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In this paper, we introduce the minimal norm Jordan
splittings of quadratic lattices over dyadic local fields. By
using these splittings, we prove that orthogonal groups
over dyadic local fields are generated by the symmetries
and the Eichler transformations of the lattices unless the
spinor norms of these groups are entire multiplicative
groups of underlying fields.

The generation problem of integral orthogonal groups over local
fields was first studied by Kneser (see references in [K]). He obtained
that orthogonal groups of lattices over nondyadic local fields are
generated by the symmetries of the lattices. This can be regarded
as an analogy of Cartan- Dieudonne’s theorem about generation of
orthogonal groups on spaces (see [L] or [O]). In [OP1] and [OP2],
O’Meara and Pollak studied these integral orthogonal groups over
dyadic local fields and obtained that these groups are generated
by the symmetries and the Eichler transformations of the lattices
when the lattices are modular or 2 is unramified. One of the appli-
cations of these results is to study the spinor genus theory of integral
quadratic forms over number fields, which essentially depends on the
knowledge of the spinor norms of these integral orthogonal groups
at each local completion. By using these good generators, Kneser
[K] was able to determine the spinor norms of integral orthogonal
groups over nondyadic local fields explicitly and Hsia [H] deter-
mined the spinor norms of integral orthogonal groups over dyadic
local fields explicitly when the lattices are modular, and Earnest
and Hsia [EH] computed the spinor norms of integral orthogonal
groups explicitly over the dyadic fields in which 2 is unramified.

In this paper we will extend O’Meara-Pollak’s results to arbi-
trary dyadic local fields. More precisely, our main result (Theorem
2.1) shows that orthogonal groups of the lattices are still generated
by the symmetries and the Eichler transformations of the lattices
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unless the integral spinor norms of these groups are the entire mul-
tiplicative groups of underlying fields. Therefore, for the purpose
of determining the integral spinor norms over arbitrary dyadic local
fields, we have solved this generation problem. Some results will
also be used in [HSX] which gives a full answer to representations
by spinor genera over number fields. Our approach is first to mod-
ify the local structures by introducing the notion of “minimal norm
Jordan splittings” over a dyadic local field and then to combine the
techniques from [OP2] and [X] to obtain the desired results.

NOTATION AND TERMINOLOGY. All unexplained notation and
terminology will be from [O], [X] and [OP2]. In particular, F' de-
notes a dyadic local field, 9 the ring of integers in F', p the maximal
ideal of ¥}, U the group of units in ¥, e = ord 2 the ramification
index of 2 in F. 7 a fixed prime element in F', D(, ) the quadratic
defect function, A a fixed unit of quadratic defect 49, V a regular
quadratic space over F' associated symmetric bilinear form B(z,y),
L alattice on V, dL the determinant of L, sL the scale of L, nL the
norm of L, O(L) the integral orthogonal group of L, X (L) the sub-
group generated by the symmetries and Eichler transformations of
L, and 6( , ) the spinor norm function. We use [a, b, ...] to denote
spaces.

1. Minimal norm Jordan splittings. Since the Jordan split-
tings of lattices in dyadic local fields are not unique, O. T. O’Meara
in {O1] obtained a saturated Jordan splitting of which the norm of
every Jordan component is maximal. In this section, we establish
a Jordan splitting of which the norm of every Jordan component is
minimal and hyperbolic components are as much as possible. This
kind of splitting plays important role in solving the generation prob-
lem of O(L). We call 7" A(0, 0) a hyperbolic plane and H is denoted
as an orthogonal sum of hyperbolic planes (which may sometimes
have different scales).

LeEMMA 1.1. Suppose L = Ly 1 Ly where Ly is unimodular with
ordnL, = uy and Ly is p"-modular with ordnLs = ug, and r > 1.

(1) If there is a vector x5 € Ly such that ord Q(z2) = u; mod2
and ord Q(z2) < uy, then L = L; 1 Ly where Ly is p"-modular with
nLy = nLy and L, is unimodular with nL; C nL, or L = H.

(2) If there is a vector z; € Ly such that ord Q(z1) = up mod 2 and
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ord Q(z) < (ug — 2r), then L = Ly L L, where Ly is unimodular
with nL; = nlLy and Ly is p"-modular with nL, C nLy or Ly = H.

Proof. (1) Without loss of generality, we assume rank L; = 2
Write L; 2 A(a, —a™'§), adapted to a basis {z;,y;} where a is a
norm generator of L, D(1 +6) = 69 and —a™'6 € wL;. Let k =
(ur —ord Q(z2))/2, so —Q(z1)/Q(m*z2) € U. Put —Q(21)/Q (7" z,)
= £2 4 or? with £ and o0 € U, d > 1. Consider a unimodular lattice
L, = 9z, + &nFxy) + Py, which splits L, we obtain L = L; L L.

(i) When u; < e, then ord(—a~1§) > u; and nL, C nkL,.
(ii) When u; = e and L; = A(2,2p), then —dL, € U? and L; =
A(0,0).
Since nL; C nLy C nly and nL; +nly = nL; +nLy = nL, we have
nLy =nLy = nL.
(2) Tt follows from applying (1) to (LH)™ . O

The following proposition strengthen [O, 91:9 Th.(2)].

ProprosITION 1.1. Suppose L =1Ly L Ly L --- 1 L; is a Jordan
splitting of L with sL; = s;; 1 = 1,...,t. If nL% D nL%*! and
nL*o > (nL)(sis;,-1)? for some 1 < ig < t, then for any Jordan
splitting of L, L=K; 1 Ko L --- L K}, we have nK;;, = nL;,.

Proof. 1t is obvious that L; C L%, so nL; C nL* forany 1 < j <
t. Since nL%o D nL%e*t! D ... D nL%, we have nL% > nlL; for all
7 > 1. Consider

nL} = (sigsi1)*nL; C (sigsiy-1)*(nL) C L%
for all j < 4. Note

Lo=L7%° L+ L Ly L Ljg L Ligga L L L.

i0—1

So
nL% = 3" nL;® +nL, + Y nL; =nkL;,,
J<ito J>i0
and L*o is independent of the Jordan splitting of L. O

REMARK 1.1. When sL;, = nL,,, it can be easily checked that
nL% O nL%+ and nL% O (nL%o=1)(s;s;-,)?. The converse
statement is usually not true.
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LEMMA 1.2. Suppose L is a unimodular lattice with nL O 2sL.
Then there exist two sublattices J and M such that L = J 1L M
with nL, = nL D nM. Furthermore rank J = 1 when rank L 1is
odd, and rank J = 2 when rank L is even.

Proof. It follows from [O, 93:18]. g

THEOREM 1.1. There exists a Jordan splitting L = L; 1 --- L L,
such that for any Jordan splitting L = K, L --- 1 K;, we have
nK; 2nlL, forall1 <i<t, and if K, =2 H, then L; = H.

Proof. Put Ay = {(Ky,...,K;)|[L=K; L --- L K, be a Jordan
splitting of L, and K; = H}.

If this set is empty, we put 4; = {(Ky,... ,Ky)|[L=K; L --- L
K, be a Jordan splitting of L, and nK; is the smallest }.

Put Ay = {(Ky,... ,K;) € A)|Ks 2 H} C Ay

If this set is empty, we put

Ay ={(Ky,...,K;) € Aj|nK,} is the smallest C A;.

By induction, put A; = {(K,...,K:) € Ai1|Ky = H}.
If this set is empty, we put

Ay ={(Ky,...,K;) € A;_1|nK; is the smallest}.

Let (Ly,...,L;) € A;y;so L =L; L --- L Ly is a Jordan splitting.
By Lemma 1.1, we have if ord nL; = ord nL; mod 2 for some 7 < 7,
then ord nL; < ord nL; < 2(r; — r;)+ ord nL; or L; = H when ord
nL; > ord nL; or L; = H when ord nL, > ord nL; + 2(r; — ;).
Here r, = ord s; and s, = sL; for 1 < k <'t.

Suppose there is a Jordan splitting of L = K; L --- 1 K; with
nK;, C nL;, for some 1 < iy < t. By [O, 91:9 Th.(2)], sL;, D
nLi, D 2sL;, and rank L;, is even. By Lemma 1.2, ;) = J L M
with nL;, = nJ D nM and rank J = 2. Write J = Jz + U7
where Q(z) is a norm generator of J, ord Q(z) < ord Q(Z) and ord
B(z,z) = r;y. Put z = Y_t_, a;y; where y; is a maximal vector of K;
and a; € ¥ for:=1,... ,¢t. Note

t
si, = B(z, L) =Y _ Blayi, K;) 2 B(aiys, K;)

i=1
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forall 1 <i<t,soord a; > r;, —r; when ip > 4 by [O, 82:17]. Put
T = Y, a;7; where §; is a maximal vector of K; and a@; € 9. So
ord a; > ry, — r; for all ¢ < ¢y by the same reason. Note

ord B(ayi, @;5i) > Tig + (1ig — 73) > T4

for all ¢ < 49, and ord B(a;y;, @;y;) > r; > ri, for all i > 49. Consider
Ti, = ord B(z,Z) = ord B(ai,VYiq, GigTis) > ord a;, + ord a;, + 7i,.
Therefore ord a;, = ord a;, = 0, ord B(y;,,%:,) = Ti, and ord
B(Yi,, %) = 15, Put y;, = St_, b;2; where z; is a maximal vector of
L;, and b; € 9. So ord b; > r;, — r; for all ©+ < 73 and ord b;;, = 0 by
the same argument as above. Let b;,2;, = cx +dZ +w with ¢, d € ¥
and w € M; note

Ti, = ord B(yi,,Z) = ord B(bj, 2, T)
= ord B(cz + dZ,z) = ord (c¢B(z, ) + dQ(Z))

and ord Q(Z) > ord Q(z) > ry. So ry, = ord (cB(z,Z)) =
odr (c) + r4,. Therefore ord (¢) = 0 and ord Q(b;,zi,) = ord
(Q(ecx + dz) + Q(w)) = ord Q(z). Suppose all the vectors in
{bizi]t # 1o, 1 < i <t} which satisfy ord Q(b;z;) < ord Q(b;,2;,) are
bilzil y b,-zziQ, e ,bilzil.

When i > 49 then nL;, D nL;, D 2sL;i, D 2sL;,. So L;, # H
and ord nL;, + ord nL;, =1 mod 2 by Lemma 1.1.

When i < ig, then

ord nL;, + 2(r;, — 1) < ord Q(b;, 2;,)
< ord Q(by,z;,) = ord Q(z) = ord nL;, < ord 2sL;,.

That is ord nL;, < ord 2+ (r;, — 1) + 74, <ord 2sL;,. So L;, # H
and ord nL; + ord nL;; = 1 mod 2 by Lemma 1.1. Put N
L 1L.---1JL1L---1 L, for any k; < ky; we have ord nL;,
ord nL;, = ord nJ + 1 mod 2, and ord nL; < ord nL;,
2(’"% - Tikl)"" ord nL;, and ord nJ > ord nL; for all 1 < k<l
Since nK;, C nL;,, ord Q(y;,) > ord nK;, > ord nL;, = ord Q(z).
Note Q(y;,) = Yt ; Q(biz;). So ord Q(z) = ord Q(b;y2;,) = ord
(b, Q(biyzi,)). Write —Q(z)/ Tk Q(bi,zi,) = £ + on? with &,
o0 €U and d > 1, then

! !
Q (z +& Z b,'kzik> =-Q (Z bikzik> on?
k=1 k=1

A
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and
!
ord Q <:1c +¢& Z bikzik> = ord Q(z) + d > ord Q(z).
k=1

Put J = 9(z + £k, bi, 2;,) + U which is s;-modular. Since ord
by, = ord &by, > i, — m;, for all 4, < 4o, J splits N. So we obtain
another Jordan splittingof N, N=1L; L --- L J 1--- 1 L.

Since we can check nN®x = nL;, forall 1 < k <[, nN* D
nN®+ and nN* D (nN®-1)(s;s;' )> forall1 < k < I. We
have nL;, = nL; for all 1 < k <[ by the above proposition, but
nJ C nJ. Corresponding to this Jordan splitting of N, we obtain
another Jordan splitting of L which contradicts our choice of the
Jordan splitting of L.

If K;, = H but L;, # H, then nL;, = 2sL;, by the above ar-
gument. By [O, 93:14] we can assume L;, = 770A(2,2p) adapted
to a basis {u,2} and K;, & n™A(0,0) adapted to a basis {v, 0}
Write v = Y°!_, ¢;q; where ¢; is a maximal vector of L; and ¢; € 9,
so ord ¢; > (ri; — ;) for all i < 4y and ord (c;;) = 0. Thus ord
Q(¢ioqiy) = i, + € = ord Q(u) by Riehm Domination Principle [R].
By the similar arguments as above, we can obtain an new Jordan
splitting of L which contradicts our choice of the Jordan splitting

of L. O

The Jordan splittings which enjoy the property of Theorem 1.1
are called minimal norm Jordan splittings.

COROLLARY 1.1. L can be splitted as L = Ly 1 H such that
Ly cannot be splitted by any hyperbolic plane and Ly is determined
uniquely by L up to isometry.

Proof. Suppose L has another splitting L = Ly 1. H where Ly
cannot be splitted by any hyperbolic plane, and the type of Jordan
splitting of Ly is different from that of Ly. Without loss of generality,
we assume that the rank of 7o Jordan component of L, is greater
than that of Ly for some 1 < 49 < ¢t and H does not contain any
4o hyperbolic component by Cancellation Theorem [O, 93:14]. So
we can choose a Jordan splitting Ly = J; L --- L J; such that
Jip, = M L N with nJ;; =nM D nN, rank M < 2, rank N = 2,
and nN is the smallest. Furthermore we assume the Jordan splitting
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R=J,L.---LJjy.y LML Jy41 L--- L Jp. is the minimal norm
Jordan splitting.

Comparing the Jordan splitting of Ly with that of Ly, there is a
hyperbolic plane H;, = Ju + 9a C L with sH;, = sJ;, and Q(u) =
Q(a) = 0 and B(u,a)¥ = sH;,. Sou = Yt bz, 4 = S, bz
where z; and Z; are the maximal vectors of each Jordan component
for the Jordan splitting L = Ly L H with 1 < i < ¢. So ord b; >
(riy — 1), ord b; > (r;, — ;) for all i < 4y, and ord b;, = ord b;, = 0.
Here r; = ord sJ; for all 1 < 4 < t. Write z; = p; +¢; with p; € J; and
g; € H; where H; is a suitable hyperbolic component with sH; = sJ;
or 0 for all 4, then ord Q(b;q;) > 2 ord b; + e+ r; > e+ 1y, for all
¢ # 19. Consider z, = v, + w,, and z;; = v;, + W;, where v;, and
T, € M, w;, and W, € N, then at least one of Q(v;,), Q(75); or
Q(wi,), Q(w;,) is a norm generator.

If Q(v;,) is a norm generator of M, then ord Q(b;z,) = ord
Q(vs,) < ord Q(wiy) < e+ 7y, and ord Q(vi,) = ord Q(Eixi, bipi)
by @(u) = 0. So we can get the new splitting R=J; L --- L M L
.+~ 1L J, with nM C nM. That is a contradiction.

If Q(w;,) is a norm generator of M, then ord Q(w;,) < e+r;, and
ord Q(wi,) = ord Q(3;;, bipi + Vi), We can get the new splitting
Ly=J1 L. L Jywith J;, = M L N such that nNV C nN. This
contradicts our choice.

Therefore Ly and Ly have the same type of Jordan splitting and
Lo = Ly by Cancellation Theorem [O, 93:14]. O

2. Generation and spinor norms of O(L). Suppose L =
Ly 1 Ly 1 --- 1 L; is a minimal norm Jordan splitting over a
dyadic local field F' with r; = ord sL;, u; = ord nL;, fort =1,... ,t.
Q(z;) = g;m™ is a norm generator of L; where ¢; € U and z; € L;,
for 1 < i< t.

LEMMA 2.1. Suppose all the Jordan components are one dimen-
sion and there existsi and j with1 <14 < j < n such thatrj—r; < 2e
and D(—ee;) =p° withl < s <e—(rj—r;)/2. If0 < |rp—r;| < 2e
or 0 < |ry — 1| < 2e for some 1 < k < n, then §(0+(L)) = F.

Proof. Because of [X, Theorem 3.1] we can assume that r; — 7,
T, — 7j and 7, — 7; are even. Suppose r; < r; < ri. The other cases
can be done by taking the same arguments.
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So 0 < rp—r1; < 2 and 0(0t(Yz; L 9z;)) = Q[1,e:¢5] by
[X, Prop. 2.3]. By [H, Lemma 3] there exists n in U such that
(n,—&.£,) = =1 and D(n) = p**~*. Note D(—1) = p" with h > e
and (2e —s)+h > e+ (r; —71;)/2+ e > 2. So (n,—1) =1 by
[X, Remark 1]. Therefore (1, —€,ex) =1 or (1, —¢;jex) = 1.

When (n, —¢jex) = 1, write D(—¢,ex) = p'.

If1 <t <e—(rx—r;)/2 then n € 0(O"(Vz, L Yzy)) by
[X, Prop. 2.3]. If (3¢ — (ry, — 1;)/2)/2 > t > e — (1, — 1;)/2, note
2e—s>e+(rj—r;)/2>t—e+ (ry—r;)/2. Thenn € (O (Yz; L

Ift > (3e—(ry—7;)/2)/2,n0te 26 —s > e+ (r;—1,)/2 > e—[e/2—
(rk. —7;)/4]. Then n € (O (Iz; L Jzi)). Therefore (O (L)) =
0(O (9z; L 9z,))0(0O* (Iz; L 93)) = F.

When (1, —e,6) = 1, the result follows from the same arguments
as above if r, — r; < 2e. So we assume 4e > 1, — 1; > 2e. Write
D('—éfk(‘fi) = pd.

If 1 <d<2e—(ry—r,)/2, then

2e—s>e+(rj—1)/2> (rg —1i) /2> (1 — 73) — 2e+d.

Son € 0(0*(Vz; L dzy)).

If d > 2e — (rp, — 73)/2, note 26 —s > (ry, —r,)/2; then n €
0(O (9z; L Jzyi)). Therefore H(O1 (L)) = H(OF (Iz; L Iz;))0(O*(
Oz; L 9zy)) = F. O

LEMMA 2.2. If L, = 7m0 A(gs,m¥io "o, —e; ' %0¥ 06, ) adapted
to a basis {Tiy, Yi, } with D(1 4 ;) = 03,0 for some 1 < ig < t.

(1) When ordé;, < u;, + € — 13y, and ug + u;, = O0mod2, and
uy +ord Q(vi,) — 2rx < 2e+1 with some k < i or uy, +ord Q(vi,) —
2r;, < 2e + 1 with some k > iy, then §(O* (L)) = F.

(2) When u, + ux = 1mod2, wug + uyy — 21, < 2e + 1 with
some k > iy or up + u,, — 2rx < 2e + 1 with some k < 1, then
#(O* (L)) = F.

(3) When u;y + ur, = 0mod?2, L;; # n"0A(0,0), D(—eiex) =
Pt t < e— (ug + uz — 275,)/2 with some k > ip or t < e — (uy +
wi, — 2ri)/2 with some k < iy, then (O*(L)) = F.

Proof. (1) Put K = dy;, L Jdzi. Since ord Q(zx)+ ord Q(y;,) = 1,
it can be checked that 7, € O(Lx L L;;) C O(L) for any maximal
vector z of K. Therefore (01 (L)) 2 Q[1,é&;,ex7] which does not
contain A, but A is in 6(O*(L;,)) by [H]. Thus 8(O*(L)) = F.
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(2) It follows from the same arguments as the above case (1).
(3) Without loss of generality, we assume k > 4. By Lemma 1.1,
we know ug — 27 + 21y < u;, < ug. Put K = ¥z;, L Jzg. Since
1 <t <e, we have D(—¢;,ex) = D(e;pex) and uy + u;y — 2r;, < 2e.
It can be checked that 7, € O(L;, L Li) C O(L) for any maximal
vector z of K. Therefore (O*(L)) 2 Q[1,i,ex)- By [H, Lemma 3]
there exists 7 in U such that (1, —€;,ex) = —1 with D(n) = p?~t.
(i) If ord &;; > uy, + e — 7y, then 2e — ¢t > e + (ug —|— Uiy —
2r;,)/2. So n € 0(0O*(Ly,)) by [H, Prop. B], [X, Remark 1]
and [H, Lemma 2]. Thus (O*(L)) = F.
(ii) If ord 6;, < us + € — 1iy, we only need to consider ux+ ord
Q(Yi,) — 215, > 2e + 1 with k£ > 45. Note

2e — t+u;, — 13y +ord Q(viy) — Tig
>e + (ug + ord Q(yi,) — 274,) /2
+ i /2 + uiy + ord Q(yiy) /2 — 214,
>e + e+ uiy /2 + Uiy + uiy /2 — 21, > 2e.

Then 7 € 6(0*(L;,)) by [X, Remark 1]. Thus (O (L)) = F.
O

LEMMA 2.3. Ifrank L; > 3 and ordnL; + ordwL; =1 mod 2
for some 1 < i <t, then (Ot (L)) = F.

Proof. 1t follows from [H, Prop. Al. O

LEMMA 2.4. Ifrank L; = rank L; = 1 and rank Ly = 2 for some
i >jandk, 0 < u;—u; < 2e+1 and u;—u; is odd, then 6(O*(L)) =
F.

Proof. Since A is not in 8(O*(L; L L;)) = Q[1,€igim] b
[X, Prop. 2.2 i] and [X, Prop. 2.3 i] and A € 8(O*(Lx)) by [H]
therefore §(O* (L)) = F. 0J

LEMMA 2.5. Suppose rank L; = rank L; = 1 and for some 1 > j
with 0 < u; — uj < 2e and u; — u; is even and D(—e;e;) = p* with
t <e— (u;—uy;)/2. If there is Ly, = 1™+ A(epm™s "%, —g; '~k Tk Gy )
with ord 0, > ug — rx + e for some 1 < k < t, then §(O*(L)) = F.

Proof. By [H, Lemma 3] and [X, Prop. 2.3], there exists n€f(O*
(L; L L;)) = Q[1,¢¢;] with D(n) = p*** and 2e — ¢t > e + (u; —
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u;)/2 > e+ 1. So n € §(O*(Ly)) by [H, Prop. B], [X, Remark 1]
and [H, Lemma 2]. Therefore §(O*(L)) = F. O

LEMMA 2.6. IfrankL; = rankL; = 1 and rankL; = 2, 0 <
u; — u; < 2e and u; — u; s even for some k > j > 1, D(—figj).: pt
with t < e — (u; — u;)/2, and ug — u; < 2e, then §(OF (L)) = F.

Proof. Put Ly & 7™ A(gm™ ™, —ep 'n %+ §;,). By Lemma, 2.2
and Lemma 2.5, we can assume u;—u; is even and ord 8y < ug—ri+e
and ord O +2rp —up —u; > 2e+ 1. Sory —u; > 1% — u; >
e + 1. It can be checked that any 7, € O(9z; L Jz4) is also in
O(L; L Ly). So O(Yz; L Yxx) C O(L; L Ly). By the same reason,
O(9z; L Yxx) C O(L; L Ly). By the proof of Lemma 2.1, we obtain
0(0*(9z; L 9;))0(0* (9z; L 9z4))0(0O* (9z; L 9z4)) = F. Thus
6(O+(L)) = F. O

Before obtaining our main result, we first establish the following
Witt- type result.

PROPOSITION 2.1. Suppose L cannot be splitted by any hyperbolic
plane and 6(O* (L)) # F. If oL, C L for some o € O(V), then
there is T a product of symmetries in O(L) such that 70|y, = 1.

Proof. When e = 1, it has been done in [OP1]. We assume
e > 1and ry = 0. By Lemma 2.3 and [O, 93:18], we know all the
Jordan components are one or two dimensions and none of them is
hyperbolic plane. O

When rank L; = 2, write L; & A(e;7™, —e7 'n~%16;) adapted to
a basis {z1,y1} with D(1 + é1) = 6:9. Put oz, = az1 + by + 2
where a and barein ¥, 2 € Lo 1L --- 1L L.

(1) ord Q(y1) > e.
When ug +u; =1 mod 2 for some 2 < k < ¢, then

Uy, — Uy >2e+3—-2u1 >3, rnp,>u—e>e—u +3>3

by Lemma 2.2(2).

When uy +u; =0 mod 2 for some 2 < k < ¢, then ux > uy + 2
and ri > (ux —u1)/2 > 1 by Lemma 1.1.

So ord Q(z)— ord Q(z1) > 2. Note Q(z1) = a®>Q(z1) + 2ab +
BQ(u1) +Q(2), Q(om — 31) = 2((1 — )Q(x1) - b).
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If ord b = 0 and ord Q(z;) = ord Q(y1) = e, then 7,4, _,, €
O(L). Otherwise, a = 1 mod p and we assume ord b < 1 because
we can consider 7, (e-u;)/2, +y10(:1:1) instead of ox; if necessary and
Trlle=u1)/2g; 4y, € O(L).

(i) w; >1orord b=0. Then 7,4, _, € O(L).

(il) u; =0 and ord b =1 and uy > 3. Since uy > uy > 3 for all
k > 3 by Lemma 1.1 and Lemma 2.2(2), ord Q(z) > 3 and ord
(1 — a?) > 3. Therefore ord (1 — a) > 2 and 7,4, 4, € O(L).

(iii) u; = 0 and ord b = | and uy = 2. By the above arguments
we only need to consider e is odd and ord (1 —a) = 1. Note
D(—¢€185) = p* with t > e — (u; + up)/2 by Lemma 2.2(3).
Write @ = 1 4 Ir with [ € U and —e16 = &2 + Mn? with
& Ael.

Let
n=E+nV2 €U, § = ey(h? — Moy 2n~ehn( D/ € U

We have €162 + e9n? = 67! and Teynpytne, 1s in O(L). Write
Teynordnz,0T1 = @'Ty + b'yy + 2/ with @’ = a(1 — 2ele;77 46 7) mod
p? and 2’ € Ly L --- L L;. Note ord (1 — a') > 2 by a direct
computation. Therefore 7415, 5, € O(L) with 0’ = Toyrzy4n2,0 bY
the same argument as above.

(2) ord Q(y1) <ee.

When u; +u; = 1 mod 2 for some 2 < k < t, then u; +u > 2e+3
by Lemma 2.2(2) and ry, > ux, —e > e+ 3 — uy.

When u;+u; = 0 mod 2 for some 2 < k < ¢, then ord Q(y;)+ux >
2e + 3 by Lemma 2.2(1) and rx > ux — e > e+ 3— ord Q(y1).

So ord Q(z) > 2e+3— ord Q(y;) and a = 1 mod p. We can assume
ord b < e— ord Q(y1) because we consider 7oy, 14,0(z1) instead of
oz if necessary and 7oz, 4y, € O(L). We claim ord b = e— ord
Q(y1). If ord b < e— ord Q(y1), then ord (6?Q(y;1)) < ord 2ab < ord
Q(z) and ord ((1 — a®)Q(z1)) = ord (6*Q(y;)) < 2e. Therefore ord
(1—a)=ord (1+a)<eandord Q(z;) = ord Q(y1) mod 2. It is a
contradiction since ord Q(y;) < e. So we have ord ((1—a?)Q(z1)) =
ord (2ab + v*Q(y1) + Q(2)) > 2e— ord Q(y1).

If ord (1 —a) < e, then ord (1 +a) = ord (1 — a) and

ord((1 - a)Q(z1)) > e — (ord Q(yn) — ord Q(z1))/2 > € — ord Q(y)
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and
ord(l1 —a) > e — (ord Q(y1) + ord Q(z1))/2 > e — ord Q(y1)-

Therefore 7,4, 5, € O(L).

If ord (1 — a) > e, then 7,4,—5, € O(L).

Now we can assume oz, = Z;, oy = ax; + By, + w by the
above arguments. Here o, 3 € 9, w € Ly L --- L L;. So we have
1 = aQ(z1) + B and Q(oy1 — y1) = 2a(Q(z1)Q(y1) — 1)

If ord a < 1y, then 7.y, _,, € O(L).

If ord o > ry and u; + ug > 2e, then r9 > ugp — e > e — u;. Put
u = 1 —Q(z1)y1, 50 T, (x1) = z1 and 7,0(y1) = &/z1+ B'y1 +w' with
ord o/ = e —uj <1y and 7, € O(L). Therefore 7,5y, —y, € O(L).

If ord @ > 7o and u; + upy < 2e, then u; = wuy mod 2 and
D(—¢e1e9) = p* with ¢t > e — (uz + u1)2 by Lemma 2.2(3). Write
—£169 = £2 + At with &, A € U and

n =&+ qle/2-wmtu)/4 ¢
§=ey9(1+ Qé“ﬂ‘[e/Q—(U1+u2)/4] — Awt—2[6/2—(u1+u2)/4]) cU.

So €162 + ggn? = or2le/2-(mtu2)/4 Pyt

Then 7, € O(L) whenever ord Q(y1) > e; or ord Q(y1) < e but up+
ord Q(y1) > 2e + 1 by Lemma 2.2(1). Note 7,21 = 1, T,0Y1 =
o'zy + flyp + w' with

orda’ = e+ uy — uy — (ug +2[e/2 — (u1 + uy)/4])
<(ug—u1)/2+1<ry

by Lemma 1.1 and w’ € Ly L --- L L,. Therefore 7,4y, —y, € O(L).
We have 7oy, —y, 0|0, =1 0F Tryoyr -5 Tu0lL, = 1.

When rank L; = 1, write ox; = azx;+2z witha € Y and z € L, L
<o L Ly. So Q(ozi+z;) = 2(1£a)Q(x1). Since (14+a)+(1—a) =2,
ord (1 —a) <eorord (1+a) <e. Note Tpz,44, € O(L) whenever
ord (17a) < r, We only need to consider the following cases by
Lemma 2.2.

(1) us = 1mod2 and uy < e and rank Ly = 1.
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By Lemma, 2.4 and [X, Theorem 3.1], we have rank L3 = 1 and
r3 = uz > 2e. Write 0x; = azx; +bzo +wwithb € dand we Ly L
-+« L L;. We can assume ord b + uz < e. So ord (1 — a?) = 2 ord
b+ us < 2e. Therefore ord (1 —a) = ord (1 4+ a) = ord b+ uy/2 <
ord b+ uy < 73 and 7,4, -z, € O(L).

(2) uz = 0 mod 2 and D(—¢163) = p* with ¢ > e — uy/2 and
ord (1 —a) > ry. Write —g169 = &2 + Ar* with &, A € U and n =
E4mle/2-u2/4 € 9 and § = o(1 42816727 w2/4] _ \gt-2le/2-w2/4)) ¢ [,

So €162 + e9m? = dn?le/2~w/4, Put u = 7%/%¢yz) + nzy € L; then
7. € O(L). Consider 1,011 = o'z + 2’ with

ad=a- 2515§a6“17r'2[e/2_“2/4] — 2196 B(x,, z)7r““2/2'2[e/2“”2/4]

and z' € Ly 1 --- L L;. Note ord (1 —a') = e —2[e/2 — up/4] <
ug/2 +1 < ry by Lemma 1.1. So 77,54, -2, € O(L).

(3) u2 = 0 mod 2 and D(—¢;165) = p* with ¢ < e —uy/2.

By Lemma 2.2, we have rank L, = 1. Write oz = axy + bz +w
with w € Ly L --- L L;, we only need to consider ord b+ us < e.

If ug + up, = mod 2 for some 3 < k < ¢, then up — uy > 2e+ 1 by
[X, Theorem 3.1] and Lemma 2.2(2) and 7 > ux — e > e+ 1 + us.
If up, + up = 0 mod 2 for some 3 < k£ < t, then ux > 2e by Lemma
2.1 and Lemma 2.6 and 7, > u; — e > e.

Since ord (1 — a?) =2 ord b+ uy < 2e,

ord(1 —a) = ord(1 +a) = ordb + u/2 < ord b+ uz < e < 7.

for k =3,... ,t. Therefore 7,4, € O(L).

COROLLARY 2.1. If oz € L for some o € O(V), then there is T
a product of symmetries in O(L) such that Toz1 = 2;.

Proof. It follows from the proof of Proposition 2.1. O

REMARK 2.1. The assumptions in Proposition 2.1 cannot be
removed.

THEOREM 2.1. If 0(O* (L)) # F, then O(L) = X(L).

Proof. Tt follows from Proposition 2.1 and [OP2, 2.5] and induc-
tion on rank L. O
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REMARK 2.2. In fact we have proved a slightly stronger result.
If L does not satisfy the hypotheses of the above lemmas (Lemma
2.1, 2.2, 2.3, 2.4, 2.5, 2.6) and [X, Theorem 3.1], then Proposition
2.1 and Corollary 2.1 and Theorem 2.1 are still true.

REMARK 2.3. [EH1, Prop. 2.1] can follow from Remark 2.2.
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