Vol. 164, No. 2, 1994

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
3-valent graphs and the Kauffman bracket

Gregor Masbaum and Pierre Vogel

Vol. 164 (1994), No. 2, 361–381
Abstract

We explicitly determine the tetrahedron coefficient for the one-variable Kauffman bracket, using only Wenzl’s recursion formula for the Jones idempotents (or augmentation idempotents) of the Temperley-Lieb algebra.

Mathematical Subject Classification 2000
Primary: 57M15
Secondary: 05C10, 57M25
Milestones
Received: 15 March 1992
Published: 1 June 1994
Authors
Gregor Masbaum
Equipe Topologie et Géométrie Algébriques
Institut de Mathématiques de Jussieu (UMR 7586 du CNRS)
Case 247
4 pl. Jussieu
75252 Cedex 5 Paris
France
http://www.math.jussieu.fr/~masbaum/
Pierre Vogel