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INTERPOLATED FREE GROUP FACTORS

KEN DYKEMA

The interpolated free group factors L(¥r) for 1 < r < oo (also
defined by F. Radulescu) are given another (but equivalent) definition
as well as proofs of their properties with respect to compression by
projections and free products. In order to prove the addition formula
for free products, algebraic techniques are developed which allow us
to show R*R*ί L(¥2) where R is the hyperfinite Hi -factor.

Introduction. The free group factors L(Fn) for n — 2, 3, . . . , oo
(introduced in [4]) have recently been extensively studied [11, 2, 5,
6, 7] using Voiculescu's theory of freeness in noncommutative prob-
ability spaces (see [8, 9, 10, 11, 12, 13], especially the latter for an
overview). One hopes to eventually be able to solve the isomorphism
question, first raised by R. V. Kadison of whether L(Fn) = L(Fm) for
n Φ m. In [7], F. Radulescu introduced Hi -factors L(Fr) for 1 <
r < oo, equalling the free group factor L(¥n) when r = n e N\{0, 1}
and satisfying

(1) L(FΓ) * L(FrO = L(FW.) (1< r, r' < oo)

and

(2) L(¥r)γ = L ( V ( l + ^ ) ) ( K r < o o , 0 < y < o o ) ,

where for a II i -factor < f̂, J?y means the algebra [4] defined as fol-
lows: for 0 < γ < 1, ^y = p^p, where p e «/# is a self adjoint pro-
jection of trace γ for γ = n = 2, 3, . . . one has ^£γ = */# ® Mn(C)
for 0 < 7i, Jι < oo one has

We had independently found the interpolated free group factors
L(Fr) (1 < r < oo) and the formulas (1) and (2), defining them
differently and using different techniques. In this paper we give our
definition and proofs. This picture of L(Fr) is sometimes more con-
venient, e.g. §4 of [3]. It is a natural extension of the result [2] that

(3)
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where R is the hyperfinite II i -factor. We also introduce some ele-
mentary algebraic techniques for freeness which have further appli-
cation in [3]. One consequence of them that we prove here is that

This paper has four sections. In § 1 we state a random matrix result
(from [2], [7]) and some consequences; in §2 we define the interpo-
lated free group factors and prove the formula (2); in §3 we develop
the algebraic techniques; in §4 we prove the addition formula (1) and
also make an observation from (1) and (2) (also observed in [7]) that,
as regards the isomorphism question, we must have one of two ex-
tremes. Our original proof of the addition formula (1) was a fairly
messy application of the algebraic techniques developed in §3. The
proof of Theorem 4.1 that appears here, while still using the algebraic
techniques in an essential way, benefits significantly from ideas found
in the proof of F. Radulescu [7].

1. The matrix model. Voiculescu, as well as developing the whole
notion of freeness in noncommutative probability spaces, had the fun-
damental idea of using Gaussian random matrices to model freeness,
which he developed in [12]. In [2], we extended this matrix model
to the non-Gaussian case and also to be able to handle semicircular
families together with a free finite dimensional algebra. As Radulescu
observed in [7], the matrix model necessary to be able to handle the
free finite dimensional algebra can be easily proved in the Gaussian
case directly using Voiculescu's methods (cf. the appendix of [2]). In
any case, we shall use this matrix model in this paper, and quote it
here, as well as some results of it. Our notation for random matrices
will be as in [2]. A trivial reformulation of Theorem 2.1 of [2] gives

THEOREM 1.1. Let Y(s, ή) € Mn(L) for s e S be selfadjoint inde-
pendently distributed nxn random matrices as in Theorem 2.1 of [2],
For

c= .. I eMN(C)
\ C j v i . . .

and for n a multiple of N let
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be a constant matrix in Mn{L). Then

{({Y(s,n)})seS,{c(n)\ceMN(C)}}

is an asymptotically free family as n —• oc, and each Y(s9 n) has for
limit distribution a semicircle law.

An immediate result of the above is (3.2 of [2]):

THEOREM 1.2. In a noncommutative probability space [y€, φ) with
φ a trace, let v\ = {Xs \s e S} be a semicircular family and let V2 =
{^j|l < i, j < n} be a system of matrix units such that {u\, v{\ is
free. Then in (enJfen , nφ\eχχjte^9 ωx = {euX

sen\l < i <n, s e
S} is a semicircular family and cύ2 = {e\iXsej\ 11 < / < j < n, s eS}
is a circular family such that {ω\, ωj) is free.

The following is analogous to Theorem 2.4 of [11].

THEOREM 1.3. In a noncommutative probability space (*/#, φ) with
φ a trace, let υ = {Xs \s e S} be a semicircular family and let R be a
copy of the hyperfinite IIi factor such that {u, R} is free. Let p e R
be a nonzero self adjoint projection. Then in (p^£p, φ(p)~ιφ\pj?p),
ω = {pXsp\s G S} is a semicircular family and {pRp, ω} is free.
(Note from [4] that pRp is also a copy of the hyperfinite II i factor.)

Proof. Suppose first that φ(p) = m/2k, a dyadic rational number.
Since for U e R a unitary, {R, UvU*} is free, we may let p be
any projection in R of the given trace. Writing R = M2k ® Mi ®
M2 ® , we use Theorem 1.1 in order to model v as the limit of
self adjoint independently distributed random matrices of size n =
2k , 2k+ι, 2k+1, . . . , and model a dense subalgebra of R (equal to
the tensor product of matrix algebras) by constant random matrices.
Choosing p to correspond to a diagonal element of M2k, we may
apply Theorem 1.1 again to see that ω is a semicircular family, pRp =
Mm ® M2 ® M2 <8> , and {pRp, ω} is free.

Now for general p , let (Pi)^ be a decreasing sequence of projec-
tions in R which converge to p and such that each φ{p{) is a dyadic
rational number. Then

{PiRpi = {PιyPι\y e R}, {PIXSPI\S e S}}

has limit distribution equal to {pRp, co} as / —> 00. For each / we
have freeness and semicircularity, hence also in the limit. D

In addition, modeling R and a semicircular family as in the above
proof, we can easily prove
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THEOREM 1.4. In a noncommutative probability space {Jί, φ) with
φ a trace, let v = {Xs \s e S} be a semicircular family, and let R be
a hyperfinite H\-factor containing a system of matrix units {e/y|l <
i, j < ri), such that {v, R} is free. Then in (en^en , nφ\e^e^y

co\ = {e\iXsen\l < i < n, s G S} is a semicircular family and
ω2 = {e\iXs€ji\l < ι < J< w, s G S} is a circular family such
that {<JO\ , ω 2 , ^iiiϊ^n} w *

2. Definition and compressions of L(¥f).

DEFINITION 2.1. In a W*-probability space (^#, τ), where τ is
a faithful trace, let i? be a copy of the hyperfinite II i -factor and
ω = {X*\t G T} be a semicircular family such that i? and ω are
free. Then L(FΓ) for 1 < r < oc will denote any factor isomorphic to
(R U {PtXtptlt G 2"})7/

? where pt e R are selfadjoint projections and

PROPOSITION 2.2. L(F r) is well-defined, i.e. if

stf = (R u {Pί^Λlί e T})" and 3B = (R u {qtX^tV e T})",

Proof. We show that J / (and thus also ^ ) is isomorphic to an
algebra of a certain "standard form." Let (Λ)^Li be an orthogonal
family of projections in R such that τ(fjc) = 2~k, and let fo = 1.
If r < ex) let iV/ (/ > 0) be nonnegative integers corresponding to
the base 4 expansion for r, i.e. r = ΣZo ^ή~l, Λ7/ < 3 if / > 1
a n d Σι>ϊNή~l < 4 " Z V/; > 0. If r = oc we let No = oo and
iV/ = 0 V / > l . L e t 5 C Γ , fc5 G N = {0, 1, 2, ...} for s e S be
such that \{s e S \ ks = l}\ = N[ V/ > 0. The algebra of standard form
is then & = (Ru{fk Xsfk \ s e S})" . Showing J / = Ψ will prove the
proposition.

Proving srf = ^ is an exercise in cutting and pasting. Note that if
Ut are unitaries in R (t e T), then {i?, ({C/^X^ D ^ r } is free in
(« f̂, τ ) . Moreover, each projection p e R is conjugate by a unitary
in i? to a projection that is a (possibly infinite) sum of projections
in {fk\k > 1}. Hence letting V — {t e T\pt ψ 0}, we may assume
without loss of generality that each pt for t £ V is equal to such a
sum, and we write pt — ΣkeK fk ? f° r Kt ^ N\{0} whenever t e V
and pt φ 1, and we set Kt = {0} if ^ = 1. Then

^ ^ ' G ^ , k'<k9 teT'})".
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Now we may appeal to the matrix model (§1) to see that (enlarging T
if necessary),

^ = (Ru{fkX^k'k'^fk'\k,k'eKt, k'<k, teT'})",

where a is a 1-1 map from {k, k' e Kt, k' < k, t e T'} onto
a subset T" of T. (The truth of the above assertion is most easily
demonstrated when V and each Kt are finite; the general case then
follows by taking inductive limits.)

Consider for a moment fk^fk1 f°Γ kf < k 9 teT. Note that fk>
is the sum of 2k~h> orthogonal projections, each of which is equivalent
in R to fa . Using the matrix model shows that

(4) (Ru{fkX%})''

S (Rυ{fkX<>fk\l <j < 2k-k'}\J{fkX'*fk\l<j < 2k~k'})\

where t\, . . . , t.k_k>, t\, . . . , f. ., are distinct elements of Γ, and
2 ι 2

the isomorphism in (4) maps R identically into itself. Using inductive
limits, one obtains
(5) sf = f = (R u {fkX

sfk)s e S'})",

for Sf some subset of T, A:5 G N for each s e S'. Moreover, checking
the arithmetic of the above moves shows that 1 + Σses' τ(fk ) 2 = r

Now for the pasting. Note that by the matrix model,

(6) (R U {fkX''fk\ 1 < i < 4>r = (R U {Λ-i^Λ-i})"

by an isomorphism mapping i? identically to itself, whenever k >
1, t\, . . . , t4 are distinct elements of T and teT. Suppose r <
oc. If r is not a dyadic rational then for each / > 0 let ^(/) =
(RU{^4^Λ \s ES9 ks < I})" c ^ . There is an increasing sequence
S'(l) of finite subsets of ^ such that Σses'(i)4~ks = Σo<k<ιNk^~k

and \Jι>\S'(l) = Sf. Let

(7) #(/) = (R u { Λ I 7 ,

Using (6) repeatedly we can find a compatible family of isomorphisms
Φι : #χ/) -* ^ ( / ) , and taking inductive limits yields f7 = ̂ . If
r equals a dyadic rational and S' is finite then a finite number of
applications of (6) yields i? = ̂ . If 5' is infinite, let / be largest
such that Nι ψ 0, let cr G 5 be such that kσ = I and let .// > g/+1 >
<?/+2 > be projections in i? where τ(gm) — 2~m. For m > / let
W(m) = (R u {Λ X5Λ I ^ e S\{σ}} u
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Then as before we can use the matrix model to find an increasing

family ^(m) of subalgebras of ^ whose union generates £f and

compatible isomorphisms i?(m) —• ^ ( m ) . Taking inductive limits

yields f7 = g7.

If r = oo, then considering S' from (5) and letting Sf

k = {s G
S'\ks = k}, we have that ££°= 0 IS^K"* = oo. Now by repeated ap-
plication of (6), we can transform the situation (by isomorphisms
mapping R identically to itself) so that first some \Sf

k\ = oo, then
all \S'k\ = oo, then \S'Q\ = oo and \S'k\ = 0 for all k > 1. Thus
& = /.(Foe) by (3). D

REMARK 2.3. Formula (2), together with the fact that L(¥r) for r e
N is the free group factor on r generators, shows that Definition 2.1
is equivalent to Radulescu's definitions 4.1 and 5.3 of [7]. However,
for r > 2 (i.e. Radulescu's 4.1), this equivalence can be seen directly
using the "standard form" of L(Fr) as defined in Proposition 1.3, and
by noting that the isomorphism

(8) R * L(Z) ^ L(Z) * L(Z)

in [2] sends the set of projections {fk\k > 1} c R into one of the
copies of L(Z) on the right-hand side of (8).

The formula in the following theorem for the compression of an in-
terpolated free group factor L(¥r) by a projection of trace γ was
first proved by Voiculescu [11] for the cases r = 2 , 3 , . . . , γ =
5 , 3 , ? , . . - and r = 00, γ e Q+. It was then extended by F.
Radulescu in [5] for r = 00 and γ e R+, and in [6] for r = 2, 3, . . .
and γ = ^ , ^ , . . . . Of course, Radulescu also proved this theorem
in the generality stated here in [7].

THEOREM 2.4.

(9) Z , ( F Γ ) , = L

for 1 < r < 00 and 0 < γ < 00.

Proof. It suffices to show the case 0 < γ < 1. Let L(Fr) = & =
{R U {ptXlPt\t e T})" be as in Definition 2.1, so 1 + ΣteT τ(Pt)2 = r

Let p G R be a projection having trace γ. Without loss of generality,
we may assume that each Pt<p. Then

which by Theorem 1.3 is an interpolation free group factor. Counting
gives the formula (9). D
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3. Algebraic techniques. A crucial ingredient of our proof of the
addition formula for free products (1) will be showing that R* R =
R * L(Z), with the isomorphism being the identity map on the first
copy of R. In order to show this, we will introduce some elementary
techniques (Definition 3.4, proof of Theorem 3.5) that are algebraic in
nature. These techniques have extensive further applications to free
products, as will be seen in [3].

REMARK 3.1. In this section, all von Neumann algebras will be fi-
nite and have fixed normalized faithful traces associated to them, and
all isomorphisms and inclusions of von Neumann algebras will be as-
sumed to be trace preserving. Von Neumann algebras that we obtain
from others by certain operations will have associated traces given by
the following conventions:

(1) group von Neumann algebras L(G) for G a discrete group will
have their canonical traces (equal to the vector-state for the vector
δeel2(G));

(2) factors, such as matrix algebras Mn = Mn(C) or the hyperfinite
Hi-factor R, will have (of course) their unique normalized traces;

(3) a tensor product A®B oΐalgebras will have the tensor product
trace τA ® τ# of the given traces on A and B

(4) a free product A * B of algebras will have the free product trace
τA * Tβ of the given traces on A and B

(5) if Jί is a von Neumann algebra with faithful trace τ , and p
is a projection in Jf, then pjfp will have trace τ(p)~~ιτ\pjtp

o

Also, if A is an algebra with specific trace, A will denote the ensemble
of elements of A whose trace is zero.

First we examine L(Z2) * L(Z2) (where Z 2 is the two element
group). The fact that Jί = L(Z2 * Z2) = L(Z) ® M2 is well known,
but we will need the following picture of ^ # .

PROPOSITION 3.2. Consider J? = L(Z2)*L(Z2) with trace τ, and let
p and q be projections of trace \ generating the first and respectively
the second copy of L(Z2). Then

(10) ^ = L°°([0, f] , ι/)®M 2 ,

where v is a probability measure on [0, f ] without atoms and τ is
given by integration with respect to v tensored with the normalized
trace on M2 = M2(C). Moreover, in the setup of(\ϋ), we have that
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, l l λ / I 0\ , / cos2# cos#sin0\
(11) p = [ a n d q — \ n . Λ . 2 Λ >v y ^ \0 0/ \cos0sin0 sπr0 y '

where θe[0, § ] .

Proof. It is well known that the universal unital C*-algebra gener-
ated by two projections p and q is A = {/: [0, §] —> Λf2(C) |/(0)
and /(§) diagonal}, with p and # as in (11). <̂ f thus has a dense
subalgebra equal to a quotient of A, and τ gives a trace on ^4. One
can easily see that a trace on A must be of the following form. Let
f(t)\ and f(t)2 be the diagonal values of f(t) for t = 0 or f . Then

+ α2/(0)2 + j τ2(/(0) Λ/(ί)

where τ2 is the normalized trace on Af2(C), z/ is a positive measure
on [0, f ] , aγ, a2, bι, b2 > 0 and |i/| + ax + α2 + b\ + 62 = 1 By
Example 2.8 of [9], the distribution of pqp in pJ£p has no atoms,
which implies that \v\ — 1 and v has no atoms. D

REMARK 3.3. In the right-hand side of (10), let

0

where "pol" means "polar part of." Then x is a partial isometry
from p to \ — p and Λί is generated by pqp together with x. Let
y = pol((l - q)pq). Then y is a partial isometry from # to 1 - q .
Let

_ / cos 0 - sin θ \
~ \sin# cosθ )

Then ^ is unitary and û ??/;* = <j , wxw* = y .
DEFINITION 3.4. Let (St)ιei be subsets of a unital algebra A 3 1.

A nontrivial traveling product in (5,),^/ is a product αiα2 α« such
that α, e 5Z (1 < j < «) and zi φ ι2 φ ιz φ -. - φ ιn. The ίrmα/
traveling product is the identity element 1. Λ((5,)IG/) denotes the
set of all traveling products in (5Ί)IG/5 including the trivial one. If
|/| = 2, we will often call traveling products alternating products.

THEOREM 3.5. Let A and B be finite von Neumann algebras (with
specified faithful traces—see Remark 3.1). Then

(i) (A ® L(Z2)) * (B ® L(Z2)) = (^ * A * 5 * B * L(Z)) ®
(ii) (A ® Af2) * (B Θ L(Z2)) = (A * 5 * 5 * L(F2)) ® M2,

(iii) (.4 ® M2) * (B ® M2) = (^ * 5 * L(F3)) ® M2.
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Proof. Let Jt be the von Neumann algebra on the left-hand side of
(i) with trace τ. It will be notationally convenient to identify A with
^ ® 1 c / and B with B ® 1 C J£. Let p and q be projections
of trace \ contained in the copy of 1 <g> HJΛ^) that commute with
A and respectively B. Let J^ = {p, <?}" = L(Z2) * £(Z 2), and let
x j ^ G ^ δ be as in Remark 3.3. Then

pJίp = {{pqp} \JpA\Jx*Ax U w*qBw U w*y*Byw)".

We claim moreover that {{pqp}, p^4, x*Ax, w*qBw, w*y*2?y?i;} is
a free family in pJ£p, which then clearly implies (i).

Let us first show that {{pqp}, pA, x*Ax} is free in p^p. Let
Sk = {PQP)k — 2τ({pqp)k)p (k > 1). To show freeness means to

o

show that a nontrivial traveling product in {gk\k > 1}, pA and
o

x*Ax has trace zero. Regrouping gives a traveling product in ΩQ =
o

{x, x*} U {£*, xgk, gfcX*, xgfcX* I /: > 1} and A. Let α = p - £,
fc = ^ - ^. Then ^ = {α5 £}", and sρanΛ({α}, {b}) is a dense
*-subalgebra of J^. Note that Ωo c J§, so that by the Kaplansky
Density Theorem, any ZGΩQ is the s.o.-limit of a bounded sequence
in sρanΛ({α}, {b}). Note also that since a and b are free and each
has trace zero, the trace of an element of sρanΛ({<z}, {b}) is equal to
the coefficient of 1. Since τ(z) = 0, we may choose that approximat-
ing sequence in sρanΛ({α}, {b}) so that each coefficient of 1 equals
zero. Moreover, since also τ(pz) = 0, we may also insist that each co-
efficient of a be zero, i.e. we have a bounded approximating sequence
for z of elements of span(Λ({#}, {6})\{1, a}). We must now only
show that a nontrivial alternating product in Λ({α}, {6})\{1, a} and
o

A has trace zero. Regrouping gives a nontrivial alternating product in
o o

{a} uAUaA and {b}, which by freeness has trace zero.
Let JΊ = (A u J^)", and let us show that {qwJ^w*, qB, y*By}

is free in qJ£q, which will complete the proof of (i). We show
o o

that a nontrivial traveling product in wJ^w*, qB and y*By has
trace zero. Regrouping gives a traveling product in Ωi = {y, y*} u

0 0 0 O O

qwJrιW*UywJrιW*UwJrιW*y*UywJ/'ιW*y* and B. Now Ωi c
o o

J/[, spanΛ({α} U A U aA, {b}) is a dense *-subalgebra of A\ and
τ(z) = τ(qz) = 0 Vz e Ωi, so that as above, each z e Ωi is the
s.o.-limit of a bounded sequence in

span(Λ({α} uAUaA, {b})\{ 1, b}).
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So it suffices to show that a nontrivial alternating product in
0 0 O

&paxi(A({a}\jA\JaA, {6})\{1, b}) and B has trace zero. Regrouping
o o o o

gives a nontrivial alternating product in {a}uA\JaA and {b}UBubB,
which by freeness has trace zero.

Now we prove (ii). Let Jf be the von Neumann algebra on the
left-hand side of (ii), and let τ be its trace. We will identify A with
A ® 1 and B with B ® 1 as in the proof of (i). Let p be a projection
in 1 ® Mi (commuting with A) of trace \ and # a projection in
1 ® L(Z2) (commuting with B) of trace \ . Let Jfa = {p, #}" and
let * , j ; , w, z, 6 e JY§ be as in the proof of (i). Let u^\®Mι be
a partial isometry from p to 1 - p. Then

and we shall show that x*u is a Haar unitary (i.e. a unitary such that
(x*u)n has trace zero Vn e Z\{0}) and that {{pqp}, {x*u},pA,
w*qBw, w*y*Byw} is *-free in pJ£p. This will in turn prove
(ii). For n > 0, r = (x*w)w is a nontrivial alternating product in
{x*} and {u}, and c* is the s.o.-limit of a bounded sequence in
span(Λ({α}, {6})\{1, a}), so to show τ(r) = 0 it suffices to show that
a nontrivial alternating product in span(Λ({α}, {b})\{l, a}) and {u}
has trace zero. Regrouping gives a nontrivial alternating product in
{a, ύ) and {b}, which by freeness has trace zero. Hence we have
shown that x*u is a Haar unitary in pJίp.

Now we show that x*u and pqp are *-free in pJ£p. Let g^
(k > 1) be as in the proof of (i). It suffices to show that a non-
trivial alternating product in {(x*u)n\n e Z\{0}} and {gk\k > 1}
has trace zero. Regrouping gives an alternating product in ΩQ and
{w, u*}, where ΩQ is as in the proof of (i), which, proceeding as we
did above, we see has trace^jzero. Similarly, we can show that let-
ting JQ^= {pqp, x*u}\ {JV , pA} is free in p^£p, and that letting
J/[ = {J$ U A)", {w*yl/[w , qB, y*By} is free in qJίq, thus proving
(ii).

To prove (iii), let p and u in 1 ® Λf2 commuting with A be
as above, let q G 1 ® M2 commuting with 5 be a projection of
trace \ and v e 1 ® M2 commuting with B a partial isometry
from q to 1 - q. Let x , y, it; e ^ = {P, q}" be as above. Then
we similarly show that x*u and y*v are Haar unitaries and that
{{pqp}, {x*u},pA, {w*y*vw}9w*qBw}9 is *-free in pJίp (and
notice that these taken together generate pJfp), which proves
(iii). α
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COROLLARY 3.6. Let R and R be copies of the hyperfinite Π r

factor. Then

R*R = R* L(Z),

with an isomorphism which when restricted is the identity map from R
to R.

Proof Write R = (pRp) ® M2 and R = (pRp) ® M2, where p and
/? are projections of trace \ in i? and respectively i?. Then by (iii)
and the proof of (iii),

p(R * R)p £ (/?7?p) * φR£) * L(F 3 ),

and the isomorphism when restricted to pRp c p(R * i?)p is the
identity map from pRp to pRp. Similarly, writing also L(Z) =
L(Z) ® L(Z2), we have from (ii) and the proof of (ii) that

p(R*L(Z))p^(pRp)*L(F4),

and the isomorphism, when restricted to pRp c p(R * L(Z))p, is the
identity map from pi?p to pi?p. Considering the isomorphism (3),
we get an isomorphism from p(R* R)p to p(R * L(Z))p which when
restricted is the identity map on pRp. Now tensor with M2. •

4. The addition formula for free products.

THEOREM 4.1. L(FΓ) * L(Fr>) = L(F r + rO /tfr 1 < r, r* <oo.

Proof. (Please see the comments at the end of the introduction.)
In a W*-probability space (Jίί, τ) where τ is a trace, let R and R
be copies of the hyperfinite IIi-factor and let v = {X*\t € T} be a
semicircular family such that {i?, i?, u} is free. Let

r.) = & = (R U {qsX
sqs\s G ^j ) 7 7 ,

where S and S' are disjoint subsets of T, ps e R, qs € R are
projections and where 1 + ΣseS

τ(Ps)2 = r> 1 + Σje5' τ ( * ) 2 = r '
Then J / and £% are free in ( ^ , τ), so

L(FΓ) * L(F^) = JIT = (R U R U {p,JΓ5p,|j G 5} U {&JΓJ&|5 6 5 ;}) ;/.

By Corollary 3.6, there exists a semicircular element Y e JV§ =
(i? U i?)7/ such that i? and {7} are free and together they generate
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Jfa. Moreover, for s e Sf let ί/s G 4 be a unitary such that
UsqsUs* = fseR. Then

jr = (Ru {Y} u {psX
sPs\s eS}υ {fs(Usx

sUs*)fs\s e S'})".

To prove the theorem, it suffices to observe that {R, {Y}, ({Xs})ses >
({UsX

sUs*})seS>} is free in Jt. D

Let us recall [4] that the fundamental group of a II i -factor Jΐ is
defined to be the set of positive real numbers γ such that J£y = ̂ # .
Murray and von Neumann [4] showed that the fundamental group of
the hyperfinite II i -factor is R+ , and recently Radulescu [5] has shown
that the fundamental group of L(Foo) is also R+ . A. Connes [1] has
shown that the fundamental group of L(G) where G is a group with
property T of Kazhdan must be countable, but no other examples are
known for fundamental groups of IIi -factors.

Equation (2) shows that the isomorphism question for (interpo-
lated) free group factors is equivalent to the fundamental group ques-
tion. Combined with the addition formula for free prdoucts, we now
see that we must have one of two extremes.

COROLLARY 4.2. We must have either

(I) L(F r) = L(Fr>) for all 1 < r, rf < oo and the fundamental
group of L(Fr) is R+ for all 1 < r < oo, or

(II) L(F r) φ L{Fr>) for all 1 < r < r1 < oo and the fundamental
group of L{Fr) is {1} for all 1 < r < oo.

Proof. Using formulas (1) and (2) we can show that if L(Fr) =
L(Fr>) for some r / r', then we have L(Fr) = L(Fr») for r" in some
open interval, hence that the fundamental group of L{Fr) contains
an open interval, thus is all of R+ . D

Acknowledgments. I would like to thank Dan Voiculescu, my advi-
sor, for helpful discussions and for suggesting I look at free products
such as Af2(C)*Af2(C).
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