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ON THE COMPACTNESS OF A CLASS OF
RIEMANNIAN MANIFOLDS

ZHIYONG GAO AND GUOJUN Liao

A class of Riemannian manifolds is studied in this pa-
per. The main conditions are 1) the injectivity is bounded
away from 0; 2) a norm of the Riemannian curvature is
bounded; 3) volume is bounded above; 4) the Ricci cur-
vature is bounded above by a constant divided by square
of the distance from a point. Note the last condition is
scaling invariant. It is shown that there exists a sequence
of such manifolds whose metric converges to a continuous
metric on a manifold.

Introduction. Let £ = L(H, K,V,n,1) be the set of n-dimen-
sional Riemannian manifolds (M, g), s.t.,

(0.1)

(0.
(0.
0.

(

)
)
)

M is diffeomorphic to (Bs, o), the standard Euclidean ball
of radius 2, center = 0;

(M, g) has C* curvature tensor in M;

for any * € M, the Ricci curvature at z |Ric(g)(z)] < Hr2,
where 7 = dist(z,0);

the injectivity of (M, g) > 1o > 0;

/M |Rm(g)|2dg < K;

volume of (M,g) < V.

In the case when the condition (0.3) is replaced by |Ric(g)| < H,
and (0.6) is replaced by a diameter bound, a compactness property is
proved by the first author in a more general setting. The purpose of
this paper is to extend some of his results to the present situation
where the bound om Ricci curvature of (M,g) blows up like r=2
at a point. As an application, we will discuss the compactness of
orbifolds with a finite number of singularities.
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The main result is:

THEOREM 0.7. Let (Mg, gx) € £, k =1,2,3,.... Then there
ezists a subsequence (again denoted by (Mg, gx)), a C*® manifold M’
diffeomorphic to By(0), and a C° metric g¢' on M’ s.t. g — ¢’ in
C°-norm on M’ and the convergence is in C*-norm away from 0.

In Section 1 we study the geodesic balls centered at 0. A com-
pactness estimate of the metric ¢ will be derived. In Section 2, a
small geodesic sphere is shown to have a small diameter. In Sec-
tion 3, some L™2-curvature pinching results are derived, which will
be used in Section 4 to show the existence of harmonic coordinates.
We will prove in Section 4 the above main result and a slightly
different version.

In the definition of £, if (0.3) is replaced by a 1-sided condition

(0.3) Ric(g) > —Hr™?g,

then the above compactness result should be modified as follows.
Denote the set of such Riemannian manifolds by £’.

THEOREM 0.8. Let (My,gx) € L', k = 1,2,3,.... Then there
exists a subsequence of (My, gx), which converges in C°-norm to a
C® manifold M' with a C° metric ¢'.

1. In this section, we assume that for some H > 0, 19 > 0,
(M, g) is a Riemannian manifold diffeomorphic to B, satisfying

(1.1) Ric(g) > —Hr™?g;

(1.2) inj(g) > 0 > 0.

Let B,(0) = {z € M|d(0,z) <} be the geodesic ball of M centered
at 0. Consider a geodesic polar coordinate system {r,z!,--- 2"}
on B,(0), we have

n—1
(1.3) ds(g)? = dr® + Y gij(r,z)dz'da’;

i=1
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For the Ricci curvature in the radial direction, we have

R PO Wy o SR Y L |
' e 8r2n g 4(97‘gr

where  ¢(r) = g(r,z),
(1.6) V9 dVo = /det(gig) dz' AL A 2T,

(dVo = the volume element of the standard Euclidean sphere)
and

17 8
Z g g a_gzja_gkl

We start out with the following estimate:

PROPOSITION 1.7. Forp< Jl there exists Cy = C1(H,n) > 0

i [

Proof. The function is essentially the same as that given in [12],
p.5-6. For any piecewise C* function ¢ of r with ¢(p) = 0, we have

_9 dr < Cyp.

2

—a—g dr
r

([l

< n-l /p(r2¢'2 + ¢*)dr — /p r2$? R, dr.
2¢ Jo 0

Take € = %, ¢ =p—r,and use —R,, < Hr™? we get

2

/0¢ ri (¢ —r)? 0 dr

59

<32(n—1) /()¢(r2 +(¢—r)?)dr+ H/:(ﬁ(¢ —r))r~2 dr
< C(H,n)p’
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Thus,
¢ 2 2
0 1 ¢ 1
2 2 2 2
- < — —_ < — .
/0 r r dr < (5)2/(; ri(¢—r) 3 gl dr < 2Cl(H,n)p

]

PROPOSITION 1.9. There exists Co = Co(H,ig,n) > 0 s.t. for
anyr € (0, %}), we have

r

a
Eln\/g' S 02.

Proof. From (1.5) and integration by parts,

¢ 1,0 148 1 4
2R, dr = —=r? =1 —/2— —-/ 2
/0 " " 2T ar ng+2 0 rarlng 2 Jo "

2
dr.

9
Brg

Thus

1,0 L 1 /¢2
— p— < —
2r arln\/ﬁ_H/Or rdr+401r+ Or

8_g

¢ |0
< iHr+ iCir+ (n—l)% (/(; r .

IN

Cz(H, io, ’I’L)’f'.

Next we study the induced metric g(r) = 3 ¢;;(r,z) dz'dz? on
the geodesic sphere

S,(0)={zeM:d(z,0)=r}, r< 329.

PROPOSITION 1.10. There exists C5 = C3(H,n) > 0 s.t. for

0<r1<r2§_%, we have

6037‘27‘1_19(7‘1) S g('r'z) S 6037‘27'1—19(7‘1).
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Proof. From Proposition 1.7, we have, for any vector

v=>...,v")eTSs,
— Inh(r)|dr < </T2 g rdr) rit
T T1

2|
<)
T a
< Vra(Cira) iyt = Ci2,
where h(r) = g;;(r) dv'dv?. Hence eCorari’ < %‘%f—% < %’ where
C3 = \/C_l D

r1
Before we go any further, let us make some remarks regarding
conditions (0.3) and (0.5). Let 7 > 0 be small. Define a new metric
g" on M by ¢"(z) = 77%g(rx).

or

REMARK.
(1.11) If g satisfyes (0.3)", so does ¢".
(1.12) L IRG@IEdg = [ |R(9)|E dg.

Therefore, by a scaling of this type if necessary, we can assume that
g satisfies (0.3) and (0.5) with K < 1.

Once we have Proposition 1.10 we can control the L™? norm of
the Riemannian curvature tensor Rm(r) of g(r), the induced metric
on S(0,r).

THEOREM 1.13. If (M, g) € L' then for any p < %;l, there exist
Ty € (%7 p)a C4 = 04(H, I(, io,n) > 0, s.t.

n
2

(1.15) /S(o,rp) |Bm(r)) 5., d9(r,) < Cyr .

Proof. By Lemma 1.17 in [12],3C5 = C5(H, %o, n) s.t. for p < 2,

[

2

2 < i+/p|R (9)]% d
579 dr= 5\ o : m(g r).
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From Proposition 1.10, there exists C = C(H, i, n) s.t.

C™V3g(p) < Va(r) < C3v/5(p)

for r € (2,p), i.e., \/g(r) is equivalent to /g(p). Thus for some
constant Cs = Cg(H,1p,n) > 0, we have

7]

f; ar ' Ja(r)dr < Cs <P_n\/!7(/’) +/; |Rm(g)|? \/g(r)dr) ,

Integrating over S,(0), we get

wép\Bg

dg < Cep™™ /S dg(p) + Cs /B \Rm(q)|? dg.

or
Taking p = 2, we get
n Z-0 _n n
—g| dg<Co (D) wol(Sy)+Cof IRm(9)IE d
Jngag 309 9 5Ce(3) vt (S2) +Co [, 1Ema)
By Bishop’s volume estimate [1], 3IC; = C7(H,io,n) s.t.

vol <Sgl)> < Cy. Thus we get a constant Cg = Cs(H,19,n) > 0
4

s.t.

(1.16) /B

0
4

dg < Cs + GS/B |Rm(g)|% d

i
1

9
(9rg

\Byy
8

Define g7 = r~2g with r = 2. Noticing that Ric(g”) > —Hr™?,
inj(g”) > i, we can apply (1 16) to g”. By the scaling invariance

of (1.16), we get
5= fqu0,

-/Bp\Bg
<Cs+Cy /B [Rm(g")|* dg”

t

=Cs+Cs [ [Rm(g")? dg
P

S Cg + CBI{ == Cg.

T

dg

or
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Hence

(1.17) /: (/S

2

0

5.9 dg(r)) dr < Cy.

(1.17) and the Gauss formula on S,

1/(0 0 0 J
Rm(g)ijk = Rm(g(r))iju + B (é;gika‘gjl — Eg;wg;ﬂu)

imply that there exists a constant C' = C(H, K, i9,n) > 0 s.t.
4 n
L ([ 1Rma(r)I do(r)) dr

<cc /([ 1B dgr)) ar
§C+Ci

This implies the existence of r, € [%,p} and Cy = C4(H, K,i9,n) >
0 s.t.
[ 1Rm(r,)I? dg(r,) < Car

P

O

We now state and prove the compactness estimate of the induced

metric on small geodesic spheres.
Let (M,g)€ L', p<%2, let r, € [%,p] as in Theorem 1.13.
We have the following

THEOREM 1.18. There exists Cio = c10(H, K,t0,n) > 0 and a
C> Riemannian metric h(r,) on the geodesic sphere S,, s.t.

(1-19) Cfolg(rp) < r,,zh(rp) < C'log(r,,);
(1.20) |[Rm(h(r,))| < Cio.

Proof. Proposition 1.10 and Theorem 1.13 are sufficient for car-
rying through the argument in [12]. [
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2. In this section, we show that the diameter of a small geodesic
sphere is small. More precisely,

THEOREM 2.1. There exists C11 = Cui(H, K, 10, V,n) s.t. for
any (M,g) € L', any r¢€ (0, ’—,}) , diam(g(r)) < Cyrr.

Proof. First observe that there exists a constant
C =C(H,K,isV,n) >0 s.t.

(2.2) diam <Si% ) <c.

To prove (2.2), we normalize by scaling so that 1o = 4. Let v be a
minimal geodesic on the geodesic sphere S1(0). We show that there
exists C = C(H,15,V) s.t.

length v < C.

Let o be any curve in the annulus B%(O)\B%(O) s.t. for 0 <
t1 <ty <---<1, alti,ti41) is a minimal geodesic in the annulus.
The geodesic balls centered at +(t;) with radius é can be made
mutually disjoint by choosing é > 0 sufficiently small. Let N be the
number of these balls. By Gromov’s relative volume estimate [6],
the volume of each small bal is bounded from below by a constant
C' = C'(H,1,V,n). But the total volume of the mannifold M is
bounded from above by V (cf. (0.6)). Hence N < V/C'. Since the
induced metric g(r;) and g(r2) are equivalent (by Proposition 1.10),
we can project al[t;, t;41] into S1(0), to get (2.2).

Next, apply (2.2) to the metric g” defined by ¢"(z) = 77 %g(7z).
By scaling properties, we get

diam (g(r)) < C’i::.
0
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3. Let (M,g) be in L. As before we use the geodesic polar
coordinates at 0, i.e.,

n—1
g=d?+ Y gy(e.r)dotded = dr + g(r),
i,5=1
where ¢g(r) = g(z,r) is the induced metric on the geodesic sphere
S.(0).
We will begin with the following estimate:

PROPOSITION 3.1. For p <%, 5 € (0,p), we have

/ maX/
T(il,g) n<p JS(z,r)

< C(H,n,n,p)/ |Rn(9)|? dy,
B(p+n)

where B(x,r) is the second fundamental form of S(z,r),

T(§3) = (e ore (35) 1

Proof. Let = € T(4,2) y € M st d(z,y) = p < 2. Let
v be the minimal geodesic from z to y with y(0) = z, ~(p) =
y, d(z,y) = p. Observe that, as a consequence of Proposition 1.10,
there exists a constant Cjy = Ci2(H,10,n) > 0 s.t. for any Jacobi

field X on v with X(v(0)) =0, < X(x(1)),~(l) >= 0, we have
X (v(2)] < Cra| X (v(1))]

V't € [0,{], where [ = the length of 4.
Let F be the parallel vector field along v with

E((l)) = X(+(1)),

then the vector field A, defined by A = X — %E, is again a Jacobi
field. Assume |X(v({))] = 1. We have

B(z,r) + %g(z,r) : dg('r)) dg(z)

l ! !
/ [Af]?:/ <A AS dtg/ |Rml| X||A] dt
0 0 0

< Cia(Cra + I)L |Rm| = 013[1 |Rm|,
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where Ci3 = C13(H, i, n).
Next, by a cut-off function argument, one can show that (c.f. [12],
p.31)

(3.2) [AP(x(1)) < Cha / | Rm]?.

We claim that there exists C15 = Cy5(H, K, 19,n) s.t.

2

Blz,7) + 79((D)

() < Cis [ |Bm?.
Yy
To see this, let X, Y be vector fields on S(z,) s.t.

Xy =Y ()] = 1,

and let E, E be parallel vector fields on v with

E(y(1)) =Y (v(1)).

Extended X, Y to the geodesic ball B(z,!) s.t. they are Jacobi fields
on each radial geodesic. Then, clearly B(X,Y) =
- <V, X)Y >= - < X"|Y >. We have, from (3.2), that

|B(X,Y) + % < X,Y > |*(v(1)

=< XY > 3 <BY > Py()

= | < X'~ 1BY > F(5()

< CulY ) [ 1Bm]? = Cuy [ |Bm]?

To finish the proof, we define f(z,y), for z,y with d(z,y) = p+ g— <
o
=, b
27 Yy )
1 2
F(a,y) = max |B(e,r) + Lge,n)|” (0D,
nsrsp T

where v is the minimal geodesic from z to y, r = distance from z.
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Let
v€T(}.3)
and
Y= U (xS(x,p+g)>CMxM
zeT(%,g)
Then

[ ] 5605 [ gy gy P doct) ot
_/(/ (2.9) day(2)) doto),

where ¢, 1s the induced metric of S (:C, p+ %), and Q, =T (4, 2) N
S(y,p—k%) C S(y,p—{—g). We have

[ f @< [ ([, 1) dato)) dot

Define 7(¢) = 4(t) for t € [0, p]. From (3.3) we get
[, ) doy()
< Uit L (L1Em(@)?) do,
< C(H,n, p) /M</ |Rm(g ( Z—t))dgy) dt.

By Proposition 1.10,

dg, (fy (p + g - t>> >C (H,n, —s) dg,(z).

Therefore

p n
[, fenda < e (mannl) [ rn)
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Finally we have

p n n
) SC Ho sy l<T <~7 + >)/ R 2d
[, e < (tnn Yoot (7 (Lpsn)) [ i)t
<C<Hn ! V@)/ |Rm(g)|3d
= ’ ’nanapv » 40 Blo+n) g g-

O

Let Rm(r) be the scalar curvature free curvature tensor of g(r).
We have the following proposition.

PﬁOPOSITION 3.4. Foranyx €T (g,-’zl), where n € (0, p) with
p < 2 we have

/n” (/S(”) |Rm(r)| dgx(r)) dr

< C(H,n,n, p, i) ((/B 0 |Rm(g)|? dg)

+ (max/
n<p JS(z,r)

1
A —Yx
+r£123( V/S(z‘,r) (7‘) + T‘g (7")

1
2

dgzm)%

: dgr(r)).

A + g (r)

Proof. Rm(r) can be expressed as

(Bm(r))iju

= (Rm(r))ijat — — )

(n—1)(n—2

where R(r) is the scalar curvature of g(r). We have

)(gik(r)gjz(r) — ga(r)gik(r)),

w3

/S(z,r) ‘Bik(T)le(T) — %gik(r)gﬂ(r) dg(r)
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[ Bar) (Balr) + 2oa(r)
= k(T ar) + =gulr
Sy # e
1 1 i
~=gulr) (Ba(r) + ~gue(r) " do(r)

B(r) + ~g(r)| " dg(r)

<c[ iBft
S(z,r)

+C [ B0+ ~g(r)| " do(r)

S(z,r)

§C</
S(z,r)

+C /
S(z,r)

L
2

Blr) + 2| datr))

n
2

Br) + ~g(r)| dg(r).

This implies that

/S'(z:,r)

< C(H, K. ioyn) (fan

n

! ! dg(r)

(BitBji — BuBji) — ?:;(gucgjz — gagir)

B(r) + ;9(r)

? dg(?“))
+C(H7 [{7 iﬂvn) fS(I,r) : dg(’f')
By Gauss formula,

(Bm(g))iju = (Bm(g(r)))iu + Bi(r) Byu(r) — Ba(r)Bjx(r).
Therefore

[ {fen

B(r) + 1g(r)

Rijri(g(r)) — ;lg(gik(r)gﬂ(r)

—ga(r)gsr(r)) 7o dg(r)) dr

%
< C(H,n,m,p) (/ o) |Rm(g)|2 dg)

B( 1
: dg(?‘)) 5
: dg(r)> .

1
+C(H,n,n,p) (max /S(z ; B(r)+ ;g(r)

n<r<p

B{r) + —g(r)

+C(H’ n,n, p) (max /
S(z,r)

n<r<p
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Observe that

‘/T::('ﬂ»p)

S C(Ha I{a ioanﬂ?,P) (L

n
4

n—1)(n-—2)

R(r) - { dg

=

|Rmg)? dg>

(z,p)

Hence (3.4) follows immediately. O

PROPOSITION 3.5. For 0 < n < p < 2 et (M,gx) €
L, zr€ M, with dist(z,0)E€ (z,g) Assume

’ dgi(r) — 0

B(zg,r) + %gk(r)

= max/
K n<r<p JS(z,r)

and
Wk = / [Rm(gi)|? dgx — 0 as k — oo.
B(xkyp)

Then there exists a diffeomorphism ¢y : S(1) — S(zk,p) for each
k=1,2,3,---, s.t.

[ \igu(r) = r* dg%% db — 0
s

uniformly for n < r < p, where S(1) is the Euclidean unit sphere,
and
|#tgr(p) — p* dO*|co —» 0 as k — oo.

Proof. Proposition 1.10 and Theorem 1.13 enable us to carry out
the arguments in [12] (cf. 5.18, 5.21, and 5.25). O

4. In this section we prove the existence of a controllable har-
monic coordinate system under the smallness condition of the L™/2-
norm of curvature tensor.

ProOPOSITION 4.1. For any n € (0,1), there exists
e =¢€¢(H,n,i,n) >0 s.t. if (M,g) € L satisfies / |Rm(g)[gdg <
M
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€, then there exists a diffeomorphism

?

(B R ) Q?’_’?) ( Tlf’ﬂ) n
F= (R b T(1+2,2 —-T(1+2,5) cRr

having the following properties:

(a) A=0;

(b)y F7! (T <1 + %,g—i-n)) D T(1 —1n,2n) and the image of F' D

T(1+2,%2);

(c) |h” - 6"]']?0 < Toczan on T(1+§,§4’1>; where
h' =< Vh',Vh! >;

(d) |dh¥|ce < C(H,n,n)  for some o € (0,1) on

T(1+2,%2);
(©) WFR =< e where [FE= SR, r = dist(z,0);
(£) ||d*h¥)|e < C(H,n,n) on T(l'—i—g,%’l) for some ¢ >
n.
Proof. Suppose for k = 1,2,---, (M,,gx) € L  with

[, Bl < 1.

Proposition 3.1 implies that dy, € T (g, Z) s.t.

(M1

1
Bi(yk,r) + ;gk(yk,r) dgx(yk,T)

=g [
. 1 n
<C (H,n,m,n,—> / |Rm (g )|? dgi
n B,

< Ck™L.

Proposition 3.5 implies that there exists  ¢x : Sy — Sk(yk) = 53
s.t.

/ |$rgr — 9ol ? dgo < Ck™7,
T(1,m)

where ¢ has been extended trivially to T'(1,7), go is the flat met-

ric on By. In the Euclidean coordinates ¢ = (z', -+ ,z"), go = 6;;.

Next we solve the Dirichlet problem
AF =0 in T(1,n)
F=xz on 9T(1,7).
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By Proposition 1.10, we can show (as in [14])

1 1
VF -Vzl|?dg < =C [ H,n,=,n,10 ] .
/T(l,n)| xlg g = k ( » 12 nﬂhlo)

By a standard argument involving DeGiorgi-Nash-Moser iteration,
it follows that F' is the desired diffeomorphism. O

. THEOREM 4.2. For each My, gx € L, there exists, forl =1,2,--- |

open sets Fiy(l) C My s.t. Fi(I+1) D Fi(l) and Fi(1)UB(I7!) = M.
There also exists a diffeomorphism ¢r(l) for each pair of k and
L (D) : T(L,IY) € R™ — Fi(l) such that ¢x(1)*gr converges
in C1* norm to some CY® metric g; on T(1,17') C R™

Proof. By rescaling, we can assume that g satisfies

R 2dgy <
/,, 1Bm(@n)|Eda < e

where € > 0 is given by Proposition 4.1. Therefore we have harmonic
coordinates

3
h":Tk(1+g,37n)CMk—>D(n):T(1+Q —’Z)cR”,

2’ 2
satisfying (a)-(f) of 4.1. Taking n = I™!, by the Holder estimate (d),
we have, for each { = 1,2,---, a subsequence of (M}, gx), denoted

by gx(1), s.t. gi(l) converges in the C*-norm on T} (1 + 17, 3—2'1) cM
to a C* metric g; on D(l). We can then take

3 1
Fk(l)sz<1+g7ﬁ>y n=7

By passing to a subsequence if necessary, we can make Fr({+1) D

Fi(D). O

THEOREM 4.3. Let ¢’ be a metric on M' = B;|{0} defined by
g'(z) = gj(z) if x € Fi(l). Then ¢’ can be extended as a C° metric
on B;.

Proof. Theorem 2.1 says that the diameter of a small geodesic
sphere around 0 is small. Hence 0 is the only possible singularity. To
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show that 0 is a removable singular point, let, for fixed N =1,2,--- |
C(p, N) = {x e M|£ < d(z,0) < 2p} .

By Theorem 4.2, a subsequence (Mj,gx) converges to M’ away
from 0. Thus for each p,3k = k(p),3 a submanifold Ci(p, N) C
(Mg, 9x),3y, € C(p,N) s.t. y, = z, € C(p, N) (with dist(z,,0) =
p), and such that

R 3d —/ RM(g")|3 dg'| < p?,
Lo B da = [ \RM(E | <

and
1 1
“ (—C(p, N),mp) - (*Ck(p,N),yk) <p.
p p cle
By (0.5),
/ |IRM(g")|2dg’ =0 as p— 0.
C(p,N)
Consequently,

[ IRM(g)|Fdgi =0 as p—o0.
'Ck(va)

Therefore, from the zero pinching theorem of [12], it follows that
(%Ck(p, N),yp> converges to a flat manifold Dy in C'*-norm as

p — 0. Thus (%C(p,N),:vp) converges to (Dy,en) in Ch*-norm.
The direct union of (Dy,en) has to be (U(0),e) where 0 is the
isolated singular point, e is a unit vector in |BbbR", and U(0) is a
simply connected flat manifold since %C(p,N) is the C1 limit of
simply connected manifolds %C’k(p, N). Hence U(0) = B(2) — {0}.
Letting N — oo have that (%C(p,O),mp) converges to {B(2) —
{0}, e} in CY*norm. It follows that ¢’ can extend to a C° metric
on M’, diffeomorphic to B; C R™ O

REMARK. In the case (M, gx) € L', we use Proposition 3.5 di-
rectly in place of Proposition 4.1 and Theorem 4.2. This, combined
with Theorem 4.3, proves Theorem (0.8).

REMARK. Let O be the set of compact orbifolds with finitely
many singular points, satisfying (0.3)-(0.6). Let I' be the group
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acting on these orbifolds. We can lift a neighbourhood of each
singular point via I' to B™. It then follows from Theorem (0.7) that
O has the same compactness property.

(2]
(3]
[4]
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