Jacobi's
identity for { , }Q reduces to prove that

(3.5) {ε0, {en , £-«}β} + iεn , {fi-Λ , eo}Q}

+ {β-n, {to, ZnJQJQ = 0,

on Qn . Substituting we reduce (3.5) to

(3.6) {e0AtnS-n)C-2n2n}Q(P) = 0.

As a result of Lemma 3.1, (εnβ-n)C~2n2n restricted to Qn is ac-
tually a function of the ratio {εn(p)ε-n(p)). Applying Leibniz's rule
and the definition of { , }Q one gets that εo commutes with the ratio
along <2, and therefore (3.6) holds.

The last part is to check that P is symplectic on the intersections
of Qn with the symplectic leaves, Lp. As it happened in the finite
dimensional case, that is a consequence of property (a) in Theorem
3.1, since the intersection P(p)(Tp(Qn)

±) n Tp(Qn) is equal to the
kernel of P along Lp , and in this case it vanishes.

Finally, we apply the following result by J. Conn [4] (see [5] for the
smooth case): if a Lie algebra g is semisimple (as sl(2, R) is), then
any analytic Poisson structure on g*, which is a perturbation of the
Lie-Poisson structure by a tensor of order at least 2 that vanishes at
the origin, is linearizable.

It is now obvious that PQ is linearizable and equivalent to the Lie-
Poisson structure on sl(2, R)*. D

One comment on the linearization. Notice that by being linearizable
we mean linearizable as structure on Qn, not as a structure induced
by #Q . That is, this result does not imply that a canonical transverse
structure for the Lie-Poisson structure on the dual of the Virasoro
algebra is the Lie-Poisson structure on sl(2, R)*, since no uniqueness
result has been proved yet. What the result really means is that we can
find coordinates (only) on Qn such that { , }Q on those coordinates
is linear. In order to prove uniqueness we would need to extend that
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change of coordinates to gfi obtaining in this way an automorphism
of the Lie-Poisson structure on g£. We will comment more about
uniqueness at the end of the section.

3.2. The explicit expression for { , }Q . In this section we will
give an explicit expression for the Taylor expansion of the function
C-2n2n(p).

Recall that our function is the entry in place (~2n, 2ή) of the
matrix (Ckm(p)), inverse of (Ckm(p)) = ({εk, εm}o(p))k,mί±n,o If
again we set the system of equations Cγ = em > where γ = {γk} and
e2n is a vector that has all its components equal to zero except for 1
in place In, then γ_2n = C~2n2n(p) . Again, if for simplicity we write
γk instead of γ__nk, we get the recurrence relation

(3.7) k(2ε0 - (kn)2)γk + (2k - l)enyk-i + (2k + l)ε-nyk+i = 0,

for any k > 2, and

where β = ψ .

P R O P O S I T I O N 3.2. For any k>2,

Fk(εnε-n, εo)γ2 = Hk(εnε-n, εo)β - δkγk

where Fk 9 Hk satisfy the recurrence relation

(1) GM = XGk - k { k m k n ) 2 γ M k __ ι)n)2 _ Y)

Gk-i ^

with

* (2k-\)ε-nX

and initial conditions

1
* i = 0 , F2=\, H2 = 0, H3 =

OT, = —

Proof. The proof of this proposition is by induction on k. D

The solutions of the recurrence relation (1) can be interpreted as
orthogonal polynomials in X as we will show next.
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A. Jacobί fractions and orthogonal polynomials: Definitions and
some results.

DEFINITIONS, (a) Let {an} and {bn} be arbitrary sequences of
complex numbers and write

Co = bo, C\ = bo + T-, C2 = b0 +

n = O0 + jf- .

1 h+
''-(an/bn)

Cn is called the nth approximant of the continued fraction associated
to the sequences {an}, {bn} . We will denote Cn as

(b) A continued fraction of the form

\x -cx \x- c2 \x - cι

is called a Jacobί type continued fraction {J-fraction).

(c) If C is a continued fraction and Cn = An/Bn, then An and
Bn are called nth partial numerator and nth partial denominator,
respectively.

Note. If An and Bn are the partial numerators and denominators
for a /-fraction

A l λ \
\x -cx \x- cn

it is very simple to prove that they satisfy the recurrence relations

Bn{x) = {x - cn)Bn-X{x) - λnBn-2{x), / ι = 1, 2 , 3 , . . . ,

B_1(x) = 0, Bo(x) = \,

An{x) = (x- cn)An_ι(x) - λttAn-2(x), n = l,2, ... ,

A.1(x) = l, A0(x) = 0.

Notice the similarities between these expressions and the recurrence
problem (1).

(d) Let {μn} be a sequence of complex numbers and let J ? be
a complex-valued linear function defined on the vector space of all
polynomials by the rule

n) = μn, n = 0, 1 , 2 , . . . .
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Jz? is called moment functional determined by the formal moment
sequence {μn}. μn is called the moment of order n.

(e) A moment functional £? is called positive-definite if <S?(π{x)) >
0 for every polynomial π(x) that is not identically zero and is non-
negative for all real x.

(f) Let Jϊ? be a moment functional with moment sequence {μn}.
Define

We will say that £f is quasi-definite whenever An Φ 0 for all 0 < n.
(g) A sequence {Pn(x)} is called an Orthogonal Polynomial Se-

quence (OPS) with respect to a moment functional 3* provided that,
for all nonnegative integers m and n

(i) Pn(x) is a polynomial of degree n,
(ii) ^ ( P m ( x ) P n ( x ) ) = 0 for all m φ n,

(iii)

It is not hard to notice that OPS are uniquely determined up to the
product by a nonvanishing constant. The next theorem shows how
partial denominators for a /-fraction can be interpreted as OPS with
respect to a certain moment functional.

FAVARD'S THEOREM. Let {cn} and {λn} be arbitrary sequences of
complex numbers and let {Pn(x)} be defined by the recurrence formula

(3.8) Pn{x) = (x -

Then, there is a unique moment functional £? such that

J5?(l) = λι, 5?(Pm(x)Pn(x)) = 0

for m φ n y m , n = 0 , 1 , 2 , . . . .

3? is quasi-definite and {Pn(x)} are the corresponding monic OPS
if and only if λn Φ 0, while S* is positive-definite if and only if cn are
real and λn>0 (n > 1).

Consider the OPS {Pn{x)} with recurrence formula as in Favard's
theorem, and define Pnl\x) to be a monic polynomial of degree n
which satisfies the recurrence

^ ^ \ ^ π = 1, 2, 3, . . . ,
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The polynomials Phι\x) are called the monίc numerator polynomials
(or associated polynomials) corresponding to Pn(x).

It is now clear to us that partial denominators and numerators of a
/-fraction, Bk and Ak+{, are respectively OPS and associated poly-
nomials with respect to a certain moment functional that is a positive-
definite if and only if the partial fractions have all real coefficients and
the numerators λk are all positive. Observe that Ak are not actually
monic unless λ\ = 1. To be correct, the associated polynomials are
λ\ιAk+x, 0<k.

DEFINITION. A moment functional is called symmetric if all of its
moments of odd order are zero. This is equivalent to cn = 0, n>\,
in the corresponding recurrence formula.

We can easily recognize the recurrence in problem (1) as corre-
sponding to a symmetric problem, a fact that will be crucial for our
final result.

Next we will give some definitions and quote without proof some of
the results in the theory of OPS, Jacobi fractions and representation
theory that will be more relevant in the resolution of our problem.

THEOREM 3.3. Let <S? be a positive-definite moment functional and

let μo = oS^l). Let ψn be defined as

{ 0 ifx < xnλ,

Λn\ + - + Anp ifxnp <x <xn,p+ι (1 <P <n),

μo if* > *nn ,
where xn\ < xn2 < < xnn are the zeros of Pn{x) (OPS correspond-
ing to Jϊ?), and An\, . . . , Ann are positive numbers given by the Gauss
quadrature formula

= μk = Y^Anix
k

ni, k = 0 , 1 , ... , In - 1 .
ι = l

Then there is a subsequence in {ψn} that converges on (—oo, +oo) to
a distribution function ψ which has an infinite spectrum and such that

r+oor+oo

k)= / xkdψ(x).

ψ is called a natural representative of J ? .
From now on we will consider S* to be positive-definite, and the

associated data {xnm} , {Anm}, {μn}, μ, μn defined as in the The-
orem 3.3.
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THEOREM 3.4. Let Pn{x) and λ\PnX\x) be the partial denominators
and numerators of a J-fraction as above, with cn real numbers and
λn > 0, n > 1. Let S? be their associated moment functional Then
we have that

& Ank

nk Λoo X-t

Moreover, A^ can be expressed as

From Theorems 3.3 and 3.4 one can deduce the main result we will
use later on, namely

COROLLARY 3.1. In the conditions and notations of Theorems 5.2
and 5.3, there exists a subsequence {ψn } in {ψn} such that

nAX) J-o

_ ^ - * _ / dψ(t)
11Π1

whenever x is not in the closure of the spectrum of ψ.

Next we will give a result describing the spectrum of distributions
corresponding to symmetric problems. For broader information see
Chihara [3] or Szegό [18]. Our notation and most of the results are
stated as in Chihara's book.

THEOREM 3.5. If a system is symmetric and \mιn-^+00λn = 0 the
set of limit points of the spectrum of ψ reduces to 0, and therefore
the measure associated to J ? is discrete with 0 as the only possible
accumulation point.

Finally, we will quote a theorem that will be useful to actually com-
pute the coefficients of a Taylor expansion for C~~2n2n(ε).

THEOREM 3.6. With reference to the recurrence formula (3.9) the
following are valid for n>\:

(a) Jΐ?(P%(x)) = λ\λ2 λn+χ, provided that we define λγ = μ0.
(b) Jΐ?(π(x)Pn(x)) = 0 for any polynomial π(x) of degree m <n,

while &{π{x)Pn{x)) φθ ifm = n.
(c) Ϊ
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Now we are in condition to find a Taylor expansion for C~2n2n(ε).

B. Taylor expansion for C~2n2n(e). Recall the recurrence problem

(1)

(2k - l ) 2

with initial conditions

. , - . , . , - . , . . , - . , ~>- 2{γ_(2n)2)

We can now assert that Fk+2(X), k > - 1 , as in Proposition 3.2,
are the set of monic orthogonal polynomials with respect to certain
measure dψγ(X) and λ^xHk+2 the associated polynomials.

We also know that the associated moment functional is symmetric
(since cn = 0 in the recurrence). On the other hand

, = (2/c-l) 2 „
k+x k(k - \){(kn)2 - Y)(((k - \)n)2 - Y)

whenever k —> +oo,

so we can apply Theorem 3.5 to deduce that the measure associated
to these orthogonal polynomials is absolutely discrete with zero as
the only limit point of the spectrum of the natural representative ψ.
Summarizing, one gets that, if we denote by S^(ψ) the spectrum of
Ψ,

S(ψ) = {zk, -zk, k > 0\zk —• 0 as k -• +00}

and {am} are the weights of the corresponding measure, then 3? is
defined as

zZam, m>0.
k=0

Next, notice that Favard's theorem actually obtains a whole family
of moment functionals associated to a fixed set of polynomials, one for
each choice of λ\, ({Pn(x)} are independent of λ\ given the initial
condition P-\(x) = 0). Due to the shift in the indices that we have,
fix the value

2 1
3

so that the pair (Hk, Fk) can be viewed as the fcth partial numerator
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and denominator of the continued /-fraction

Jx'W'W""'
Therefore, λ^ιHkJr2 are the associated polynomials with respect to
problem (1). Now we can easily obtain a first expression for C~2n2n(ε).

If we apply Corollary 3.1 we obtain

Hk{X) C-2n2«(ε) f+™ dψ(t)

Fk(x) β

- Γ T ^ + Σ J T ^ . AΓ-(..«..)..
m=0 m=0

Observe that am and z m depend on 7 = 2εo for all m.
We do not have much information about either the weights of the

measure or the zeros of the polynomials. Even though this expression
does not seem to be easy to compute we will give another expansion
with coefficients that can be found following an easy algorithm.

MAIN THEOREM 3.7.

k=\

where μ^ are the moments corresponding to 3*. Moreover, there exists
an algorithm to obtain the moments up to any desired order.

Proof. Applying the result of Theorem 3.4 one gets

k k

A Hk(xkm)
Fk{X) ^ ^

where Akm and xkm are analogous to the ones in Theorem 3.4. If
we Taylor-expand the expressions as a function of ^ we obtain

Substituting above

k
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On the other hand, if ψ^ is given as in Theorem 3.3, Jz% is the
associated functional and μf is the corresponding 1-moment, then

k

μf = £jc(xl) = ] Γ Akmx!

km ,
m=3

and therefore

A priori we know that the sequence converges to an analytic function
on εn , E-n , εo ί therefore, we can take limits without any problem
and deduce the result of the theorem. Notice that ^f is symmetric
and that property implies μ2k+\ = 0 for /: > 0. That is the reason to
have only even powers of X = l/(εnε-n)

1/2 in the series above.
To finish with the proof of the theorem, we will give the algorithm

to find the moments, avoiding the inconvenience of not having infor-
mation about the explicit form of dψy.

From Theorem 3.6(a), we can deduce
r+oo i

i

r

L
+oo

2(Y-(2nψ) •

12(Y - (2nψ)(Y - (3nψ)'
In order to find μ4, notice that F4 = XF$ - λ4F2 = X2 - λ4, so

X2 = F4+λ4 and therefore X4 = F} +λ\ + 2λ4F4. Applying Theorem
3.6(b), we get zero when integrating the last term of the sum, so that

/»+oo z +oo /*+oo

μ4= X4 dψγ(X) = / Fi (X) dψγ(X) + λj dψγ(X)
J — OO J — OO J— CXD

= A3A4A5 + λjμQ.

In this way we can always obtain μ2k in terms of μ2/, / < k,
and the integral of the square of Pk(X) which value we know from
Theorem 3.6(a). Repeating this process we can give the expression
for moments up to any order we wish. This algorithm is not very fast
since it requires us to solve for the orthogonal polynomials in the first
place. For example, we obtain

μ6 = λiλ4λ5λ6 + (λ4 + λ5)
2λ2,

μ8 = λ3λ4λ5λ6λΊ + (λ4 + λ5+ λβ)
2μ4

- 2λ4λ6(λ4 + λ5 + λ6)μ2

D
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The author has a faster algorithm and a short computer program to
calculate the moments. It involves Favard's path's theory (see Vien-
not's notes [19]), but we will not give further details in this paper.

Notice that, with very few adjustments, we can follow the exact
same reasoning to find a Taylor expansion for any entry of the inverse
matrix C~ι. That is, this is a general technique to find entries for the
inverse of an infinite Jacobi matrix.

C. Another interpretation for a transverse structure. Let us look at the
function C~2n2n(p) from another point of view. The next theorem
will show us how to express transverse structures in terms of the solu-
tions of some nonhomogeneous ordinary differential equations. The
corresponding homogeneous equation is always given by the coadjoint
action along Qn.

THEOREM 3.8. Consider the differential equation

(3.9) ξ'» + Ipξ' +p'ξ = 2 cos(2>70),

with p eQn.

There exists a periodic solution o/(3.9), ξ, whose Taylor expansion
is given by ξ = Σt=-oo yke~m, with γ2n = C~2n2n{p).

Proof. Assume ζ = ΣjbΓL^ yke~ikθ If w e make a simple sub-
stitution we can observe that the action of the differential operator
- ( ^ 3 + 2/?^ + ^ ) on ξ is equivalent to the one of the matrix C on

γ, where γ = {%} e I2. This is true since

2pξ'+p'ξ

k——oo

+ γk-n(2k-n)εn(p)]e-ikθ.

Notice at this point that the matrix C is antisymmetric. Therefore,
we can solve the equation Cγ = b, with b having entries all 0's except
for the entry in place -2n, and obtain that j2n = C~2n2n(p).

But, on the other hand, to solve Cγ = b is equivalent to solving the
differential equation (3.9), in the sense that the solution of Cγ = b
would correspond to the Fourier coefficients of a solution of (3.9). We
are done with the proof. D

Notice that we can follow the same strategy in order to find any
entry of the inverse matrix for C. That is, Ckl would be given by the
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Ith Fourier coefficient of a periodic solution of the equation

From Proposition 3.1 we know that such a solution exists.
Finally one comment on the uniqueness problem. If we try to prove

uniqueness in the same way that it is done in the finite dimensional
case, we would have to try to connect two different transverse sections
using the flow of a time-dependent Hamiltonian vector field. This
flow would be defined on a neighbourhood of the intersection with
the symplectic leaves and would automatically preserve the induced
transverse structures. The existence of such a flow would automati-
cally imply uniqueness.

In finite dimensions such a Hamiltonian vector field can always be
found. In infinite dimensions we can connect two transverse sections
Qx and Q2 with a family of transverse sections Qt with 1 < ί < 2.
We can possibly fix the variation on the time so that the equations
for the Hamiltonian operator are involutive. Nevertheless, that fact
would not imply its integrability. This kind of integrability problem
in infinite dimensions is quite complicated and not many results are
available.
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ON AMBIENTAL BORDISM

CARLOS BIASI

Let Mm be a closed and oriented submanifold of a closed or
oriented manifold Nn, such that [M, i] = 0 e Ωm(N) 9 where
i: M —> N is the inclusion and Qm(N) is the mth oriented bor-
dism group of N. If n = m + 2 or m < 3 or m < 4 and n Φ 1
then M bounds in TV.

Introduction. Let us consider Mm a closed submanifold of Nn.
In this paper, we study the possibility that there exists submanifold

Wm+\ c Nn s u c h t h a t 3^7 = M \f M = Sm and Λ̂  = ^ m + 2 , such

that a submanifold W is called a Seifert surface knot Sm. In [5],
Sato showed that every connected closed and oriented submanifold
Mm of Sm+1 is a boundary of an oriented surface of Sm+2 .

In [4], Hirsch studies the following problem: If a compact connected
and oriented manifold Mm bounds, does there exist embedding from
Mm into W which is a boundary in W1 ?

The answer is yes, if n > 2m .
The difference between the two problems is that, in our case, the

embedding from M into N is fixed.
There is an obvious necessary condition for the existence of W,

when M and Λf are oriented manifolds.
Let Ωm(N) be the mth oriented bordism group of N [2]. If

/: M —> N is the inclusion map, we can define an element [M, /]
in Ωm(N) and see that [M, /] = 0 if M bounds in N.

Generally, the converse in not true, but sometimes the vanishing of
[M, i] guarantees the existence of W, for example if the codimension
n - m is large.

We prove the following theorem.

THEOREM 5.2. Let us suppose that Mm c Nn, n > m+ 1, is such
that [M, /] = 0 in Ωm(N). Then M bounds in N if one of the
following conditions occurs:

(a) n = rn + 2,
(b) m < 3 ,
(c) m < 4 and n φ l .

73
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In his Doctoral thesis [1] the author proved that, when n = 2m +
1, and M and N are closed and oriented, a submanifold M c N
bounds in N if, and only if, [M, i] = 0 G Ωm(iV).

1. A more general problem of ambiental bordism. Let

G c O(n - m - 1), n> m+ 1,

be a closed transformation group and let JQ ̂  BG be the classifying
fiber bundle of (n-m- l)-vector bundles which have a (7-structure.

Let us consider MG the Thorn space of JQ . We have:

{ 0, / < n-m-1,
Z, i = n-m-l and G c SO(« - m - 1),
Z 2 , / = i - m - 1 and G £ SO(n - m - 1).

Let us consider now Nn to be a closed connected manifold which
we assume to be oriented if G c SO(rc - m -1). (If (7 £ SO(« - m -1)
we drop the orientability hypothesis.)

Let Mm c Nn be a closed submanifold and let us suppose that the
normal fiber bundle uM of M in N has a cross section s, nowhere
zero, such that VM = {$} ®ζ, where {s} is a subbundle generated by
s and £ is a (n-m- l)-vector bundle endowed with a G-structure.

We shall say that a submanifold W c N satisfies condition (*) if
it has the properties:

(i) dW = M and s is the inward-pointing vector field on d W.
(ii) the normal fiber bundle vψ has a (/-structure which agrees

with the given (/-structure of ξ over M. (Observe that ζ = i/ψ\M.)

2. Primary obstruction to the existence of W. Let F be a closed
o

tabular neighborhood of M in N, A = dW and X — N - V. We
can think s a function s: M —• ^4. Then s(Af) is a submanifold
of A, whose normal fiber bundle is isomorphic to ζ. By the Thorn
construction there exists a function / : A —• M(? such that, if oo is
the point at infinity to MG, then / is differentiate on A - f~ι(oo),
/ is transversal to BG and f~ι{BG) = (M) [6].

We shall take πm_w_i(MG) as the cohomology coefficient group.
Let e e Hn~m-ι(MG) be the fundamental class of the space MG.
We know that f*(e) = α, where a is the dual class of S^M) and
μM is the fundamental class of M. _

If / : 4̂ —• MG extends to a map f:X—> MG, then_we can
suppose, up to homotopy, that / is differentiate in I - /~ι(oo)
and that / is transversal to BG. Taking W\ = / (BG) we obtain
a submanifold of X whose boundary is s(M).
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Let us observe that this submanifold can be extended to a subman-
ifold W which satisfies condition (*).

We conclude then that there exists W, satisfying (*), if and only
if / extends to X.

The class δf*(e) is the obstruction to the extension of / to the
{n - m)-skeleton of X, where δ: Hn-m~l(A) -> Hn~m{X, A) is the
coboundary operator.

Consider the commutative diagram:

Hn-m-\A) —?—> Hn~m(X,A)

{•> 1°
Hm{A) - ^ - > Hm{X) = Hm(N - M).

We conclude that the primary obstruction to the extension of / ,
up to duality, is the element S^M) € Hm(N - M) (regarding s as
function from M into N-M).

Hence, we have:

PROPOSITION 2.1. / extended to the (n - m)-skeleton of X if, and
only if s*{μM) = 0 in Hm(N - M).

Assuming that s*(μM) = 0, let us consider two cases:
1. G = O(n-rn-l).
Here, / extends up to the (n - m + l)-skeleton of X , because

πn-m(MG) = 0 and, if n - m = 2, then / extends to all of X since
MO{\) is a ϋΓ(Z2, 1) space.

2. G = SO(n-m- 1).
Since πn-m+i(MG) = 0, / = 0 , 1 , 2 , / extends up to the

(n - m + 3)-skeleton of X. Hence, if dimM < 3, / extends.
On the other hand, if n - m = 2 or 3 then MG is a K(%, 1) or

jfiΓ(Z, 2), respectively. In any case, / extends globally.

3. Oriented ambiental bordism. From now on, all manifolds and
submanifolds will be considered to be oriented.

THEOREM 3.1. Let us suppose that:

(a) Hj(X) = 0, 0<j < m - 3 .

(b) The canonical homomorphism πw_i(MSO(« - m - 1)) - ^ Ω m

w injective.
There exists W satisfying (*) if and only if s*(μM) = 0 e Hm{X)

and M is a boundary.
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Proof, Let us use the notation π, = πz(MSO(π - m - 1)). If
S*(VM) = 0, then / extends to the (n - ra)-skeleton of X.

From hypothesis (a) and Lefschetz duality, we conclude that

HJ(X9 A , π ; _ i ) = 0 , n-m < j <n.

Let D be an open disk of X - A. Since X is orientable,
W{X -D,A,%j-{) = HJ(X,A,πj_ι) = 0, n - m < j < n.
H e n c e , t h e r e e x i s t s a n e x t e n s i o n f : X — D — > Y of f : A — > Y 9 w h e r e
Y = MSO{n-τn-l).

Let us consider S = dD and h = f\dD: S -+Y. We may suppose
that h is transversal to BSO(n — m — 1) and let

i

Consider W = / (BSO(n - m - 1)), a bordism between Mi and
5 (A/). Since s(M) is a boundary, M\ also is.

We have also that ψ([h]) = [Mi] = 0 and since ψ is a monomor-
phism, h is homotopic to a constant map and so h extends over
D.

The converse is straightforward. D
4. On the existence of normal vector fields homologous to zero in

N - M. In the next section, we show that in certain situations it is
possible to obtain a cross-section s: M —> S{vM) such that J*(//JJ/) =
0 E Hm(N - M), where S(vM) —• M is the normal sphere bundle of
Λ/ in iV.

PROPOSITION 4.1. The Euler class of the normal bundle of Mm in
Nn is zero if and only if U(βM) C imy'*, where βM is the fundamental
class of M and i: M —• N, j : N - M —• JV are inclusion maps.

Proof Let us consider e e Hn~m(M, Z), the Euler class of the
normal bundle vM, and let DA: Hn~m(M : Z) -> /ίm(iV, N-M Z)
be the Alexander duality. We have that A4(e) = ̂ *(/^M) where α* is
induced by the inclusion map a: (N9 N — M).

Using the exact sequence of pair (N, N-M) it follows that a^μ^)
= 0 if, and only if, /*(//M) C imj* . D

COROLLARY 4.2. /f Mm c iV" w homologous to zero, n - m = 2
<?r n>2m, then M has a normal vector field that is nowhere zero.

Proof. By Proposition 4.1 the Euler class of vM is zero. Then
there is a nowhere zero normal vector field on the (n - m)-skeleton
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of M, which can be extended to all M , because n — m > m or

πi(R2 - 0) = 0, / > 1 in the case n-m = 2. π

Let π: £ -> Afm be a differentiable SO(τι + l)-bundle with fiber
Sn and base M™ (and oriented manifold).

If s: M —• £ is a cross-section, let 05 be the Poincare dual to
s*(μΛ/0 , where s = —s is the opposite cross-section to s.

Having fixed a cross-section SQ : M —• £ , the following diagrams
are commutative:

Hm-n(M)

where [Λf, £ ] isthesetof homotopy classes of cross-sections, ξ([s]) —
s*(θg ) φ([s]) = ΘΊ - θj, is Poincare duality and last line is a portion
of the generalized Gysin sequence.

We define ψ: [M, E] -> //^(-E) by ψ([s]) = ss^{μM) -S*(VM) and
observe that ψ = D o ψ.

If m < n + 1 or rc = 1, then the function ζ is onto and so the
image of ψ is the kernel of π*.

This fact will be applied in the proof of Proposition 4.3 below,
where the fiber bundle to be considered is S{VM) —• M.

PROPOSITION 4.3. Let Mm c Nn, n = m + 2 or n > 2m, be an

oriented submanifold homologous to zero in an oriented manifold N.
Then there exists a cross-section r: M —• S{vM) such that its image is
homologous to zero in Hm(N -m).

Proof. Let SQ: M —• S(VM) be a cross-section that is nowhere zero
(Corollary 4.2) and let us consider the commutative diagrams:

Hm(M)

>Hm{N-M) -±-+ Hm(N)

where s* = U(SQ ) and /* is induced by the inclusion S{vM)
(N-M).
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We have j*s*(μM) = i*π*s^(μM) = 0 implying that s*{μM) belongs
to the kernel of 7* which is the image of d: Hm+\(N9 N - M) —•
Hm(N-M).

Let us consider the following commutative diagram:

Hm+ι(D(uM)9S(uM)) - 2 — Hm{S{vM))

It follows that there exists an element μ e Hm(S{yM)) such that
μ e Kerπ* and 7* = s*(μM) -

Since i m ^ = kerπ*, there exists a cross-section r: M -+ S{VM)
such that ψ([r]) = μ.

But ^([r]) = JO,(AJI/) -> r*(/*ji/) SO j*r*(μM) = 0 in #W(ΛΓ - M).
Hence, the image of r: Λf —• S{VM) is homologous to zero in N-M.

5. A theorem on ambiental bordism. Let us consider Ω7(iV) to be
the j th bordism group of N.

If Hj(N) = 0, 0 < j < m - 3, it is possible using the bordism
spectual sequence [2] to show that the function Ωm(N) -> Hm(N) Θ
Ω m , which associates to each pair [M, /] the element μ([Λf, /]) +
[Λf ], is an isomorphism, where μ is the canonical homomorphism.

In the proof of Theorem 5.2, we are going to use the following
lemma, which has been proved in [1] (the proof, if q > m, is due to
Thorn [6]).

LEMMA 5.1. The homomorphism φ: πg+m(MSO(q)) —• Ω m , q >
m, is an isomorphism.

THEOREM 5.2. Let us suppose Mm c Nn, n > ra + 1, is such that
[M, /] = 0 in Ωm(N). Then M bounds in N if one of the following
conditions occurs:

(a) n = m + 2,
(b) m < 3 ,
(c) m < 4 and n Φ 7.

Proof. Any one of the conditions (a), (b) and (c), based on previous
results, imply that normal bundle VM has a cross-section nowhere
zero such that, considering s as a function from M into N — M,
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If (a) or (b) occurs, the theorem follows from case 2, already dis-
cussed in §2

If n = 4 and n > 8, we apply Theorem 3.1.

REMARK 1. If n = m + 2 or m < 3, then [M, i] = 0e Ωm(N) if,
and only if, M is homologous to zero in N.

REMARK 2. When m = 4 and n Φ 7, although we shall prove that
[M, /] = 0 implies the existence of a normal section nowhere zero
(Th. 5.3) we are not able to prove that there exists a normal vector
field homologous to zero in N - M, which in this case would be
sufficient to prove the conclusion of Theorem 5.2.

THEOREM 5.3. Let us suppose M4 c NΊ. If [M, i] = 0 in Ω4(iV)
then VM has a cross-section which is nowhere zero.

Proof. There exists W c N x / such that dW = M xO c N x I

[1].
Let vw and vM be the normal fiber bundles of W in N x I and

of M in N, respectively. We can also suppose that uw\Mx0 = uM.
Let us consider W c Nx R to be the double of W and let i:W ->

i V x l and 7':iVxIR->TF->7VxR be inclusion maps.
Since i*{μψ) C im j * , then W has a normal vector field which is

nowhere zero in N x R up to the 3-skeleton of W.
Hence, there exists a 2-dimensional oriented vector bundle ξ over

M such that vM\M^ =ξ®^1.
Let us consider e to be the Euler class of ξ in H2(M^) and let

e e H2(M) be such that io*(e) = e, where /: M^ -> M is the
inclusion map.

Let f be a 2-dimensional vector bundle over M such that its Euler
class is e. Let us observe that ξ\M^ = ξ.

Let / , g: M —• BSO(3) be classifying maps ξ θ ^ 1 and ẑ />
respectively.

Since the Euler classes of <* ® Wx and of vM are equal, then their
second Stiefel-Whitney classes are equal.

Let p\ be the Pontryagin class of the classifying fiber bundle γ —•
BSO(3) and let e be the Euler class of γ. Since f*{βx) = g*(βχ).
Hence, the vector bundles ξ θ ^ ι and vM are equivalent [3]. D
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NONRIGID CONSTRUCTIONS IN GALOIS THEORY

PIERRE DEBES AND MICHAEL D. FRIED

The context for this paper is the Inverse Galois Problem. First we
give an if and only if condition that a finite group is the group of a
Galois regular extension of R(X) with only real branch points. It
is that the group is generated by elements of order 2 (Theorem 1.1
(a)). We use previous work on the action of the complex conjugation
on covers of F 1 . We also show each finite group is the Galois group
of a Galois regular extension of Q t Γ(X). Here QtΓ is the field of all
totally real algebraic numbers (Theorem 5.7). Sections 1, 2, and 3
discuss consequences, generalizations, and related questions.

The second part of the paper, §4 and §5, concerns descent of fields
of definition from I to Q. Use of Hurwitz families reduces the
problem to finding Q-rational point on a special algebraic variety.
Our first application considers realizing the symmetric group Sm as
the group of a Galois extension of Q(X), regular over Q, satisfying
two further conditions. These are that the extension has four branch
points, and it also has some totally real residue class field special-
izations. Such extensions exist for m — 4, 5, 6, 7, 10 (Theorem
4.11).

Suppose that m is a prime larger than 7. Theorem 5.1 shows that
the dihedral group Dm of order 2 m is not the group of a Galois
regular extension of Q(X) with fewer than 6 branch points. The
proof interprets realization of certain dihedral group covers as corre-
sponding to rational points on modular curves. We then apply Mazur's
Theorem. New results of Kamienny and Mazur suggest that no bound
on the number of branch points will allow realization of all Dm s.

0.1. Description of Theorem 1.1. Throughout, C denotes the com-
plex number field, X an indeterminate, and C(X) a fixed algebraic
closure of C(X). Let k be a subfield of C. We say a finite extension
Y/k(X) with C(X) D Y is regular over k iϊknY = k. Equivalently
[Y: k(X)] = [YC: C(X)]. Denote this degree by n. Regard the de-
gree n field extension YC/C(X) as the function field extension of a
degree n cover φ: Yc —• P1 Here P1 is the complex projective line
and l c is an irreducible non-singular curve.

The map φ is ramified over a finite number of points x\, . . . , xr.
We call these the branch points of the cover (or of the extension
Y/k(X)). Our first result (Theorem 1.1 (a)) shows exactly when a
finite group G is the group of a Galois regular extension of R(X)
with only real branch points.
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This happens if and only if G is generated by involutions.
Theorem 1.1 uses formulas for the action of complex conjugation on

the fundamental group of P*\{.Xi, . . . , xr} (cf. §2.3). Hurwitz [Hur]
knew these. Krull and Neukirch investigated them further [KN]. Still,
no one has exploited this simple statement about groups generated by
involutions.

0.2. Relations with the inverse Galois problem. Here is a weak ver-
sion of the Inverse Galois problem. Does each group occur as the Ga-
lois group of a field extension of <Q>? As do others, we approach this
through its geometric analog. That is, we consider it over Q(X) rather
than Q. This is a descent problem. Suppose we are given a group G,
a suitably large integer r, and r points X\, . . . , xr e P1 (C). Topology
then constructs a Galois extension of C(X) with Galois group G and
branch points X\, . . . , xr. One must then restrict the scalars from C
to Q. Theorem 1.1 gives a form of descent from C to I . Proposi-
tion 2.3 and Comment 3 of §3.5 refine these for specific applications
(see §0.4).

We stress the condition on the branch points. Theorem 1.1 (a)
shows that Galois groups occur over Q (or even R) using r branch
points in P*(R) only if r elements of order 2 generate G. Therefore,
in practice, classical "rigidity" [Se3; Theorem 9.1] realizes only groups
over Q(X) that are generated by 3 elements of order 2.

Corollary 1.2 is another consequence of Theorem 1.1 (a). Each fi-
nite group has a totally nonsplit cover (cf. §1.2) that is not the Galois
group of a regular extension of R(X) with only real branch points.
Nevertheless, every finite group is the Galois group of a regular ex-
tension of R(X), with branch points consisting of complex conjugate
pairs ([Se3; Ex. p. 107] or Theorem 3.1). Theorem 5.7 notes that each
finite group is the Galois group of a regular extension of Q tΓ(X). Here
QtΓ is the field of all totally real algebraic numbers.

0.3. Extension of Theorem 1.1. Theorem 1.1 (b) applies to not nec-
essarily Galois extensions. Finite group G is the monodromy group
of a cover φ: Yc —• P1 defined over R with only real branch points
if and only if

(*) G has an automorphism h and a system of generators
a\, . . . , as such that A(α, ) = ajι for / = 1, . . . , s.

Of course, (*) holds if G is generated by elements of order 2. Sec-
tions 1.2-1.5 have a more complete discussion on (*) and related
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conditions. In particular, we discuss the persistence of property (*).
Given a group G satisfying (*), when does there exist a totally non-
split cover of G that does not satisfy (*) (§1.5).

Notation and basic tools appear in §2. Classical identifications in
the theory of covers appear in §2.1 and §2.2. Skip these on a first
reading. Sections 3.1-§3.4 give the proof of Theorem 1.1. The final
descent argument for the constructive part (<=) uses Weil's general
criterion. This says that the field of moduli (§2.4) K of a cover is
a field of definition if a certain cocycle condition holds. We add an
observation to a result of Coombes and Harbater [CoH] for Galois
covers (Theorem 2.4 (ii)). Thus, K is also a field of definition for the
G-cover; the cover and its automorphisms can be defined over K.

This method is natural, but perhaps intricate. Serre suggested sim-
plifying this using the algebraic fundamental group rather than the
classical topological fundamental group. Section 3.6 gives a second
proof of Theorem 1.1 (a) following Serre's viewpoint. This is con-
structive. Assume we have a group G and generators of G with
property (*). We give an explicit description, in terms of "branch
cycles," of a cover φ: Yc —• P 1 that has the properties stated in Theo-
rem 1.1 (b). Furthermore, we can force this cover to have some fibers
of only real points.

0.4. Enhanced applications. The topological action of complex
conjugation c induces its arithmetic action. (Section 3.7 has a precise
formulation.) We note that no naive p-adic analog of this representa-
tion of complex conjugation holds for the Frobenius Fp e G(Qp/Qp)
(§3.7).

Comment 3 in §3.5 answers a question of E. Dew in his thesis [D].
In so doing it refines the technique of descending from C to R. Con-
sider the field of moduli K of a G-cover when AT is a number field.
How can we effectively decide if each completion of K is a field of def-
inition of the G-cover? We give iff conditions for the field of moduli,
on one hand, and the field of definition, on the other, of a G-cover to
be (in) E. Dew has started an investigation of a local-global question
for the field of moduli being a field of definition. Knowing the answer
over each local place (including infinite places) does not answer the
global question.

Descent to Q appears in §4. We consider G = Sm and specific
choices of 3 generators of order 2. Then, we investigate if certain 4
branch point covers φ: Yc —• P1 derived from Theorem 1.1 can be
defined over Q. "Rigidity assumptions" from [Se3; Ch. 8, 9] do not
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apply. They rarely do when there are 4 (or more) branch points.
In §4.1 and §4.2, we recall from [Frl] how to handle nonrigid cases.

When r — 4, Hurwitz family ideas reduce the problem to finding a
rational point on a certain curve C(C). Section 4.3 gives a formula
for the genus of C(C). We can answer our original question about
Sm when the curve C(C) has genus 0. Our computation shows this
happens exactly when m = 4, 5, 6, 7, 10. So, for these values of
m, we realize the symmetric group Sm as the Galois group of a reg-
ular extension of Q(X) with 4 branch points and with some totally
real residue class specializations (Theorem 4.11). Serre noted, with 3
branch points instead of 4, only one centerless group, G = £3, had
the same property [Se2].

We do not know how to improve on our sporadic 3 generator cases
to draw the conclusion of Theorem 4.11 for an infinite number of
groups. Descent from R to Q is the difficulty because we must find
rational points on low dimensional Hurwitz spaces. Even with easy
groups this is a difficult obstruction. For example, the dihedral group
Dm of order 2m is generated by 2 elements of order 2.

Consider a prime m > 7. Theorem 5.1 shows that Dm requires
covers with at least 6 branch points to be realized as the Galois group
of a regular extension of Q(X). Mazur has formulated conjectures
that imply that realization of all Dm s will require an unbounded num-
ber of branch points [KM]. We borrow some of his formulation from
an e-mail discussion with him.

0.5. Acknowledgments. David Harbater made expositional simpli-
fications in our proof on Comment 3—Dew's question—in §3. In
addition, much of the proof of Theorem 2.4 (§2.4) is implicit in the
result in [CH], Our concern is with Property (ii) which was not stated
there.

1. First results and consequences. Let Y/K(X) be a regular exten-
sion of degree n and φ: YQ —• P1 the associated cover. That is, YQ
is the set of places of the field YC and φ is the natural restriction of
places—points of P 1—to C(X). Branch points X\, . . . , xr are the
places ramified in the extension YC/C(X).

1.1. Statement of Theorem 1.1. Let x0 be a point in Ψι(M)\
{x\, . . . , xr}. Denote the fundamental group

π-l(Ϋι\{xι,...,xr},x0)

for short by %\. There is a natural action T of %\ called the mon-
odromy action on the points of the fiber φ~ι(xo). For its description,
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start with [γ], the homotopy class of a closed path based at x0. Then
T([γ]) permutes φ~ι(x0); it maps y e φ'ι(xo) to T([γ])(y), the
terminal point of the unique lift of γ through φ with initial point y.

The permutation T([γ]) is independent of the representative of [7].
Fix a labeling y\, ... 9yn of the points of the fiber φ~ι(xo) Regard
T as an action T: π\ —• Sn of %\ on the integers 1, . . . , rc . Up
to conjugation by an element of Sn, this action does not depend on
labeling the yι s or on the base point XQ Call the group T(π\) the
monodromy group of the cover. This defines a subgroup of Sn up to
conjugation by elements of Sn .

THEOREM 1.1. (a) Consider a finite group G. It is the group of a
regular Galois extension of R(X) with only real branch points exactly
when

(1.1) G is generated involutions.

(b) Furthermore, G is the monodromy group of a cover φ: Yc —• P1

defined over R with only real branch points if and only if

(1.2) 3h e Aut(G) ,3aι,...,aseG\

( α i , . . . , as) = G, h(ai) = ajι, i=l,...,s.

Addition to Theorem 1.1 (a). We can take the number of generating
involutions of G equal to the number of branch points of the regular
Galois extension of R(X) in the statement.

Addition to Theorem 1.1 (b). The cover φ: Yc —• P1 defined over
R produced in §3.3 for the only if part of (b) has branch cycles

(cf. §2.3). It is Galois over C. Indeed, it is Galois over R if h is
induced by conjugation by h! G G with h' of order 2.

1.2. Group theoretical conditions. As noted, (1.1) => (1-2). The
converse is false: abelian groups distinct from (Z/2)m satisfy (1.2)
but not (1.1). For example, the cyclic group Z/ra is the monodromy
group of the Galois cover φ: P1 —• P1 given by φ{y) = ym. For
m Φ 2, it is defined over R with only real branch points. Yet, the
corresponding function field extension R(y)/R(ym) is not Galois.

Consider two further conditions.
(1.3) G is a subgroup of G' with [G'\ G] = 2, and G is generated

by involutions in G'\G.
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Further: If h! G G of order 2 induces h, then G is generated by
involutions.

(1.4) G = Z/2 or Aut(G) is of even order.
We now show (1.1) => (1.2) o (1.3) => (1.4).
(1.2) =• (1.3). Define Gf to be G1 = G x 5(λ) the semi-direct

product of G and the group generated by the automorphism h. The
elements (αf , A), / = 1, . . . , 51, and h generate Gf and they are of
order 2:

(at, A)(α, , A) = (α/A(α/), A2) = (α/α" 1 , 1) = 1.

Also, (α,, A) G G'\G. Suppose A is represented by inner automor-
phism by an element h! eG with h! of order 2. Then G is generated
by involutions; include h! with αz7*', / = 1, . . . , s.

(1.2) ^= (1.3). Consider the situation where go, £1, . . . , gr are in-
volutions in G'\G that generate G'. Then, βι = gogi, i = 1, . . , r,
are in G. Clearly, ^ 0 conjugates them to their inverses: go(gogi)go =
gigo = (ίόft)" 1 W e h a v e o n l Y t 0 check if they generate G.

Take H to be the subgroup that the βi s generate. We show G is
the union of the cosets of H and goH to conclude the proof. Do
an induction on elements of G presented as words gj g\ in the
gi s. Assume words of length at most t - 1 are in one of the cosets H
or g0H. Now do cases for &2 >-git = σ in H or £ 0 # . If σ e H 9

then go&jtf is also in H. Multiply by # 0 to see ^ σ G #o# On
the other hand, if σ e g^H, then multiply by ( ^ g ό ^ o to get ^ σ
in / ί . We're done.

(1.3) => (1.4) Suppose C?' contains τ of order 2 not in the central-
izer CQΠG'(G) in G'. Then, conjugation by τ is an automorphism of
G of order 2. Thus, |Aut(G)| is even. Assume all elements of G of
order 2 are in CenG>(G). Pick an element a of order 2 from G'\G.
Then αGCen G ' (( j) . Therefore, G' is the direct product Gx(a) and
involutions—au with w running over involutions of Gf\G—generate
G. Since those generators of G are also in CenG>(G), the group G
is abelian. Conclude: |Aut(G)| is even unless G = Z/2. D

So, groups distinct from Z/2, with odd order automorphism group,
are not monodromy groups of a cover over R with only real branch
points. Here is how to get such a group. Consider a p-group P with p
odd. Then, Aut(P) acts on the frattini quotient module P/[P,P]PP
with kernel a p-group [Hu; Satz 3.17, p. 274]. There exists P with
any desired nontrivial representation occurs in the frattini quotient
[BK; Th. 1]. In particular, choose P so that its automorphism group
is odd.
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1.3. A corollary of Theorem 1.1. Recall that a cover of a group G
is a surjective homomorphism ψ: F —• G. The cover is finite if F
is a finite group. It is totally nonsplit if F has no proper subgroup
that maps surjectively to G. This is equivalent to the condition for
difrattini cover as after Lemma 1.3 below. The frattini subgroup of a
group H is the intersection of all the maximal proper open subgroups
of H.

COROLLARY 1.2. Let G be any finite group. Then there is a totally
nonsplit finite cover ψ: F —• G of G where F is not the group of a
regular Galois extension of R(X) with only real branch points.

Corollary 1.2 follows from Theorem 1.1 (a) and this lemma.

LEMMA 1.3. Let G be a finite group. There is a totally nonsplit
finite cover ψ: F —• G of G where F is not generated by elements of
order 2.

Consider a homomorphism ψ: H —• K of profinite groups: pro-
jective limits of finite groups. Call it difrattini cover if the equivalent
conditions (i) or (ii) hold.

(i) ψ is surjective and ker(^) is contained in the frattini group
of H.

(ii) Subset S of H generates H if and only if ψ(S) generates K.

The main result for frattini covers is the existence of a universal frat-
tini cover for any profinite group. This is the cover G in the following
statement.

PROPOSITION 1.4 ([FrJ; Proposition 20.33]). Each profinite group
G has a cover ψ: G —* G, unique up to isomorphism, satisfying this
condition. If ψ: H —> G is any frattini cover of G, there exists a
cover γ: G —• H such that ψ oγ = ψ. Furthermore, g is a profinite
projective group.

1.4. Proof of Lemma 1.3. We may assume ( ? / {1}. Consider
the universal frattini cover, ψ: G -> G, of G. Let JV = {Ni\i e 1}
be the collection of all normal subgroups of finite index of G. Let
Ft = G/Ni, i e l , and for 2 indices /, j e I such that Nj 5 Nt, let
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%ij: Fi —• Fj be the natural homomorphism. The system {Fj, π/7) is
projective. From compactness of G, lim i7; = G. Take n = |(r | .
For each i e I, let gen2(i7/) be the subset of Ff1 consisting of all
^-tuples α = (αi, . . . , αw) such that (a\, . . . , αw) = Ff and α? = 1,
/ = 1, . . . , n. For i, j e I with JV,- 2 iV, , denote the restriction to
gen2(i7

z) of the natural map induced by πy on Ff by πy: gen2(i7

/) —>

The system {gen2(F/)? π / y} is projective and an element of
lim gen2(i7/) is an «-tuple ά = (άi, . . . , άn) such that {ά\, . . . , αΛ)

= G and ά? = 1 for / = 1, . . . , n. Yet, such an /?-tuple cannot
exist. Indeed, from Proposition 1.4, G is projective. Therefore, it
has no nontrivial element of finite order [FrJ; Cor. 20.14]. Conclude
that lim gen2(iJi) is empty. For all i e I, gen2(JF}) is finite, hence
compact. Thus, gen2(i7

/) is empty for some i e I. That is, elements
of order 2 in Fi do not generate Fj.

Next, set F = G/(ker ψπNi). We easily see that the natural map
ψ: F —• G is a frattini cover. From Axiom (ii) for frattini covers,
the elements of order 2 in F do not generate F. The finite cover
ψ: F -* G is the required cover. D

1.5. Persistence of condition (1.2) to frattini covers. The collection
of finite groups has no practical topology on it. Therefore, a state-
ment about a property being general for finite groups has traditionally
been applied by restricting consideration to natural sequences of finite
groups. For example, a statement that indexes the subscript n among
the alternating groups An is typical.

On the other hand, suppose a property P can be interpreted for
all finite groups. Assume that G has property P. As above, consider
those frattini covers of G that also have property P. For one, Propo-
sition 1.4 shows these groups—as a collection—intrinsically attach to
G. Therefore, persistence of property P to hold for frattini covers
is intrinsic to the immediate seed group G. In addition, the kernel
of the universal frattini cover G of G is pro-nilpotent. Thus, there
are measures of the persistence of property P. The following question
introduces an analog of Lemma 1.3 that fits the above discussion.

Question 1.5. Consider a group G that satisfies condition (1.2).
Does its universal frattini cover satisfy (1.2)?

If "Yes" is the answer to Question 1.5, then a cofinal family of finite
frattini covers of G satisfies (1.2).
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If G is a /?-group, then the universalJrattini cover G of G is a free
pro-/?-group. In addition, in all cases, G has the same rank—minimal
number of generators—as G [FrJ; §20.8].

Observation 1.6. Question 1.5 has a positive answer when G is a
/?-group satisfying (1.2).

_ Proof. A characteristic subgroup of G gives the quotient G. Since
G is a free group, there is an automorphism of G satisfying (1.2) that
extends condition (1.2) for G. D

Let ^ be a nontrivial family of finite groups. We say Ψ is full
[FrJ; p. 189] if ^ is closed under taking subgroups, quotients, and
middle terms of short exact sequences with end terms in ^ . If ¥?
is full, there is a unique free pro- ̂ -group of any given rank [FrJ;
Prop. 15.17]. For the case of rank s, denote this by FS(W). In fact,
the free pro- Sf-group on s generators clearly has an automorphism h
that satisfies (1.2).

If G is not a /?-group, then we do not know the answer to Question
1.5. We conclude this section by showing that the universal frattini
cover G of G is not of the form FS(W). Here ^ can be any full
family of finite groups. In particular, this suggests a negative answer
to Question 1.5 for such a G.

Suppose, on the contrary that FS(W) = G. Let p' and p" be
distinct primes that divide \G\. Then, the kernel of G —> G is pro-
nilpotent with at least two sylow subgroups, Pp> and Pp» correspond-
ing to these primes. These are nontrivial free pro-/?-groups of finite
rank. Since ker(G —> G) is a subgroup of finite index of Fs(&), it is
of the form Fs>(&) for some finite number s' > s [FrJ; Prop. 15.27].
The next result gives a contradiction by showing that Fs>(^) has a
non-nilpotent quotient. For this, denote the primes pf and p" as p
and q . Let Z/p act on A = (Z/q)p as cyclic permutations of the co-
ordinates. Consider the semi-direct product B = Ax sZ/p generated
by this action.

PROPOSITION 1.7. The group B is a non-nilpotent group of rank 2.
Assume that pq divides \G\. Then, G is not of the form FS(W) for
some full family W.

Proof. Assume we have shown B to have the properties of the
proposition. From above, we are done if the non-nilpotent group B
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is a quotient of Fs> (&). We know that ^ is full family, containing
groups whose orders are divisible by p and q. Thus, Ψ contains B.
Since s' > 2, there is a surjection of Fs>(%?) on B. It remains to
show the properties of B.

Here are two generators of B: a = (1, 0, . . . , 0) e a and τ =
1 G Ii/p. Indeed, the Z/p orbit of a gives a basis for A. Fi-
nally, Z//7 is a /7-sylow for 5 . It is not, however, normal: aτa~ι is
(1, - 1 , 0, . . . , 0) x τ . Thus, B is not nilpotent. D

2. Basic tools.

2.1. Identification of Galois and monodromy actions. Let >>i be
a primitive element of the regular extension Y/K(X). Take P e
K[X, 7] to be an irreducible polynomial such that P(X, y{) = 0 and
degyP = n. Identify the curve Yc with projective normalization of
the affine plane curve P(x,y) = 0. Here φ: YQ —• P1 is projection:
( I J ) ^ X . Take Xo to be distinct from the branch points of the
cover.

Let YC be the Galois closure of YC/C(X). The Galois group
G(YC/C(X)) is thejgeometric Galois group of the extension Y/K(X).
Embed it in Sn through its action on the n conjugates y\, . . . , yn of
y\. Since we assume Y/K{X) is regular, it is a transitive action.

Identify the points P\,...,pn in the fiber φ~ι(xo) and the
conjugates y\, . . . , yn of y\ as follows. Each embedding YC ->
C ( ( Z - X Q ) ) i n the Laurent series around XQ determines a point pi e Y
above XQ . Since XQ is not a branch point, there are n such embed-
dings. Each corresponds to one of the^/s.

From now on, fix an embedding YC —• C((X - Xo)) That is, re-
gard YC as a subfield of C((X — xo)) and label the points p\, . . . , /?„
so that /?/ corresponds to the power series y, in C((X - xo)) > ί =
1, . . . ,« . From classical analytic continuation theory, for this la-
beling, the images in Sn of both T(π{) and the geometric Galois
group G(ΫC/C(X)) are the same. Denote this common group by Tγ

(or simply Γ). Furthermore, denote the image in Γ of an element
s e T(πχ) by s, and the image in Γ of an element σ e G(YC/C(X))
by σ. Even in the case where 7c —• P1 is Galois, automorphisms of
this cover do not naturally identify with automorphisms of 7C/C(JSΓ).
In particular, restriction of the former automorphisms to the fiber over
XQ do not correspond to automorphisms of YC/C{X).

We make an assumption a little stronger than saying that Xo is not
a branch point. We ask that ^ ( P ( x 0 ? Y)) has no repeated zeros.
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Then, the first term yi(xo) determines each of the power series yι.
Thus, for the labeling above, identify pi with the geometric point
(XQ , yt(xo)) on the aίϊine plane curve P(x, y) = 0.

2.2. The arithmetic Galois group. From here on, assume the base
point XQ is in P^Q). Consider the automorphism group Aut(C).
An automorphism τ G Aut(C) acts coordinatewise on the geometric
points of any affine variety defined over C. This action transforms
the affine curve with equation P(x, y) = 0 into the affine curve of
equation Pτ(x, y) = 0. Denote the projective normalization of the
curve Pτ(x, y) = 0 by Y£ and the associated cover by φ^: Y£ —> P 1 .

On the other hand, there is a natural extension of τ to C((X-XQ)) .
Apply τ to the coefficients of a power series y to get yτ . Indicate the
transform of a subfield F of C((X-XQ)) by Fτ. This action maps the
power series yi, . . . , yn onto the n roots y[, . . . , yτ

n in C((X -XQ))
of the polynomial Pτ. Also, the field extension (YC)τ/C(X) is the
function field extension of the cover φτ

c: yg —> P 1 .
Points on Y£ above XQ correspond to the power series y\, . . . , yτ

n .
Label these, respectively, p\, . . . , pτ

n . As in §2.1, /?? corresponds to
the point (x 0, y/(^o)τ) on the affine curve of equation Pτ(x, y) = 0.
Conclude that the effect of τ on p\9 ... ,pn agrees with the action
on the power series and with coordinatewise action on the geometric
points.

Denote the subgroup of Aut(C) consisting of all automorphisms
that fix K by Aut^(C). Assume, in addition, that τ G Aut^(C).
Then P = Pτ, YC = YC and τ permutes the points Pi, ... , pn

in the fiber φ~ι(xQ). Thus, τ induces a permutation τ e Sn. Now
consider Y, the Galois closure over K{X) of the extension Y/K(X).
Call the Galois group G(Y/K(X)) the arithmetic Galois group of the
extension. Label the image of y e Y under the automorphism σ e
G(Y/K(X)) by σ(y). Also, denote the permutation of {1, . . . , n)
induced by σ on {j>i, . . . , yn} by σ. Use Γ for the group {σ\σ e
G(Ϋ/K(X))} . Note that τ G f, for all τ e Aut^(C).

PROPOSITION 2.1. The group Γ is normal in Γ. The quotient group
Γ/Γ consists of the cosets modulo Γ of the elements τ, with τ G

Proof. Let Γ̂ be the constant field of the extension Y/K(X): K =

Γ n Z . Clearly, f c = ΓC; restriction G(ΫC/C(X)) -+G(Y/K(X))

is an isomorphism. In particular, Γ is the image of G(Y/K(X)) in
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Sn . It is a normal subgroup of Γ because K/K is Galois. The map
Aut*:(C) to G(K/K) is onto. Therefore, τ,with τ e Aut/KC), form
a full set of representatives (perhaps not distinct) for the quotient
Γ/Γ. The result follows. D

2.3. Complex conjugation and monodromy. Retain §2.1—§2.2
notation. We know generators for the fundamental group π\ =
πι(Ψι\{xι, . . . , xr}, Xo). These are homotopy classes [yf ] of suit-
ably chosen loops starting from XQ around the branch points X(, i =
1, . . . , r. These freely generate except for one relation, [7i][y2] * * * [Yr]
= 1. For / = 1, . . . , r, set st = T([γt]) the S/S generate the mon-
odromy group of the cover and satisfy s\S2--sr= 1.

Call the τ-tuple (s\, . . . , sr) the branch cycle description of the
cover associated with the data (or bouquet) (γ\, . . . , γr). It is an ele-
ment of S^ when we label the points p\, . . . , pn in the fiber φ~ι (x0).
Another labeling of the fiber φ~ι(xo) defines an element of S^ that
is coordinatewise conjugate by an element of Sn to the first branch
cycle description of the cover coming from the bouquet {γ\, . . . , γr).
This produces a one-one correspondence between the following sets:

• degree n covers φ: Yc —• P1 (up to equivalence of covers)
ramified over the points X\, . . . , xr and

• r-tuples (s\, ... , sr) G Sr

n (modulo coordinatewise conjuga-
tion by Sn) with s\S2--sr= 1 and (s\, . . . , sr) transitive on
1, . . . , n.

Unless otherwise specified, assume from here the following.

(2.1) Branch points X\, . . . , xr, r > 3,

are in P1 (R) and X\ < x2 < < xr < oo.

Fix the base point x 0 € P1 (Q)\{oo} on the arc between X\ and xr not
containing x2 on the real projective line. Denote complex conjugation
on C by c. It maps the homotopy class [γ] e π\ of a closed path
γ based at XQ to the homotopy class [γc] of the conjugate path γc.
With suitable loops around the X/S, we write this action explicitly.
For the rest of §2 and §3 use the specific bouquet (γ\, . . . , γr) from
[FrD; §2.1]. For this we have the following.

PROPOSITION 2.2. The paths y\, . . . , yc

r are respectively homotopic
to

(72 * * 7r)"17f1(72 7r) , (73 YrVlVjl(V3 ' ' ' Yr) ,
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Hurwitz knew these formulas [Hur; p. 357]. Krull and Neukirch
[KN] investigated them further. We consider them deriving from the
action of a general operator. Suppose we have a group U and an
integer r > 0. Define %\ Ur -> Ur to send u = (u\, . . . , ur) e Ur

to %(χy) = f (uf, . . . , uf) with uf = u~ι and

(2.2) uf = (uM Ur)~XUjl(uM '"Ur), ί = 1 , . . . , V - 1.

W e also h a v e

(2.3) uf" uf = (ur"Ur)-\ i = l , . . . , r - l .

Consider a cover φ: Yc -» P1 and its conjugate #?c: Y£ —> P 1 . The
fiber (ί^c)"1( χo) consists of the points pf, . . . ,p£ . Let Γ c denote
the monodromy action on the fiber (φc)"ι(xo). For any closed path
γ based at x0, we have Γc([yc])(pf) = [Γ([y])(p/)]c. Replace γ by
7C and apply c to both sides. This gives the equivalent expression:

(2.4) Tc{[γ}){pi)c = T([f])(Pi).

From (2.4):

(2.5) the r-tuple (Γ([yf]), . . . ? T([γc

r])) is the branch cycle
description of the cover φc: Y£ —* P1 associated with
the bouquet (71, . . . , γr).

The (a) part of the next proposition rephrases (2.4) and (2.5). The (b)
part follows because the assumptions imply Y£ = Yc.

PROPOSITION 2.3. (a) Suppose s = (s\, ... , sr) is the branch cy-
cle description of the cover φ: Yc -* P1 associated with the bouquet
(ϊι > , yr) ΓΛ «̂, ^( s ) = (if, . . . , sf) is the branch cycle descrip-
tion of the cover φc\ Y£ —̂  P1 associated with the bouquet Q>i, . . . , jv) •

(b) I/RDK then %% = esc. That is sf = cstc, i = 1, . . . , r.

2.4. Descending the base field—Weil's method. We now descend
the base field in the second part of the proof of Theorem 1.1. Without
condition (ii) below, it results from Prop. 2.5 of [CoH]. Here is the
framework. Let Ψ: E —• P1 be a Galois cover, and let H be the
subgroup of Aut(C) given as

{τ G Aut(C/Q)|Ψ: E -* P1 and Ψ τ : Eτ -+ P1 are equivalent covers}.

Take K = CH, the fixed field of H in C. Then, K is the field
of moduli of the cover. Choose xo, a point in Q distinct from the
branch points of the cover.
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THEOREM 2.4. Assume the conditions of the paragraph above. There
exists an extension Y/K(X), regular over K, such that

(i) the cover φ: Yc —> P1 is equivalent to the cover Ψ: E —• P 1 ,

(ii) K((X-XQ)) contains Y.

Condition (ii) is equivalent to the following.

(ii') Permutations τ acting on the Galois closure of Y/K(X) have
a common fixed point for all τ e H (notation as in §2.2).

Danger: Y/K(X) need not be Galois. It is Galois if and only if
τ = 1, for all τ e H. That is, one point of the cover over x0 is
defined over K. Thus, if the cover is Galois, all points over x0 must
be defined over K. In the other direction, let K be the constants
of the Galois closure of the extension Y/K(X). Then K = K if and
only if Y/K(X) is Galois. We know the field generated by coordinates
of the collection of points above XQ contains K. Therefore, if these
points are defined over K, then K = K.

Proof. By definition, for each τ e H, there is an isomorphism
δτ: E -^ Eτ such that Ψτ o δτ = Ψ. The automorphism (Jτ sends the
fiber ψ-^xo) = {el9...,en} to the fiber (Ψτrι(x0) = {e\, ... , <£}.
The cover Ψ τ : Eτ —• P1 is Galois. Thus, there exists an automor-
phism χτ: Eτ —• Isτ such that χ τ o δτ sends ei to e\. Denote the
isomorphism χτ o δτ by cτ. The collection {cτ}τeπ satisfies the co-
cycle condition: cτ

2 o cXi = cx^2 for all τ\, τ2 G H. Indeed:

Weil's cocycle criterion now reduces the field of definition [We].
There exists a cover φ%: Ek —• P 1 , defined over K with the following
properties. There is an isomorphism θ : E& —> E (defined over C)
such that

(2.6) (a) Ψoθ = φκ, and

(b) θτoβ-ι=cτ, for all τ e / / .

Define Y to be the function field over K of EK - The extension
Y/K(X) is regular and satisfies condition (i). In fact, φ: Yc —• P1 is
the cover q>κ: £j^ —• P 1 .

Finally, consider the point p\ = θ " 1 ^ ) on Eκ. From (2.6) (b),
p\=P\9 for all τ eH. That is, /?i e E^ is ^-rational. As before, let
yι be the power series corresponding to p\. Then yj G AΓ((X - x0)) •
Since r = K(X 9yλ)9 K((X - x0)) DY. D
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3. Proof of Theorem 1.1.

3.1. Proof of Theorem 1.1 (b) =». Let Y/R(X) be a degree n
regular extension whose associated cover φ : Yc -» P1 has monodromy
group Γy = G. Let s = (si, . . . , sr) be the branch cycle description
of φ: Yc —• P1 associated to the bouquet (JΊ , . . . , γr) of Proposition
2.2. From Proposition 2.3 (b), we have sf = CSJC, i = 1, . . . , r.
Apply (2.3). Then, (Si->sr)-1 = c(Si--sr)c, / = l , . . . , r . Set

sr, i = 1, . . . , r - 1. Thus

(3.1) catc = ajl

9 ι = l , . . . , r — 1 .

Conjugating G by c e Sn gives the h that Theorem 1.1 (b)
requires. D

3.2. Proof of Theorem 1.1 (a) =>. Here, Y/R(X) is a degree n
Galois regular extension with group Γy = G. So (3.1) of §3.1 still
holds. In addition, since Γγ — Γy, we have c e G (statement prior
to Proposition 2.1). Thus, c, ca\, . . . , carι are of order < 2 and
they generate G. D

3.3. Proof of Theorem 1.1 (b) <=. Let G be a group with prop-
erty (1.2). Let r = s + 1 and ft = |G | . Regard G as a subgroup
of Sn through its regular representation. Consider the r-tuple s =
(sι,...,sr)e Sr

n defined by

(3.2) s = }2ar-χ, α ^

The j/s generate G. They also satisfy s\'-sr = 1. Fix r + 1 points
Xo ? ^i ? 9 *r in P1 (K) and a bouquet (yi, . . . , yΓ) as in §2.3. From
Riemann's Existence Theorem (§2.3), there exists a cover Ψ: E -+ P 1 ,
unique up to equivalence of covers, with the following properties. Its
branch points are xx, . . . , xr, and s = (s\, . . . , sr) is the branch
cycle description of the cover associated to the bouquet (y\, . . . , yr).
Furthermore, since G —• Sn is the regular representation, Ψ: E -• P1

is a Galois cover with automorphism group G.
From Proposition 2.3 (a), g£(s) = (sf, . . . , sf) is the branch cy-

cle description of the cover Ψc: Ec -• P1 associated to the bouquet
(7i > 9 Vr) From the definition of ^ and (1.2) check easily that
sf = h(Si), / = 1, . . . , r. Suppose that conjugation by K e Sn coin-
cides with the automorphism h on G. Thus:

(3.3) sf = KSiK~l for i = 1, . . . , r.
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From Riemann's Existence Theorem (§2.3), the covers Ψ: E -• P1

and Ψc: Ec —• P1 are equivalent covers. Apply Theorem 2.4 to con-
clude there exists a regular extension Y/R(X) with these properties.

(i) φ: Yc -» P1 is equivalent to the cover Ψc: Ec -• P 1 .

(ii) R ( ( X - J C 0 ) ) contains Y.

The cover φ: YQ —• P1 is defined over R. It is the desired cover, α

3.4. Proof of Theorem 1.1 (a) <=. Let G be a group generated
by involutions a\, . . . , α 5 . In particular, G has property (1.2) with
h = 1. Thus, the construction around (3.3) holds, with h = 1, JC =
1. Consider the regular extension Y/R(X) produced in §3.3. It is
Galois over C(x) with (geometric) Galois group G. Also, R((X—XQ))

contains Y. The branch cycle description s = (s\, . . . , sr) of the
cover φ: Y<c —• P1 associated with the bouquet (γ\9 . . . , yΓ) has this
property:

(3.4) sf = Si for i = 1, . . . , r.

From Proposition 2.3 (b), we also have sf = Zs{c, i = 1, . . . , r.
Therefore, c G Cen^ (G). Since R((X - XQ)) contains Γ, c has a
fixed point. Conclude that c = 1. Therefore, from Proposition 2.1,
Γy = Γy: Y/R(X) is a Galois regular extension with Galois group
ΓY = G. D

REMARK. In the above argument, c= 1. That is, ^ " H ̂ o) has only
real points. Equivalently, R contains the residue class algebra YXQ . D

3.5. Comments. This section consists of elaborate comments. Each
uses the proof of Theorem 1.1 for further exploration. These are the
topics.

• Branch points need not be real.
• The cover need not be Galois.
• You can decide when the field of moduli of a cover is R.

Comment 1. Dropping the assumption "the branch points are real."
The "real branch point situation" of Theorem 1.1 allowed special
generators [yγ],..., [γr] of the fundamental group %\ from §2.3.
Explicit formulas gave [y\], . . . , [γ$] as words in [71], . . . , [γr] (cf.
Proposition 2.2). We can work with the general cover defined over R
similarly.

Here, the branch points consist of r\ real points and r2 complex
conjugate pairs, where r = r\ + 2r2. Use the paths of [FrD; §2.2]
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for which we know the complex conjugation action explicitly. Slight
adjustments to the proof above lead to this more general result.

THEOREM 3.1. Finite group G is the group of a regular extension
Y/R(X) with r branch points, r\ of these real exactly when G has
special generators. Specifically, (r + r\)/2 elements generate G with
at least r\ of them involutions.

More precisely, the following statements are equivalent.
(a) There exists a Galois regular extension Y/R(X) of group G,

with r branch points t\, . . . , tr , z> 9 ... ,~z\9 z\, ... 9 zr , where
U e R, i = 1, . . . , r{, and z; £ R\ i = 1, . . . , r2 .

(b) There exists (g[, . . . , g'r) e Gr which satisfy these conditions:

(ϋ) (*, ', . . .,*;) = <?,

(iii) 3g*0eG such that (^•••^) 2 = 1, / = 0, . . . , rx - 1,

g'r-i = go(gf

rι+i+i)~lgo> / = 0, . . . , r2 - 1.

The special case r = r\ corresponds to Theorem 1.1 (a). For r\ = 0,
we get a result from the introduction. Namely, every finite group G
is the Galois group of a Galois regular extension of R(X).

Comment 2. Nonregular representations. Here, suppose G has an
embedding in Sn (not necessarily the regular representation). As-
sume α i , . . . , as are generators for which (1.2) holds. Denote the r-
tuple of (3.2) by s(α). Let x0, xx, . . . , xr be r + 1 points in P1 (R).
Take (γ\, . . . , γr) to be a bouquet as in §2.3 with s(α) the associ-
ated branch cycle description of the cover with xγ, . . . , xr as branch
points. Denote the degree n (not necessarily Galois) cover from §3.3
by Ψs(α) ,χ: E -^Pι. We ask if we can define this cover over R.

We showed the answer to be positive in the Galois case, thanks to
Theorem 2.4. In greater generality, the answer is yes whenever you can
construct a collection {cτ}τeo(c/R) as in Theorem 2.4. It must satisfy
the cocycle condition clz o c%i = cXχXi, for all τ\, T2 G G(C/R). For
example, you can do this when the cover Ψ: E —• P1 has no nontrivial
automorphism. This is the same as the condition Cen^ (G) = {1} .

n

Comment 3—from E. Dew [D]. When the field of moduli is R.
Suppose ψ: E —> P1 is a Galois cover and complex conjugation gives
an equivalent cover Ψe: Ee —• P 1 . We say R contains the field of
moduli. Suppose also that the covers have real branch points. Let
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y = (γι, ... , γr) be a bouquet as in §2.3 and let (s\, ... , sr) be the
branch cycle description associated to the bouquet γ. With α; =
sx Si, / = 1, . . . , r - 1, Proposition 2.3 gives this:

( * ) ΎhesQt Na = {κ eSn:κaiK-ι=ar\ ί = l , . . . , r - l }
is nonempty.

Thus, (*) is a necessary condition. We want to know what to add
to this for an if and only if condition for the following:

/ ̂  \ There is a cover equivalent to ψ: E —• P1 defined and
Galois over R.

It is tempting to answer: NaΠ G is nonempty. Here G denotes
the monodromy group of the cover. Yet, this condition may not be
sufficient in general. The correct answer is this:

( *** ) 3κ eNaΠG with κ2 = 1.

Note. In the addition following Theorem 1.1 (b) we selected the S(S
so K = 1 lies in Na. Also, (***) is equivalent to asking that κ2

be the square of an element of the center Z{G)\ divide K by this
element.

Proof of the equivalence of (**) and (***). Assume that the cover
ψ: E —> P1 is defined and Galois over R. Then the element c (see
§2.2 for the definition of c) is in NaΓ)G and it satisfies c2 = 1.

In the other direction, assume (***). Following the proof of Theo-
rem 2.4 we use Weil's criterion. Here, however, we choose a different
cocycle. Let H = {1, c} denote the Galois group of C/R. Recall
the dictionary between covers and branch cycle descriptions (for the
bouquet γ). An isomorphism δ: E —> Ec such that ψcoδ = ψ comes
from an element K in Na.

To use (***), label points p on E above the base point Xo. Apply
c to p ; then permute the naming of the image points p c by K . The
new points κ(pc) give us points above Xo in Ec. These produce
exactly the same branch cycle description (relative to γ) for Ec as
do the points p for E. Thus, these respective namings of the points
give a unique isomorphism δc: E -+ Ec that sends points p to the
respective points κ(j>c). In addition to ψc o δ = ψ, δc satisfies these
two conditions:

(f) &l*6c=\\ and
(ft) $c commutes with the action of c that takes automorphisms

of E -• P1 to automorphisms of Ec -• P 1 .
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Indeed, (f) follows because the effect of the left side of (f) on p
is given by κ2 . As for (ft) ? automorphisms of the covers commute
with a renaming of the points of p .

For convenience take δ\ to be the identity. Condition (f) guaran-
tees that the collection {δτ} satisfies the cocycle condition

Therefore, one can descend the field of definition of the cover to R.
Condition (ft) assures the automorphisms are also defined over R.

Section 3.6 gives a more algebraic approach to the above. In par-
ticular, the equivalence of (**) and (***) follows immediately from
Lemma 3.3.

3.6. Serve's approach. Serre suggested that the algebraic funda-
mental group, rather than the topological fundamental group, would
be more convenient for proving Theorem 1.1 (a). We follow Serre's
exposition [Se3; cf. Ch. 7, 8, 9].

Assume K has characteristic 0. Let x\, . . . , xr be r distinct points
in Ψι(K). Denote the maximal algebraic extension of K{X) unram-
ified outside x\, . . . , xr by Ω. The extension Ω/K(X) is Galois.
Its group is the algebraic fundamental group of P1(ΛΓ)\{x1, . . . , xr} .
Denote this profinite group by π a l g .

When K = C, π a l g is the profinite completion π of the topological
fundamental group π [Se3; Theorem 7.5, p. 69]. By analogy with the
complex case, denote the free group on r generators Γ\ , . . . , Γ r with
the single relation Γ{ Γ r = 1 by π. There is a map /: π -> π a l g

with the following properties.

(i) i(Γi)' = Γ| is a generator of an inertia group of the extension
Ω/K(X) above xi9 i = 1, . . . , r.

(ii) The map / extends to an isomorphism /: ft —• π a l g .

If the divisor (x{) + (x2) H h (xr) of P1 is ^-rational, the ex-
tension Ω/K(X) is Galois. Let π^ denote the Galois group of this
extension. We have this exact sequence:
( 3 . 5 ) i _> πaig _> π j f _> A A : _> L

Here Λ^ denotes the Galois group of the extension KjK. Note:
the map τiκ —• Λ^ has many sections. Indeed, for each x0 e
P1(ir)\{x1, . . . , x r }, we can embed Ω in K((X - x0)) where the
elements of Λ^ act naturally (cf. §2.2).

Given a finite group G, a surjective homomorphism ψ e
Hom(7τalg, G) produces a Galois extension E/K(X) with group G.
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We say E descends to K if there exists a Galois regular extension
Eκ/K(X) with CEK = E. This happens if and only if the homomor-
phism ψ extends to UK .

In our context, K = R and the branch points X\,... , xr are real.
Section 2.3 gives generators Π , . . . , Γ r of π a l g so that complex con-
jugation C G Λ R acts on them by the formulas (2.2). Recall from §2.3
the operator Ψ in our next result.

PROPOSITION 3.2. Assume the branch points X\,... , xr are real
Then, %κ is isomorphic to the semi-direct product π**& x 5Z/2 where
c=leZ/2 maps Γ e π a l g to Γc as follows:

(3 .6 ) Γ7 = Γ f , ι = l , . . . , r .

The group theoretical observation that supports Theorem 1.1 (a)
now appears clearly.

LEMMA 3.3. Let ψ e Hom(π a l g , G) and gt = ψ(Γχ) ψ(Γt), i =
1, . . . , r. Then, ψ extends to ψ e Hom(π a l g x 5 Z/2, G) if and only if
there exists an involution K EG with all of κg\,... ,κgr involutions.

Proof. Assume ψ e Hom(π a l g x 5 Z/2, G) extends ψ. Set K =
ψ{c)\ \κ\ = 2 and

(3.7) ψ(Γ) = κψ(Γ)κ

for each Γ E π a l g . Substitute Γ, for Γ and use (2.3) to get gr1 =

For the converse, define ψ E Hom(π a l g x *Z/2, G) by ψ(Γ, ε) =
ψ(T)κε for each Γ e π a l g and ε = 0, 1. Use (3.6) to check that
(3.7) holds for Γ = Γ i ? ι = 1, . . . , r, and so for all Γ € π d g . This
guarantees that ψ is a homomorphism of groups. D

3.7. p-adic analogs. Proposition 3.2 gives the effect of complex
conjugation c:

(3.8) Γ£ is conjugate in π to Γ" 1 , i = 1, . . . , r.
The exponent - 1 comes from the "branch cycle argument" ([Frl;

p. 62] or [DFr; §1.4 Proposition 1.9]). We explain. Consider the
cyclotomic character χ: Λ# —• ]JN G{K{μN)/K), i = 1, . . . , r. Here
μπ denotes the group of Nth roots of 1. The action of each τ E
on the group π a l g looks like this:

(3.9) ΓJ is conjugate in π a l g to Γ^τ^ where Xj = x].
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Now take K = Qp . It is natural to ask if the Frobenius Fp e ΛQ
satisfies an analog of (3.8). One cannot just replace the exponent - 1
in (3.8) by the exponent p. Indeed, if this were true, conjugates of
Γ?, / = 1, . . . , r would generate π. This, however, would imply
that a group generated by elements of order p would be trivial, a
contradiction.

We are not tempted to use the exponent p when we recognize a
simple property of the Frobenius Fp. It acts on μ# as pth powers
only when p does not divide N. Question 3.4 below is subtler. Say
that a finite extension L/Qp(X) is /?'-ramified if p does not divide
any of the orders et of the inertia groups above xx 9 i = 1, . . . , r.
For such extensions, p is relatively prime to N = \cm(e\, . . . , er).
In this case, the value in G(K(μN)/K) of the cyclotomic character
at Fp is p. Define πfg to be the projective limit lim πalβ/Z>. Here
D ranges over normal subgroups of π of finite index where the field
extension corresponding to D is p'-ramified.

Question 3.4. Is the action of the Frobenius Fp on π = πfg induced

by an action on π such that Γ|p is conjugate in π to Π? where

Xj = xfp, i = 1, . . . , r?

We believe the answer is still "No!" Here is an outline in this direc-
tion in the case of covers with branch points in Qp . Such a "frobenius"
action would give a formula like this:

(3.10) FpσiFfι=ωi(σ)σfωrι(σ)9 i= 1, ... , r.

Here ω/(σ) is a word in the entries of σ. To regard the formula as
similar to that over R requires some conditions on the words ω(σ).
At the minimum, they should be independent of considerable data
describing the cover.

Suppose we ask that ω(σ) be independent of the branch points and
the choice of elements in the conjugacy classes given by the entries of
σ. Then, such a formula implies the existence of a correspondence—
much like a Hecke correspondence—on the naturally attached Hurwitz
space. We conclude by showing how this gives a contradiction.

When r = 4, consider the observation of [Fr, 2; §4.2]. This relates
all Hurwitz spaces to curves defined by the action of a subgroup of
finite index in SL2(Z) on the upper half plane. Our assumptions on
ω(σ) would imply the existence of an actual nontrivial Hecke theory
on these curves. Some of these curves are modular curves, and they
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have a well known Hecke theory. Still, most are not. For these, this
contradicts a result of Atkin [A]: noncongruence subgroup curves have
only trivial Hecke correspondences.

REMARK. The existence of a Galois regular extension of QP(X)
with group any given group G was proved by Harbater [H]. In this
subsection we wanted more. An analog of Lemma 3.3 would be a
practical criterion for defining a given cover over Qp . D

4. Hurwitz spaces and rationality over Q .

4.1. Reduction of the problem. Suppose G is a group with an em-
bedding G -» Sn. This need not be the regular representation. Let
a\, ... , as be generators for which condition (1.2) holds. Denote a
specific cover produced by Comment 2 of §3.5 by Ψ S ( α ) ? x : E —> P 1 .
Finally, we assume either

(4.1) G —> Sn is the regular representation or Cen^ (G) = {1} .
n

From Comment 2 of §3.5, we can define Ψ s(α),χ : E ->Ϋι over R. In
this section, we try to descend to Q.

Question 4.1. Is there some choice of branch points x\, ... , X4 in
P*(R) that gives a cover Ψ S ( α ) 5 X : E —• P1 produced by Comment 2
of §3.5 and defined over the rational number field Q.

We use Nielsen classes and Hurwitz families to investigate this.
Branch cycle descriptions provide much information (cf. §2.3 and
[DFr] §1.1). Still, they depend on many choices: a base point XQ, SL
labeling of the points in the fiber 0 - 1 (xo) > an ordering of the branch
points X\, . . . , xr, and a sample bouquet γ\, . . . , yr. There is an
intrinsic notion.

Consider the data attached to any branch cycle description (s\, . . . ,
sr) of a cover. Most importantly, there is the group (s) generated by
the SiS. Up to conjugation by Sn, this is the monodromy group of
the cover. Secondly, there is the collection {C\, . . . , Cr} of conjugacy
classes of S\, . . . , sr in the group (s). From Lemma 1 of [Frl], up
to conjugation by Sn, this data is an invariant of the cover. This
observation gives the definition of the Nielsen class of a cover.

Let G be a subgroup of Sn and let C = ( Q , . . . , CΓ) be an Muple
of nontrivial (not necessarily distinct) conjugacy classes of G.

DEFINITION 4.2. To the data (G9 C) we associate its Nielsen class:

and there exists ω e Sr, S(ηω € C, , / = 1, . . . , r}.
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Suppose a cover Ψ: E —• P1 has any branch cycle description s,
up to conjugation by elements of Sn, in ni(C). We say the cover
is in ni(C). Alternatively, ni(C) is the Nielsen class of the cover.
The order in which we list the conjugacy classes does not matter. The
straight Nielsen class of (C, G) is

sni(C) = {s G ni(C)|s; G Q , / = 1, . . . , r}.

We speak of a cover Ψ: E —> P1 with an ordering of its branch
points being in sni(C). This means, up to conjugation by elements of
Sn , that any branch cycle description of the cover with this ordering
is in sni(C). The normalizer (resp., the straight normalizer) of the
Nielsen class is

JV(C) = {K G £„[conjugation by K permutes Q , . . . , C r },

SN(C) = {K G Sn(conjugation by K fixes Q , . . . , C r}.

Note that N(C) acts on the Nielsen class ni(C) by conjugation: K G
N(C) maps s e ni(C) to κsκ~λ e ni(C). Similarly, SN(C) acts
on the straight Nielsen class sni(C). Denote the quotients of these
actions by ni(C) a b, sni(C)a b, the absolute Nielsen classes.

Under certain assumptions, there is a space representing a solution
to a natural moduli problem. This is the problem of parametrizing
equivalence classes of covers in a given Nielsen class. Hurwitz mon-
odromy action interprets properties of this moduli space. We explain
the monodromy action.

Consider the free group on r generators, β, , / = 1, . . . , r - 1,
with these relations:

(4.2) (a) QiQMQi = QMQiQM, ί = l , . . . , r - 2 ;

(b) QiQj = QjQi, \i-j\> 1; and

(c) βiβ2 βr-iβr-i βi = l.

This group, a quotient of the Artin braid group [Bo], is called the
Hurwitz monodromy group of degree r. We denote it by Hr. The
Qβ act on ni(C)a b by this formula: for s e ni(C)a b

(4.3) (s)β/ = (sγ, . . . , Si-ι, SiSi+is^1, Si, si+2, - - , sr),

/ = 1, . . . , r - 1.

Thus they induce a permutation representation of Hr on ni(C)a b :
the Hurwitz monodromy action on the Nielsen class ni(C)ab .
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Denote the kernel of the natural permutation representation Hr -+
Sr sending Q, to the 2-cycle (//+1) by SHr. This is the straight Hur-
witz monodromy group. The group SHr acts on the straight Nielsen
class sni(C)ab. The next statement summarizes the basic moduli space
properties in the special case that all of the conjugacy classes are ra-
tional ([Frl; §4 and 5] or [DFr; §1]). (A conjugacy class is rational if
it is closed under putting elements to powers relatively prime to the
order of elements in the class.)

THEOREM 4.3. Assume that (4.1) holds, that G has no center, that
SHr acts transitively on sni(C)ab, and that Q , . . . , Cr are rational
conjugacy classes. Then there is an algebraic family &"(C) of covers
of P1 (a priori over C)

This universal Hurwitz family associated to ni(C) satisfies (4.4)-(4.7).

(4.4) ^(C) is a finite morphism of quasiprojective varieties,
is irreducible and the generic fiber of prt

-> r (C) is irreducible.

(4.5) The family &(€) is defined over Q.

(4.6) Each cover Ψ: E -* P1 in the Nielsen class ni(C)a b is
equivalent to a unique fiber cover ^ ( C ) h : ^ ( C ) h —• P1

(with h e &(C)) of the family ^ ( C ) . Also, ^ ( C ) h :
^ ( C ) h -• P1 is defined over Q(h), the field of defini-
tion of the point h on the algebraic variety ^ ( C ) Q(h)
is the smallest field of definition for a cover that is
equivalent to the cover Ψ: E —• P 1 .

(4.7) Denote the subvariety of ( P 1 / consisting of Muples
with distinct coordinates by Ur. Then, consider the al-
gebraic variety Ur/Sr = Ur given by the quotient action
of Sr. The "branch point reference map" Ψ(C): ^ ( C )
—• Ur sends each h G <^(C) to the branch point set of
the fiber cover ^ ( C ) h : ^ ( C ) h -> P1 - This is an etale
morphism of degree |ni(C) a b | defined over Q.

The original conjugacy classes, Q , ... , C r , are the conjugacy classes
in G of the entries of the r-tuple s(α). Theorem 4.3 has this conse-
quence.
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PROPOSITION 4.4. Assume the hypotheses of Theorem 4.3. The an-
swer to Question 4.1 is yes if and only if there are branch points,
x\, . . . , xr e Ψι(Q), so that the point h e β^(C) that corresponds to
the cover Ψ s ( α ) > x : E —• P1 is a ^-rational point on

4.2. Description of &(C) for r = 4. See [BFr; §1, Lemma 1.6)],
[Fr2; §4.1]. Both our examples will be 4 branch point situations. In
this case, ^ ( C ) has a more explicit description. Consider natural
map Ur —> Ur. Let %?(Q)f be an irreducible component of the fiber
product ^F(C) Xjy ί7r and p: β?(C)f -* Ur the natural projection.
Theorem 4.5 uses the permutations of sni(c)ab induced by these el-
ements of SHr: Q\ Q~XQ\Q\ Q^Q^QlQiQi Denote these by
#12 > #13 > 014, respectively. These act on sni(C)ab . The transitivity
hypothesis of Theorem 4.3 implies that the a\jS are transitive on
sni(C)a b.

THEOREM 4.5. For each (X2, X3, JC4) G C/3, denote the inverse im-
age p~ι(Ψι x (x2 ? ^ 3 , ^4)) by β^{C)r(x2, X3, X4). Composition of p
with projection Ur —• P1 on the first factor gives an unramified cover

Complete this to a (ramified) cover C(C) —• P1 of projective nonsingu-
lar curves. This will have the following properties.

(4.8) X2, X3, X4 #r^ ί/ze 3 branch points of the cover.

(4.9) (#12, #i3, #14) (acting on sni(C)ab) is a branch cycle
description of the cover.

(4.10) The cover is defined over Q.

COROLLARY 4.6. The variety %f(C)' is bίratίonal to C(C) x P1 x
P1 x P 1 .

Proof. For (x2, X3, Λ4) take the generic point of U3 in the above.
The birational equivalence J%?(C)ι(x2, ̂ 3 , JC4) = C(C) induces a bi-
rational map ^ ( C ) ; -» C(C) x P1 x P1 x P 1 . D

Section 4.3 has examples where C(C) is P1 (over Q). Conse-
quently, the space β^(C)f is a Q-rational variety. In particular, the
Q-rational points on β?(C)f form a dense subset of ^(C) 7 (R) (for
the complex topology) and Question 4.1 has an affirmative answer.
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4.3. A formula for the genus of the curve C(C). The Riemann-
Hurwitz formula gives the genus g(C) of the curve C(C) (cf. Theo-
rem 4.5):

(4.11) ind(fli2) + ind(fli3) + ind(α14) = 2(N + g(C) - 1)

with N = |sni(C)ab |.

Here is how we compute ind(a\j). Denote the length of the orbit of
s G sni(C)ab under aυ by /^-(s), j = 1, 2, 3. Then

(4,2, ω ( a , )= Σ zl.
sesni(C)a b J

Check easily that

(4.13) (s)tfi2 = ((̂ 1^2)̂ 1 (s\S2)~ι, sιs2sϊι, s3, s4)

(in sni(C)ab).

Thus, a\2 acts by conjugation by S\S2 on the third and fourth com-
ponents and leaves the others unchanged. It follows that (s)(a\2)

q = s
in sni(C)ab if and only if

(4.14) (Sι, 52

for some K e SN(C). For any subset A of G = (s), denote the cen-
tralizer of A in SN(C) by Z(A). Then, condition (4.14) is equiva-
lent to this:

(4.15) There exists γ e Z(sx, s2) such that γ(sιs2)~q e Z ( J 3 ) .

Hence, /i2(s) is the smallest integer q > 0 with (sιS2)"~q €
Z(s\,S2)Z(s?>). Therefore, the factor group (s\S2)/(s\S2)ΠZ(s\yS2)Z(s3)
has order ϊ"i2(s). Similarly, check that

(s)fli2 = ((^4)~^i(^4), *2, (^2)"^3(^2), ̂ 4), and

(s)α14 = {si, (^i )"^2(^i) , (^i )"^3(^i), £4) ( i n sni(C)ab).

Thus, the integer /13(s) (resp. /i4(s)) is the smallest integer q > 0

such that (s4s2)
g e Z(s2, S4)Z(s3) (resp., ( ^ i ) ^ e Z(sχ, s4)Z(.s3)).

Finally, we get

(4.16) /12(s) = | ( ^ 2 ) / < ^ 2 > Π Z{sx, s2)Z(s3)\,

z'i3(s) = \(s4s2)/(s4s2) n Z(s4, s2)Z(s3)\,

= \(s4sι)/(s4sι) nZ(s4,sι)Z(si)\.
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THEOREM 4.7. Assume the hypotheses of Theorem 4.3 and Theorem
4.5. Then, (4.11) gives the genus g{C), where (4.12) and (4.16) give

) and

4.4. Symmetric groups. In this section, n = 2p+\ is an odd prime
and the group G is the symmetric group Sn embedded in itself. Con-
dition (4.1) holds. Consider the following involutions of Sn :

αi = (2 n - 1)(3 n - 2) (p - 1 p + 3)(pp + 2)

α 2 = (1 Λ)(2 n - 1)(3 n - 2) (p - 1 p + 3)(pp + 2)

α 3 = (1 n - 1)(2 n - 2)(3 /ι - 3) • (p - 1 p + 2)(pp + 1).

Since these generate a transitive subgroup of Sn , it is easy to see that
they generate all of Sn . Indeed, as n is a prime, the representation is
primitive. It is well known that a primitive subgroup of Sn containing
a 2-cycle is all of Sn. As a\a^ is a 2-cycle, we are done. Therefore,
condition (1.2) is satisfied.

Here is the 4-tuple s(α) = (s\, 2̂ > ^3, S4) of (3.2) :

Sl = α i = (2 /ι - 1)(3 n - 2) (p - 1 p + 3)(pp + 2)

53 — a2ct3 = (n n - 1 2 1)

54 = α 3 = (1 π - 1)(2 n - 2)(3 /i - 3) (p - 1 p + 2 ) ( p p + 1).

Order C\, C2, C 3 , C 4 so they respectively denote the conjugacy
classes of s 4 , s\, 52, ̂ 3 . Thus (ΛΊ , ^2, ̂ 3 ? ^4) ^ n i ( c ) a b a n d (54, s\,
^ 2 ^ 3 ) ^ s n i ( C ) a b . Specifically, we have: C\ — {products of p dis-
jo int 2-cycles}; C2 = {products of p - 1 disjoint 2-cycles}; C3 =
{2-cycles} C 4 = {n-cycles}. Any conjugacy class in Sn is rational.
In particular, these are.

We now investigate the Hurwitz m o n o d r o m y action on s n i ( C ) a b .
First, a l emma helps us list the elements in s n i ( C ) a b . In the following,
for s, ω e Sn, we let sω denote the conjugate of s under ω (i.e.,
sω = ω~~ιsω). For / e { 1 , ... , n}9 iω is the integer (i)ω.

L E M M A 4.8. Let a, b e Sn be involutions. Let O be a disjoint
cycle in ab that contains an integer p0 fixed by b. There are two
possibilities.

(i) O = (poPi PtPt '" p\) with t > 0 and n o n e of the integers
pi, i > 0, fixed by b ρt is then fixed by a and O is a cycle
of odd length.
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(ii) O = (poP\ - - PtpQpt ''' p\) with t > 0 and none of the integers
pi, i > 0, fixed by b; ρ$ is then fixed by b and O is a cycle
of even length.

Conversely, we have these partial products from Ob.

(i') (PoPi * PtPt ''' Pbχ){P\p\)''' (PtPt) is a Product of t disjoint
2-cycles.

(ii") (poPi -PtPoPt-'PΪ)(PiPΪ)'"(PtPt) is a product of t+l dis-
joint 2-cycles.

Proof. Conjugation by b turns ab into (ab)~ι. Therefore, (Ob)~ι

is a disjoint cycle in ab. Since O and (Ob)~ι have an integer in
common, namely po, we obtain O = (Ob)~ι. The only cycles with
that property are those described in statement (i) and (ii) of Lemma
4.8. The converse statements (i') and (ii') are immediate. D

We now show there is a one-to-one correspondence between the
elements of sni(C)ab and the subset S of N 3 of triples [μ, β, γ]
satisfying

l<μ<p; l<β<2μ-l; p + μ+l<γ<n.

Start with this observation. Every element of the absolute straight
Nielsen class sni(C)ab has a unique representative σ = (σi,σ2,<73,σ4)
with σ4 = (n n - 1 1) and σ^ = (1 2μ), μ e {1,...,/?}. Existence
is easy. Lemma 4.9 below (and Cen(Sn) = {1}) gives uniqueness.

LEMMA 4.9. The group Sn is generated by σ$ and σ$.

Proof. Consider a partition 7 o f { l , . . . , n } . We say that / is a set
of imprimitivity for a subgroup H of Sn , if H permutes the elements
of / . Sets of imprimitivity of the fl-cycle (n n - 1 1) are the cosets
modulo a nontrivial divisor of n. Since n is prime, (σ$, 04) is a
primitive subgroup of Sn, which contains a 2-cycle. Therefore, it is
all of Sn . D

For the representative σ = (σ\, σ2, σ^, 04) above, we obtain

σ{σ2 = {σ^σA)-χ = (12 2 μ -

Both σi and σ2 are of order 2 and σ2 fixes 3 integers. Lemma 4.8
shows that only one of these integers, say β, occurs in the odd length
cycle (12 --2μ - 1) of o\Oi. The two other integers fixed by σ2

appear in the even length cycle (2μ 2μ + 1 ή). Denote the integer
fixed by σ2 that is in the second half of {2μ, 2μ + 1, . . . , n} by γ.
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That is, γ is in the set {p + μ+l,...,n}. This defines a triple
[μ, β, γ] which lies in the set S. The next proposition gives us the
genus of covers with branch cycles coming from our previous lemmas.
In §4.5 we draw conclusions from this about Question 4.1. Since the
result is not terribly positive, §4.6 makes further comment on what we
can expect from variations of this technique.

PROPOSITION 4.10. The map sni(C)ab —> S that assigns to each el-
ement of sni(C)ab the triple [μ, β, γ] defined above is one-one and
onto. In particular,

Ncή = Σ f
l<μ<P

Proof. Let [μ, β, γ] be a triple in S. Set σ4 = (n n - 1 1) and
(73 = (1 2//). We need to show that there is a unique pair (σ\, #2)
with these properties:

(4.16) σ = (σi, σ2 > 03 > 04) Ξ sni(C) and CΓ2 fixes /? and 7.

Existence. One has (σa^)" 1 = (12 2μ-l)(2//2μ+l •••n). Using
Lemma 4.8 (i;) and (ii ;), write (12 2//— 1) = alb1 with α7 and
b' products of (μ - 1) 2-cycles with support in {1, 2, . . . , 2μ - 1}
and β fixed by 6 ; . Also, (2//2μ + 1 •••«) = a ; / ^ with α" and 6;/

products of respectively (n-2μ+l)/2 and (n-2μ-l)/2 2-cycles with
support in {2μ, 2// + 1, . . . , ή) and y fixed by b". Take σi = afa"
and σ2 = b'b". The 4-tuple σ = (σ\, ^2, σ3, σ*) has the required
properties (4.16).

Uniqueness. θ\ and #2 satisfy

σiσ2 = (1 2 2// - l)(2//2// + 1 -n).

From Lemma 4.8 (i) and (ii), (1 2 2// - 1) is of the form
(/>o/>i * * * PtPt1''' pσ\) with po = β, and (2// 2//+1 ή) is of the form
(τoτi -τtτlτσ

t

2 * τ^2) with τ 0 = γ. This determines σ2 on
{1, 2, . . . , 2μ - 1} and on {2μ, 2μ + 1, . . . , /ι} (i.e., on all of
{1, . . . ,*}) . •

In the rest of this section identify each element of sni(C)ab with its
image in S. The next step consists in computing indices of a\2, tf 13,
#14 acting on sni(C)a b.

Index of aX2 - Let s = [μ, β, γ] e sni(C)ab the centralizer Z(s\, s2)
is the subgroup of Sn generated by (2μ 2μ + 1 n)p~μ+ι. Indeed, let
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t G Z(s\, s2). Then t commutes with

Therefore, t is of the form (1 2 2μ - l)h{2μ 2μ + 1 n)k . Since
t fixes /? and permutes the 2 other fixed points of s2, h = 0 and
A: = A(/? - μ + 1), for some integer λ. Recall from §4.3, the integer
z'i2(s) is the smallest integer q > 0 such that, for some integer A,

(1 2 2μ - 1 )q{2μ 2μ + 1 n)*-*(ι^-1)

commutes with 5*3 = (1 2μ) (i.e., fixes the pair {1, 2μ}).
The two disjoint cycles (1 2 2μ- 1) and (2μ2μ+l n) of S\s2

are of relatively prime order. Thus, i\2(s) = (2μ - \)(p - μ + 1).
Formulas (4.16) gives this:

_ y ' p _ P(P - >)(2p + 5)
6

0/ a n . Let s = [μ, β, y] e sni(C)a b. We easily see the cen-
tralizer Z(s 2 , &0 is trivial. The integer /π(s) is the smallest integer
q > 0 such that (^2)^ fiχes the pair {1, 2μ}. Let a and b in
{ 1 , . . . , « } . These observations are helpful:
(4.17)

(i) if α54 = b e {2μ, ... , n} and b5* φ 2μ, then a(s4s2)
2 = as>

(ii) if tf54 = b e {1, . . . , 2μ - 1} and bs2 φ 1, then a(s4s2)
2 = asκ

We prove (i)—(ii) is similar. From Lemma 4.8, s2 fixes the set
{2μ, . . . , n} . Thus, bs2 e {2μ,...,«} and bsi Φ 2μ. Therefore,
(^2)^3 = bs2 and

Let a = 1. We have 154 = n e {2μ, . . . , n) and ns2 φ 2μ. Indeed,
from Lemma 4.8 (ii), no two consecutive integers in the even length
orbit of S1S2 can be images of one another by $2. The even length
orbit of S1S2 is (2μ2μ+ 1 •••«). From (4.17)(i), (l)(s4s2)

2 = 2μ.
Let a = 2μ. We have (2μ)54 = 2μ - 1 e {1, . . . , 2μ - 1}. Lemma
4.8 (i) implies (2μ — 1)̂ 2 = 1 if and only if 2μ - 1 = pt. Distinguish
two cases.

• K2μ-\φpt, (4.17)(ii) gives ( 2 μ ) ( ^ 2 ) 2 = 1 and i13(s) = 2.
(Note: i"i3(s) Φ 1 because ( l ) ^ ^ ) = ns2 φ 1, 2μ.)
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• If 2μ-1 = pt, we obtain (2μ)(s4s2)
3 = 2μ and (\)(S4S2)

3 = 1.
Hence /i3(s) = 3.

The number of occurrences of •• is

l<μ<P

p - μ+ 1 for each value of μ. Therefore, ind(αi3) = P(P + l) 2 /6.

Index of a^. Let s = [μ, β, γ] e sni(C)a b. Again, the centralizer
Z ( J I , 54) is trivial. The integer /i4(s) is the smallest integer q > 0
such that (fySi)* = (S2S3)'9 fixes the pair {1, 2μ}. The calculation
depends on the intersection set {1, 2μ} Π {1*2, (2μ)52}. Note: By
construction of \p,β,y]9 1 < 1J2 < 2μ- 1 and 2// < (2μ)52 < n . So
we only have 4 cases to consider.

1st case. ls2 = 1 and (2//)52 = 2//. That is, s = [μ, 1, μ +/? + 1].
Here, /i4(s) = 1.

2st case. \si φ 1 and {2μ)si = 2μ. That is, s = [μ, β, μ +p + 1]
with β ^ 1. Here, (2μ)(52^)3 = 2μ and therefore, ( l ) ^ ^ ) 3 = 1.
Thus Ϊ 1 4 ( S ) = 3. (Note that ι'14(s) φ 1 since 1*2 φ 1, 2μ.)

3rί/ cα^. 152 = 1 and (2μ)*2 φ 2μ. That is, s = [μ, 1, γ] with
γ Φ μ + p + \. This is exactly as in the 2nd case.

4th case. V2 φ 1 and (2μ)J2 φ 2μ. Here, ( l ) ^ ^ ) 2 = 2μ and
thus, (2μ)(52^3)2 = 1. Therefore, /i4(s) = 2.

We have only to count the possibilities for s in each case: p for
the first case, (2μ - 2) for each μ of the second case, (p - μ) for
each μ for the third case, and the rest for the fourth case. The result:

ind(αi 4)= 2 ^ ^(μ+p-2) + -
\<μ<P

N-p- Σ (M+P-2)

Finally, ind(α14) =
Now (4.11) gives the genus g(C) of C(C) (cf. Theorem 4.5):

Thus, Question 4.1 has a positive answer for p = 2, 3 (i.e., « =
5,7) . There is one condition, however, in Theorem 4.3 we have not
checked yet: transitivity of SHr on sni(C)a b. We use two steps.

From (4.13), α^ = Q\ conjugates by ^^2 on the first two com-
ponents of the 4-tuple s and leaves the others unchanged. So for
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s = [μ, β, γ], we obtain:

[μ,β, i\a\2 = [μ, l

Still, the two disjoint cycles (1 2 2μ - 1) and (2μ2μ+l--n) of
S\S2 are of relatively prime order. Therefore, the group generated by
S\S2 acts transitively on the ordered pairs (β, γ) with 1 < β < 2μ - 1
and p + μ + 1 < y < n. Conclude that the orbits oϊ an are the /?
subsets of sni(C)ab corresponding to each value of μ.

Now consider a\$. We are done if we show that for any μ =
1, . . . , p, a n sends some element [1, 1, γ] to some element [μ, /?',
/ ] . For s = [1, 1, y], #13 leaves 2̂ and £4 unchanged and turns
53 = (1 2) into

= (IV22V2) = (ns2 1).

That is, 0i3 sends some element [1,1, γ] on some element [μ, /?', / ]
with (1 2μ) = (1 ns2), up to conjugation by a power of s 4 .

We have S\S2 = (1)(2 3 -n). Lemma 4.8 (ii) implies the cycle
(2 3 ή) has form (pop\ PtP^Pt -- p\) with po = y. Check: when
γ ranges over {p 4- 2 , . . . , n) , n52 takes on all values in {3, 5, . . . , n) .
That is, 2μ takes on all values in {2, 4, . . . , n - 1}. D

4.5. Conclusions from §4.4 Example.

THEOREM 4.11. For n = 5, 7, 5Π is ί/ze Galois group of a regular
extension E/Q(T) with these properties:

(i) E/Q(T) is ramified over 4 rational points and
(ii) ybr α// / /« 0 nonempty interval of the real line, the residue class

extension Et/Q is a totally real extension.

End of proof. For n = 5, 7, (4.18) yields g(C) = 0. Hence, the
curve C(C) is P1 if it has a Q-rational point. The disjoint cycles
in the permutation an of sni(C)ab are in 1-1 correspondence with
the points over the branch point x2 G P1 in the cover C(C) —• P1

of Theorem 4.5. The previous study of a\2 shows, for n = 5 (resp.,
n = 1), there are 2 ramified points (resp., 3 ramified points) over
x2 of ramification indices 1, 3 (resp., 3, 5, 6). Each of these points
has a unique ramification index. Thus, these points are rational over
Q(x2, x3, x4).

Consider (y, x2, x3, x4) on C(C) x P1 x P1 x P1 with y not lying
over one of x2, X3, X4. From Proposition 4.4 and Corollary 4.6, each
such Q-rational point corresponds to a cover ψ\ Yc —> P1 defined
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over Q. Equivalently, such a point corresponds to a regular extension
Y/Q(T), with 4 rational branch points and monodromy group S$
(resp., S7).

Pick a Q-rational point (y, Xι, X3, JC4) that corresponds to a cover
having the 4-tuple (αi, OL\OL2, 0:2^3, 0:3) as a branch cycle description.
(This is with respect to a bouquet as in §2.3.) The Q-points are dense
in the space ^ ( C ) ' ( R ) . Thus, such a choice of point is possible.
Choose x0 between X\ and X4 on the real projective line. The remark
in §3.4 shows that the action of complex conjugation is trivial on the
fiber ψ~ι(x0). That is, in the notation of §3.4, c= 1. Let E/Q(T) be
the Galois closure of the extension Y/Q(T). It is a regular extension
with properties (i) and (ii). D

4.6. Additions to Theorem 4.11.

Comment (1). The §4.4 method applies to any 3-tuple (αi, aι, 0:3)
of generators of Sn of order 2. For example, we have computed with
n = 2p where p is an odd prime and

The associated curve C(C) has genus g(C) = J ( p - 3 ) ( p - 5 ) . That
is, the conclusion of Theorem 4.11 holds for n = 6 and n = 10.
It also holds for the special case n = 4. Here, take αi = (2 3),

and α 3

Comment (2). There is only one centerless group G for which The-
orem 4.11 is true with 3 branch points instead of 4 branch points:
G = S3 ([Se2], [FrD]). If we allow a center, there are other candi-
dates: the groups Z/m x 5 Z/2, for m = 2, 4, 6. Moreover, the group
Z/2 x Z/2 does satisfy the conclusions of Theorem 4.11 for 3 branch
points.

5. Two further applications. The dihedral group Dm is the easiest
non-abelian finite group. The reader must be surprised to hear that
there are serious questions about realizing it as a Galois group of a
regular extension L/Q(x). The problem is not realizing the group, it
is realizing it with extensions having few branch points. The problem
is similar to that of §4: finding rational points on variants of Hurwitz
spaces defined over Q as in §4.5. There we could only proceed when
we knew that a certain curve C(C) was of genus 0.
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Suppose, however, that the curve is of genus greater than 0. It could
still have rational points on it. One rational point was all we needed
to conclude realization of the groups with the properties of §4.5. With
dihedral groups we can interpret existence of rational points even when
the number of branch points is large. We owe this to identifications
of the particular Hurwitz spaces with variants on classical modular
curves. Section 5.1 gives a definitive result when the number of branch
points is less than 6. Section 5.2 considers larger values of r based
on generalizations of Mazur's theorem.

Finally, we illustrate a new large field over which we know that all
groups are Galois groups of regular extensions. For each prime p,
there is a field Q t p , the totally p-adic algebraic numbers. An algebraic
number a is in Q t p if each conjugate of a is in Qp, the p-adic
numbers. Section 5.3 considers the case of the real valuation.

5.1. Dihedral groups with r small. In this section, m is an odd
prime. Consider the dihedral group Dm = %/m x 5Z/2 in its regu-
lar representation. The order of Dm is n = 2ra. Two involutions
generate it.

THEOREM 5.1. For m > 7 a prime, Dm is not the Galois group of
a regular extension of Q(X) with 5 or fewer branch points.

Proof. Assume that G = Dm is the Galois group of a regular ex-
tension Y/Q(X). Let Φ: YQ —> P1 be the associated cover. Take
X\, . . . , xr to be an ordering of the branch points. Identify G with
the monodromy group of the cover. For / = 1, . . . , r, let Q be the
conjugacy class of the branch cycles associated with xt. That is, the
cover is in sni(Q, . . . , C r ) . We divide the proof into 2 cases. Let C
be the conjugacy class of all involutions in G: C = {(a, \)\a G Z/ra} .

1st case. One of Q , . . . , Cr, say Q , is different from C. Let
(a, 0) G Ci. This is an element of order m and its nontrivial pow-
ers lie in (m - l)/2 distinct conjugacy classes of G. We show that
r > ( m - l ) / 2 > 5 . Indeed, this follows from the rationality proper-
ties that the inertia groups inherit from the rationality of the cover.
Specifically, apply the branch cycle argument §3.7, expression (3.9) in
the following form. The order of Q is the order of the elements in
Q .

(5.1) For each / G {1, . . . , r}, for all a relatively prime to
the order of Q , cf = C, for some j G {1, . . . , r}.
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To complete the first case we show r φ 5. For r = 5, G = Dn

and Q , . . . , C5 are conjugacy classes of 11-cycles. These classes,
however, do not generate D\ \, a contradiction.

2nd case. C\ = = Cr = C. Observe that r Φ 2 when g is not
a cyclic group. Also, that r ^ 3 , 5 ; the relation s\ -sr = 1 implies
that r is even. Assume r = 4. The Riemann-Hurwitz formula yields
the genus g of the cover Φ: YQ —> P 1 :

m + m + m + m = 2{n + g - 1).

That is, g = 1. In addition, the elliptic curve ϊfc has an automor-
phism χ of order m, for example ( 1 , 0 ) .

Assume first that lfc(Q) φ 0: Yc is an elliptic curve over Q.
Translation by a point p of order m on YQ gives χ. Since Y/Q(X)
is regular, / is defined over <Q> and p is a rational point in Yc.

Thus, we have produced an elliptic curve Yc and a point p of order
m . Both are defined over Q. It is classical that the data (Ifc, p)
corresponds to a rational point on the modular curve X\ (m)\{cusps}.
As m > 7, this contradicts Mazur's theorem [Sel; Theorem 3] (or
[M], [MS]).

If Γc(Q) = 0 , the same argument works on the Jacobian Pic°(Γc)
of Yc. Recall: Pic°(lc) consists of divisor classes of degree 0 on Γc
The automorphism group of Yc naturally embeds as automorphisms
of Pic°(Γc) Thus, this is an elliptic curve over Q. And, it has an
automorphism of order m defined over Q. Therefore, r Φ 4. D

5.2. Bounding r with dihedral groups. This subsection discusses
Conjecture 5.2.

Conjecture 5.2. Let m run over odd primes. There is no finite ro
such that each Dm is the group of a regular Galois extension L/Q(x)
with at most r0 branch points.

Kamienny and Mazur have recent results that approach what we
need to show this conjecture [M]. Suppose that such a bound ΓQ as in
the conjecture exists. The proof of Theorem 5.1 shows we can realize
only a finite number of the Dms under the following conditions. At
least one inertia group generator is an m-cycle and there are no more
than ro branch points. We restate the conjecture as follows.

Conjecture 5.2'. Realization of L/Q(x) with group Dm and all
inertia group generators involutions requires more than r0 branch
points if m is suitably large.
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We call a Galois realization of Dm over Q satisfying the condition
that all inertia group generators are involutions an involution realiza-
tion of Dm . Consider such an involution realization.

The fixed field T of an automorphism of order m is a degree 2
extension of Q(x) ramified over r (even) points. Also, L/T is a
cyclic unramified extension of degree m. That is, T is the function
field of a hyperelliptic curve of genus ^ .

We want φ: X —• P1 of degree 2m with a description of the branch
cycles of form (σ\, . . . , σr). Here, each cry is in the conjugacy class
C (§5.1) of involutions. A complete combinatorial count of these
is easy. At least two of these are not equal (to generate Dm). Write
ai = [βi:, 1). Then, the product of the σs is 1 reduces to aγ-a^Λ
ar = 0. Calculations are sufficiently easy to compute elements a\j,
j = 2, . . . , r that generalize those in §4.2. Their action on sni(C) is
transitive. Formula (4.11), with r replacing 4, gives the genus of the
analog of C(C). The computation shows this grows quadratically with
r when m is fixed. The 1st complex cohomology group of a projective
algebraic variety is a birational invariant. Consider the analog for
general r of Theorem 4.5. Conclude that the variety £?(€)' for this
Nielsen class cannot be unirational if r is large. (See Problem 5.6.)

The variety β?(C)' covers the actual variety ^ ( C ) = ^ F ( r , m) that
parametrizes the equivalence classes of covers that we want. Consider
βf{C)' as the parameter space for these covers with some ordering
on the branch points of the covers. From [FrV2] there is a variety
^ ( C ) i n = %?{j, m ) m , defined over Q, whose rational points give us
the desired extensions. Rational points exactly correspond to regular
extensions L/Q(x) that give involution realizations of Dm. Below
we use cover notation. These field extensions correspond to Galois
covers φ: X —> P1 defined over Q with group Dm . Our problem is
to decide if ^ ( r , m) i n has <Q> points. We relate ^ ( r , m) i n to more
classical looking objects.

Take a e Dm of order m. Form X/(a) = Γ, the quotient of X
by the group generated by a. The degree 2 cover Y —• P1 presents
Y as a hyperelliptic curve of genus ^ . Also, X is a cyclic degree
m unramified cover of Y. Lemma 5.3 interprets existence of X as
a property of Pic°(Γ), the Picard group of divisor classes of degree 0
on Y. Denote the points of order m on Pic°(y) by Tm = Tm{Y).
Then, G(Q/Q) = GQ acts on Tm. If p e Tm\{0} is a point defined
over Q, then G(Q/Q) has trivial action (p). When a point has this
property, denote the group it generates by Z/m. This says GQ has
trivial action on it.
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Similarly, GQ acts on the mth roots of 1. This is another copy
of Z/ra, but to show GQ has a particular nontrivial action on it,
denote it by μm . Consider the set Gm(d), d = ^ , of involution
realizations of Dm , as above with r branch points, defined over Q.
Let Pic1 (Y) be the Picard space of divisor classes of degree 1 on Y.

LEMMA 5.3. Continue the notation above. The set of involution re-
alizations of Dm associated to a fixed Y as above naturally inject into
the set of GQ equivariant injections from μm into Tm(Y). The image
of this map includes all GQ equivariant injections μm -+ Tm(Y) when

^ has a Q point

Proof. Consider multiplication by m on Pic°(y). Denote this en-
domorphism by ψm . The kernel is exactly Tm . Since Y consists of
positive divisors of degree 1, Y naturally embeds in Pic^Γ) (assum-
ing g(Y) > 0—that is, r > 4). Suppose we have an involution realiza-
tion of Dm attached to Y as above. Universal properties of Pic0(Y)
produce a natural surjective GQ equivariant map Tm(Y) —• Z/ra.
Here Z/ra represents the Galois group of the cover X —• Y as above.
Below we show how this gives an injection from μm into Tm(Y).

Suppose q e Pic^F) is defined over Q. Define translation λq:
Pic^Γ) —• Pic°(y) as the map that takes a divisor class [D] of degree
1 to [D - q]. Denote the image of Y under λq by Yq. This curve in
Pic0(Γ) is isomorphic to Y over Q. The preimage ψ^ι(Y) = Ym,q
is the maximal exponent ra abelian unramified geometric cover of Y.
At least that is correct over Q. We cannot expect the automorphisms
to be defined over Q.

We want a GQ invariant hyperplane V in Tm such that the quo-
tient Tm/V is a copy of Z/ra. That is, GQ acts trivially on the
quotient. In more homological terms, we want a surjective element

β e HomGQ(Tm, Z/ra) ά= M. Then, V is the kernel of β .

Conclusion. The quotient Γ m , q / F —> Ym,q/Tm = Yq is the cyclic
unramified cover we seek. We have identified its automorphism group
with Z/ra with trivial GQ action. That is, the automorphisms are
defined over Q. The lemma is complete—from the first paragraph
of proof—when we have shown how to go from an injective map
β1: μm -> Tm to a β above.

The abelian variety Pic°(Y) is principally polarized. That means it
is isomorphic to its dual abelian variety. This is the abelian variety of
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linear equivalence classes of divisors on Pic°(Γ) that are algebraically
equivalent to 0. In particular, the Weil pairing produces a nondegen-
erate symplecticform w:TmxTm^ μm [L]. Thus, HomGQ(Tm, μm)
is isomorphic to Tm as a GQ module.

Apply Hom<?Q( , μm) to the map β: μm -> Tm. This gives

β: Hom G Q (Γ m , μm) -> Hom G Q (μ m , μm).

The first term identifies to Tm. Check easily that the second term is
just Z/m acting as multiplications. D

REMARK 5.4. When Pic1(7)(Q) is empty. The proof of Lemma 5.3
used a Q point in Pic1 (Y) to construct the cover Ym —> Y canoni-
cally. We have not shown that a μp point on Pic°(y) produces the
Galois sequence of an involution realization of Dm . This is a subtler
problem.

We can interpret this as a question on the fibers of a map of the
Hurwitz space ^ ( C ) i n = %?{r, m)m to the space of cyclic order m
subgroups of m division points on hyperelliptic jacobians. These
fibers are homogeneous spaces for the action of PGL(2). If the image
of a fiber is a μm point, when does the fiber have a rational point?

We list some boundedness assertions. Then, we comment on how
these effect Conjecture 5.2.

(1) Let S(d) be primes that are orders of rational points on the
elliptic curve defined over some number field K with [K: Q] < d.

(2) Let T(d) be primes that are orders of rational points on some
abelian variety of dimension d over Q.

(3) Let V(d) be primes m that are orders of GQ modules isomor-
phic to μm in abelian varieties over Q of dimension d.

(4) Let W{d) be elements of V(d) from jacobians of hyperelliptic
curves of genus d.

The results of [M] include this: S(d) is finite for d < 9. In ad-
dition, S(d) is of density zero for all d. According to Lemma 5.3,
a density 0 result for V(d) would be a satisfactory contribution to
Conjecture 5.2. Mazur communicated the following observations.

PROPOSITION 5.5. We have S(d) c T{d). Also, if me V(d), then
meT({m-l)d).

Proof. Suppose E is an elliptic curve over K with [K: Q] < d.
Denote the Galois closure of K/Q by K. It is common to call the
following formalism, "taking the Weil trace" of the elliptic curve over
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the number field down to Q. Choose a primitive element α = a\ for
K/Q. Let a\, ... , aj be the complete list of conjugates of a\.

Each conjugate α, gives a conjugate elliptic curve Et, defined over
Q(α, ). Let G = G(K/Q) acton A = EχxE2x xEd by permutation
of the coordinates. For σ e G indicate this action by Γ(σ)(^4). In
addition, regard σ as giving a conjugate of ^ by its action on the
coefficients of the equations for A. Call the conjugate Aσ . Thus, for
each σ e G, the sets T^o*"1)^*7) and 4̂ are identical. Now apply
Weil's cocycle condition to assert that we can define A over Q. To
draw the strongest conclusions, we note this construction is universal
in the following sense [FrJ; Proposition 9.34].

Consider An defined over K. There is a linear map L: And —• A"
defined over K with the following general property. For any subvari-
ety F c A " defined K, there is a subvariety W c And defined over
<Q> such that (Li, L2, ... , Ld): And -+ (An)d maps W isomorphi-
cally to V\ x x Vd . Here the Lβ are the conjugates of L and the
Vβ are the conjugates of V. This means that we also can apply this
to the K subvarieties in V. This produces a Q rational subvariety
of W from the product of their conjugates. Thus, conjugates of a K
point p G E of order m produce a <Q> point of order m on the Q
form of ^ . From this conclude S(d) c Γ(d).

Now suppose m e ^ ( d ) . Apply the Weil trace to AT = Q(ζm) as
above to conclude that m E T((m — \)d). D

Problem 5.6. For each prime m consider the spaces ^ ( r , m) i n

at the beginning of this subsection. Is there a value r0 such that
r, m) m is unirational over C for r > r0?

A variety W is unirational if there is a map φ\Ψ -^W defined on
an open subset of Ψ with image a zariski open subset of W. If W
and φ are defined over Q, we say W is unirational over <Q>. Since
Ψ has so many rational points, this would imply W has a dense set
of rational points. Thus, if Problem 5.6 has an affirmative answer for
a given prime m, there are many involution realizations of Dm for
an arbitrary prime m. (Although it is not hard to realize Dm as a
Galois group of a regular extension of Q(X).)

5.3. Descent to the totally real algebraic number field. Denote the
field of all totally real algebraic numbers by Q t Γ. These are the al-
gebraic numbers whose complete set of conjugates are real. In this
section we prove the following result.
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THEOREM 5.7. Each finite group G is the Galois group of a regular
extension of Qtτ(X).

Section 4.1 recalls the theory of Hurwitz spaces of covers. [FrV2]
develops a similar theory, but for G-covers—Galois covers given with
their automorphisms. Consider a centerless group G and an r-tuple
of conjugacy classes of G. The Hurwitz space β?m(G, C) is a (re-
ducible) algebraic variety defined over an explicitly computable field
K(C). Here is the key property of this space. Let K be a field con-
taining AΓ(C). Then, G-covers in the Nielsen class ni(C), defined
over K, correspond to ^-rational points on β?m(G, C).

Proof of Theorem 5.7. Consider a finite group G. Lemma 2 of
[FrV2] constructs a cover G' —• G with these properties.

(5.2) The center of G' is trivial and commutators generate
the Schur multiplier of G'.

We do not explain the commutator statement in (5.2). It appears as
a condition in the main theorem of [FrV2] which carefully explains
it. Suppose we realize Gr as a Galois group of a regular extension
of Qiτ(X). Then we automatically realize the quotient G as such a
Galois group. Therefore, without loss, assume G satisfies (5.2).

Let b be an integer. Let Q , . . . , Cs be an ordering of nontrivial
conjugacy classes of G. Assume each conjugacy class of G appears
in this list with the same multiplicity, say m. It is automatic that if
we pick gi out of the conjugacy class C, , then

(5.3) g = (gx, . . . , & ) generate G.

With r = 2sb, consider the r-tuple C

\Lss , . . . , L^ , . . . , Lss , . . . , l ^ , K^\ , . . . , i^s , . . . , L Ί , . . . , CsJ.

Here, the first sb components are the conjugacy classes C7 1 , . . . , C]"1

repeated in this order b times. The last sb components are the conju-
gacy classes C\9... ,CS repeated in this order b times. The Nielsen
class ni(C) is not empty. With g from (5.3), the r-tuple

\&S 9 # * 5 ί>l 5 * 5 05 5 * 5 g\ 5 g\ 5 ? gs ) * 5 g\ 5 5 gs)

lies in the Nielsen class ni(C). Observe that all conjugacy classes
appear the same number of times, namely Ibm, in the r-tuple C.
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The main theorem of [FrV2; Appendix] shows that, if b is suitably
large, then X = X i n ( G , C) is defined over Q and irreducible over
Q. This uses (5.2) to apply a theorem of Conway and Parker [FrV2;
Appendix].

We are left with finding QtΓ-ρoints on the absolutely irreducible
variety %?. Pop [P] proved that every absolutely irreducible variety
defined over QtΓ has QtΓ-points provided it has R-points. This reduces
the problem to finding R-points on β^m(G, C). And their existence
follows from Theorem 3.1. Indeed, take g'o = 1 and r\ = 1 in (iii) of
condition (b) of Theorem 3.1. This shows that (g\, . . . , gr) satisfies
the hypotheses of that theorem. D

REMARK. [FΓV] consists of applications of [FrV2]. In particular,
this observes that each finite complex extension L of QtΓ is

P(seudo)A(lgebraically)C(losed)

and Hilbertian. A field P has the PAC property if each absolutely
irreducible variety over P has a P-point. The main theorem of [FrV]
applies to show that the absolute Galois group G(Q/L) is a free profi-
nite group.

On the other hand, QtΓ is not even Hilbertian. In fact, involutions—
conjugates of complex conjugation—generate the absolute Galois
group of Q t Γ. Thus, Galois extensions of QtΓ have only groups that
are generated by involutions. D
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INTERPOLATED FREE GROUP FACTORS

KEN DYKEMA

The interpolated free group factors L(¥r) for 1 < r < oo (also
defined by F. Radulescu) are given another (but equivalent) definition
as well as proofs of their properties with respect to compression by
projections and free products. In order to prove the addition formula
for free products, algebraic techniques are developed which allow us
to show R*R*ί L(¥2) where R is the hyperfinite Hi -factor.

Introduction. The free group factors L(Fn) for n — 2, 3, . . . , oo
(introduced in [4]) have recently been extensively studied [11, 2, 5,
6, 7] using Voiculescu's theory of freeness in noncommutative prob-
ability spaces (see [8, 9, 10, 11, 12, 13], especially the latter for an
overview). One hopes to eventually be able to solve the isomorphism
question, first raised by R. V. Kadison of whether L(Fn) = L(Fm) for
n Φ m. In [7], F. Radulescu introduced Hi -factors L(Fr) for 1 <
r < oo, equalling the free group factor L(¥n) when r = n e N\{0, 1}
and satisfying

(1) L(FΓ) * L(FrO = L(FW.) (1< r, r' < oo)

and

(2) L(¥r)γ = L ( V ( l + ^ ) ) ( K r < o o , 0 < y < o o ) ,

where for a II i -factor < f̂, J?y means the algebra [4] defined as fol-
lows: for 0 < γ < 1, ^y = p^p, where p e «/# is a self adjoint pro-
jection of trace γ for γ = n = 2, 3, . . . one has ^£γ = */# ® Mn(C)
for 0 < 7i, Jι < oo one has

We had independently found the interpolated free group factors
L(Fr) (1 < r < oo) and the formulas (1) and (2), defining them
differently and using different techniques. In this paper we give our
definition and proofs. This picture of L(Fr) is sometimes more con-
venient, e.g. §4 of [3]. It is a natural extension of the result [2] that

(3)

123
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where R is the hyperfinite II i -factor. We also introduce some ele-
mentary algebraic techniques for freeness which have further appli-
cation in [3]. One consequence of them that we prove here is that

This paper has four sections. In § 1 we state a random matrix result
(from [2], [7]) and some consequences; in §2 we define the interpo-
lated free group factors and prove the formula (2); in §3 we develop
the algebraic techniques; in §4 we prove the addition formula (1) and
also make an observation from (1) and (2) (also observed in [7]) that,
as regards the isomorphism question, we must have one of two ex-
tremes. Our original proof of the addition formula (1) was a fairly
messy application of the algebraic techniques developed in §3. The
proof of Theorem 4.1 that appears here, while still using the algebraic
techniques in an essential way, benefits significantly from ideas found
in the proof of F. Radulescu [7].

1. The matrix model. Voiculescu, as well as developing the whole
notion of freeness in noncommutative probability spaces, had the fun-
damental idea of using Gaussian random matrices to model freeness,
which he developed in [12]. In [2], we extended this matrix model
to the non-Gaussian case and also to be able to handle semicircular
families together with a free finite dimensional algebra. As Radulescu
observed in [7], the matrix model necessary to be able to handle the
free finite dimensional algebra can be easily proved in the Gaussian
case directly using Voiculescu's methods (cf. the appendix of [2]). In
any case, we shall use this matrix model in this paper, and quote it
here, as well as some results of it. Our notation for random matrices
will be as in [2]. A trivial reformulation of Theorem 2.1 of [2] gives

THEOREM 1.1. Let Y(s, ή) € Mn(L) for s e S be selfadjoint inde-
pendently distributed nxn random matrices as in Theorem 2.1 of [2],
For

c= .. I eMN(C)
\ C j v i . . .

and for n a multiple of N let
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be a constant matrix in Mn{L). Then

{({Y(s,n)})seS,{c(n)\ceMN(C)}}

is an asymptotically free family as n —• oc, and each Y(s9 n) has for
limit distribution a semicircle law.

An immediate result of the above is (3.2 of [2]):

THEOREM 1.2. In a noncommutative probability space [y€, φ) with
φ a trace, let v\ = {Xs \s e S} be a semicircular family and let V2 =
{^j|l < i, j < n} be a system of matrix units such that {u\, v{\ is
free. Then in (enJfen , nφ\eχχjte^9 ωx = {euX

sen\l < i <n, s e
S} is a semicircular family and cύ2 = {e\iXsej\ 11 < / < j < n, s eS}
is a circular family such that {ω\, ωj) is free.

The following is analogous to Theorem 2.4 of [11].

THEOREM 1.3. In a noncommutative probability space (*/#, φ) with
φ a trace, let υ = {Xs \s e S} be a semicircular family and let R be a
copy of the hyperfinite IIi factor such that {u, R} is free. Let p e R
be a nonzero self adjoint projection. Then in (p^£p, φ(p)~ιφ\pj?p),
ω = {pXsp\s G S} is a semicircular family and {pRp, ω} is free.
(Note from [4] that pRp is also a copy of the hyperfinite II i factor.)

Proof. Suppose first that φ(p) = m/2k, a dyadic rational number.
Since for U e R a unitary, {R, UvU*} is free, we may let p be
any projection in R of the given trace. Writing R = M2k ® Mi ®
M2 ® , we use Theorem 1.1 in order to model v as the limit of
self adjoint independently distributed random matrices of size n =
2k , 2k+ι, 2k+1, . . . , and model a dense subalgebra of R (equal to
the tensor product of matrix algebras) by constant random matrices.
Choosing p to correspond to a diagonal element of M2k, we may
apply Theorem 1.1 again to see that ω is a semicircular family, pRp =
Mm ® M2 ® M2 <8> , and {pRp, ω} is free.

Now for general p , let (Pi)^ be a decreasing sequence of projec-
tions in R which converge to p and such that each φ{p{) is a dyadic
rational number. Then

{PiRpi = {PιyPι\y e R}, {PIXSPI\S e S}}

has limit distribution equal to {pRp, co} as / —> 00. For each / we
have freeness and semicircularity, hence also in the limit. D

In addition, modeling R and a semicircular family as in the above
proof, we can easily prove
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THEOREM 1.4. In a noncommutative probability space {Jί, φ) with
φ a trace, let v = {Xs \s e S} be a semicircular family, and let R be
a hyperfinite H\-factor containing a system of matrix units {e/y|l <
i, j < ri), such that {v, R} is free. Then in (en^en , nφ\e^e^y

co\ = {e\iXsen\l < i < n, s G S} is a semicircular family and
ω2 = {e\iXs€ji\l < ι < J< w, s G S} is a circular family such
that {<JO\ , ω 2 , ^iiiϊ^n} w *

2. Definition and compressions of L(¥f).

DEFINITION 2.1. In a W*-probability space (^#, τ), where τ is
a faithful trace, let i? be a copy of the hyperfinite II i -factor and
ω = {X*\t G T} be a semicircular family such that i? and ω are
free. Then L(FΓ) for 1 < r < oc will denote any factor isomorphic to
(R U {PtXtptlt G 2"})7/

? where pt e R are selfadjoint projections and

PROPOSITION 2.2. L(F r) is well-defined, i.e. if

stf = (R u {Pί^Λlί e T})" and 3B = (R u {qtX^tV e T})",

Proof. We show that J / (and thus also ^ ) is isomorphic to an
algebra of a certain "standard form." Let (Λ)^Li be an orthogonal
family of projections in R such that τ(fjc) = 2~k, and let fo = 1.
If r < ex) let iV/ (/ > 0) be nonnegative integers corresponding to
the base 4 expansion for r, i.e. r = ΣZo ^ή~l, Λ7/ < 3 if / > 1
a n d Σι>ϊNή~l < 4 " Z V/; > 0. If r = oc we let No = oo and
iV/ = 0 V / > l . L e t 5 C Γ , fc5 G N = {0, 1, 2, ...} for s e S be
such that \{s e S \ ks = l}\ = N[ V/ > 0. The algebra of standard form
is then & = (Ru{fk Xsfk \ s e S})" . Showing J / = Ψ will prove the
proposition.

Proving srf = ^ is an exercise in cutting and pasting. Note that if
Ut are unitaries in R (t e T), then {i?, ({C/^X^ D ^ r } is free in
(« f̂, τ ) . Moreover, each projection p e R is conjugate by a unitary
in i? to a projection that is a (possibly infinite) sum of projections
in {fk\k > 1}. Hence letting V — {t e T\pt ψ 0}, we may assume
without loss of generality that each pt for t £ V is equal to such a
sum, and we write pt — ΣkeK fk ? f° r Kt ^ N\{0} whenever t e V
and pt φ 1, and we set Kt = {0} if ^ = 1. Then

^ ^ ' G ^ , k'<k9 teT'})".
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Now we may appeal to the matrix model (§1) to see that (enlarging T
if necessary),

^ = (Ru{fkX^k'k'^fk'\k,k'eKt, k'<k, teT'})",

where a is a 1-1 map from {k, k' e Kt, k' < k, t e T'} onto
a subset T" of T. (The truth of the above assertion is most easily
demonstrated when V and each Kt are finite; the general case then
follows by taking inductive limits.)

Consider for a moment fk^fk1 f°Γ kf < k 9 teT. Note that fk>
is the sum of 2k~h> orthogonal projections, each of which is equivalent
in R to fa . Using the matrix model shows that

(4) (Ru{fkX%})''

S (Rυ{fkX<>fk\l <j < 2k-k'}\J{fkX'*fk\l<j < 2k~k'})\

where t\, . . . , t.k_k>, t\, . . . , f. ., are distinct elements of Γ, and
2 ι 2

the isomorphism in (4) maps R identically into itself. Using inductive
limits, one obtains
(5) sf = f = (R u {fkX

sfk)s e S'})",

for Sf some subset of T, A:5 G N for each s e S'. Moreover, checking
the arithmetic of the above moves shows that 1 + Σses' τ(fk ) 2 = r

Now for the pasting. Note that by the matrix model,

(6) (R U {fkX''fk\ 1 < i < 4>r = (R U {Λ-i^Λ-i})"

by an isomorphism mapping i? identically to itself, whenever k >
1, t\, . . . , t4 are distinct elements of T and teT. Suppose r <
oc. If r is not a dyadic rational then for each / > 0 let ^(/) =
(RU{^4^Λ \s ES9 ks < I})" c ^ . There is an increasing sequence
S'(l) of finite subsets of ^ such that Σses'(i)4~ks = Σo<k<ιNk^~k

and \Jι>\S'(l) = Sf. Let

(7) #(/) = (R u { Λ I 7 ,

Using (6) repeatedly we can find a compatible family of isomorphisms
Φι : #χ/) -* ^ ( / ) , and taking inductive limits yields f7 = ̂ . If
r equals a dyadic rational and S' is finite then a finite number of
applications of (6) yields i? = ̂ . If 5' is infinite, let / be largest
such that Nι ψ 0, let cr G 5 be such that kσ = I and let .// > g/+1 >
<?/+2 > be projections in i? where τ(gm) — 2~m. For m > / let
W(m) = (R u {Λ X5Λ I ^ e S\{σ}} u
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Then as before we can use the matrix model to find an increasing

family ^(m) of subalgebras of ^ whose union generates £f and

compatible isomorphisms i?(m) —• ^ ( m ) . Taking inductive limits

yields f7 = g7.

If r = oo, then considering S' from (5) and letting Sf

k = {s G
S'\ks = k}, we have that ££°= 0 IS^K"* = oo. Now by repeated ap-
plication of (6), we can transform the situation (by isomorphisms
mapping R identically to itself) so that first some \Sf

k\ = oo, then
all \S'k\ = oo, then \S'Q\ = oo and \S'k\ = 0 for all k > 1. Thus
& = /.(Foe) by (3). D

REMARK 2.3. Formula (2), together with the fact that L(¥r) for r e
N is the free group factor on r generators, shows that Definition 2.1
is equivalent to Radulescu's definitions 4.1 and 5.3 of [7]. However,
for r > 2 (i.e. Radulescu's 4.1), this equivalence can be seen directly
using the "standard form" of L(Fr) as defined in Proposition 1.3, and
by noting that the isomorphism

(8) R * L(Z) ^ L(Z) * L(Z)

in [2] sends the set of projections {fk\k > 1} c R into one of the
copies of L(Z) on the right-hand side of (8).

The formula in the following theorem for the compression of an in-
terpolated free group factor L(¥r) by a projection of trace γ was
first proved by Voiculescu [11] for the cases r = 2 , 3 , . . . , γ =
5 , 3 , ? , . . - and r = 00, γ e Q+. It was then extended by F.
Radulescu in [5] for r = 00 and γ e R+, and in [6] for r = 2, 3, . . .
and γ = ^ , ^ , . . . . Of course, Radulescu also proved this theorem
in the generality stated here in [7].

THEOREM 2.4.

(9) Z , ( F Γ ) , = L

for 1 < r < 00 and 0 < γ < 00.

Proof. It suffices to show the case 0 < γ < 1. Let L(Fr) = & =
{R U {ptXlPt\t e T})" be as in Definition 2.1, so 1 + ΣteT τ(Pt)2 = r

Let p G R be a projection having trace γ. Without loss of generality,
we may assume that each Pt<p. Then

which by Theorem 1.3 is an interpolation free group factor. Counting
gives the formula (9). D
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3. Algebraic techniques. A crucial ingredient of our proof of the
addition formula for free products (1) will be showing that R* R =
R * L(Z), with the isomorphism being the identity map on the first
copy of R. In order to show this, we will introduce some elementary
techniques (Definition 3.4, proof of Theorem 3.5) that are algebraic in
nature. These techniques have extensive further applications to free
products, as will be seen in [3].

REMARK 3.1. In this section, all von Neumann algebras will be fi-
nite and have fixed normalized faithful traces associated to them, and
all isomorphisms and inclusions of von Neumann algebras will be as-
sumed to be trace preserving. Von Neumann algebras that we obtain
from others by certain operations will have associated traces given by
the following conventions:

(1) group von Neumann algebras L(G) for G a discrete group will
have their canonical traces (equal to the vector-state for the vector
δeel2(G));

(2) factors, such as matrix algebras Mn = Mn(C) or the hyperfinite
Hi-factor R, will have (of course) their unique normalized traces;

(3) a tensor product A®B oΐalgebras will have the tensor product
trace τA ® τ# of the given traces on A and B

(4) a free product A * B of algebras will have the free product trace
τA * Tβ of the given traces on A and B

(5) if Jί is a von Neumann algebra with faithful trace τ , and p
is a projection in Jf, then pjfp will have trace τ(p)~~ιτ\pjtp

o

Also, if A is an algebra with specific trace, A will denote the ensemble
of elements of A whose trace is zero.

First we examine L(Z2) * L(Z2) (where Z 2 is the two element
group). The fact that Jί = L(Z2 * Z2) = L(Z) ® M2 is well known,
but we will need the following picture of ^ # .

PROPOSITION 3.2. Consider J? = L(Z2)*L(Z2) with trace τ, and let
p and q be projections of trace \ generating the first and respectively
the second copy of L(Z2). Then

(10) ^ = L°°([0, f] , ι/)®M 2 ,

where v is a probability measure on [0, f ] without atoms and τ is
given by integration with respect to v tensored with the normalized
trace on M2 = M2(C). Moreover, in the setup of(\ϋ), we have that
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, l l λ / I 0\ , / cos2# cos#sin0\
(11) p = [ a n d q — \ n . Λ . 2 Λ >v y ^ \0 0/ \cos0sin0 sπr0 y '

where θe[0, § ] .

Proof. It is well known that the universal unital C*-algebra gener-
ated by two projections p and q is A = {/: [0, §] —> Λf2(C) |/(0)
and /(§) diagonal}, with p and # as in (11). <̂ f thus has a dense
subalgebra equal to a quotient of A, and τ gives a trace on ^4. One
can easily see that a trace on A must be of the following form. Let
f(t)\ and f(t)2 be the diagonal values of f(t) for t = 0 or f . Then

+ α2/(0)2 + j τ2(/(0) Λ/(ί)

where τ2 is the normalized trace on Af2(C), z/ is a positive measure
on [0, f ] , aγ, a2, bι, b2 > 0 and |i/| + ax + α2 + b\ + 62 = 1 By
Example 2.8 of [9], the distribution of pqp in pJ£p has no atoms,
which implies that \v\ — 1 and v has no atoms. D

REMARK 3.3. In the right-hand side of (10), let

0

where "pol" means "polar part of." Then x is a partial isometry
from p to \ — p and Λί is generated by pqp together with x. Let
y = pol((l - q)pq). Then y is a partial isometry from # to 1 - q .
Let

_ / cos 0 - sin θ \
~ \sin# cosθ )

Then ^ is unitary and û ??/;* = <j , wxw* = y .
DEFINITION 3.4. Let (St)ιei be subsets of a unital algebra A 3 1.

A nontrivial traveling product in (5,),^/ is a product αiα2 α« such
that α, e 5Z (1 < j < «) and zi φ ι2 φ ιz φ -. - φ ιn. The ίrmα/
traveling product is the identity element 1. Λ((5,)IG/) denotes the
set of all traveling products in (5Ί)IG/5 including the trivial one. If
|/| = 2, we will often call traveling products alternating products.

THEOREM 3.5. Let A and B be finite von Neumann algebras (with
specified faithful traces—see Remark 3.1). Then

(i) (A ® L(Z2)) * (B ® L(Z2)) = (^ * A * 5 * B * L(Z)) ®
(ii) (A ® Af2) * (B Θ L(Z2)) = (A * 5 * 5 * L(F2)) ® M2,

(iii) (.4 ® M2) * (B ® M2) = (^ * 5 * L(F3)) ® M2.



INTERPOLATED FREE GROUP FACTORS 131

Proof. Let Jt be the von Neumann algebra on the left-hand side of
(i) with trace τ. It will be notationally convenient to identify A with
^ ® 1 c / and B with B ® 1 C J£. Let p and q be projections
of trace \ contained in the copy of 1 <g> HJΛ^) that commute with
A and respectively B. Let J^ = {p, <?}" = L(Z2) * £(Z 2), and let
x j ^ G ^ δ be as in Remark 3.3. Then

pJίp = {{pqp} \JpA\Jx*Ax U w*qBw U w*y*Byw)".

We claim moreover that {{pqp}, p^4, x*Ax, w*qBw, w*y*2?y?i;} is
a free family in pJ£p, which then clearly implies (i).

Let us first show that {{pqp}, pA, x*Ax} is free in p^p. Let
Sk = {PQP)k — 2τ({pqp)k)p (k > 1). To show freeness means to

o

show that a nontrivial traveling product in {gk\k > 1}, pA and
o

x*Ax has trace zero. Regrouping gives a traveling product in ΩQ =
o

{x, x*} U {£*, xgk, gfcX*, xgfcX* I /: > 1} and A. Let α = p - £,
fc = ^ - ^. Then ^ = {α5 £}", and sρanΛ({α}, {b}) is a dense
*-subalgebra of J^. Note that Ωo c J§, so that by the Kaplansky
Density Theorem, any ZGΩQ is the s.o.-limit of a bounded sequence
in sρanΛ({α}, {b}). Note also that since a and b are free and each
has trace zero, the trace of an element of sρanΛ({<z}, {b}) is equal to
the coefficient of 1. Since τ(z) = 0, we may choose that approximat-
ing sequence in sρanΛ({α}, {b}) so that each coefficient of 1 equals
zero. Moreover, since also τ(pz) = 0, we may also insist that each co-
efficient of a be zero, i.e. we have a bounded approximating sequence
for z of elements of span(Λ({#}, {6})\{1, a}). We must now only
show that a nontrivial alternating product in Λ({α}, {6})\{1, a} and
o

A has trace zero. Regrouping gives a nontrivial alternating product in
o o

{a} uAUaA and {b}, which by freeness has trace zero.
Let JΊ = (A u J^)", and let us show that {qwJ^w*, qB, y*By}

is free in qJ£q, which will complete the proof of (i). We show
o o

that a nontrivial traveling product in wJ^w*, qB and y*By has
trace zero. Regrouping gives a traveling product in Ωi = {y, y*} u

0 0 0 O O

qwJrιW*UywJrιW*UwJrιW*y*UywJ/'ιW*y* and B. Now Ωi c
o o

J/[, spanΛ({α} U A U aA, {b}) is a dense *-subalgebra of A\ and
τ(z) = τ(qz) = 0 Vz e Ωi, so that as above, each z e Ωi is the
s.o.-limit of a bounded sequence in

span(Λ({α} uAUaA, {b})\{ 1, b}).
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So it suffices to show that a nontrivial alternating product in
0 0 O

&paxi(A({a}\jA\JaA, {6})\{1, b}) and B has trace zero. Regrouping
o o o o

gives a nontrivial alternating product in {a}uA\JaA and {b}UBubB,
which by freeness has trace zero.

Now we prove (ii). Let Jf be the von Neumann algebra on the
left-hand side of (ii), and let τ be its trace. We will identify A with
A ® 1 and B with B ® 1 as in the proof of (i). Let p be a projection
in 1 ® Mi (commuting with A) of trace \ and # a projection in
1 ® L(Z2) (commuting with B) of trace \ . Let Jfa = {p, #}" and
let * , j ; , w, z, 6 e JY§ be as in the proof of (i). Let u^\®Mι be
a partial isometry from p to 1 - p. Then

and we shall show that x*u is a Haar unitary (i.e. a unitary such that
(x*u)n has trace zero Vn e Z\{0}) and that {{pqp}, {x*u},pA,
w*qBw, w*y*Byw} is *-free in pJ£p. This will in turn prove
(ii). For n > 0, r = (x*w)w is a nontrivial alternating product in
{x*} and {u}, and c* is the s.o.-limit of a bounded sequence in
span(Λ({α}, {6})\{1, a}), so to show τ(r) = 0 it suffices to show that
a nontrivial alternating product in span(Λ({α}, {b})\{l, a}) and {u}
has trace zero. Regrouping gives a nontrivial alternating product in
{a, ύ) and {b}, which by freeness has trace zero. Hence we have
shown that x*u is a Haar unitary in pJίp.

Now we show that x*u and pqp are *-free in pJ£p. Let g^
(k > 1) be as in the proof of (i). It suffices to show that a non-
trivial alternating product in {(x*u)n\n e Z\{0}} and {gk\k > 1}
has trace zero. Regrouping gives an alternating product in ΩQ and
{w, u*}, where ΩQ is as in the proof of (i), which, proceeding as we
did above, we see has trace^jzero. Similarly, we can show that let-
ting JQ^= {pqp, x*u}\ {JV , pA} is free in p^£p, and that letting
J/[ = {J$ U A)", {w*yl/[w , qB, y*By} is free in qJίq, thus proving
(ii).

To prove (iii), let p and u in 1 ® Λf2 commuting with A be
as above, let q G 1 ® M2 commuting with 5 be a projection of
trace \ and v e 1 ® M2 commuting with B a partial isometry
from q to 1 - q. Let x , y, it; e ^ = {P, q}" be as above. Then
we similarly show that x*u and y*v are Haar unitaries and that
{{pqp}, {x*u},pA, {w*y*vw}9w*qBw}9 is *-free in pJίp (and
notice that these taken together generate pJfp), which proves
(iii). α
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COROLLARY 3.6. Let R and R be copies of the hyperfinite Π r

factor. Then

R*R = R* L(Z),

with an isomorphism which when restricted is the identity map from R
to R.

Proof Write R = (pRp) ® M2 and R = (pRp) ® M2, where p and
/? are projections of trace \ in i? and respectively i?. Then by (iii)
and the proof of (iii),

p(R * R)p £ (/?7?p) * φR£) * L(F 3 ),

and the isomorphism when restricted to pRp c p(R * i?)p is the
identity map from pRp to pRp. Similarly, writing also L(Z) =
L(Z) ® L(Z2), we have from (ii) and the proof of (ii) that

p(R*L(Z))p^(pRp)*L(F4),

and the isomorphism, when restricted to pRp c p(R * L(Z))p, is the
identity map from pi?p to pi?p. Considering the isomorphism (3),
we get an isomorphism from p(R* R)p to p(R * L(Z))p which when
restricted is the identity map on pRp. Now tensor with M2. •

4. The addition formula for free products.

THEOREM 4.1. L(FΓ) * L(Fr>) = L(F r + rO /tfr 1 < r, r* <oo.

Proof. (Please see the comments at the end of the introduction.)
In a W*-probability space (Jίί, τ) where τ is a trace, let R and R
be copies of the hyperfinite IIi-factor and let v = {X*\t € T} be a
semicircular family such that {i?, i?, u} is free. Let

r.) = & = (R U {qsX
sqs\s G ^j ) 7 7 ,

where S and S' are disjoint subsets of T, ps e R, qs € R are
projections and where 1 + ΣseS

τ(Ps)2 = r> 1 + Σje5' τ ( * ) 2 = r '
Then J / and £% are free in ( ^ , τ), so

L(FΓ) * L(F^) = JIT = (R U R U {p,JΓ5p,|j G 5} U {&JΓJ&|5 6 5 ;}) ;/.

By Corollary 3.6, there exists a semicircular element Y e JV§ =
(i? U i?)7/ such that i? and {7} are free and together they generate
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Jfa. Moreover, for s e Sf let ί/s G 4 be a unitary such that
UsqsUs* = fseR. Then

jr = (Ru {Y} u {psX
sPs\s eS}υ {fs(Usx

sUs*)fs\s e S'})".

To prove the theorem, it suffices to observe that {R, {Y}, ({Xs})ses >
({UsX

sUs*})seS>} is free in Jt. D

Let us recall [4] that the fundamental group of a II i -factor Jΐ is
defined to be the set of positive real numbers γ such that J£y = ̂ # .
Murray and von Neumann [4] showed that the fundamental group of
the hyperfinite II i -factor is R+ , and recently Radulescu [5] has shown
that the fundamental group of L(Foo) is also R+ . A. Connes [1] has
shown that the fundamental group of L(G) where G is a group with
property T of Kazhdan must be countable, but no other examples are
known for fundamental groups of IIi -factors.

Equation (2) shows that the isomorphism question for (interpo-
lated) free group factors is equivalent to the fundamental group ques-
tion. Combined with the addition formula for free prdoucts, we now
see that we must have one of two extremes.

COROLLARY 4.2. We must have either

(I) L(F r) = L(Fr>) for all 1 < r, rf < oo and the fundamental
group of L(Fr) is R+ for all 1 < r < oo, or

(II) L(F r) φ L{Fr>) for all 1 < r < r1 < oo and the fundamental
group of L{Fr) is {1} for all 1 < r < oo.

Proof. Using formulas (1) and (2) we can show that if L(Fr) =
L(Fr>) for some r / r', then we have L(Fr) = L(Fr») for r" in some
open interval, hence that the fundamental group of L{Fr) contains
an open interval, thus is all of R+ . D

Acknowledgments. I would like to thank Dan Voiculescu, my advi-
sor, for helpful discussions and for suggesting I look at free products
such as Af2(C)*Af2(C).
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TWO-POINT DISTORTION THEOREMS
FOR UNIVALENT FUNCTIONS

SEONG-A KIM AND DAVID MINDA

We establish a one-parameter family of symmetric, linearly in-
variant two-point distortion theorems for univalent functions defined
on the unit disk. The weakest theorem in the family is a symmet-
ric, linearly invariant form of a classical distortion theorem of Koebe,
while another special case is a distortion theorem of Blatter. All of
these distortion theorems are necessary and sufficient for univalence.
Each of these distortion theorems can be expressed as a two-point
comparison theorem between euclidean and hyperbolic geometry on a
simply connected region; however, none of these comparison theorems
characterize simply connected regions. We obtain analogous results
for convex univalent functions and convex regions, except that in this
context the two-point comparison theorems do characterize convex
regions.

1. Introduction. We begin by recalling some basic information about
the hyperbolic metric and related material. The hyperbolic metric on
the unit disk P = {z : \z\ < 1} is given by

λD(z)\dz\ = -—T-py.

It is normalized to have constant Gaussian curvature - 4 . A region
Ω in the complex plane C is called hyperbolic if C\Ω contains at
least two points. The density of the hyperbolic metric on a hyperbolic
region Ω is obtained from

λςi(f(z))\f(z)\=λUz),

where / : P —• Ω is any holomorphic universal covering projection of
P onto Ω. The density is independent of the choice of the covering
projection of P onto Ω. The hyperbolic metric on Ω induces the
hyperbolic distance function d& as follows:

dςι(a, b) = inf / λΩ(w)\dw\,
Jv

where the infimum is taken over all paths γ in Ω joining a and b.
The infimum is actually a minimum; there always exists a path δ in

137
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Ω connecting a and b such that

dn(a,b)= fλΩ(w)\dw\.
h

Any such path δ is called a hyperbolic geodesic joining a and b.
There may be more than one hyperbolic geodesic joining a and b
when Ω is not simply connected. Recall that

</D(α 9 b) = artanh
1 -ab

Both the hyperbolic metric and the hyperbolic distance are confor-
mally invariant.

Blatter [1] commented that a classical distortion theorem of Koebe
for normalized univalent functions g(z) = z + a^z1 + a^z3 + ,
namely,

l ί ( z ) l £(ΓΠ7F' z e D

was necessary, but not sufficient, for univalence. Recall that equality
holds at z Φ 0 if and only if g is a rotation of the Koebe function
k(z) = z/(l - z)1 [3, p. 33]. Koebe's distortion theorem is a con-
sequence of the coefficient bound \a^\ < 2 for normalized univalent
functions. Blatter inquired whether there were distortion theorems
for univalent functions that were also sufficient for univalence. He
established the following two-point distortion theorem which is both
necessary and sufficient for univalence [1], There is no normalization
on the univalent function.

BLATTER'S DISTORTION THEOREM. Suppose f is univalent in D and
a, beΌ. Then

+ [{l-\b\2)\f{b)\}2).

Equality holds for distinct points α, b e ID) if and only if f = SokoT,
where S is a conformal automorphism of C, k is the Koebe function
and T is a conformal automorphism of D, and a and b lie on the axis
of symmetry off. Conversely, if a nonconstant holomorphic function
f satisfies this inequality\ then f is univalent on D.

The square on the term sinh2(2do(α, b)) is missing in the state-
ment, but not in the proof, of this result in Blatter's paper. The proof



TWO-POINT DISTORTION THEOREMS 139

of Blatter's distortion theorem is more sophisticated than the proof
of Koebe's distortion theorem; it requires three coefficient inequal-
ities for normalized univalent functions: \a2\ < 2, \a$\ < 3, and
|#3 - #2! - 1 Blatter's distortion theorem is symmetric in a and b
and linearly invariant. In this context, linear invariance means that if
/ is replaced in the inequality by f = SofoT, where S is a confor-
mal automorphism of C and T is a conformal automorphism of D,
then the new inequality has exactly the same form, except that / is re-
placed by / . This is closely related to the notion of linear invariance
introduced by Pommerenke [13]. We shall establish a one-parameter
family of symmetric, linearly invariant two-point distortion theorems
for univalent functions; each of these distortion theorems character-
izes univalence. The method of proof is an extension of Blatter's
technique. The weakest two-point distortion theorem in the family is
a symmetric, linearly invariant version of Koebe's distortion theorem.
Blatter's distortion theorem is stronger than the symmetric, linearly in-
variant version of Koebe's distortion theorem, but is not the strongest
one in the family.

Blatter's distortion theorem can easily be formulated as a two-point
comparison theorem between euclidean and hyperbolic geometry on a
simply connected region. It relates the euclidean distance between two
points to their hyperbolic distance and the density of the hyperbolic
metric at the points. This formulation asserts that if Ω is a simply
connected hyperbolic region in C and A, B eΩ, then

_ 2 > smh2(2da(A,B)) ( 1 _1_\
1 ' ~ 8cosh(4dΩ(v4, B)) \Xk(A) Xk(B) I '

Equality holds if and only if Ω is a slit plane and A and B lie on
the extension of the slit into Ω. This two-point comparison theo-
rem can be viewed as an extension of the inequality λ& > 1/(4<5Q)

for simply connected regions [6, p. 45], where SQ(Z) is the euclidean
distance from z to <9Ω, since this inequality is a limiting case. Be-
cause Blatter's distortion theorem characterizes univalence, it is nat-
ural to inquire whether this comparison inequality characterizes sim-
ply connected regions. The answer is negative. In fact, there is a
one-parameter family of similar two-point comparison theorems and
not even the strongest comparison theorem in the family character-
izes simple connectivity. Narrow annuli also satisfy these comparison
inequalities.

Finally, we consider analogs of these results for both convex uni-
valent functions and convex regions. The case of convex univalent
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functions parallels the univalent function situation. There is a one-
parameter family of two-point distortion theorems for convex uni-
valent functions, the weakest of which is the symmetric, linearly in-
variant version of a classical distortion theorem. These distortion
theorems all characterize convex univalent functions. There is an as-
sociated one-parameter family of two-point comparison theorems for
euclidean and hyperbolic geometry on convex regions. These compar-
ison theorems characterize convex regions and are refinements of the
inequality XQ > \/{2δςι) [10] for convex regions.

We would like to thank Wancang Ma for several helpful conversa-
tions regarding univalent functions and the referee for useful com-
ments, including the idea which led to Theorem 1.

2. Preliminaries. We first recall some results from Blatter's paper
[1]. Some of these are reformulated in invariant terms here, while
others are stated in more generality. We do not prove these general-
izations if the proofs given in [1] immediately extend.

Minimum Principle. Suppose that a function u: [-L, L] —> R sat-
isfies the following two conditions:

(i) | u Ί < ί ,
(ϋ) u"<p(q2-(u')2),

where p and q are positive constants. If υ is the solution of the
inequality \y'\ < q and the differential equation y" = p(q2 - (y')2)
which satisfies the boundary conditions υ(L) = u(L) and v(-L) =
M ( - L ) , then u(s) > v(s) for all s e [-L, L]. Moreover, if strict
inequality holds in both (i) and (ii), then u(s) > v(s) for all s G
( - L , L ) .

The solution υ can be expressed in elementary form:

v(s) = - log [cosh(/?#5 ) + τ sinh(/?#.s)] + log C,
P

where the constants τ € [ -1 , 1] and C > 0 are determined by the
boundary conditions. In fact,

/exp(pu(L)) + exp(pu(-L))\ ι / p

V 2cosh(/><7L) ) '

LEMMA 1. For p > 1, q > 0 and τ e [-1, 1] let

fL

B(τ) = / (cosh(pqs) + τ sinh(p qs))ι/p ds.
J-L
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Then for τ e ( - l , 1)

B(τ) > B(±l) = - s i

Proof. Now,

ίL1 ίL

B'{τ) = - / sinh(pqs)(cosh(pqs) + τsinh(pqs)){ι-p)/p ds
P J-L

and

B"{τ) = ]—£ I sinh2(pqs) (cosh(pqs) + τsinh(pqs))(ι-2p)/p ds.
PL

 J-L

Thus, B"{τ) < 0 since p > 1, so B(τ) is strictly concave on [-1, 1].
This implies that the minimum value of B(τ) is either B(l) or
2?(—1). Because

B(-l) = -si

the proof is complete.

REMARKS, (i) When p = 1 the function B(τ) is the constant
I sinh(^L).

(ii) If u and v are as in the statement of the minimum principle,
then

/ exp(φ)) έfa > / cxp(υ(s)) ds = CB(τ) > C - sinh(?L),
J-L J-L %

with equality if and only if expw(5 ) = Cexp(±#s).

Next, we want to recall some differential geometric formulas re-
lating to locally schlicht holomorphic functions. Before stating these
formulas, it is convenient to introduce several invariant differential
operators which were also considered in [3] and [8]. For a holomor-
phic function / defined on D, let

D2f(z) = (1 - \z\2)2f"{z) - 22(1 - \z\2)f'(z),
D3f(z) = (1 - \z\2γf"(z) - 62(1 - \z\2)2f"{z)

+ 6z2(l-\z\2)f(z).

If T(z) = (z + a)/(l+az), then Djf(a) = (/oΓ)W(O) for j =
1 , 2 , 3 . In particular, Djf(0) is just the ordinary 7th derivative at
the origin. These differential operators are invariant in the sense that

Γ (7 = 1,2,3) ,
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where T is any conformal automorphism of B> and S is any euclidean
motion of C [8]. Observe that for a locally schlicht function /

Dxf{z) 2 \DiXz)

where

)

2_i(Dimv = ί,

denotes the Schwarzian derivative of / . For a locally schlicht holo-
morphic function / defined on the unit disk it is useful to introduce
the abbreviation

Now, we establish some notation that will be in force for the re-
mainder of the paper. Suppose / is a locally schlicht holomorphic
function defined on the unit disk B. We assume that there is a Jordan
arc γ in B with finite hyperbolic length 2L joining a and b such
that / maps γ injectively onto the euclidean segment [f(a), f{b)] =
[A, B]. Suppose the arc γ is parametrized by hyperbolic arc length,
say γ: z = z(s) ,se[-L,L\. This implies z'(s) = (1 - \z(s)\2)eiθ& ,
where θ(s) = argz '^) . The hyperbolic curvature of γ is

κh(z(s), γ) = (l- \z(s)\2)κe(z(s), γ) + Im j 2 f f i φ [ j ) |

= (1 - \z(s)\2)κe(z(s), y) + Jm{2zJs)eiθM}.

Here κe(z(s), y) is the euclidean curvature of γ at z(s) explicitly,

The formula which relates the euclidean curvature of foγ to the
hyperbolic curvature of γ is

κe(f(z(s)), / o y)\Dxf{z{s))\ = κh{z{s), y) + Im

When foγ is a euclidean line segment, this simplifies to
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The rate of change of the euclidean curvature of foγ is related to
the rate of change of the hyperbolic curvature of γ by

dκe(f(z(s)),foγ)i

ds

= d^f>^+lmί[(l-\z(s)\2)2SΛz(s))

When foγ is a euclidean line segment, this becomes

dκh{z{s), γ)
= — Im< (1 — \z(s

Set

Then

so that
|«'(5)| < \Qf(z(s))\

and

(M')2(ί) = \κt{{Qf{z{s)))2e2iθ^} + \\Qf{z{s))\2.

Also,

M"(5) = Re{(l - I z ^ ) ! 2 ) 2 ^ ^ ^ ) ) ^ ^ ) } + \\Qf{z{s))\2 - 2.

By making use of some of these formulas, we obtain the identity

u"(s)+p(u')2(s)

= Re {[(1 - \z(s)\2)2Sf(z(s)) + | (β/(^) ) ) 2 ] e2iθ^}

+ P-±±\Qf{z{s))\2-2,

and so the differential inequality

u"(s) +p(u')2(s) < |(1 - \z(s)\2)2Sf(z(s)) +1 {Qf{z{s)))2

3. Univalent functions and simply connected regions. We establish

symmetric, linearly invariant, two-point distortion theorems for uni-
valent functions and consider the associated two-point comparison
theorems between euclidean and hyperbolic geometry on simply con-
nected regions.
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INVARIANT KOEBE DISTORTION THEOREM. Suppose f is univalent
on D. Then for all a, i e D ,

Equality holds for distinct points a, b G D if and only if f = SokoT,
where S is a conformal automorphism of C, k is the Koebe function
and T is a conformal automorphism of D, and a and b lie on the axis
of symmetry of / . Conversely, if a nonconstant holomorhpic function
f satisfies this inequalityy then f is univalent on D.

Proof. First, note that Koebe's classical distortion theorem can be
written in the form

Here g is a normalized univalent function.
Now, assume / is univalent (not necessarily normalized) in D and

a, b eB. Set T(z) = (z + a)/(l + az) T is a conformal automor-
phism of D which sends 0 to a. Then

g(z) = [fo Γ(z) - / o Γ(0)]/(/o Γ)'(O)

is a normalized univalent function. If we apply the classical Koebe
distortion theorem to g and use the fact that hyperbolic distance is
conformally invariant, then we obtain

We obtain a similar inequality when we interchange the roles of a
and b. The final formula is obtained by taking the maximum value of
these two lower bounds on \f(a) - f(b)\. The necessary and sufficient
conditions for equality follow from the conditions for equality in the
classical Koebe distortion theorem.

The fact that the condition is sufficient for univalence is elementary,
but we give the details here and then omit them in subsequent related
theorems. Suppose / is a nonconstant holomorphic function defined
on D which satisfies the inequality. Assume f(a) = f(b) for distinct
points a,beΌ. The inequality implies that f(a) = f{b) = 0. Then
/ is not univalent in any neighborhood of a (or b), so there exist two
sequences {an} and {bn} of distinct points such that an —• α, bn —• a
and f(an) = f(bn) for all n. This gives f'{an) = 0 for all n which
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contradicts the fact that / is nonconstant since this implies / ' must
have an isolated zero at a. Hence, / is univalent on D.

Thus, the invariant form of Koebe's distortion theorem is sufficient
for univalence, so it provides an elementary answer to the question
raised by Blatter. Theorem 2 will provide a connection between the
invariant form of Koebe's distortion theorem and Blatter's distortion
theorem. But first we need to establish a result for normalized univa-
lent functions.

THEOREM 1. If g(z) = z+a2Z2+a3z
3-\— is a normalized univalent

function on Ό, then

This inequality is sharp for all p > 0. For p > 3/2, equality holds if
and only if g is a rotation of the Koebe function.

Proof. It suffices to obtain the sharp upper bound on the functional

= Re{α3} - ( ^ X ^ ) ( R ^ 2 ) 2 + (Imα 2 ) 2

over the family of normalized univalent functions. Because replacing
g(z) by -g(-z) does not change the value of Lp(g), we may assume
that Re{#2} ^ 0 without loss of generality. Since 0 < Re{α2} < 2,
there is a unique λ € [0, 2] with Re{<Z2} = λ(l + log j).

Jenkins [5] obtained the sharp relationship between the second and
third coefficients of a normalized univalent function. We shall use the
version of this result from [14, p. 120]; specifically, we need inequality
(12) of this reference which states

Re{a3} < (Reα 2) 2 - (Imα 2 ) 2 - 2λRea2 + A2logy + \λ2 + 1.
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From this inequality we obtain

Lp(g) < -^(Reα2)2 - 2λ(Rea2)+λ2log1 + -/
3 A JL

Note that H(0) = 1, H(2) = (Sp - 3)/3 and

For p > 3/2, H'(λ) has no roots in (0, 2), so H(λ) is strictly increas-
ing in this case with maximum value (8/7 — 3)/3 attained uniquely
at λ = 2. This produces the sharp upper bound on Lp(g) when
p > 3/2, and implies that equality holds only if g is a rotation
of the Koebe function. It is trivial that equality holds for a rota-
tion of the Koebe function. When 0 < p < 3/2, H'(λ) has a root
at λ0 = 2exp((2/?-3)/(2/?)) e (0,2) and H{λ) is increasing on
(0, λo) and decreasing on (ΛQ, 1). Thus, 77(Λ) has maximum value
i/(λ0) = 1 + 2exp((2/7 - 3)//?) when 0 < p < 3/2. The sharpness of
the inequality in this case follows from the work of Jenkins; note that
the Koebe function is not extremal.

+ a^z3 -\ is a normalized uni-COROLLARY. If g(z) = z +

valent function on D, then

1
α 3 - τί

mϊ/z equality if and only if f is a rotation of the Koebe function.

Proof. By making use of the theorem with p = 3/2 and \aι\ < 2,
we get

1
α 3 ~ 2l

1
2'

THEOREM 2. Suppose f is univalent in D. There is a constant
P G ( 1 , 3/2] swcΛ that for any p>P and all a, beΌ,
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Equality holds for distinct points a, b e B if and only if / = SokoT,
where S is a conformal automorphism of C, k is the Koebe function
and T is a conformal automorphism of D, and a and b lie on the axis
of symmetry off. Conversely, if a nonconstant holomorphic function
f satisfies this inequality, then f is univalent on D.

Proof. The sufficiency for univalence follows exactly as in the proof
of the invariant form of the Koebe distortion theorem.

For the necessity, we make use of the notation established in §2.
Because / is univalent, we know that \u'(s)\ < 4 this is the invariant
version of the sharp classical coefficient bound fa] < 2 for normalized
univalent functions [2, p. 32]. We will make use of some of the results
from §2 with q — 4. Suppose p > 1 is any number such that

(1) (1 - \z\2)2Sf(z) + t (Qf(z))2 + i+λ\Q^z)\2 _ 2 < 16/7
2 2

for every univalent function / defined on D) and all z ε i . Then
the results of §2 with q = 4 give

u"(s)+p(u')2(s)< \6p.

Therefore, we get

\f(a)-f(b)\ = [L \f'(z(s))\\dz(s)\
J-L

fL fL

= / expu(s)ds > / expυ(s)ds >
J-L J-L

Csinh(4L)

2

with equality if and only if exp u(s) = C exp(±4.s), where

(\Dίf(a)\p + \Dif(b)\p\ι/p

V 2cosh(4/>L)

Thus,

Since the function h(t) = sinh(ί)/[2cosh(^ί)]1/p is increasing and
2d®(a, b) < AL, we obtain
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This establishes the lower bound when [f(a), f(b)] is contained in
/(D). If equality holds, then d&(a, b) = 2L and so γ must be a
hyperbolic geodesic.

We require a limiting form of this inequality. Set Ω = /(D).
Suppose a e dΩ and [f(a), a) c Ω. Then for any b e B with
f(b) E [f{a), a), the preceding inequality gives

I f(n\ f(h\\ -> sinh(2έ/D(a, b)) f

When f(b) -+ dΩ along the segment [f(a), α ) , then b -^ dΌ and
so dj)(a9 b) —• oc. Since λ(oo) = 1/2, we get

| / ( α ) α | > |

This is just an invariant form of the Koebe 1/4-theorem.
Now, suppose [f(a), f{b)] does not lie in Ω. Then there ex-

ist points α, β G dΩ such that the half-open intervals [/(α), a)
and (/?, /(6)] are disjoint, lie in Ω and their union is contained
in [f(a), f{b)]. The preceding inequality implies that

|/(*)-α|>±|A/(a)l and \f{b)-β\>\\Dxfφ)\.

Hence,

|/(fl) - f(b)\ > \f(a) - α| + |/(6) - 0| > i <|Z>i/(fl)| + \Dxf(b)\)

Since h{oo) = 1/2 and Λ is strictly increasing, we obtain

2[2
This establishes the lower bound in all cases.

Next, we determine necessary and sufficient conditions for equality.
If equality holds, then γ must be a hyperbolic geodesic in D. By
performing a conformal automorphism of D if necessary, we may
assume that γ c (-1, 1) and is symmetric about the origin. There
is no harm in assuming [f{a), f{b)] c R and is symmetric about
the origin with f{a) < 0 and f(b) = -f{a) if this were not true
just compose / with a conformal automorphism of C. Then the
hyperbolic arc length parametrization of γ is z(s) = tanh(s) and
f(z(s)) > 0 for s e [-L, L]. Symmetry implies /(0) = 0. Equality



TWO-POINT DISTORTION THEOREMS 149

forces exp(w) = Cexp(±4s). We consider the plus sign; the case of
the minus sign is similar. We have

Since

s = artanh z = - loglog

holds on γ, we obtain

or
f(z) = C 1 + Z.

(l-zf
for z on γ. The identity theorem implies that this holds for all z
in B. Since /(0) = 0, we get f(z) = Ck(z). This demonstrates
that if equality holds then / = S o k o T, where S is a conformal
automorphism of C, k is the Koebe function and T is a conformal
automorphism of D, and a and Z? lie on the axis of symmetry of
/ . Conversely, if / has this form, then it is straightforward to show
that equality holds for all points on the axis of symmetry of / , or
equivalently, equality holds for all pairs of points on ( - 1 , 1) for the
Koebe function itself.

Finally, we show that inequality (1) holds for all p > P, where P is
some constant in (1, 3/2]. It is elementary to verify that if inequal-
ity (1) holds for one value of p > 1, then it also holds for all larger
values of p. Let P be the minimum of all p > 1 such that inequal-
ity (1) holds for all univalent functions / defined on D. Since the
class of univalent functions is linearly invariant, it suffices to establish
inequality (1) for z = 0 and normalized univalent functions. Thus,
we want to find the smallest value of p such that

3 3

The corollary to Theorem 1 shows that this inequality is valid for
p = 3/2. It might seem plausible that P = 1 this is equivalent to the
coefficient inequality

2 2

for a normalized univalent function. However, Ruscheweyh [15], with
the use of a computer, has shown that this inequality is false for the
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full class S of normalized univalent functions and that the best result
for the class S is about

2
,„,, .3.0031896592.

Thus, P > 1.

REMARKS, (i) What is the best value of P in Theorem 2?
(ii) The right-hand side of the inequality in Theorem 2 is a decreas-

ing function of p for p > 1. Consequently, the weakest necessary
condition for univalence that Theorem 2 yields is the case p = oc,
or more precisely, p —> oo. This is the invariant version of Koebe's
distortion theorem. The case p = 2 is Blatter's distortion theorem,
but it is not the strongest two-point distortion theorem contained in
Theorem 2.

COROLLARY. Let Ω be a simply connected hyperbolic region in C.
Then for any p>P and all A,B eΩ,

\A-B\>

Equality holds if and only if Ω is a slit plane A and B lie on the
extension of the slit into Ω.

Proof. Apply the theorem to a conformal map / of D onto Ω and
make use of the facts that / is an isometry from the hyperbolic metric
on D to the hyperbolic metric on Ω and \D\f{z)\ =

REMARK. Suppose Ω is any region which satisfies the inequality
in the corollary for some p > P. Fix A e Ω. Select a G <9Ω so
that \A - a\ = SQ(A) . Let B e Ω tend to a along the half-open
segment [A, a). Then d&{A, B) —• oc since the hyperbolic distance
is complete and AQ(JB) —> oo [12] so the inequality in the corollary
yields λςi > 1/(4<JQ). For simply connected regions this inequality
is equivalent to the Koebe 1/4-theorem for univalent functions [6, p.
45].

EXAMPLE. Let Ω = Ω(δ) = {z: exρ{-πδ/2) < \z\ < exp(π<5/2)}
for δ > 0. We shall show that if δ > 0 is sufficiently small, then for
A,BeΩ
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This inequality corresponds to the case p = 1 it is the strongest
possible lower bound in the corollary and shows that no comparison
theorem in the corollary can characterize simply connected regions.

A holomorphic universal covering projection of D onto Ω is f(z)
= [(1 + z)/(l - z)]iδ . Then [13, p. 128]

sup{|β/(z)| : zeΌ} = 2\/\+δ2

and [11]
sup{(l - |z|2)2 |Sy(z)|: z e D} - 2(1 + δ2).

We shall show that
\u'(s)\ < 4

and
u"(s) + (u')2(s) < 16

for δ sufficiently small. This is the case p = 1 and q = 4 in §2. Note
that

\u'{s)\<\Qf{z{s))\<2y/\+δ2,

so the desired bound on \u'(s)\ will hold when δ < y/3. The other
differential inequality will hold if

(l-\z\
2)2Sf(z) + ±

which is weaker than

The preceding bounds show that this inequality will hold if 8(1 +δ2) <
18, that is, provided δ < >/5/2. Thus, both needed inequalities hold
when δ < >/5/2.

The proof of Theorem 2 shows that if [f{ά), f(b)] c Ω, then

\f{a) - f{b)\ > \ (tanh(4L)) {\Dj{a)\ + \DJ{b)\).

Since tanh(ί) is an increasing function and dςι(f{a), f(b)) < 2L,
this gives

\f{a) - fφ)\ > \ (tanh(2rfΩ(/(α), fφ)))) {\DJ{a)\ + \DJ{b)\) ,

or equivalently,

If (a) - fφ)\ > ί
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This is the desired result when [A, B] = [f(a), f(b)] c Ω. Then, just
as in the proof of Theorem 2, this inequality holds even if [f(a), f(b)]
does not lie entirely in Ω. In fact, strict inequality holds in this case.

REMARK. If g(z) = z + aiz2 + a$z3 -\ is a normalized close-to-
convex function on D, then Wancang Ma [7] has shown

2 *2 < 3 - ^

with equality if and only if / is a rotation of the Koebe function.
Thus, if / is a close-to-convex univalent function, then the inequality
in Theorem 2 holds for all p > 1. Does the inequality in Theorem 2
for p = 1 characterize close-to-convex univalent functions? Similarly,
the inequality in the corollary to Theorem 2 holds for p > 1 if the
region Ω is close-to-convex.

4. Convex univalent functions and convex regions. We now turn our
attention to convex hyperbolic regions and convex univalent functions.

THEOREM 3. Suppose Ω is a convex hyperbolic region. Then for any
p> 1 and all A,B eΩ,

ύήh{dΩ(A9B))
1 ' -

Equality holds if and only if Ω is a half plane and A and B lie on
a line perpendicular to the edge of the half plane. Conversely\ if Ω is
a hyperbolic region in C and the preceding inequality holds for some
p > 1 and all A, B eΩ, then Ω is convex.

Proof. We first show that a hyperbolic region which satisfies the
inequality must be convex. Fix A £ Ω. As in the remark after the
corollary to Theorem 2, select a e dΩ so that \A - a\ = δΩ(A).
Let B e Ω tend to a along the half-open segment [A, a). Then
dςι(A, B) -» oo and λςι(B) —• oo, so the inequality in the theorem
yields AQ > \/(2SQ). This inequality characterizes convex regions
([4], [9]).

Now, we turn to the proof of the inequality when Ω is convex.
The proof is very similar to that of Theorem 2. If / is a conformal
mapping of D onto Ω, then \u'(s)\ < 2 is the invariant form of the
coefficient bound fal < 1 for a normalized convex univalent function
[2, p. 45]. Therefore, we want to use the results from §2 with q = 2,
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so we wish to determine all p > 1 such that

- \z\2)2Sf(z) + I (Qf(z))2\ + £ ± I \Qf{z)\2 -2<4p

for any convex univalent function / defined on D and all z e D.
It is easy to verify that if this inequality holds for some value of p,
then it also holds for all larger values of p . We shall establish it when

(2) (1 - \z\2)2Sf{z) + l- (Qf(z))2 + \Qf{z)\2 < 6.

Trimble [16] established the following inequality for convex functions
when z = 0 this was rediscovered and established in invariant form
by Harmelin [3]:

( l - | z | 2 ) 2 \Sf(z)\ +l-\Qf{z)\2< 2.

It is now clear that (2) holds.
Then from §2 with q = 2, we have

u"(s)+p{u')2{s)<4p.

Given A, B e Ω, select a, b e ID with f{d) = A and f(b) = B.
Since Ω is convex, the straight line segment [f(a), f(b)] always lies
in Ω. Then we get

\f{ά) - f(b)\ = / expu(s) ds > expv(s) ds > Csinh(2L),
J-L J-L

where

'\DJ{a)\p + \DJψ)\p\XIP(\

V 2cosh(2/?L)
Thus,

ι / ( a ) -
or

sinh(2L)
1 ' "

Recall that 2L denotes the hyperbolic length (relative to Ω) of the
segment [A,B]. Since the function h{t) = sinh(ί)/[2cosh(pί)]1/p is
increasing and da{A, B) < 2L, we obtain

sinh(</Ω(Λi?)) / 1 1 \l/P

1 ' "

This establishes the lower bound.
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Finally, we determine when equality holds. First, suppose p > 1.
If equality holds, then [A, B] must be a hyperbolic geodesic. There
is no harm in assuming [A, B]cR and is symmetric about the origin
with A < 0 and B = -A if this were not true, apply a conformal
automorphism of C to Ω. Now, γ is a hyperbolic geodesic in D
by performing a conformal automorphism of D if necessary, we may
assume that γ c ( - 1 , 1) and is symmetric about the origin. The
hyperbolic arclength parametrization of the path γ is z(s) = tanh(s)
and f(z(s)) > 0 for s e [-L, L]. Symmetry implies /(0) = 0.
Equality forces exp(w) = Cexp(±2s). We consider the plus sign; the
case of the minus sign is similar. As in the proof of Theorem 2, we
obtain

Since /(0) = 0, f(z) = CK{z), where K(z) = z/(l - z) . In this
situation Ω = /(D) is a half-plane and the segment [A, B] is orthog-
onal to the edge of the half-plane. Conversely, if Ω is a half-plane,
it is straightforward to show that equality holds whenever [A, B] is
orthogonal to the edge of the half-plane. It is sufficient to verify this
for the special case of the upper half-plane H = {z: Imz > 0}. In
this case,

B) = artanh
A-B

A-B
and λn(z) =

1

2Im(z)'

We omit the details.
It remains to consider the case of equality when p = 1. In this

situation Lemma 1 does not apply, so we use a different method. If
Ω is not a half-plane, then \u'(s)\ < 2 and u"{s) + (u'f (s) < 4.
These strict inequalities imply that equality cannot hold in this case.
Thus, we need only determine necessary and sufficient conditions for
equality when Ω is a half-plane. Because of the invariance of the
inequality under conformal automorphisms of C, we may assume Ω
is the upper half-plane H = {z: Imz > 0}. We need to determine
when equality holds in

(3) M - J , | >

Inequality (3) is equivalent to

\A-B\
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But trivially

\A-B\> lm{A -B) = Im{A) + lm(B)

with equality if and only if Re(A - Tί) = 0, that is, Re A = Reϊ? =
Re B. In geometric terms this necessary and sufficient condition for
equality is that [A, B] be orthogonal to the real axis, the edge of H.

COROLLARY. Suppose f is univalent in B and /(D) is a convex
region. Then for p>\ and all a, b e ID,

(4)

ιf{a)_fm > s i; h (t! a^L/p (iA/wr+1A/wnι/p•
[ 2 h ( d ( 6))] 1 / / 7

Equality holds for distinct a9b G B> if and only iff = SoKoT,
where S is a conformal automorphism of C, Jf(z) = z/(l - z) <zm/
Γ w a conformal automorphism of D, α«ί/ α α«t/ 6 lie on any axis
of symmetry of f. Conversely, if a nonconstant holomorphic function
f defined on D satisfies this inequality for some p > 1, then f is
univalent on Ώ and /(ID) is a convex region.

Proof. Suppose / is convex univalent in D. Set Ω = /(D). Then
the inequality and the necessary and sufficient conditions for equality
follow from applying Theorem 3 to Ω and the points A = f(a) and
B = fφ).

Conversely, suppose / is a nonconstant holomorphie function de-
fined on D which satisfies the inequality. As in the proof of the
invariant form of the Koebe distortion theorem, we conclude that /
is univalent on D. Set Ω = /(D). Since / is a conformal map of D
onto Ω and hyperbolic distance is preserved, inequality (4) implies
that the inequality in the theorem holds. Hence, Ω is convex, so /
is convex univalent.

REMARK. The right-hand side of the inequality in the corollary is
a decreasing function of p for p > 1. Therefore, the strongest nec-
essary condition for a convex univalent function that the corollary
produces is the case p = 1:

\f{a)-f{b)\ > Atanh(</D(α, b)) {\Dxf{a) |+ | Dxf(b)\).

The weakest sufficient condition for convex univalence that the corol-
lary yields is p = oo (or more precisely, the limit as p —• oo):

exp



156 SEONG-A KIM AND DAVID MINDA

This is the symmetric, linearly invariant form of the classical distor-
tion theorem

ls{z)l-TT\7\> Z G D '

for a normalized convex univalent function g [2, p. 70].

5. Comments. The method of Blatter that we have employed in
this paper uses certain differential geometric ideas in conjunction with
coefficient bounds for univalent functions to produce symmetric, lin-
early invariant two-point distortion theorems for (convex) univalent
functions which characterize (convex) univalence. Can these results
be established in a purely differential geometric fashion without us-
ing coefficient bounds? In the convex case our results characterize
convex regions so it is plausible that, at least in this setting, a purely
differential geometric proof might be available.
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VALUE DISTRIBUTION OF THE GAUSS MAP
AND THE TOTAL CURVATURE

OF COMPLETE MINIMAL SURFACE IN Rm

XlAOKANG M O

The aim of this paper is to prove the following

THEOREM. Let S be a complete non-degenerate minimal surface
in Rm such that its generalized Gauss map f intersects only a finite
number of times the hyperplanes A\, . . . , Aq in CPm~ι in general
position. If q > m(m + l )/2, then S must have finite total curvature.

1. Introduction. The study of the value distribution property of
Gauss map of minimal surface began with a series of papers by
Osserman [ 9 ]? [11] and the results can be summarized in the following

THEOREM (R. Osserman). Let S be a complete minimal surface in
R3. Then

S has infinite total curvature <=> the Gauss map of S takes on
all directions infinitely often with the exception of at most a set of
logarithmic capacity zero\

S has finite non-zero total curvature <& the Gauss map of S takes on
all directions a finite number of times, omitting at most three directions0,

S has zero total curvature <& S is a plane.

For a long time, the above theorem had been the best result on this
direction. But all the known examples indicated that the exceptional
set of logarithmic capacity should be a finite set. In 1981, Xavier
made a surprising breakthrough by proving the following result, using
a result of Yau about a differential equation on complete Riemannian
manifold.

THEOREM (F. Xavier [13]). Let S be a complete minimal surface in
R? . Then its Gauss map can omit at most six directions unless it is a
plane.

In 1988, Fujimoto finally found a way to arrive at the best possible
number 4.

159



160 XIAOKANG MO

THEOREM (H. Fujimoto [4]). Let S be a complete minimal surface
in R?. Then its Gauss map can omit at most 4 directions unless it is
a plane.

A combination of Osserman's early study and Fujimoto's above
work gives the following

THEOREM (X. Mo andR. Osserman [8]). Let S be a complete min-
imal surface in R3 with infinite total curvature. Then its Gauss map
must take every direction infinitely often except at most 4 directions.

For a surface in Rm there is the following

THEOREM (H. Fujimoto [5]). Let S be a complete minimal surface
in Rm with nondegenerate Gauss map. Then the image of S under the
Gauss map cannot fail to intersect more than m(m + l)/2 hyperplanes
in general position in CPm~ι.

And the result of this paper mentioned at the beginning of this
section is the infinite covering property corresponding to the above
theorem.

An oriented minimal surface S in Rm may be described by a con-
formal immersion

X: M-+Rm, X = (xl9...,xm),

where M is a Riemann surface and each xk is a harmonic function
on M.

By definition, the generalized Gauss map of S is the map that as-
signs to each point of S the tangent plane of S at that point. Because
the tangent space of Rm at every point is naturally identified with Rm

itself, the range of the Gauss map is the Grassmannian manifold con-
sisting of all the oriented 2-subspaces of Rm . We can further identify
the 2-plane spanned by the orthonormal basis X, Y with the line in
Cm generated by (X - iY)/2. So the range of the Gauss map can be
thought of as Pm-ι(C).

Let z = u + iv be a holomorphic local coordinate of M. Denote

dx _ 1 (dx\ ,dxχ dXm _ .dxm

) '

by F = (/o, . . . , f n ) , where n = m - 1 / = (/0 : fx : : fn)
is the point in CPn represented by (fo, . . . , fn) in Cm . Then the
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holomorphic map / represents the Gauss map, and the metric on M
as a minimal surface is

ds2 = 2\F(z)\2\dz\2,

where | F | 2 = |/ 0 | 2 + . + |/«|2.
In this way, we turn the problem of the Gauss map partly into a

problem on holomorphic curves. The value distribution property of
the holomorphic curve may lead to corresponding results about the
Gauss map.

In §2 we will summarize some of the basic ideas and notation of
holomorphic curves. We will also introduce an important construction
of Cowen and Griffiths [2] on holomorphic curves in CPn which was
the basis of their remarkable proof of Ahlfors' defect relation. In §3
we will present the proof of Fujimoto's inequality in such a way that
will clarify the relation between Cowen and Griffiths' construction and
Fujimoto's. Fujimoto's inequality is the key to both the proof of his
theorem mentioned above and the proof of our result. In §4, we will
give the proof of our result.

2. Some properties of holomorphic curves. Value distribution prop-
erties of holomorphic curves have been studied since the end of the
19th century. The central problem was to generalize the Picard the-
orem and the Nevanlinna defect relation for entire functions to the
case of holomorphic curves. This was finally achieved in 1941 by L.
Ahlfors, overcoming great technical difficulties.

In 1976, M. Cowen and P. Griffiths [2] gave a much simpler proof of
Ahlfors' result using what they called a "negatively curved collection
of metrics". Using their result, H. Fujimoto [5] was able to construct
a single metric of negative curvature under certain conditions. Then
by the Schwarz-Pick lemma, he derived an inequality which is the key
to the study of the value distribution property of the Gauss map of
minimal surface. In this section, we will give an outline of Cowen and
Griffiths' result.

Let AR = {z\\z\ < R} be a disk in the complex plane, / : AR —•
Pn(C) be a holomorphic curve derived from a holomorphic map
F: AR —• C w + 1 through homogeneous coordinates. F(z) — (fo(z),...,
fn{z)), fo, ... , fn are holomorphic functions on Δ^ . We write / =
(/o : : fn) and define \F\ = (Σ"=1 \fi\2)ι/2 for our purposes, we
assume that \F\ Φ 0.

Take the /-th derivative:
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Define Fk = F^AF^A- ΆF^: A R -> Λ*+1 Ck+ι c G(n, k), where
G(Λ , A:) is the Grassmannian manifold. By the Pliicker embedding
G(n9k) c PN(C), N = (»+|) - 1, F* induces a map /*: AR -
PN(C), called the kth derived curve of / .

We can define |F^| in a natural way. Let eo, . . . , en be the standard
basis of C" + 1 ,

and we define

- Σ Pi-i

Now the Fubini-Study metrics on Pn and P^ naturally induce met-
rics on Δ# by pulling back:

Ω o = ddc\o%\F0\
x'2 = ddclog\F\2,

Ωk = ddclog\Fk\\ fc=l,...,π,

where dc = (\f-ϊ/4π)(d - d). Because Fn is just a holomorphic
function, Ωw = 0. We also set |F_i| = 1 for convenience, so Ω_i =
0.

The metrics Ω^ will be used later to construct the negatively curved
collection of metrics.

Let a = ( α 0 , . . . , an) € C + 1 , \a\ = (ΣU \aι\2Ϋ'2 = 1 Then

+ ••• + anwn = 0

defines a hyperplane, Λ in both Cn+ι and Pn; and

F(A) = αo/o + + α«/«

measures the distance from F(z) to A in a similar way

measures how far JF̂  is from ^4. Here Fj. = sign(σ)iΓ

7o...7fc, σ is
the permutation

ϊ i ί
σ = 7o
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In fact \Fk(A)(z0)\ = 0 means F(z0), FW(z0), ... , F^k\z0) all lie
in the hyperplane

aowo + '- + anwn = 0.

The corresponding quantities for the holomorphic curve / in Pn are

\2 \Fk{A)\2

k
and if ΦJC(A)(ZQ) = 0, the curve / is said to have contact of order
k + 1 with A at z 0 .

Now if the holomorphic curve / : AR —> Pn omits a certain number
of hyperplanes A\, A2 , . . . , Aq, we want to construct a metric or a
collection of metrics that is negatively curved.

If n = 1, A\, . . . , Aq are points on P 1 , we can just pull back the
Poincare metric of Pι - {A\, . . . , Aq]. To be more explicit, let us
take a local coordinate ζ of Pι around a neighborhood of A\ (or
any other Aj, i = 1, . . . , q), with ζ = 0 at yί1. Then the Poincare
metric is asymptotically

|C|2log2(l/|C|2)

around the point A\. Cowen and Griffiths [2] found a way to general-
ize this construction to the case when n > 2. In that case, it becomes
necessary to consider not only / but all of its derived curves f^ . The
quantity \ζ\2 for A\ will be replaced by Φk(A\) as defined above.

Let ω = (\f^\/2n)h(z) dz l\d~z be a metric. Then the Ricci form
is defined by Ricω = ddc logh(z), and Ricω > ω is equivalent to
the fact that the curvature of ω is less than -1.

Let A\, . . . , Aq be hyperplanes in general position in Pn and q >
n + 2. For i = 0, . . . , n - 1, following the indication of the Poincare
metric, define

ω, =

Cowen and Griffiths [2] proved the following

PROPOSITION. Given ε > 0, for a suitable choice of constants c,,
and μ, we have

n-\ n-\ /n-\ \

,- >(q-(n+ 1))ΩO + ^ ω, - ε Π Γ Ω, .
ι=0 \ί=0 /
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Aside from the term with the e, this inequality illustrates what
is meant by saying that the collection of metrics {ωz} is negatively
curved. Based on this, Fujimoto constructed a single metric with neg-
ative curvature under some additional assumptions. The next section
will give a detailed presentation of Fujimoto's construction.

3. Fujimoto's inequality. This section will be centered around cur-
vature computations. For this purpose, a few lemmas from [2] are
collected here for convenience.

We have defined Ω^ = ddc log \Fk\
2 ,

LEMMA 1.

* = ^ | Γ t - i l f f i * ' | 2 ' * Λ ' »
LEMMA 2. Define

hk =

then
Ric Ωfc = ddc log hk =

In the process of computation, we will use these two lemmas when-
ever necessary without referring to them explicitly.

To help understanding, we give here an outline of the idea of the
proof of this section. The motivation is to construct a single metric
of negative curvature out of a collection of negatively curved metrics.

Let ω, = (>/=T/2π)Ai(z) dz Ad~z, and suppose

^ ; >

Then

Σ Σ i d z Adlz,

ddc log (Jl Λ/) > Qζ h) dzAdz>n{j[ Λ, )1 7" dz A dz,

ddclog

so ω = (Y[hi)χlndz Ad~z satisfies Ricω > ω and ω is the desired
metric. In our situation, there are two other factors that complicate
the proof. One is that in the proposition of the last section, the collec-
tion of metrics is not strictly negatively curved; the term with e will
cause some complications. The other factor is that there are many
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computations and cancellations due to the special form of metrics
that we have. Let us start with the inequality

n-\ n-\ (n-\ \

Σ{n - ORicω,- >(q-(n+ 1))ΩO + £ > ; - ε Π Γ Ω φ
ι=0 ι=0 \i=0 /

where

We want to compute each term of the inequality explicitly.

Step 1.

^2(n - i)Riccθi
i=0

n-\ q

x - ϊ)dd c

n-\

φl+ι(Av)

+ ̂ (
1=0

= ddc f ί ^ 4 ^ (» + 1 )Ω0

^ΦoiA^UiWiμ/ΦiiAu))

but φo(Av) = 1, φo(Av) = IF^^p/l^l2, so

(n - i)Riccύi = ί/</clog ΓΓ

= ύ?ί/c log



166 XIAOKANG MO

Step 2.

n-l n-\ q ( J, ( A \ \ 1{n~l)

= j 2 Ci

where Ω, = hidz l\dcz. Using the inequality

with di = n- i, Σ"=d <*i = n(n + l)/2, we have

π

Ji \\F(AV)\2Π =i

- 1

but | F 0 | = \F\, so

. > c

Step 3.

β ( £ Ω / ) =ε"γ/ddclog|Ffc|
2 = ^ l o g | ^

\/=i / «=i

{q-(n + 1))ΩQ = («-(« 2

ί c r

|2e
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Step 4. Combining the results of Steps 1, 2, 3, we have

ddc log —

>C\ ^ = = dzΛdcz.

Setting G = Π L i ( ^ ( ^ ) l 2 Ut! W{μ/Φi{Av))), we have

dzΛdcz.
G2

Step 5. Notice that F« is a holomorphic function, so ddclog\F\ =
0; also log|.F|2 is subharmonic, so c/c/c log I/7!2, the — 4ε in the ex-
ponent is necessary and we will see the reason in the arguments later.
With η = (\F\2^-("+^\Fn\

2)/G2 , we have

eddc \og | F 0 | 2 \Fn.x | 2 + ddc\o% —^- > Cη2^n+ι^ dz Λ dcz.

Step 6. Let Pn = n(n + l)/2, Qn = J%=i pk • Then

Pnddc\og\FQ\2---\Fn^\2

SO

1^01 "+
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Step 7. Add up the results of Steps 5 and 6, replace the ε (which is
arbitrary) with e/2 and notice that ddclog\Fn\

2 = 0, we have

εddc log |F 0 | 2 \Fn\
2 + ddc log j ^ -

2 Pn

using aιxι+a2x2 > {ai+aj^x^xl2)11^^ with aχ=Pn, α2 = εQn ,
we have

\Fn\2 2 ε / I F λ l 2 ε \FJ2ε

\FJ2εn\

Set

h_{\Fof*...\Fnf*η

then

_(\
- \

ddch>C2hdzΛdcz,

so Λrfz Λ dc < is the desired metric.

Step 8. By the Schwarz-Pick lemma, we have a constant C3 such
that

where ^ 2dzAdcz is the Poincare metric of the disk {z| |z | < i?}

Writing out everything explicitly, we have

ΠLi Π7-1

Step 9. We would like to get rid of the log terms. Knowing that

K = sup x ε / 2 ^log^ < +00 for μ > 1,

we have

\og{μlφk{Av))-K™^v> K \Fk\Φ '

substituting this into the result of Step 8, we have

PROPOSITION {Fujimoto's inequality [5]). Let ΔR = {z\ \z\ < R} be
a disk in the complex plane, f:AR-+ CPn be a holomorphic curve
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derived from a holomorphic map F: AR -> Cn+λ, using the notations
introduced in the previous section, we have the following statement For
any ε > 0, there is a C > 0, such that

^ 2R P ^

4. Minimal surfaces in Rm. We assume that all surfaces are ori-
entable, since analogous theorems for non-orientable surfaces are eas-
ily formulated by taking the two sheeted orientable covering surface
and applying the theorem to it. Following the notation of the previous
section, we will prove the following

THEOREM. Let S be a complete non-degenerate minimal surface
in Rm such that the Gauss map f = (fo: : fn) {here n = m = 1)
intersects only a finite number of times the hyperplanes A\, . . . , Aq (in
CPn) in general position. If q> m(m + l)/2 = (n + 1) + n(n + l)/2,
then S must have finite total curvature.

REMARK. If S is a generalized minimal surface with a finite num-
ber of branch points, all the arguments of our proof will not be af-
fected. So the theorem is also true for the somewhat more general
class of surfaces. This also applies to the similar theorem for surfaces
in i?3 by Mo and Osserman [8].

It was already observed by Osserman (see R. Osserman, A survey of
minimal surfaces, second edition, 1986, p. 73) that his classic results
on the value distribution of Gauss map is true for simply connected
surfaces with a finite number of branch points. An observation of
Ahlfors implies that they are still true if a certain condition on the
distribution of the branching points is satisfied. But there exist com-
plete generalized minimal surfaces in i? 3 , not lying in a plane, whose
Gauss map lies in an arbitrarily small neighborhood on the sphere.
So the results are not true for arbitrary generalized minimal surfaces.
The method of our proof is similar to the method of [8].

Proof Step 1. Since / is non-degenerate, none of the Fk(Av) van-
ishes identically, where i/ = l,...9q9k = 09...,n. Let A be given
by the equations

a^zo + -' + a^Zn = 0,

Fjc= y ^ Fi ...| β\ Λ Λ £| ,
κ ' <* l0 lk Ό lk '
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^...Λ = sign(;° MF io..,t,
0 k \Jθ'"JkJ ° k

then for each pair {y, k), there is i\, . . . , i^ such that

Ψvk = Σ ZvlFl

does not vanish identically. Apparently ψV(j = ^(A/), ẑ/« = Fn.
Every ^ is holomorphic, so they have only isolated zeros.

Step 2. The hypothesis of the theorem implies that outside of a
compact set D in S, f does not intersect any of the A\, . . . , Aq

therefore i 7 ^ ) Φ 0. Let

5' = {p € SVD: y ^ ^ 0 for any (y, k)}.

On S' we define a new metric

where

the last inequality is equivalent to sp*/q > 1.
Here the definition of ds2 would be valid if 5" has a global coor-

dinate z. Take a hyperplane A (out of A\, . . . , Aq). Then on 5",
/ does not intersect A, namely

this means that if ξ = aoX\(z) H h amxm(z) is a global coordinate
on S', call it z, then ds 2 is well defined.

Step 3. Since F(AV), -Frt and ^ ^ are all holomorphic, the metric
ds2 is flat, and it can be smoothly extended over D. We thus obtain
a metric, still call it ds2 , on

S" = S'UD

that is flat outside the compact set D. The key to our proof is showing
that S" is complete in that metric.
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Step 4. We proceed by contradiction. If S" is not complete, then
there is a divergent curve γ(t) on S" with finite length. By removing
an initial segment, if necessary, we may assume that there is a posi-
tive distance d between the curve γ and the compact set D. Thus
γ: [0, 1) —• S", and since γ is divergent on S", with finite length, it
follows that from the point of view of S, either γ(t) tends to a point
z 0 where

or else γ(t) tends to the boundary of S as t —• 1. But the former
case cannot occur, because if

v,k

then by the fact that εp*/q > 1 (here q is the number of hyperplanes)
we have

\ds\ ~ -jr-dz
\z-zQ\δo

around ZQ where c > 0, ^o > 1 Thus

ds = oo,

contradicting the finite length of γ.

Step 5. We conclude that γ(t) must tend to the boundary of S when
t -» 1. Choose fo such that

that is, the length of γ([to, 1)) is less than d/3. Consider a small disk
Δ with center y(ίo). Since ofs2 is flat, Δ is isometric to an ordinary
disk in the plane. Let G be an isometry of \w\ < η onto Δ with
G(0) = γ(to). Extend G, as a local isometry into S', to the largest
disk possible, say \w\ < R. (Note that G may be viewed simply as
the exponential map to S" at y(ίo).) I*1 v * e w °f // ^ < f ? and the
fact that γ is a divergent curve on S, we have R < d/3. Hence the
image under G must be bounded away from D by a distance of at
least 2d/3. Thus, the reason that the map G cannot be extended to a
larger disk must be that the image goes to the boundary of S". Since
the zeros of |.F«|1+ε Πi/,jfc \Ψvk\ε^q have been shown to be infinitely
far away in the metric, the image must actually go to the boundary
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of S. More specifically, there must be a point WQ with \wo\ = r,
such that the image under G of the line segment from 0 to w0 is a
divergent curve Γ o n S . Our goal is to show that Γ has finite length
in the original metric ds2 on S, contradicting the completeness of
the original surface.

Step 6. We know that

\dw\ = \ds\ = \dz\

Instead of z, we change to the coordinate w for the right-hand side
of the above expression. Precisely speaking, we let

~F(w) = (fQ(w)9 ... , f n ( w ) ) = (fo(z(w))9 ... , f n ( z ( w ) ) ) = F(z(w))9

and let ψ^iw) be defined from 7{z) in the same way the
defined from F(z). Then a little computation shows that

dw
~dϊ

was

d w i+*V.+«β.)

by

we have

dw
~dz~

Step 7. We now denote by C the line segment from 0 to WQ , and
by Γ, the image of C on 5 . Then for the length L of Γ, we have

= 2 f \F(z(w))\\dz(w)\
Jc

= 2 / |F(tι;)|
Jc

dz_
dw

\dw\

ΠLi
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By the definition of ψuk , {ψ^l < \Fk{Av)\, and using the proposition
of the previous section, the Fujimoto inequality, we have

Because 0 < (Pn + QnZ)l{q - {n + 1) - Qn+\&) < 1, L is finite.

Step 8. To sum up, we have shown that if the surface S" were
not complete, then we could find a divergent curve on S with finite
length in the original metric, so that S would not be complete. We
therefore conclude that S" is complete. Since the metric on S" is
flat outside of a compact set, we are in a familiar situation (see [11] p.
3564, or Osserman, A survey... , p. 81). By a theorem of Huber [7],
the fact that S" has finite total curvature implies that S" is finitely
connected. We conclude first that \Fn\

λJrε]\v k\ψvk\εlq can have only
a finite number of zeros, and second, that the original surface S is
finitely connected. Further, by [10, Theorem 2.1] (or the argument
in [11, pp. 354]) each annular end of S" 9 hence of S, is confor-
mally equivalent to a punctured disk. Thus, the Riemann surface M
on which S is based must be conformally equivalent to a compact
Riemann surface M with a finite number of points removed. In a
neighborhood of each of those points the Gauss map / does not in-
tersect q > n(n - l)/2 + I > n + 2 hyperplanes. By a generalized
Picard theorem (see [2, p. 136]), the Gauss map / can be extended to
a holomorphic map from M to Pn(C). If the homology class repre-
sented by the image of / : M —> Pn(C) is m times the fundamental
homology class of Pn(C), then we have

KdA = -2πm

as the total curvature of S. This proves the theorem.
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ON COMPLETE RIEMANNIAN MANIFOLDS
WITH COLLAPSED ENDS

ZHONGMIN SHEN

We show that if a complete open manifold with bounded curvature
and sufficiently small ends, then each end is an infranilend. Con-
versely, an open manifold with finitely many infranilends admits a
complete metric with bounded curvature and arbitrarily small ends.

1. Introduction. It is well known that if a complete open manifold
M of finite volume has bounded negative sectional curvature, i.e.

-Λ 2 < sec(M) < -Λi ,

where Λ; are positive constants, then M has finite topological type
(see [Gl]). In particular, M has finitely many ends. Moreover, each
end collapses, i.e., for any end E and any point p e M,

lim diam^Γ\S(p,r)) = 0,

where S(p, r) = {x e M d(p, x) = r} denotes the geodesic sphere
of radius r around p. Further, each end is topologically of the form
Nx (0, oo) for some infranilmanifold N. See [E] and [Sc] for details.
See also [K] in the case Λ2/Λ1 < 4.

An open manifold M is said to have N ends, if there is a compact
subset K such that for any compact subset K c K1 c M, M\Kf

contains exactly N unbounded components. Simply we call any such
component an end of M.

In [Sh] we studied complete open Riemannian manifolds M with
sectional curvature bounded from below and small ends. In order to
state the result, we need to introduce some notations. For r > 0, the
connected components, Σ, of d(M\B(p, r)), are called the boundary
components, where B(p, r) denotes the open geodesic ball of radius
r around p. Following [C] (compare [AG]), we define the essential
diameter 3f{p9r) at distance r from p by

(p 9 r) = sup diam(Σ),
Σ

where the supremum is taken over all boundary components Σ of
M\B(p, r) with Σ Π R(p, r) φ 0 , where R(p, r) = {γ(r) \γ is a ray
from p} c S(p, r). Notice that in the definition of 2{p, r) we do not

175
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assume that M has finitely many ends. In [Sh] we prove the following

THEOREM 1 ([Sh]). Let M be complete with sec(M) > - 1 . Suppose
that

r-+oo

Then M is homeomorphic to the interior of a compact manifold with
boundary. In particular, M has finitely many ends.

We do not know what is the best constant on the right side of (1).
This theorem is proved by applying the Morse theory to the distance
function dp(x) = d(p, x). Of course, dp is not of C 1 in general.
But we still have a notion of critical points of dp. We say a point q is
a critical point in the sense of Grove-Shiohama [GS] if for any vector
v G TqM, there is a minimal geodesic σ from q to p, making an
angle Δ(v , σ(0)) < f . For the further discussion in §2, we would like
to outline the proof of Theorem 1 here (see [Sh] and [G] for details).
Suppose M is as in Theorem 1. Let ep denote the excess function on
M, which is defined by ep(x) = limr_>+oo dp(x) + d(x, S(p 9r)) — r.
It follows from Toponogov's comparison theorem that if q e S(p, r)
is a critical point of dp, then

er

ep(q) > l n — — .μ coshr

Let Σ be any boundary component of M\B(p, r) with ΣπR(p, r) Φ
0 . An elementary argument shows that for any I G Σ ,

ep{x) < diam(Σ) < 3f{p, r).

Notice that ln(e r/ cosh r) —• In 2 as r —• +oc. Thus there is a large
RQ such that if r > i?o, Σ contains no critical points of dp . Let E be
an unbounded component of M\B(p, i?o), and let γ be a ray from p
such that y(i?o, oo) C E. Denote by ΣΓ the boundary component of
M\B{p, r) with y(r) € Σ r , r > i? 0 . Since all Σ r , r>R0, contain no
critical points of rfp, one can show that all Σ r are homeomorphic, and
E is homeomorphic to Σ ^ x (RQ , CXD) . Notice that M\B(p, i?o) has
finitely many unbounded components. Thus M has finite topological
type in the sense of Theorem 1. In this case, it is also easy to see

(2) 3T(p,r) = m a x d i a m ^ n S ( p , r ) ) , r > Ro,
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where the maximum is taken over all unbounded components of
M\B(p, RQ) . Readers can also refer to [C] for further discussion.

In this paper we will study the structure of small ends for com-
plete open manifolds with bounded sectional curvature. Riemannian
manifolds under consideration may have infinite volume and are not
required to be negatively curved.

THEOREM 2. Let M be a complete open n-manifold with p e M
fixed Suppose that |sec(M)| < 1. There is a small ε(n) > 0, such
that if

, r) < e(n),

then there is a compact subset K c M, such that each unbounded
component of M\K is diffeomorphic to N x (0, oo) for some infranil-
manifold N.

A manifold N is called an infranilmanifold if it is diίfeomorphic
to a compact space G/T, where G is a nilpotent Lie group and Γ is a
discrete group of affine transformations of G satisfying [Γ : G n Γ] <
oo. Here we have put the left invariant connection D on G for which
left invariant vector fields are parallel and G is regarded as a group
of affine transformations on G by left translations (see [R]). An end
of an open manifold, which is diίfeomorphic to N x (r, oo) for some
infranilmanifold, is called an infranilend.

Suppose M is an open ^-manifold with finitely many infranilends.
A natural question is whether or not M admits a complete metric g
such that I sec(Λf, g)\<l and each one E = N x (0, oo) collapses,
i.e.

(3) ίϊrn diam(iV x {r}) = 0.
r—κx>

The answer is affirmative.

THEOREM 3. If M is an open manifold with finitely many infranil-
ends, then M admits a complete Riemannian metric g satisfying
I sec(Af)| < 1 and (3) for each end E £ N x (0, oo).

The construction of the metric is not trivial, and is given in §3.
One needs to know precisely the structure of an infranilmanifold. Our
construction is inspired by [Wl].

2. Proof of Theorem 2. The proof of Theorem 2 is simple. We are
going to apply a theorem of Fukaya [Fl] and [F2] to our case.
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For two metric spaces X, Y and ε > 0, a map h: X —• y is said
to be an ε-HausdorίF approximation if for any points xi, # 2 £ X,

and the image of h, Λ(JΓ) c Γ, is ε-dense in y . Let A/J1, Aff1, m <
«, be complete with | sec(Afi)| < 1, | sec(Af2)| < 1 and inj(Ai2) > io.
Fukaya's theorem says that there is a small number ε = ε(n, io) SO
that if h: M\ —> Af2 is an ε-Hausdorff approximation, then there is a
fibration / : Afi —> AΓ2 such that f"ι(y) 9 y G Af2, is an infranilman-
ifold. Fukaya's theorem is an important generalization of Gromov's
result [G2] and [R] on almost flat manifolds.

Now we let M be a complete open π-manifold with p € M fixed.
First of all we only assume that

&(p,r)<δ, r>R0,

for some δ < In 2. As mentioned in §1, taking a larger number Ro

if necessary, one can show that any unbounded component, E, of
M\B(p, RQ) is homeomorphic to Nx (0, oo), where TV is a compact
manifold without boundary (see [Sh] for details). Furthermore, by (2)

(4) 3f{p, r) = maxdiam(£nS(p,r))<δ9 r>R0,
JtL

where the maximum is taken over all unbounded components, E, of
M\B(p,R0).

Fix an unbounded component E of M\B(p, RQ) . Define

π: E -+(Rθ9 oo),

x e E n 5(p, r) —• r e (Ro, oo).

It is easy to see by (4) that for any X\, x2 G £ ,

(5) | ^ 1 , x 2 ) - | π ( x 1 ) - π ( x 2 ) | | < 2 ( J .

Thus π is an 25-Hausdorίf approximation.
Although Fukaya's theorem is stated for complete manifolds, his ar-

gument can be carried over to our case. Let E\ = {x e E, d{x, dE) >
1}. By [Fl] and [F2] there is a small number ε(n) > 0 such that if
(5) holds for some δ < ε(n), then there is an open neighborhood
ί/, Ex c U c E, and a fibration f:U-> (Rx, oo), Rι > Ro, with fi-
bres f~ι(r) diffeomorphic to an infranilmanifold N by φr. One then
defines a diffeomorphism φ: U -+ N x (i?i, oo) by φ(x) = (φr(x) 9 r)
for χef-χ(r).

One can also follow [CFG, §2] to construct the above fibration /
by the center of mass techniques. This completes the proof.
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Let M be a complete ^-manifold with N ends. Let E\, . . . ,
denote all unbounded connected components of M\K, where K is
some compact subset. Let p eM. Set

diam(/?, M) = lim max diam(J?/n 5(p, r)).
r * o o l<j<JV

Clearly, diam(/?, M) is independent of AT. The following corollary
is a direct consequence of the above argument.

COROLLARY 1. Let M be complete n-manifold with finitely many
ends. Suppose that | sec(Af)| < 1. There is a small ε(n), if for some
point p eM,

diam(/?, M) < e(n),

then there is a compact subset K such that each unbounded component
E of M\K is diffeomorphic to N x (0, oo), where N is an infranil-
manifold.

3. Construction of the metrics. Let M be an open manifold with
finitely many infranilends, say, E\, . . . , EN, which are unbounded
connected components of M\K for some compact subset K. By
definition, each end E\ is diίfeomorphic to JV/ x (0, oo) for some
infranilmanifold iV/. Fix an end E = N x (0, oo). In order to con-
struct a complete metric on M satisfying (3) in Theorem 3, it suffices
to construct a metric g on E = iVx (0, oo) such that | sec(£r, g)\ < 1
and (3) holds.

Recall that N is an infranilmanifold if N = G/Γ, where G is a
nilpotent Lie group and Γ is a discrete group of affine transformations
of G satisfying [Γ, G n Γ] < oo. Here we have put the left invariant
connection D on G for which left invariant vector fields are parallel,
and G is regarded as a group of affine transformations on G by left
translations. Let L denote the Lie algebra of G, the space of left-
invariant vector fields on G. One has the following stratification

(6) L = L0D LiD D LkD Lk+ι = 0

where Li+ι = [L, L{\. Notice that H := Γ/(GnΓ) acts on L and
preserves the stratification (6). One can choose an //-invariant inner
product ( , ) 0 on L. Let Ft = {X e Lu (X, Y)o = 0 J G LM}.
Then L = FQ © ®Fk . One can define an //-invariant inner product
( , ) r on L by
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and (X,Y)r = 0 if X e Fi9 Y G Fj 9 i Φ j , where A/ are some
positive functions which are to be determined later. ( , )r defines an
//-invariant metric on G, which is then Γ-invariant. Hence it induces
a Riemannian metric gr on G/T. There is a bound C depending
only on G and ( , )o such that

for all X, Y e L. For a left-invariant vector l G i , w e denote it by
Z = £ \ Z(, where Z; denotes the component of Z in JFZ. Then for
any X, 7 G L , one has

We choose A, in such a way that the following inequalities hold:

k

s=i+\

Then for X = Σ JL0 Xi and Y = ΣLo γi >

(8) \\[X,Y]\\r =

< Σ Σ fh
ij s>max(ij)

<cΣ Σ
i7 5>max(/y)

h < (k + i)c\\x\\r\\γ\\r.
U

Let V denote the Levi-Civita connection of gr 9 and R its curvature
tensor. It follows from (8) and formulas in [CE, Proposition 3.18],
that

(9) ||Vjrr||r < l(

(10) \\R(X,Y)Z\\r<6(k+l)2C2

for any orthonormal left-invariant vector fields X, Y and Z in L
with respect to ( , ) r .

We define a warped product metric g on E = N x (0, oo) by

g = gr
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Let H = ̂  and X, Y, Z, etc. be left-invariant vector fields on G.
Let V denote the Levi-Civita connection of g. Then it is easy to get
the following

for any left-invariant vector fields X e Ff and Y eFj.
We now take λ/(r) = e-α/( r + 1), α, = 2ι - 1. Then (7) holds. It is

easy to see that g has bounded curvature on E = JV x (0, oo). More
precisely, if

then by (9) (10) there is constant K{k, C) such that

\\R{X,H)H\\<K{k,C),

\\R(X,Y)H\\<K(k,C),

\\R(X,H)Y\\<K(k,C),

\\R(X,Y)Z\\<K(k,C)

for any orthonormal left-invariant vector fields X € F(, Y € i7, and
ZeFm.

In particular, one has (compare [W2])

h'-'(r)
g(R(X, H)H, X) = - ^ i i ,

h'Λr)h'λr)
g(R(X, Y)Y, X) = gr(R(X, Y)Y,X) - ^ ^

for orthonormal left-invariant vector fields X € Fj, Y eFj.
Observe that gr < e~2(r+^go. One concludes that

diam(iV x {r}, gr) < e~r~ι diam(iV, ^o) —* 0

as r -* oo. This completes the proof.

REMARK. Taking Λ;(r) = e~ α ' ( r + 1 ) , αz = 5 2 ! - 1, one can make
the curvature negatively pinched on each end, provided that δ is suf-
ficiently large.
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CURVATURE CHARACTERIZATION
OF CERTAIN BOUNDED DOMAINS OF HOLOMORPHY

FANGYANG ZHENG

In this note, we study the relation between the existence of a neg-
atively curved complete hermitian metric on a complex manifold M
and the product structure of (or contained in) M. We introduce the
concept of geometric ranks and give a curvature characterization of the
rank one manifolds, which generalizes the previous results of P. Yang
and N. Mok (see below). In the proof, we used the old techniques
of Yau's Schwartz lemma and Cheng-Yau's result on the existence of
Kahler-Einstein metrics.

1. Introduction and statement of results. Let M = M\ x Mi be the
product of two complex manifolds. Then it is generally believed that
M does not admit any complete Kahler metric with bisectional curva-
ture bounded between two negative constants. When M is compact,
this is certainly true since the cotangent bundle T^ is not ample. In
the noncompact case, the first result toward this direction was obtained
by Paul Yang in 1976:

THEOREM ([Y]). For any n > 2, there exists no complete Kahler
metric on the poly disc Cn with bisectional curvature bounded between
two negative constants.

In [M], as an application of his metric rigidity theory, Mok general-
ized the above to give an interesting curvature characterization of the
rank one bounded symmetric domains:

THEOREM ([M]). If Ω is a bounded symmetric domain of rank > 2,
then there exists no complete hermitian metric on Ω with bounded
torsion and with bisectional curvature bounded between two negative
constants.

Mok's proof is a constructive one. It used the existence of a uniform
lattice Γ on Ω, as well as the integral formula on Ω/Γ discovered by
Mok (cf. Proposition (3.2) in [M]). This proof is very interesting by
itself. However, we noticed that Yang's approach can be used to give a
more straightforward proof of Mok's result, and the conclusion holds

183
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for a larger class of manifolds (since one avoids the use of uniform
lattice). Intuitively speaking, the reason for the non-existence of the
above negatively curved metrics on Dn or Ω is the product structure
on or nicely contained in the manifold (by the polydisc theorem, there
is a totally geodesic proper embedding Dr —• Ω, r = rank(Ω)).

First let us fix some notations. From now on, we shall say that a
hermitian manifold (M, h) is negatively curved, if it is complete, of
bounded torsion, and with bisectional curvature bounded between two
negative constants.

Now let Ω be a bounded domain of holomorphy in Cn. By the
results of Cheng-Yau [C-Y] and Mok-Yau [M-Y], there exists a unique
complete Kahler-Einstein metric on Ω with Ricci curvature - 1 . De-
note it by g. Again let D be the unit disc in C.

DEFINITION. Ω is said to be of geometric rank > 2, if there is
a complete Kahler manifold (M, go) with Ricci curvature bounded
from below, and a holomorphic embedding f:DxM-+Ω such that
ft(8) ^ So for each t e D, where ft = f(t, •) •

In other words, Ω is of geometric rank > 2 if it contains a product
manifold with bounded second fundamental forms. It is obvious that
one can define the actual geometric rank of Ω however, in this note
we shall only be interested in the distinction between the rank one
case and the higher rank cases.

For bounded symmetric domains, the polydisc theorem implies that
the usual rank dominates the geometric rank.

In §2, we shall prove the following generalization to the above cited
result of Mok:

THEOREM A. Let Ω be a bounded domain of holomorphy. If it is of
geometric rank > 2, then it cannot be negatively curved.

We shall also give partial answers in §3 to the question that product
manifolds cannot be negatively curved:

THEOREM B. Let M = M\ x Mi be the product of two complex man-
ifolds', with Mi compact. Then there is no {not necessarily complete)
hermitian metric on M with bisectional curvature < - 1 .

THEOREM C. Let M = M\ x M2 be the product of two complex
manifolds. Suppose that both M\ and Mi admit complete Kahler
metrics with Ricci curvature bounded between two negative constants.
Then M cannot be negatively curved.
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COROLLARY. If both M\ and Mi are relatively compact open sub-
sets of some Stein manifolds, then M = M\xMi cannot be negatively
curved.

In particular, the product of two bounded domains cannot be nega-
tively curved.

2. Bounded domains of holomorphy. First let us recall the general-
ized Schwarz lemma of Yau [Yl] and Chen-Yang [C-Yl].

PROPOSITION 1 ([Yl]). Let (M9 g) be a complete Kάhler manifold
with Ricci curvature > -K\, and (JV, h) be a hermitian manifold with
bounded torsion and with Ricci curvature < -K^ < 0. If dim(M) =
dim(iV), and f:M—>N is holomorphic, then f*dυ^ < {Kι/K2) dvg.

PROPOSITION 2 ([C-Yl]). Suppose (M, g) is a complete hermitian
manifold with bounded torsion, and with second Ricci curvature >
-K\. Let (N, h) be a hermitian manifold with nonpositive bisectional
curvature and with holomorphic sectional curvature < -Kι < 0. Then
for any holomorphic map f:M-^N, one has f*(h)< (K\/K2)g .

We shall also need the following generalized maximum principle of
Yau:

PROPOSITION 3 ([Y2]). If (M, g) is a complete Kάhler manifold
with Ricci curvature bounded from below, and φ is a C2 function on
M bounded from above. Then for any e > 0, there exists x e M such
that: φ(x) > s\xpφ(M) - e, | V ^ ( x ) | < ε , Aφ(x)<ε.

Now we are ready to prove Theorem A. The idea comes from Yang's
proof in [Y] and the basic tool is the Schwarz lemma.

Proof of Theorem A. Let Ω be a bounded domain of holomorphy,
with geometric rank > 2. Let g be the complete Kahler-Einstein met-
ric on it. By definition, there is a complete Kahler manifold (M, go)
with Ricci curvature bounded from below, and a holomorphic embed-
ding / : DxM -• Ω such that ft*g > g0 for each t e D.

Assume that Ω admits a negatively curved metric h. Applying
Proposition 2 to the identity map id: (Ω, g) —• (Ω, Λ), one gets
g > c'h, while by Proposition 1 to id: (Ω, h) -> (Ω, g) one gets
dvg < c" dυh , with c, c" some positive constants. Therefore, g and
h dominate each other. Hence h>cg with c > 0.
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Now let p be a nonnegative smooth function with compact support
in D. For z e M, define

φ(z)= f p(t).fz*(ωh)
JD

where ω^ is the Kahler form on h, and fz = /( , z): D —• Ω. Then
9> is a positive smooth function on M. It is also bounded from above,
since by Schwarz lemma, for any z e M, //(ω^) is dominated by
the Poincare metric on D.

Let z = (z\, . . . , zk) be a local holomorphic coordinate on Λf, £ =
z 0 a local coordinate on D, and (t, z, z^ + 1 , . . . , zrt_!) a coordinate
on Ω. Let —d < 0 be an upper bound for the bisectional curvatures
of h. Then we have that for each 1 < i < k:

Therefore,

dzii

hence Δ^ > c c ^ ? where the Laplacian is with respect to go. Let
u = log φ then the inequality becomes

Since w is also bounded from above, by Proposition 3, we get a con-
tradiction. So we conclude that Ω cannot be negatively curved. D

REMARK. From the proof it is clear that the bounded domain (Ω,g)
can be replaced by any complete hermitian manifold with bounded
torsion and with Ricci curvature bounded between two negative con-
stants (or, Ricci < -c < 0 and second Ricci > -d), as long as we
keep the same condition on the geometric rank. One may also replace
the Kahlerness of go by hermitian with bounded torsion, since Propo-
sition 3 (hence Proposition 1) remains valid under such a replacement;
here Δ is the complex Laplacian.

3. Noncompact product manifolds* Let M = M\ x Mi be the prod-
uct of two complex manifolds. In this section we shall verify that M
cannot be negatively curved under the additional assumptions. First
let us quote the following result due to Cheng-Yau [C-Y] and Mok-Yau
(cf. [M-Y], (3.1)):
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PROPOSITION 4 ([C-Y], [M-Y]). Suppose X is a Stein manifold,
M c X is a relatively compact open subset which is also Stein. If
there exists a hermitian metric h on M with holomorphic sectional
curvature < — 1 and h> g for some Kάhler metric g on X. Then M
admits a complete Kάhler-Einstein metric with negative Ricci curvature.

Proof of Theorem B. Assume the contrary, namely assume that there
is a hermitian metric on M with bisectional curvature < — 1. Take
a small disc D C M j and a cut off function /? in ΰ . Then there
exists a positive constant c such that h\MX{t} > c h\Mxx{Q>} for each
t G Supp(/>). Since M\ is compact, the proof of Theorem A gives a
contradiction. D

Proof of Theorem C. Assume the contrary: there is a negatively
curved metric h on M. For / = 1, 2, let g\ be the complete Kahler
metric on Mi with Ricci curvature bounded between two negative
constants, and g = g\Xgι Then by applying Propositions 1 and 2 to
the identity map on M we get that h and g are dominated by each
other. Hence for each y eM2, h\MχX^ > c g\Mxχ{y} = o £i > where
c > 0 is a constant. Take any small disc D C Mi, and the proof of
Theorem A goes through. D

REMARK. It is also clear that in Theorem C above one can lose the
Kahlerness assumption on gt to the weaker hermitian with bounded
torsion.

Proof of Corollary. Again assume the contrary: there is a negatively
curved metric h on M = MχxMι. Then h\Mιx{y} and /2|{X}XM2 g i y e

complete hermitian metrics with non-positive holomorphic sectional
curvature on M\ and Mi, respectively. By [G] or [S], we know that
both M\ and Mi are holomorphically convex, hence Stein as they
are contained in Stein manifolds. By Proposition 4, they admit com-
plete Kahler-Einstein metrics with negative Ricci curvature. Hence
Theorem C applies and one gets a contradiction. D

REMARK. In proving the non-existence of negatively curved metrics
on a general product manifold, the main difficulty comes from the
fact that on a submanifold with restricted metric, the curvature is not
necessarily bounded from below even if the ambient manifold is so.
Or equivalently the second fundamental form need not be bounded.
While the above line of argument depends on the Schwarz lemma, or
eventually the generalized maximum principle, which requires a lower
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bound on the Ricci curvature, it should be interesting to know whether
or not the following holds:

Question. On the bidisc D x D, is there any complete Kahler metric
with bisectional curvature < - 1 ?
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THE CLASSIFICATION OF COMPLETE LOCALLY
CONFORMALLY FLAT MANIFOLDS

OF NONNEGATIVE RICCI CURVATURE

SHUNHUI ZHU

The main purpose of this note is to give a classification of com-
plete locally conformally flat manifolds of nonnegative Ricci curvature.
Such classification for the compact case has been obtained by various
authors in the past decade.

1. Introduction. Recall that an n-dimensional Riemannian mani-
fold (Mn, g) is said to be locally conformally flat if it admits a coor-
dinate covering {Ua, φa} such that the map φa: (Ua, ga) -4 (Sn, g0)
is a conformal map, where go *s the standard metric on Sn . It follows
from this definition that the Weyl tensor of g vanishes. In particular,
the full curvature tensor of g can be recovered from the Ricci tensor
of g (an alternating sum). Thus conditions on the Ricci tensor of
such manifolds impose very strong restrictions on their metrics. In
the first part of this note we confirm this by showing,

THEOREM 1. If (Mn, g) is a complete locally conformally flat Rie-
mannian manifold with Ric(#) > 0, then the universal cover M of M
with the pulled-back metric is either conformally equivalent Jo Sn, Rn

or is isometric to Rx Sn~ι. If M itself is compact, then M is either
conformally equivalent to Sn or isometric to Rn, RxSn~ι, where Sn

and Sn~ι are spheres of constant curvature.

The second part of Theorem 1 was obtained by various authors as
consequences of investigating more general classes of manifolds, see
the work of Schoen and Yau ([SY]) for references. An elementary
proof for this case was also given recently by Noronha ([No]).

We remark that although the validity of Theorem 1 is not surpris-
ing, many similar problems in Riemannian geometry still remain open
in the noncompact case, while the compact case has long been solved.
The difficulty usually lies in the lack of analytic techniques for non-
compact manifolds. The analysis in our case does carry through ([SY])
essentially because of the developing map as outlined below.
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Our argument for the complete case uses heavily the results of
Schoen and Yau. Let us outline the idea here. In [SY], Schoen and
Yau proved that the developing map for locally conformally flat man-
ifolds with nonnegative scalar curvature is injective, thus exhibiting
them as quotients of domains in the sphere by Kleinian groups. Just
as in the study of Kleinian groups in the works of Patterson ([Pa])
and Sullivan ([Su]), Schoen-Yau studied the Hausdorff dimension of
the complement of the image of M under the developing map, and
proved that it can be controlled^ properties of Green's functions of
the conformal Laplacian on M. Our observation is that under the
condition of Ric > 0, Green's function gives a much stronger control
on the Hausdorff dimension than in the case of nonnegative scalar
curvature. In fact, we will show that the Hausdorff dimension is zero.
Theorem 1 is a consequence of this fact and the splitting theorem of
Cheeger-Gromoll ([CG]).

In the second part, we study locally conformally flat manifolds un-
der the more general condition of Ric > -Λ 2 , and prove,

THEOREM 2. If (Mn, g) is a compact locally conformally flat man-
ifold with

Ric > -Λ 2 , diam(M) < D,

then bi(M, R) < C(n, AD) for any i, where C(n, AD) is a constant
depending only on n and AD.

Theorem 2 is a consequence of a general result about elliptic in-
equalities based on Moser iteration and P. Li's lemma. This line of
thought was initiated by P. Li and later developed by Gallot, Besson
and Berard, among others (see [Be]). Theorem 2 is basically known
without being explicitly stated; we find it illuminating to put it here
since it gives a parallel to Gromov's famous estimate for Betti numbers
for Riemannian manifolds with lower sectional curvature and diam-
eter bounds. And together with a corollary of Theorem 1, it gives
strong evidence to the validity of the following conjecture, which was
the author's initial motivation for studying locally conformally flat
manifolds.

Conjecture. There are only finitely many homotopy (homeomor-
phism, diffeomorphism) types of locally conformally flat manifolds
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satisfying

Ric(M) > -Λ 2 , diam(M) < D, vol(M) > V.

2. Nonnegative Ricci curvature. As pointed out in the introduction,
we will use heavily the results from [SY]. Since [SY] is a long paper
with many results, we will summarize here what is needed for our
argument.

By the definition of locally conformally flat manifolds and a stan-
dard monodromy argument (as in the proof of analytic continuation),
it is easy to construct a conformal map Φ: M —> Sn which is unique
up to conformal transformations of Sn . Φ is called the developing
map. It is an easy consequence of the existence of the developing
map that any compact simply connected locally conformally flat man-
ifold is conformally equivalent to Sn (originally due to Kuiper ([Kul],
[Ku2])). In the general case, the significance of the developing map
is at leastjwofold. Firstly, it gives in a natural way a compactifica-
tion for M which makes the analysis easier when M is not compact.
Secondly, when Φ is injective, it gives a uniformization for locally
conformally flat manifolds, exhibiting them as quotients of domains
in the sphere by Kleinian groups. The major result of [SY] is to find
a class of manifolds for which the developing maps are injective. In
order to state the results from [SY], we need to consider the conformal
Laplacian Lg , which, when acting on a function φ, is defined as

where R(g) is the scalar curvature of g and Δ is the usual (nega-
tive) Laplacian. Lg is conformally invariant in the sense that for any
conformal metric g* = uΛ^n~2^g, we have

(1) Lgm(φ) = u-

Letting φ = 1, we get the Yamabe equation:

By the help of the developing map, it is quite standard to show that
the conformal Laplacian Lg of M has a minimal Green's function
on M, denoted by Gp, where p is the pole. We will now state the
result we need from [SY] as the following lemma.
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LEMMA 1 ([SY]). Let (Mn, g) be a complete locally conformally flat
Riemannian manifold with nonnegative scalar curvature and Φ: M —•
Sn the developing map. Then,

(1) Φ isinjective {Theorem 4.5 in [SY]).
(2) dΦ(M) c S π w of codimension at least two (Propositions 3.3

4.4 in [SY]).
(3) For any ε > 0, any open set O containing p (Proposition 2.4(iii)
[SY]),

/ σ(n+β)/(ιι-2) rf^ < Q O β

As pointed out in the^ introduction, our strategy is to give a good
estimate for dim(<9Φ(M)), where dim is the Hausdorff dimension.
The idea in [SY] is to consider the quantity

1 ,
J

d(M) = inf \r\ f G2'/^-2) dυg < oo
[ I JM\O

and proved dim(#Φ(Af)) < d(M). The starting point of our inves-
tigation is that this inequality is not sharp for the following trivial
example, and in trying to give a sharp estimate for this example we
obtained a proof of Theorem 1.

EXAMPLE. Consider (Rn , ωo) and (Sn, go) where the metrics are
the standard metrics. Let Ψ: (Rn, ωo) —> (Sn, go) be the stereo-
graphic projection (which is the developing map for (Rn, ω0)) de-
fined as

2 ^i 2yn \y\2-Λ

+ \y\2'- ' l + |y |2' \y\2+l) '

ψ-lCv, v P\ _ ( Xl X» \

Then,

where w = 1/(1 - £)(n~2)/2. The Green's function for (Rn, ω) at 0
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is

The Green's function for (Sn , go) at S (the south pole) is

H s ( x ι , . . . , x n , ξ ) = u ( 0 , ... , - l )

Similarly, for the north pole N,

From the formula for GQ, we see that d(Rn, ωo) = § . This shows
that (3) of Lemma 1 is sharp. BuUΛviously dim(<9Ψ(i?")) = 0. Thus
the inequality dim(dΦ(M)) < d(M) is not sharp when M = Rn .

Since the functions in the above examples are explicit, it is not hard
to give an analytic proof that dim(dΨ(Rn)) = 0. Because this proof
illustrates the idea for the proof of Theorem 1, we will first give a
proof in this case.

To this end, as in [SY], we consider the concept of capacity, which
is easier to handle analytically than the Hausdorff dimension.

DEFINITION. For a subset S c (Mn, g), we define

r r oo 1

Φ \JM ' / '

where O is some open set containing S.
The relation between capacity and the Hausdorff dimension is that

i f c p ( S ) = 0 , t h e n dim(S) <n-p ( [ A M ] ) .

EXAMPLE (continued). We now give an analytic proof that
dim(dΨ(Rn)) = 0. In fact, choose a function φa: Rn -> R such
that

0, \y\<a,

1, \y\>2a9

and \VωQφa\ < 2/a. Note that

l + |y|2

Thus,
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\N JR.

\ ( \ \ Γ o ^ ( )
a<\y\<2a ° «" Ja<\y\<2a

a2)-* I d v ω < >

Thus Cn-ε(dΨ{Rn)) = 0 for any ε > 0. Hence dim(ΘΨ{Rn)) = 0.
We are now ready to prove the following main lemma.

LEMMA 2. Let (Mn, g) be a locally conformally flat manifold with

nonnegative Ricci curvature. Let Φ: (M, g) —• (Sn, #o) ^ the devel-

oping map. Then,

dim(<9Φ(M)) = 0.

Proof. By Lemma 1, Φ is injective, thus we can view ¥ as a
subset of Sn , and there is a function u: M -> i?+ such that Φ*g0 =

w-4/(«-2)g. Without loss of generality, we assume Φ(/?) = iV. By
equation (1), we calculate,

Lg(u~ι <V(HN)) = L{φ-Ύg((φ-ιnu-1)
1)*^-1) -HN)

thus L^(w(/7)(w+2)/("-2) . w"1 Φ*(HN)) = δp. Using (2) of Lemma
1 and the minimality of Gp, it is standard to conclude that Gp =
w(/?)(«+2)/("-2).u~ι -Φ*(HN) (see [SY], p. 55). Therefore, the integra-
bility condition in (3) in Lemma 1 is equivalent to

(3) / u-(n+ε^n-2Uvg<oo.
JM\O

(Note that H^ is bounded in Sn\O.) Now for any a > 0, we choose,
as in the example, a function φa on M, such that

ds(x,p)>2a,
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and \Vgφa\ < 2/a. Then

o = f \Vφ*{go)ΦaΓ£dvφ*{go)
J M

<(1Y~* ί u-W
\aJ Ja<d(x,p)<2a

2ε/(n+ε)

2ε/(n+ε)

an

("-ε)/(w+ε) -> 0 (as a -* +00),

where in the last inequality we have used (3) and the Bishop volume

comparison theorem. Thus Cn-ε(dΦ(M)) = 0 for any e > 0. Hence

dim(0Φ(Λf)) = O. D

Proof of Theorem 1. Since any manifold with more than one end
contains a line, it follows from the Cheeger-Gromoll splitting theorem
that a manifold of nonnegative Ricci curvature has at most two ends.
Consider the developing map Jϊ>: M -* Sn . Eachjmd of M gives a
connected component of dΦ(M) therefore^ dΦ(M) has at most two
connected components. By Lemma 2, dΦ(M) consists of at most two
points. We therefore have the following three cases.

(1) If dΦ(M) is empty, then M is conformally equivalent to Sn .
(2) If dΦ(M) has only one point, then M is conformally equiva-

lent to Rn. _
(3) If dΦ(M) has two points, by composing Φ with a conformal

transformation of Sn, we can assume dΦ(M) = {S, N}. Writing the
metric of Sn in polar coordinates, we have g = u(t, x)(dt2+sin21 dσ)
where dσ is the standard metric on Sn~ι. On the other hand, by
the splitting theorem, M is isometric to R x N with N closed and
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simply connected, hence conformally equivalent to Sn~x. Therefore,
the metric g can be written as g = dr2 + f2(x) dσ. It follows that
the function u is independent of x. By a change of the parameter t,
we conclude that M is isometric to RxSn~ι with Sn~ι of constant
curvature.

Injthe case when M is compact, we only need to show that in case
(2) M is actually isometric to Rn . In fact, from (2), there is a positive
function u on M with ωo = u4^n~2^g. The Yamabe equation (2)
implies

Au - -Izλ-Ru = 0.
4(/f — 1)

Thus u satisfies the maximal principle. Since M is compact, u is a
constant. This shows M is isometric to Rn . D

COROLLARY. If (Mn, g) is an open locally conformally flat mani-
fold with

R i c > 0 , vol(Bp(r)) > crn

for some point p e M and some constant c > 0, where Bp{r) is the
geodesic ball of radius r around p, then Mn is conformally equivalent
to Rn.

Proof. It is well known that π\(M) is finite and M has only one
end; thus M is conformally equivalent to Rn. This implies that
7t\{M) is torsion free, hence trivial. Therefore, M is conformally
equivalent to Rn . D

REMARK. This corollary says that the local model in the sense of
M. Anderson ([An]) for the class in the conjecture in §1 is conformally
equivalent to Rn . This gives evidence that the conjecture is correct.

We end this section with a family of examples of conformally flat
metrics on Rn with nonnegative Ricci curvature and various volume
growth.

EXAMPLE. Let (Rn, ωo) be the standard flat metric on Rn . Con-
sider g = (r2 + l)~ 2 αωo, a globally conformally flat metric. It follows
easily from a direct computation that

_4a(n-2)(l-a)(r2-x2) . 4(n-l)α

" (2 + l)2 + (2+l)2

Thus when 0 < a < 1, we have Ric > 0. It's also easy to see,
(a) \ < a < 1 : Ric > 0, noncomplete;
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(b) a = \ : Ric > 0, complete, vol(2J(r)) = cnr
(c) 0 < a < \ : Ric > 0, complete, vol(B(r)) = cwr" .

3. Estimating Betti numbers. As pointed out in §1, Theorem 2 is
a consequence of a general result stated in [Be] and the following
well-known Weizenbδck formula. Since the proof is simple, for com-
pleteness, we will give a detailed proof of Theorem 2 here. The first
part of the proof is the standard Moser iteration. The second part is
what is known as Peter Li's lemma.

LEMMA 3 ([Gl]). Let (Mn, g) be a compact locally conformally flat
Riemannian manifold and φ a harmonic p-form. Then

where Uy is the Ricci tensor of g.

Proof of Theorem 2. Let us assume that Ric > -Λ 2 and diam(M) =
D. Then R >-n(n - 1)Λ2. It follows from Lemma 3 that

A\φ\2>2\Vφ\2-c(n,p)A2\φ\2,

where c(n, p) is a constant depending only on n and p. In what
follows constants will always be denoted in this way, while their values
may change. From the definition of the Laplacian, we have

Thus,
\φ\A\φ\>\Vφ\2-\V\φ\\2-c(n,p)A2\φ\2.

By the Schwarz inequality, it is easy to see \Vφ\2 > |V|<^||2 therefore,

-A\φ\<c{n,p)A2\φ\.

Multiply both sides by l^l2^"1 for k > 1/2, and integrate by parts,

I V(\φ\2k~ι). V\φ\ < c{n, p)A2 J \φ\2k,

that is,

y/2k-\

Recall the Sobolev inequality for a Riemannian manifold says ([Be]),

(φ,Z)Λ) .Z) | |V/ | | 2 + | |/ | | 2)
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for any f e Wι>2, where V = vol(Λf). Using the Sobolev inequality,
we continue the previous inequality,

\2/k

Wlk/in-l) < ( l + Φ P * Λ ) )WΦWl

Let A: = (j^Y , and multiply all inequalities with / = 0, 1, ... , we
deduce,

π ( ^ h τ

where we have denoted τ = -^ι It is easy to see that the product in
the above inequality converges.

Let Hp be the space of harmonic /?-forms with the L2 inner prod-
uct. By the Hodge theory, dim(Hp) = bp . Let ψ\, . . . , ψb be an
orthonormal basis for Hp . Consider the following function on M,

Note / is independent of the choice of orthonormal basis. Let
= m a x / . Define a map # p Λ /\p(T*oM) by ί ( ^ ) = ^(xb) Then
Hp = Kerί θ (Kers)-1-. Let {φi} be an orthonormal basis adapted to
this decomposition, there are at most dim(Ker.s)-J- of the φi's with
Φi(xo)φθ. Thus,

f(x0) < dim(Ker5)x max ψ^ζ < f " V sup
ΎWΦWΪ

Therefore,

bp{M, R)= I f(x)dvg < f(χo). V < (")

<C(n,DA). Ώ
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