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The study of triangular AF algebras has focused mostly
on the classification, and although some canonical rep-
resentations of the important examples have long been
known, there has been little systematic study of the reprre-
sentation theory of these algebras. The representations
considered here are those which are restrictions of star-
representations of the full AF algebra. Furthermore, at-
tention will mostly be restricted to representations which
map the masa of the triangular AF algebra weakly densely
into a masa of B(H). Such representations have a conve-
nient description using groupoids. Much of the paper
consists of examples illustrating what can and cannot oc-
cur.

0. Introduct ion. Thirty years ago Kadison and Singer began
the study of triangular operator algebras in Hubert space; a subal-
gebra S of the bounded operators on a Hubert space 7ί was called
triangular in case S Π <S* is a maximal abelian subalgebra (masa)
of B(Ή)] <S* is the set of adjoints of elements of <S. Since their pa-
per [5], a large body of work concerning triangular subalgebras and
nest subalgebras in Hubert space has emerged (cf. [13], [3]). Quite
recently there has been an interest in triangular subalgebras of AF
C*-algebras (cf. [8], [4], [9], [10], [15], [16], to name a few). While
analogues between the two theories have been noticed — indeed,
they are hard to ignore — no direct connection has been established
between them. If 21 is AF, a norm-closed subalgebra T C 21 is said
to be a triangular AF (TAF) if T Π T* is a certain kind of masa
in 21 (see Sec. II), and it is strongly maximal triangular if in addi-
tion T+T* is dense in 21. The natural connection between strongly
maximal TAF algebras and nest algebras is established by observing
that if p is a representation of the AF C*-algebra 21 such that p(2l) is
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weakly dense in B(ΉP), and T is a strongly maximal triangular sub-
algebra of 21 such that p{T) contains a masa, then p(T) is weakly
dense in a nest algebra in B(UP) (Proposition 0.1). A tractible class
of such representations are those which map the diagonal of T to
a dense subset of a masa in B(Ή.P). We shall call such represen-
tations masa-preserving and will characterize them up to unitary
equivalence in Section II. Indeed, in Theorem II. 1 we show that any
such representation is unitarily equivalent to one constructed from
a certain quasi-invariant measure and a 1-cocycle. Special cases
have been considered by Stratila and Voiculescu ([14, p. 51]). If

p is such a representation, and T — p{T) (weak closure), some
obvious questions present themselves: is T a triangular subalgebra
of B(UP)Ί If T is a nest TAF-subalgebra of 21, is f a triangular
nest subalgebra of B{Ίίp)Ί The answers to these questions are in
general both no. As to the first question, far from being triangular,
it can happen that T = B(Jip) (Example 1.3). As to the second,
Example IV.8 shows there is a triangular nest subalgebra T of a
UHF algebra 21 such that T, while necessarily a nest algebra, fails
to be triangular in B(T~LP). Thus in general, the map T -* T does
not preserve triangularity.

D. Larson posed the question as to whether if T is a strongly
maximal TAF subalgebra of a UHF algebra 21, there is a faithful
representation p of 21 such that the weak closure of p(T) is a tri-
angular nest algebra in B(7ίp). Proposition II.3 provides a positive
answer.

A more delicate question is this: given a TAF algebra T and a
representation p such that ρ(T) is weakly dense in the nest algebra
Alg(jV), what can be said about the order type of Λ/"? While it
is easily seen that the refinement algebra (Example I.I) cannot be
weakly densely represented in Alg λί if λί has the order type of a
subset of the integers, it is less obvious but nonetheless true that
the standard embedding algebra (Example 1.2) cannot be weakly
densely embedded in the Volterra nest algebra. Moreover, if the
standard embedding algebra is weakly densely embedded in Alg λf,
then λί has the order type of a subset of the integers. Furthermore, if
we restrict to masa-preserving representations, then the same con-
clusion holds for the class of Z-analytic TAF algebras. However,
there are TAF algebras which can be weakly densely embedded both
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in the Volterra nest algebra, and in Alg λί7 where λί has the or-
der type of the natural numbers. Section IV entails examples of
representations with multiplicity. In IV.3, the refinement algebra is
weakly embedded in Alg λί where λί is a nest of multiplicity two.
This is by a finite group construction.

The examples of this paper indicate there is a richness in the
behavior of representations of TAF algebras which might not have
been expected. Perhaps in the future there will be a general solution
to the problem posed in the paragraph above.

The paper is organized as follows:
0. Introduction

1. Review of important examples and their natural representa-
tions

II. Masa-preserving representations

II. 1 The general construction: the measure-cocycle character-
ization

11.2 Properties of masa-preserving representations
11.3 Examples of measure-cocycle constructions

III. Attainable order types

IΠ.l Algebras in which LatT generates the diagonal
111.2 Representations of the standard algebra
111.3 Masa-preserving representations of Z-analytic algebras
111.4 On the variety of attainable order types

IV. Multiplicity of represented algebras

IV. 1 A masa-preserving representation with a multiplicity two
nest

IV.2 The failure of representations to preserve triangularity
for nest algebras

IV.3 A non masa-preserving representation of the refinement
algebra with a multiplicity two nest

The main idea for the following is due to Arveson.

PROPOSITION 0.1. Let T be a strongly maximal triangular sub-
algebra of the AF C*-algebra 21. If p is a representation of% which
is weakly dense in B(Ί-LP) and if the weak closure of p{T) contains
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a masa, then p{T) is weakly dense in a nest algebra.

Proof. Let Λ4 be a masa contained in p(T) and Pi, P2 be two
two invariant projections of ρ(T) which are incomparable. Then
both Pu P2 belong to M, and Ex = P1P2

J-, E2 = P2P^ satisfy
E1p(T)E2 = 0 and E2p{T)E1 = 0. Now of course Eλ (p(T) + p(T)*)
E2 φ 0, so that Eιp(T)*E2 φ 0. But this is (E2p(T)Ex)\ which is
zero.

Since Lat p(T) is a nest, the conclusion follows from
[3, Corollary 15.12]. D

I. Review of important examples and their natural rep-
resentations.

EXAMPLE L I . Let Tn be the upper triangular matrices in M2n,
and let T = lin^T^, vn) be the canonical nest TUHF algebra con-
sidered in [8, 1.1]. It has been observed that T can be represented
as a weakly dense subalgebra of the Volterra nest algebra. Let
{eij}ι<i,j<2n be a system of matrix units for 2ln = M2n, and let p
be the representation of 21 = lir^(2tn, vn) on Ή = L2 ([0,1], m) (m
Lebesgue measure) given by

p extends by linearity to a representation of 2ln. Note that

/ (n)\ / (n+1) \ . / (n+l)\

P ( 4 J = P ( 4 - 1 2 j - l j + P ( 4 2j) >

so that p(2tn) = p (&Vi(2ln))> a n d hence p extends to a representation
of 21. Since 21 = UHF(2°°) is simple, p is necessarily faithful, and as
we will see later, an irreducible representation of 21. Now if f € H
is supported on [O,ίo] (0 < ίo < 1) and i < j , then pCz-jj f is

supported on O,ίo — ̂ r\ Q [0,ίo] As T is the closed linear span

of the matrix units [e[f : 1 < i < j < T n = 1,2,... }, p(T) leaves

the nest J\Γ = {χ[o,ί0] : 0 < ίo < 1} invariant. Let T = p(T)
since ρ(T) contains all dyadic left translations. T contains all left
translations. Since ρ(T) contains all multiplication operators of the
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form Σ aιP\i2zλ _U (Pi the projection onto the subspace of functions

supported on /), ρ(T) also contains all multiplication operators by
continuous functions, so T contains the masa of multiplication op-
erations by I/°°-functions. We conclude that L a t T = λί. It follows
from Proposition 0.1 that T = Alg λί. Thus T is the Volterra nest
algebra.

EXAMPLE 1.2. Let T = \πQ(JΓn,σn) be the standard embedding
TUHF algebra considered in [2], [8, 1.1] (Tn, %ι as above). R.
Smith has observed that T can be represented as a weakly dense
subalgebraof Alg λί, where λί = {0}U{l}u{P(i5...jn) : n = 1,2,...},
P(i,...,n) the projection onto the span of the basis vectors £i, £2? ? £n

2 Define

( i f ί = ,; + *• 2-

otherwise

for any k = 0,1, 2, . . . . p extends linearly to a representation of 2tn

and since
(n)\\ / (n+l)λ , / (n+1) \

P

p(2ln) — p(σn(2tn))5 so p extends to a representation of 21. This is

faithful, and (as we show later) irreducible. Since p (e^J1 J (i < j)

leaves the subspaces (^i,...,^n) invariant, so does ρ(T). Notice

that P(i,...,n> is the weak limit of p (e^ H h e^m)) as m -» 00.

It will be shown in II.3.1 that the projections λί — {P(i,...jn>
 : n —

1, 2,...} U {0,1} are exactly Lat ρ(T), and that ρ(T) is weakly
dense in Alg λί.

EXAMPLE 1.3. Let T be as in Example 2; here we represent T

on H = L2[0,l]. If 1 < i < 2n, let i - 1 = ξ ^ ^ 7 1 ^ " 1 be its

dyadic expansion. Let σn(i) be the integer obtained by reversing
the lexicographic order (changing notation from 1.2): σn(ϊ) — 1 =

Σ ifi•- Thus σn is a permutation of {1,. . . , 2n}, and for 1 < i <

2n, σn +i(i) = 2σn(ι) - 1, and σn+1{ι + 2n) = 2σn(z). Define the
representation p by

(p (eg0) /) (t) = Xr^ί^i,^)! (*)/ (ί +
2n
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Extend p by linearity to a representation of 2ln = M.2* and cheek
that p (e\jj — p ί^ij ) + 9 (ei+2« j+2n)> so p is a representation
of 21. Later we will show that p is an irreducible representation of

T : Lat p(T) = {0,1}, and pJTjwk = B(Ή) (= Alg{0,l}). (See
Π.3.2.)

EXAMPLE 1.4. Let %n — M4π, {e^}i<»j<4n a system of matrix
units for 2ln, and j n : 2^ *-» 2ln+i the embedding

Ίn
\ " / ~

+ e2An+2i-l 2-4n+2j-l T e 2 4n+2i 2 4n-f2.r

7n is the result of applying the standard embedding followed by
the nest embedding M22n <->> M22π+i <—>> M22n+2 (or in the reverse
order, since the two embeddings commute). Let 21 = lir^(2ln,7n),
T = 111̂ (7̂ , 7n), where Tn is the upper triangular matrix algebra
in 2ln. T has been called the alternation triangular algebra. A.
Hopenwasser has observed that T can be represented as a σ-weakly
dense subalgebra of AlgΛ/", where λί is the Volterra nest in ί/2[0, oo).
Note that, for / G L2[0, oo)

k=0
X[^+k 2ni^+k.2n](t)f{t +

extends by linearity to a representation of 2tn, and that p (eĵ  J =

Pwn ίejj'jj, so that p in fact gives a representation of 21. (See
Π.3.2.)

II. Masa-preserving representations.

ILL The General Construction: the measure-cocycle char-
acterization. The representations in Section I all satisfy
p(T Γ\ T*) is a masa in B(Tίp). In this section we present a gen-
eral method for constructing all such representations. This requires
some notation from the theory of groupoids, so we begin with a short
introduction. (For more details concerning AF algebras, groupoids,
cf. [14], [6], [8], or [12].)

Let 21 be a (unital) AF algebra. A masa V C 21 will be called
an SV masa if there is an increasing sequence {2ln}^=1 of finite
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dimensional subalgebras with 21 = U2ln such that Vn — V Π 2ln is
a masa in 2ln, n ~ 1,2, — Then £> = U2\. A system of matrix
units can be chosen for 2ln (n > 1) such that each matrix unit in
2ln is a sum of matrix units in 2ln+i, and each matrix unit in Vn is
a sum of matrix units in 2?n+i A norm-closed subalgebra T C 21 is
TAF if T Π T* is an SV masa in 21. Tfl T* is called the diagonal
ofT.

Let V C 21 be an SV masa, and X = Z>Λ, the Gelfand spectrum.
If x G X, there is a decreasing sequence of projections {Pn}^Lι

oo

with Π pn — {x} {pn the spectrum of pn in X). In fact, p n can
be chosen as a diagonal matrix unit in 2tn. If v is a matrix unit
in 21 with x G w*, then there is an n G N such that for n > N,
{v*pnv}n>N forms a decreasing set of diagonal projections, and the

intersection Π v*pnv is a singleton, say y. Write σv(x) = y or,
n=N

equivalently, (x,y) G v, the graph of v. In this way, υ is viewed as
a partial homeomorphism of X, with domain r(v) = vv* and range
d(?;) = υ*v. Write [x] to denote the orbit of x; i.e. [x] = lσv(x) : v a,
matrix unit of 2t with x G υυ*\. Each orbit is countable. If T C 21
is a TAF subalgebra with T(Ί T* = V, write x ^ y \ϊ y — σv{x)
for some matrix unit v G T. This gives a partial order on each
equivalence class in X. This is a total order on each equivalence
class iff T is strongly maximal (i.e., T + T* is dense in 21) [15].

If TZ = U{v : v a matrix unit of 21} C X x X, ΊZ is called the
groupoid associated with the pair (21, V). TZis topologized by letting
the compact-open sets v form a base for the topology. If V = U{Ό :
n is a matrix unit of T}, then V C 7£ is called the fundamental
relation of T.

Let ί? denote the inverse semigroup of partial homeomorphisms
συ associated with the matrix units of U2ln If μ is a measure on

n

X, we will write μ o συ for the measure μ o συ(E) — μ(συ(E)). A
Borel probability measure μ on X is ^-quasi-invariant if for each
matrix unit v the measures μoσυ, μ are equivalent (as measures on
r(v) — vv*.) If ΊZ is the groupoid of (21, X>), a 1-cocycle on 7̂  is a
map α :ΊZ -^ C with |α| = 1 satisfying

α(x,y)α(y,z) = α(
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for all pairs (x, y), (y, z) e TZ.

Given a matrix unit υ, let av : r(υ) —> C, aυ(x) = a(x,συ(x)).

We say a is measurable (with respect to a measure μ) if the functions

aυ are measurable for all matrix units v.
If μ is a ^-quasi-invariant measure on X and a a /i-measurable

1-cocycle, there is a representation p = ρμ,a of 21 on L2(X, μ) such
that the double commutant ρ(V)cc is a masa in B {L2(X, μ)). Define

j 1/2

p(f)ξ = fξ, andp(v)ξ = aυ " " " "

f e V (V identified with C(X)), ξ <Ξ L2(X,μ), and v a matrix
unit. One notes that p(υ) is a partial isometry with initial space
d(υ) = v*v and range space r(υ) = υυ*. Also, the cocycle condition
implies that for matrix units v\, v^ in 2ln, aVlV2 = αV l αV 2 o συ i 3 so
p(v\V2) = ρ(vι)p(v2). p extends by linearity to a representation of
C*(2ln,£>), and hence to 21.

THEOREM II. 1.1. Let V be an SV masa in a unital AF algebra
21. Then every representation ρof% such that p(V)cc is a masa in
B{%p) is unitarily equivalent to a representation pμ^. Two repre-
sentations pμ^a, Pμ^a! are unitarily equivalent if and only if the mea-
sures μ,μ' belong to the same equivalence class, and the 1-cocycles
a, oί differ by a coboundary. pμ^a is irreducible if and only if μ is
ergodic.

Proof. From the construction it is clear that if p — p μ j Q , ρ(V)cc is a
masa in B {L2(X, μ)). Suppose μ, μ1 are ^-quasi-invariant probabil-
ity measures on X and a, a' are 1-cocycles, and the representations
P — Pμ,α> p' — Pμ\a! ^ r^ unitarily equivalent. Let U : L2{X, μ) —>
L2(X, μ') be a unitary implementing the equivalence. Thus for each
a in 21, Up{a) - p\a)U. For / G C{X) C L2{X,μ).

= Up(f)l=p'(f)Ul. =

Since C{X) is dense in L2(X, μ),
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Since ξ H-> Uξ is an isometry, |J71| =
r , "I

= \-r~j\

1/2

[αμ J

equivalent measures); thus we may write Ul = 7
dμ

so μ, μ are
1/2

where 7

is a measurable function of modulus 1. Let υ be a matrix unit in 21,
£eL 2 (X,μ). Then

ξoσυ

= Λ-)C «

o συ= aυj o σ

= avη o συ

v I dμ' o σv

dμ o συ

1/2
dμ' o σv

dμ'

1/2

ξoσυ

dμ'

1/2

ξoσυ.

Thus, ηaυ = 7 0 ^ ; that is,

o!v =

Since the 1-cocycle ω(x,y) = 7(^)7(y)~1 is a coboundary, we have
shown that α, α' differ by a coboundary. Conversely, if μ, μ' are
equivalent measures, and the 1-cocycles α, a1 differ by a coboundary,
the same calculation shows that ρμ^,Pμ',a' are unitarily equivalent.

Suppose now that p is a representation 21 such that ρ(V)cc is a
masa in B{Ή,P). Since ρ(V) is a direct sum of cyclic subalgebras,
let WQ CΉpbe a, closed subspace such that ρ(V) \HQ is cyclic. Let
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E be the projection onto Tίo Then E G p(2?)c, and the reduction
p(V)cc -> p(V)cc E is an isomorphism. But E G p(V)cc = p(V)c,
which implies E = 1. This shows p(T>) is cyclic.

As every cyclic representation of V is unitarily equivalent to
multiplication on L2(X,μ) for some probability measure / i o n l
([7, p. 49]), we may assume Hp = L2(X, μ) for some μ, and p(f)ξ =
/£, / e ^ (identified with C(X)), ξ G L2(X, μ). Using the fact that
for any projection e G C(X) and matrix unit v, vev* = e o σv, we
obtain that υ f υ* — f o συ for any / G ̂ (X) , as / is a norm limit
of linear combinations of projections. Viewing C(X) C L2(X, μ),
we have

p(υ)f = p(v)p(f)l

= p(υ)p(υ*υ)p(f)l

= p(v)p{f)p(v*v)l

= p{vfυ*)p{v)l

= p{f°συ)p(v)l.

Set λυ = p(υ)l. Then

p{υ)f = Kf °συ.

As C(X) is dense in L2(X,μ),

p(υ)ξ = λvξoσυ, ξeL2(X,μ).

Now p(υ) is a partial isometry from rf(u)L2(X, μ) onto r(υ)L2(X, μ).
If ξ is any vector in d(υ)L2(X,μ) then ||p(v)f|| = | |ξ| |. Thus

It follows
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and in particular that μ o σ"1, μ are equivalent measures (as mea-

sures on d(υ)). Now σ~ι = συ* and as υ was an arbitrary matrix

unit, we have that μ is Q- quasi-invariant. The fact that p(v\V2) =

from matrix units implies λVlV2 = o συi. If e
υi

is a projection in £>, Xe = p(e). Taking v\ = v*, V2 = v, get

Since the functions on the right are supported on d(v), we have

λυ* = (Xυ o α^*)"1 on d(v), or

λυ* = (λv o σ~ ) " .

From the above we obtain

.-Πl/2

ιvι = \dμ dμ 0 σv*

Replacing v* by v,

dμ 0 σv

dμ

1/2

Express λ^ = a v ί^p2-] then aυ is a μ-measurable function of
modulus one. Furthermore, the equation XVιV2 = λ^λ^ oσυi implies
aViυ2 = aυiaV2oσVl. Thus the functions {α^}, υ a matrix unit, define
a 1-cocycle α, and we have shown that p is unitarily equivalent to

Pμ,α

Suppose p = pμ^a with μ ergodic, and let T = Γ* G p(2ί)c As
p(2l)c is generated by its self-adjoint elements, it is enough to show

ιmι
T is a scalar. Writing T = f tdEt the spectral decomposition,

-ιmι
the spectral projections Et commute with all operators commuting
with T, so Et e p(2l)c. As Et G ρ{V)c = p(V)cc, for any matrix unit
υ we have

p(yv*)Et - p(υ)Etp(υ*) = Eto συ.

It follows that the support Et is ^-invariant, so that μ(Et) = 0
or 1. Thus Et = 0 or 1 for all ί, so T is a scalar. Conversely, if μ is
not ergodic and E is a (/-invariant subset of X with 0 < μ(E) < 1,
then the corresponding projection E is reducing. D
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REMARK 11.1.2. Stratila and Voiculescu studied the representa-
tions ρμ = pμ?i (in our notation) for which the cocycle is the constant
1 [14, p. 52]. Henceforth we will also write ρμ in place of pμ > 1.

DEFINITION 11.1.3. Let 21 be an AF algebra and V c 21 a
distinguished masa. A representation p of 21 in B(ΉP) is called V-
preserving or masa-preserving if the weak closure of ρ(T>) is a masa
in B(HP). If T C 21 is a TAF algebra, then p is masa-preserving if
it is P-preserving for the diagonal masa V = T ί lT*.

Note that if p is ^-preserving, and 8 C 21 is another masa, p may
not be ^-preserving.

II.2. Properties of masa-preserving representations. In what
follows, it will be convenient to work with invariant measures when
possible. Thus, quasi- invariant probability measures are in some
cases replaced by equivalent, σ-finite, invariant measures.

If T C 21 is a TAF subalgebra with T Π T* = £>, say a subset
Y C X is decreasing if, whenever y G Y and x -< y, then x G Y\
Let T be the weak closure of p(T) in B(H). Finally, let Pβ be the
projection ξ ι-» χ#£ for E1 C X measurable.

PROPOSITION Π.2.1. Let T be a TAF subalgebra of the AF alge-
bra 21 with diagonal V, p : 21 —>• #(Ή) α masa-preserving represen-

tation. Letting T = p(T) , and £ = Lat(T) we have
(i) £ = {pD : D C X, D measurable, decreasing}. In other

words C is a CSL with Arveson representation given by the
triple (X, -<,μ), where μ is the measure associated with p.

(ii) If C is a nest, then f = Alg(£).

_ Proof (i) We may suppose by Theorem 1 that p = p μ ? α . Since
T D V = L°°(X, μ), any subspace invariant under T is of the form
P E L2(X,μ) for some measurable E C X. If £ G L2(X,μ) is
supported on 1£, ?; a matrix unit in T, then p(f )£ is supported on
σ - ^ E ) = σ" 1 (E Π v*ϊ>y Thus, σ " 1 ^ ) C E, for each matrix unit
υ in T. In other words, E is decreasing.

(ii) Follows immediately from [3, Cor. 15.12]. D

Note that in the above proposition, T is not assumed to be
strongly maximal.
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If p : 21 -Λ B(U) is a representation, and T C 21 is TAF, is it

true that T = p(T) is a CSL algebra? In other words, when is T
synthetic in the sense of Arveson's work [1, Definition 2.2.1]?

In light of Examples I.I, 2 and 4, D. Larson raised the question
of whether every strongly maximal triangular subalgebra of a UHF
algebra can be represented as a weakly dense subalgebra of a nest
algebra in which the nest is maximal. The next proposition answers
this question in the affermative; in fact, the result is true for a much
broader class of AF algebras, namely the primitive AF algebras.
Recall that a C*-algebra is primitive if it has a faithful irreducible
representation; in particular, if 21 is simple then 21 is primitive. From
[7, 3.13.10; 4.3.6] and

[12, II.4.6] 21 is primitive if X has a dense orbit. This fact is used
below.

PROPOSITION II.2.2. Let 21 be a primitive AF algebra, T C 21

a strongly maximal TAF-subalgebra. Then there is a faithful, irre-

ducible masa-preserving representation pofQl such that T = p{T)

is a triangular nest algebra in B(7ίp).

Proof. LetV = TnT* and X the Gelfand spectrum of V. By
the above remarks, X has a dense orbit, [xQ]. Since T is strongly
maximal, the orbit [x0] is totally ordered. Let μ be counting measure
on [xQ]: thus if E C X, μ(E) = card (E Π [xo]) Note that μ is a
σ-finite Borel measure, which is invariant and ergodic. Thus the
representation ρμ : 21 —> B(Ή,P) is irreducible. As the orbit [XQ] is
totally ordered, the decreasing subsets of [x0] are totally ordered.
Every projection P in L°°(X,μ) is of the form P =_PE, with E C
[xo], and it follows from Proposition 2.1 that Lat T is a nest, ΛΛ
Also, from (ii), f = A]g(Λ/").

It will follow that T is triangular if λί is maximal; to see this
is true, let [XQ] = {^}iG/, where the index set / is ordered so that
Xi -< Xj iff i < j . Let Pi be the one-dimensional projection onto the
span of ξi G L2(X, μ) = 7ίp, where

0, otherwise.
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It is enough to show each /* 6 λίcc for then Ncc = L°°(X, μ). Let

A = {XJ ' j<hjφ i] and Df = {z, : j < ί } = A U {xj.

Then Di,Df are both decreasing, so

PDi,PD+eλf, and P, = P D 4 - - P A .

To show p is faithful, note that ker p is an ideal in A, and hence
ker p is the norm-closed £>-module generated by its matrix units. If
v is a matrix unit with p{v) = 0, then ρ(υ*v) = 0. Thus it suffices
to show p(e) Φ 0 for e a projection in 2λ But if e is a nonzero
projection in £>, supp e = e is a nonempty open set in X, and since
{xi}ie/ is dense, there is some Xj G e. Then p(e) & φ 0. D

II.3. Examples of measure-cocycle constructions. Now we re-
turn to the standard embedding algebra T — liϊ^(7^, σn) of Example
1.2 to see that the representation described there is of the type ρμ.
If the standard embedding is is given in binary notation i.e.,

then the sequences (ZQ, . . . , in-i)j Oo? ?in-i) are identified with
n — 1 n — 1

the integers 1 + Σ ^2€, 1 + Σ 3& respectively. From this it is
i=0 ^=0

oo

easy to see that two points x,y e X = Π {0, l } n are in the same
orbit iff they have the same tails, and in that case the ordering is
given by x -< y if either x = y or else 3 iV G N with XJV < y^
and xn — yn, n > N. Thus the ordering on each orbit ("reverse
lexicographic order") has the property that each element except
for ϊ = (1,1,1,...) has an immediate successor, and each element
except for 0 = (0,0,0,...) has an immediate predecessor. (See [16],
or [4] for a fuller discussion.) In particular the orbit [0] is order-
isomorphic to the natural numbers.

Thus the Smith representation of T on £2(N) is obtained by choos-
ing μ to be counting measure on the orbit [0]; note that the formula
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for p (βij) ζe can be expressed in binary form as

P Ve(*0,...,*n-l),U0,.. Jn-l)/ %.» Λ- lΛA+l,-

ί £(io,...,*n-iAA+i,...) i f (4>, A - l ) = (jO, . , jn- l)

0, otherwise.

But this is precisely pμ. The projections P(iv..,n) of 1.2 correspond
to projections onto descreasing sets, so the assertions of 1.2 follow
from Proposition II.2.
The representations in Examples I.I, 1.3 and 1.4 are also of the

form pμ, but for μ non-discrete. For the canonical nest algebra
T = lil^(7^, vn) in I.I, the Gelfand spectrum X of the diagonal can

oo

b e identi f ied w i t h Π {0, l } n T w o p o i n t s x,y G X b e l o n g t o t h e
n=l

same orbit if they have the same tails, and the ordering on each orbit
is lexicographic: (xn) -< (yn) if either x — y or for some N, XN < yN,
and xn — yn for 1 < n < N. Let μn be the measure on {0,1},

oo

μn(0) = μn(X) = 1/2? a n d μ — Y[ μn, the product measure. Also,
n=l

oo

note that the map X -> [0,1], (xn) —> ^ χn^"n-> gives a measure-
n = l

space isomorphism of (X,μ) with ([0,1], m). Let {e(Γi,...,;n),(ji,...jn)}>
HiJi £ {0,1}, 1 < ί < n, be a system of matrix units for 2ln, indexed
binarily, and satisfying

The relation between binary and integer indexing is ( i i , . . . ,in) —>
n oo

Σ ^2n~£. The map x = {xn)n=ι -^ Σ ^n2~n implements an iso-
1=1 n=\

morphism of L2(X, μ) and L2([0, l],m), under which

Pa (e6 • \ (« « \\ is transformed into the operator p (e^Λ of I.I,

where
( i i , . . . , i n ) ->^5 (jι,--Jn) -* j

The fact // is invariant is equivalent to the invariance of Lebesgue
measure under dyadic translations. The ergodicity of μ can be ob-
tained from the fact that m is the unique translation-invariant mea-
sure on [0,1], or directly as μ is the measure on X associated with
the unique normalized trace on the diagonal.
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The Hubert space isomorphism L2(X,μ) —> L2 ([0, l],m) of the
previous paragraph also yields an equivalence of the representation
p of Example 1.3 with a masa-preserving representation pμ of the
standard embedding algebra. This ρμ is a particular instance of
Proposition III.2.1. ([16] contains a useful discussion of the stan-
dard embedding TAF algebra.)

oo

For Example 1.4, view X as described in [4]: X = Π {0, l } n ,
n=—oo

where x, y G X belong to the same orbit if they have the same
tails (both to the left and to the right), and x -< y if for some JV,
%N < 2/iv, and xn = yn for n < N. Let X_n C X be the set of
points x = (rrfc)£L-oo with xk = 0, fe < —n. Define a measure μ on

U X-n by

μ\X X G A _ n , X—n — t-n? 5 %m ~ ^m) = = ^

for each integer m, ra > —n, and each choice of £ _ n , . . . , £ m . Set

( oo \ oo

X\[jX-n) = 0. Let Λ : U *-n ~> [0,oo),
n=0 J n=0

by A(x0) = Σ X{2~~1. This is well defined as xt — 0 for —£
^ = - o o

sufficiently large. Λ gives an isomorphism of the measure spaces
(X, μ) and ([0, oo), m). We leave it to the reader to verify that μ is
an invariant ergodic σ-finite measure on X, and that Λ implements
a unitary equivalence of the representation p of Example 1.4 and
the representation pμ on L2(X,μ). Since pμ is masa-preserving, it
follows from Theorem II. 1.1 that pμ is irreducible, and from Propo-
sition 0.1 that pμ(T) is weakly dense in a nest algebras.

III. Attainable order types.

III.l. Algebras in which LatT generates the diagonal.

PROPOSITION III. 1.1. Suppose T is a strongly maximal TAF
subalgebra of% and p is a weakly dense representation of$ί in B(HP)
such that the weak closure of p(T) contains a masa. If the invariant
projections of T in 21 generate the diagonal of T as a C*-algebra,
then Lat p(T) is either a continuous nest or else it is a totally
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atomic nest whose atoms are ordered as one of the orbits in the
fundamental relation.

Proof. If Lat ρ(T) has no atoms then it is continuous, so suppose
it has an atom E. Then Eρ(t)E is a homomorphism on V which
maps every projection in T to either E or 0. Since the invariant
projections of T generate all the projections of V this means every
projection in V is mapped to 0 or E. V is the closed linear span of its
projections, and so EpE is an element of V. (Also, the irreducibility
implies that E is rank-one.)

Let

F = v {P ( e « ) EP {<$) ' (M) for w h i c h

e\j is defined, n = 1,2,... j .

Then F is an invariant projection for all p (e\*•M and hence for 21.
Since p is an irreducible representation of 21, F is the identity. Thus
Lat ρ{T) is totally atomic.

The ordering of the atoms of Lat p(T) is induced by the same
conjugations that induce the ordering of the equivalence class of E,
viewed as an element of V. D

It also follows from the proof that if the nest is not continuous,
the von Neumann algebra generated by the atams, which are rank-
one, is a masa, and hence the image of the diagonal is weakly dense
in a masa. We have proved

COROLLARY III.1.2. IfT, p are as above, then either Lat ρ(T)
is a continuous nest, or else p is masa-preserving.

If T is the refinement algebra, then between any two points on an
orbit in the Gelfand space of the diagonal lies a third point. Thus

COROLLARY III.1.3. If p is an irreducible representation of the
UHF algebra 21 and T C 21 is the refinement algebra, then Lat p(T)
is either a continuous nest, or else it is a Cantor nest of multiplicity
one.

If Lat p(T) is a continuous nest, then p need not be masa-
preserving. In Section IV.3 we will present an irreducible repre-
sentation p of the ambient UHF algebra of the refinement algebra
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T such that Lat p(T) is a continuous nest of uniform multiplicity
two. On the other hand, if p is masa-preserving, we obtain

COROLLARY III.1.4. Let % T, p be as in Proposition 1.1. Sup-

pose in addition that p is masa-preserving. Then T = p(T) is a

triangular subalgebra of B(HP).

Proof. If Lat T is totally atomic with rank-one atoms, then T =
Alg(Lat T) is triangular. Otherwise, Lat T is a continuous nest of
multiplicity one since p is masa-preserving, and in this case T is
also triangular. D

III.2. Representations of the standard algebra. In this section
T will denote the standard embedding algebra in the UHF (2°°)

algebra 21, and we will completely describe the order types of the

nests in which T can be densely represented. Here we drop the

condition that the representation π satisfy τr(TfΊ T*) be a masa

in B{lίπ), and only assume π be *-extendible.

THEOREM III.2.1. Let π be an irreducible representation of %

such that τr(T) contains a masa. Then λί = Lat π(T) is either

a two point lattice with a single infinite rank atom, or else is a

multiplicity-free nest ordered as a subset of the integers.

Examples 1.3 and 1.2, together with obvious modifications, show
that all of these lattices are attained by representations.

We need first a couple of lemmas.

LEMMA III.2.2. Let π, T be as above. Then for each n e λί
other than 0; / there is a k and 1 < i < j < 2k such that

Proof. Note that since TΓ (ej j) TΓ (ej j)* = TΓ (e£ } ) belongs to

the commutant of Λί, π (ejj J n π (e\j') is a projection and since
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π \β\Jj is in AlgΛ/* it is dominated by both n and TΓ (e^ J. Thus
suppose, on the contrary that for each choice of k, i, j ,

Then since n and π \e\Jj commute, π (ejj J and n would commute

and n would reduce τr(T). D

LEMMA III.2.3. Letv = π ( e ^ ) for some k and 1 < i < j < 2k

and let pi = vυ*, p2 = υ*υ. Let n G Λf. If vnv* < pxn then there is
an n' £ Λf with nf < n and n — n' J_ p2-

Proof. As before, p\ and n commute and vnv* is a projection. Let
qλ = p x n — ̂ n?;* and g2 = P2^ Now we claim that because T is a
limit of standard embeddings, e$Tef] = ef]Tef}. Observe that
for any k' > A:,

2(k'-k)_ι

e t , i ~ Z ^ c'i-\-r2k ,i+r2k m

r=0

Thus for any matrix unit v in Tw, either e^vβjj is zero or else v =

e%]

r2kj+s2k for some i + r2k < j + s2k. Now (s - r)2k >i-j>-2k

so s > r. Thus,

_ ((k) (k)
i+r2k,j+r2kej+r2k,j+s2k

Thus, the claim follows. Now note that

= 0.

Thus q'lAlgΛ/'ίfe = 0 and so we must have an n' € Λ/" such that

n;
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But qι is a non-zero projection dominated by n and so n > n1. On

the other hand, 0 < P2(n — n1) — q2 — P2^' < 0 so P2 -L (n —

n'). •

Proof of III. 1.1. By Proposition 0.1, ττ(T) is weakly dense in
Alg Λ/", where Λ/* is a nest. We shall show that every n other
than 0 or 1 in λί has an immediate predecessor. Since there exists
a conjugate-linear automorphism of T and the adjoint map maps
AlgΛ/" to AlgΛΛ1, which is the reversed order structure, it is clear
that this will also show that every element in λί other than / must
have an immediate successor.

Suppose n G λί \ {0,1} has no immediate predecessor. Now,
by Lemma A, we can choose k and 1 < i < j < 2k such that
π \eiJ) n 7 Γ \eiJ) < π (eM ) n* T h e n by Lemma 3, there is an n' <

n such that (n — n') _L TΓ (βjjj. But then the map π(t) = (n —

nf)π(t)(n — n') is a homomorphism on T. Moreover, π (e^J) = 0.
Thus, for any / > 0

Since, if 0 < r < 2ι and ϊ <j + r2k < f then

(*+0 _ (fc+o (fc+o

it follows that π (e^ },) = 0 whenever k' > k and f - ϊ > 2k. Thus,

for v eTk>

which belongs to the τr(TίΊ T*). Since this holds for all k' > k, it

follows that, taking pr = π ( e ^ j ,

belongs to Λ^c for all υ e T. But thus, prπ(T)pr C τr(TΠ T*) for
1 < r < 2k.

Since also prπ(T*)pr C τr(T Π T*) and T is strongly maximal
triangular, p rπ(2l)p r C π ( T n T * ) But τr(T(ΊT*) is abelian, hence
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2

pr is rank-one. Since Σ pr = n — n', n has an immediate pre-
r=l

decessor. Moreover, if n— is the immediate predecessor of n then
(n —n—)τr(n —n—) gives an irreducible, finite dimensional represen-
tation of T, which requires that n — n— be rank-one. Finally, since
21 is simple it has no finite dimensional representations and 7ίπ is
infinite dimensional. Thus either λί = {0,1} or else λί is infinite
(since its atoms are rank-one). D
III.3. Masa-preserving representations of Z-analytic alge-
bras. From [14], given an AF algebra 21 = U2ln and masa V with
V Π 2tn a masa in 2ln, one constructs a conditional expectation
£ : 21 -» X>, with the property that £(?;α?;*) = v£(a)v* for any
matrix unit v, α G 21. (Matrix units are chosen as described at the
beginning of this section.) It follows that there is a one- to-one cor-
respondence between tracial states on 21 and invariant probability
measures on X = 2?Λ, given by

x
where r is a tracial state, μτ an invariant probability measure. In-
deed, given r, τ\v is a positive, invariant norm-one linear func-
tional, hence corresponds to an invariant probability measure. Con-
versely, given such a measure μ, the formula defines a tracial state
[14, p. 33]. Under this correspondence, ergodic measures are iden-
tified with extremal traces.

Let 21 be a simple AF-algebra, and T C 21 a strongly maxi-
mal TAF subalgebra. Let V = T Π T* and X = VA. T is said
to be standard Z- analytic if T can be written as a direct limit
of direct sums of upper triangular matrix algebras with standard
embeddings. If XmΆX (Xmm) denotes those points having no im-
mediate successor (predecessor), then X m a x (-̂ min) is easily seen
to be nonempty closed, nowhere dense in X. (A more general re-
sult, which applies to strongly maximal TAF algebras, is proved in
[11, Proposition III. 5].) Furthermore, there is a homeomorphism
ψ : X \ Xmax —>• X \ Xmin which assigns to each x in its domain the
immediate successor of X. The orbit of x € X is

[x] = lσv(x) : v a matrix unit in 21 ttήtf) x G vv*\

= {φn(x) : n G Z, x G dom φn}
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Also, the half-orbit {y G X : x -< y}

= iσυ{x) : v a matrix unit in T with x e υυ*\

= {<£n(z) n E N U {0}, x 6 dom </>n}.

(See [10], [16] for more facts about analyticity and Z-analyticity.)

PROPOSITION IΠ.3.1. Suppose the simple AF algebra 21 admits
a tracial state and T C 21 is a standard Z-analytic TAF subalgebra.
Then there is an irreducible representation p of 21 such that p{T)
weakly dense in B(%p).

Proof. If 21 admits a tracial state, it has an extremal tracial
state; let μ be the corresponding invariant, ergodic probability mea-
sure on X. As Xmax, ψ~x P w x ) , , ψ~n (-Xmax) are disjoint with
equal μ-measure, each must have measure zero. Similarly, Xmin,
φ (Xmin), each has measure zero. Thus φ may be regarded as an
invertible measure-preserving transformation on the measure space
(X,μ). The ergodicity of μ w.r.t. the maps συ is equivalent to
saying μ is ergodic w.r.t. </?, by earlier remarks.

Next, suppose D C X is measurable and decreasing; i.e. φ~ι(D) C
oo

D. Let E = U ψn(D) Then φ~ι(E) =E = φ(E). By ergodicity,

μ(E) = 0 o r ΐ But μ((φn(D)) A D) = 0 so μ(D Δ E) = 0; i.e.
μ(D) = 0 or 1. By Proposition II.2,

Lat f = {0,1}, and f = Alg{0,1} = B{Up).

D

While Theorem III. 1.1 was motivated by Proposition 0.1 and uses
only that TΓ is an irreducible representation of ambient UHF algebra,
the next proposition, which applies to the larger class of Z-analytic
TAF algebras, uses the result of Proposition II.2.1 that p is an
Arveson represent ion.

PROPOSITION III.3.2. Let T be a Z-analytic TAF subalgebra of
a simple AF algebra 21, and p an irreducible masa-preserving repre-
sentation of 21. Then λί = Lat p(T) has the order type of a subset
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of the integers.

Proof. Setting X the Gelfand space of T ί Ί T*, we may suppose
P — Pμ,a for some quasi-invariant probability measure μ on X and
1-cocycle a. By Proposition 2, M may be identified with the de-
creasing, measurable subsets of X. Suppose E C X is such a set.
With notation as above,

is a chain of decreasing sets, as is

n

E CEU ψ(E) C C (J <^(£) C . . . .

Either chain may stabilize at some point. In any case, if we can
show these are the only decreasing sets, the Proposition will follow.
Since λf is a nest, any F G λf not listed above must lie between two
elements in the list, and changing notation we may suppose that
φ"ι(E) C F C E. Set F1 = (E\F)Uφ~ι(E); clearly Fγ is decreas-
ing. Now μ(F1 \ F) = μ(E \ F), and μ(F \F1)=μ(F\ φ~ι(E))
Thus, if both μ(E \ F) > 0 and μ(F\φ~1(E)) > 0, it follows
that Fu F are two decreasing sets which are not comparable. This
contradicts that M is a nest, so no such F exists. D

III.4. On the variety of attainable order types. Next we give
a strongly maximal TAF algebra T which can be faithfully rep-
resented both as a weakly dense subalgebra of the Volterra nest
algebra, and as a weakly dense subalgebra of a nest algebra Alg Λ/",
where λf has the order type of the natural numbers.

Let Tk be the standard algebra of upper triangular 22 x 22 ma-
trices. Set [n] = 22 n. We embed Tk in Tk+ι by the identification,

r=l

for 1 < i, j < [k]. Then we can form the strongly maximal trian-
gular algebra T = limTfc. (Notice that this is a limit of algebras
of upper triangular 22 square matrices.) We shall see that there
are masa-preserving representations pi, p2 of T such that pι(T) is



152 JOHN L. ORR AND JUSTIN R. PETERS

weakly dense in a nest algebra whose lattice is ordered as the natural
numbers and fo(T) is weakly dense in the Volterra nest algebra.

It is clear that the enveloping C*-algebra for T is the UHF algebra
with supernatural number 2°° and that the maximal ideal space of
the diagonal of T can be identified with

n=0

Now the element Xo — (0,0,...) of X corresponds to the decreasing

sequence e ^ , k = 1,2,3,... and its orbit is ordered as the positive

integers. We obtain p\ by equipping this orbit with the counting

measure.
oo

On the other hand, if we let μ be the product Π Vn of the proba-
o

bility measures
μn{0} = μ{l] = 1/2

then this is an invariant ergodic measure on X. Moreover, since T is
strongly maximal triangular, the μ-equivalence classes of decreasing
sets are totally ordered. It remains to show that the range of μ on
the decreasing sets is dense in the unit interval.

Fix k = 2ι and 1 < r < 2k. Let p0 = Σ 4 ? a n d l e t P° = Σ 4 ?

and let

where kn = 2ι+n. We take r to be the faithful trace on the diagonal
of T corresponding to integration by μ and observe that r(p0) =
r2~k. By the embedding relationship one checks that

By the same token,

τ(p2) < r{Pι) + 2~2k < τ(po) + 2~k + 2~2k

and in general,

Φo) < r{pn) < τ(Po) + Σ 2~rh < τ(p0) + 2ι~k.

The union of the subsets p^ of X corresponding to pn is a de-
creasing set in X which has measure in the range [r2"fc, (r +
Since r and k were arbitrary, the result follows.
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IV. Multiplicity of represented algebras.
IV. 1. A masa-preserving representation with multiplicity
two nest. In this section we present an example of a strongly max-
imal TAF algebra T which admits a masa-preserving representation
in a nest algebra in which the nest has uniform multiplicity two, and
the representation of the ambient UHF algebra is weakly dense in
B(H).

Let Tk be the 2^-square upper triangular matrices. We shall sup-
pose for convenience that the matrix units of Tk are indexed by
sequences of zeroes and ones of length k. Embed Tk in Tk+i by
means of the identification

Jk

Now the maximal ideal space, X, of the diagonal of T = limT^ can
be identified with the set of sequences x = (xι,x2,... ;xω) where
xa are each in {0,1}. The S-V equivalence classes are the sets of
those x having common tail in the infinite segment (but possibly
differing entries at the ω position). The ordering on the equivalence
classes is lexicographic. As with the refinement algebra, we put a
measure on the maximal ideal space of the diagonal corresponding
to the product measure

71 = 1

where each of the measures has weight 1/2 on both 0 and 1. Now the
S-V representation arising from this measure can be shown to give
a continuous nest of uniform multiplicity two. This can be shown
directly, but perhaps the clearest way to see it is by introducing the
mapping φ from X to [0,1] by

(xux2, . . . ; a ; w ) ^ xω/2 +
rc=l

This map is absolutely continuous from μ to Lebesgue measure on
the unit interval and one readily checks that the partial homeomor-
phisms e\J on X correspond to the maps of / to
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where the endpoints k(i) are given by

Then it is easily seen that the weakly closed algebra generated by
these operators is the nest algebra whose nest is the projections
X[o,t] + X\ι i+ί] for 0 < ί < | . Furthermore, from the ergodicity
of Lebesgue measure under dyadic translations that μ is ergodic,
and hence by Theorem II. 1 the representation of the ambient UHF
algebra is irreducible.

IV.2. The failure of representations to preserve triangular-
ity for nest algebras. If p is an irreducible representation 21 -»
B(Up) and T C 21 a TAF subalgebra, we have seen that f-pJT)Wk

can fail to be triangular, even if p is masa-preserving. Indeed, III.3.1
shows that T can be B(Jίp), while the previous example shows T
can be the nest algebra of a nest of uniform multiplicity two. That
T generally fails to be triangular in B(HP) is hardly surprising, as
weak closure does not preserve triangularity. However if T is a nest
algebra in the AF algebra 21 such that Lat T generates the diagonal
of T in 21, and p : 21 -> B(HP) is an irreducible, masa-preserving
representation, we have seen that T is necessarily triangular (Corol-
lary III. 1.4). One question that remains is this: if we take T to be
a nest algebra, but drop the assumption that Lat T generate the
diagonal in 21, is it still true that T must be triangular?

In this example we present a triangular nest subalgebra T of a
UHF algebra 21, and an irreducible masa-preserving representation
p of 21 such that the weak closure T = ρ(T)W is a nest algebra,
but is not a triangular subalgebra of B(ΉP)] specifically, T Π T * is
a non-commutative von Neumann algebra which contains a masa in
B(H).

We recall the construction of the TUHF algebra T(a) from

[8, Theorem 4.5] and [9, Theorem 2.24]. Let 2tn = M2n, {ej}}i<zj<2-

be matrix units for 21^, and write diagonal matrix units e 2 as e^

for convenience. For N € N, set Q(N) the permutation matrix in
M2N such that

Q(iV)diag
j . / (1) (2) (N) (1) (2) (N)
α i a g (a\ , a\ , . . . a\ , α^ , o>2 ? ? Q>2
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(Here diag(&i,..., bι) denote the diagonal matrix in Mi.) For each
n and 1 < m < 2n, let

R(n, m) =
L2m

0

0

Q(2n - m)

Observe that Ad R(n, m) maps upper triangular matrices in 2ln to
oo

upper triangular matrices in 2ίn +i. For a G (0,1), let a = Σ ^
n=l

n

be the nonterminating binary expansion. Set Mn = Σ 2n~ιki, θn =

Ad R(n, Mn) o i/nj 21 = lir^(2ln, θn) (a realization of UHF 2°°), V =

>n, θn), where Vn is the diagonal subalgebra of 2ίn, and T(a) —

^rnθn), where Tn is the upper triangular subalgebras of 2tn.

Let X be the Gelfand spectrum of V. Let λί = [p G V : p =

Σ e ί n ) , A; = l , . . . , M n , n = 1,2,... } U {0,1}.

In [9] it is shown that λί = Lat(7(Q)) and 7(Q) = Alg(Λ/̂ ). Let
Z C X, Z = U{p : p e λί, p < 1}. Since (as proved in [8])
sup{tr(p) : p G Λί, p < 1} = a, we have μ(Z) = α, where α is the
probability measure on X corresponding to the unique normalized
trace on 21. Set Y = X \ Z. If x G X, let /(n, x) denote the unique
integer j such that a; G ê  .

f(n,x)
> a, thenLEMMA IV.2.1. If x G X, limsup

a for all n.

Proof. Since — - is the truncation of the binary expansion of
Δ

M M + 1 f in x)
a, — - < a < — . Thus, if for some n, — < α, then5 2n " 2n 2n

f(n,x) < Mn. By definition of the embedding θn,

As x G &ij-ι or x ^ e^ , /(n + 1,x) < 2/(n,x); so that for
m> n, /(m,x) < 2m-nf(n,x). It follows

/(ra,s) < /(^>a;) < ^ n
2m — 2n — 2n '
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SO
f(m,x) Mnhm sup — < < a.

m 2™ ~ 2n

D

COROLLARY IV.2.2. Z = {x e X : lim sup v ' ; < a}.

Proof. If x £ Z, then x £ p for some p £ Λf, p < 1. Say p =

Σ βi as observed earlier j < Mn, so /(n, x) < j < Mn. It follows

fin x)
from the Lemma that lim sup ' < a.

fin, x)
If on the other hand lim sup —- < a, then by the Lemma

f(n,x)
^— < a for some n. Hence /(n,x) < Mn, and x £ p, p —

fΣX)e\n) eλί.SoxeZ. Π
2 = 1

Since T is strongly maximal and triangular, the ordering (defined
prior to Theorem II. 1) on orbits of X is a total order on each orbit.
By [10] a projection p £ V belongs to λί iff p is a clopen, decreasing

set. It pn = Σ d?\ then the sets {pn : n = 1,2,...} form an

increasing sequence of decreasing, clopen sets, hence their union
(which is Z) is decreasing and open.

LEMMA IV.2.3. Z is decreasing, open and dense in X.

Proof. It remains to show Z is dense. To show every nonempty
open set intersects Z, it is enough to show that if e™ is a matrix

unit, έf1 C\ Z Φ§. Now if j < Mn, έf1 C Z, so we may assume

j > Mn, say j = Mn+jo
Now

n) \ _ (n+1) (n+1)
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Since the dyadic expansion a — Σ — is non terminating there is

an m > n with fcn+1 + + km = jΌ It follows that θm-\ ° * * °

θn (ef]) > e g , and since ej£ C ̂ , we are done. D

COROLLARY IV.2.4. Y is closed, increasing, nowhere dense. Also.

μ(Y) = 1 - a.

Any strongly maximal TUHF algebra T — UTn, where Tn is iso-
morphic to the upper triangular matrices in some finite factor, has
the property that there is a unique maximal element in the spec-
trum of the diagonal; specifically, there is exactly one orbit having
a maximal element, and the remaining orbits have no maximal el-
ement. This applies, in particular, to 7(α) Let ym a x be the unique
maximal element in X:

oo

{t/max} = Π «!? C Y.
n = l

LEMMA IV.2.5. Every element ofY\ {yma,x} has an immediate
successor in the induced ordering on the orbits ofY.

Proof. If y G Y, y φ 2/max, then y G ef] with j < 2n, for suffi-

ciently large n. Since by Lemma IV.2.1, Cor. IV.2.2, j — f(n,y) >

Mn for all n, θn (βf] + 1 ) = e^^+eξ1}^ for some j 0 , ju * follows

that φ(y) = f)m=n ^/(m,y)+i ^s nonempty, and hence intersects in a
unique point, denoted φ(y). Observe

(y, φ{y)) e 4

If ?/' G [ί/] satisfies y ^ y', then for some m>n, (y, ?/') G
with f(m,yf) > f{m,y). Thus, y>(y) -< y'.

COROLLARY IV.2.6. The map φ is a homeomorphism on its do-
main.

Proof. Let y G dom (φ) and j as above. As y>(y;) = (τυ(yr) for

y7 G έj\ v = e^n]+1, i.e., the restriction of y? to the clopen set έj co-

incides with the partial homeomorphism σv. ψ is a homeomorphism

on its domain. D
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N o t e t h a t if {ymin} = Y\φ(Y\ {ymax}) t h e n φ:Y\ {ym3iX} -»

Y \ {l/min} is a homeomorphism. Here ym i n is the unique minimal

element of Y; ym[n is not minimal in X. If y £ Y, the intersection

of the orbit [?/] in X with Y, [y]y = {φn(y) : n 6 Z, y G dom <//*}

where φ2 — φo ψ with appropriate domain, φ3 = φ2 o φ, etc., and

9?"1 is the inverse map, φ~2 = φ~ι oφ~ι, etc. Since the measure μ is

invariant under the partial homeomorphisms συ, v a matrix unit, it is

invariant under φ. Furthermore, since the orbits [ΐ/maχ]γ> [j/min]y are

countable and hence null, we can regard ψ as an invertible measure-

preserving transformation of (Y,//)> I1' = A6 For if v were
1 — a Y

another invariant probability measure on Y, then E ι-> μ(E Γ) Z)+
(1 + α ) i / ( £ n y ) would be an invariant probability measure on X,
and hence by uniqueness of the trace, equal to μ. It follows v = μ'.
Thus μ' is ergodic w.r.t. ψ.

LEMMA IV.2.7. Let E C X be any decreasing, μ-measurable set
containing Z. Then E — Z or E — X (up to measure zero).

Proof. Let F = E Π Y. Then F is a decreasing subset of Y, and
regarding φ as measure-preserving transformation of Y, φ~ι(F) C

oo

F, with μ ( ^ - 1 ( F ) ) = μ(F). Let F o = (J <^n(^) Then μ(F) =

μ(φn(F)), so ^(F) = μ(F 0). F o is invariant in Y. By ergodicity
of <£, Fo = 0 or F o = Y a.e. Thus, F = 0 or F = Y a.e. Since
E = F U Z, the result follows.

D

-wk
COROLLARY IV.2.8. T(a) = Pμ(7(α)J ^ α nesί algebra which is

not triangular in B{T-LP).

Proof. By [3, Cor. 15.12] and Proposition II.2, 7[a) is a nest al-

gebra. To show that Ί[a) is not triangular (in the sense of Kadison

and Singer) in B(l~Lp), it is enough to observe that Lat(7(α)) is not

a maximal nest in %p. As the successor of L2(Z) is L2(X) = 7ίp in

the nest, and dim (7ίp θ L2(Z)) = dimL2(Y) > 1, Lat 7(α) is not

a maximal nest in 7ίp, and so the nest algebra Ta is not triangu-

lar. D
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IV.3. A non masa-preserving representation of the refine-
ment algebra with a multiplicy two nest. The TAF algebra
T of Example IV. 1 has the property that Lat T does not generate
the SV masa T Π T* in the ambient UHF algebra 21. In fact the
commutant of Lat T in 21 is M2, so Lat T is a multiplicity two
nest in 21 (see [9, 2.27]). In this light, the existence of a multiplic-
ity two representation is not surprising. On the other hand, if S is
any strongly maximal TAF algebra such that C*(Lat S) = 5 π 5 * ,
then any *-extendable irreducible representation p of S such that
ρ(S Π S*) is weakly dense in in a masa in B(ΉP) has the property
that Lat ρ(S) is a multiplicity one nest in B(UP).

Let T be the refinement algebra (I.I). From the above discussion,
since Lat T generates the diagonal masa of T, there is no irreducible
masa-preserving representation p such that Lat ρ{T) is a multiplic-
ity two nest. Yet one can ask if there is an irreducible, *-extendable
representation p such that Lat ρ{T) is a multiplicity two nest in
B{Ί-Lp). The following example answers this affirmatively.

Set uQ = 10
01 u2 =

1 0
0 - 1

and u3 = The

elements {±Ui : 0 < i < 3} form a subgroup of C/(2,
real unitary matrices, satisfying the relations

U1U2 = ^ 3 , ^ 2 ^ 3 — ~"^lj a n < 3 U3U1 = —U2-

Hence u*u3Ui = ±ι/j for 0 < z,j < 3.

For all k > 1 and 1 < i < 2k — 1, inductively define unitaries ?4 ^
by the relations

Uι — Uk mod 4

and
(k) (k) (k) (k)

01 01 01 01

— u2i-lU2i — U2i U2i+
Note that this implies

and hence that for i odd, uf) =

,(*) -Jk-V*Jk) Jk-l)

(

Let ez be the matrix units of the usual representation of the
refinement algebra T which is dense in the Volterra algebra; that
is, we write e\J instead of p(e\J) as in Example I.I. Let

= e»
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and

The defining relation for the u^ insures that the e^+x generate a

representation, T, of the refinement algebra. Set

Ok — 2^ e2i-l 2i > a n ( ^
i

: + ~ S ^ S U-l,2i : O v e r

H-l,2i : 0 V e Γ

with [k] = k mod 4. Now 5 "̂ ® u^j, 5̂ 7 ® w ĵ belong to T, as does
their sum, Sk®U[k] As {SΆ;}^! converges weakly to | 7 , { 5 ^ ® ^ ] }
converges weakly to | 7 ® w ĵ as k runs through the subsequence
with [k] constant. Because {u[k\ : A; = 0,1,2,3} generate M2(C),
the weak closure of T contains 7 ® M2(C). Of course it also follows
that the diagonal of the weak closure of T contains a masa, and so
the result follows.
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