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When M is a compact symmetric space, the spheri-
cal mean value operator L, (for a fixed r > 0) acting on
L?(M) is considered. The eigenvalues )\ for L.f = \f are
explicitly determined in terms of the elementary spher-
ical functions associated with the symmetric space. Al-
ternative proofs are also provided for some results of T.
Sunada regarding the special eigenvalues +1 and —1 using
a purely harmonic analytic point of view.

1. Introduction. In a series of papers ([Sul, Su2, Su3|) T.
Sunada has considered (among other things) the “spherical mean
operator” of a fixed radius r on a compact Riemannian manifold
Y and has examined its connections with the so-called ‘Geodesic
Random Walk’ problem. If 7 > 0, the spherical mean operator L,
is defined on L?(Y) by:

ED)@) = [ iy S EPerX)do(X)
(Here T,(Y) is the tangent space at z € Y equipped with the inner
product arising from the Riemannian structure, Exp, the exponen-
tial map from T, (Y) into Y and do the normalized measure on the
surface of the unit sphere in T,(Y).) Roughly speaking (L, f)(z)
is the mean value of f at a geodesic distance r from z. This note
grew out of an attempt to understand the results of Sunada from a
group theoretic/harmonic analytic point of view. In fact we show
that for symmetric spaces of the compact type the ergodicity and
eigenvalue problems considered in [Sul] are consequences of simple
and elementary arguments (Propositions 2.4 and 2.5). This point
of view also sheds some light on the difference between spheres,
symmetric spaces of rank 1 and higher rank spaces.
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The outline of the paper is as follows: L, is given by a convolution
operator with a K-biinvariant measure and consequently the eigen-
values are 1, (r) (see Section 2). Sunada’s results about ergodicity
of L, follow from a simple group theoretic fact (Proposition 2.4) and
Proposition 2.5. Furthermore, these arguments also imply that in
most cases —1 is not an eigenvalue.

2. The main results. Let Y be a symmetric space of the com-
pact type and G = Iy(Y) the connected component of the group of
isometries of Y. Let g € Y and K = {k € G : k- ¢ = q}. Then
G is semi-simple and compact, (G, K) is a symmetric pair (of the
compact type) and Y can be identified with G/K - see [H1] for the
definition and details. Let g be the Lie algebra of G and & the Lie
algebra of K and let g = £ @ p be the associated “Cartan decom-
position” (see [H1] for details). Then the geodesics through gy are
precisely vx(t) = (exptX)go, X € p (where exp is the exponential
map on the Lie algebra g) and p can be naturally identified with the
tangent space Ty, (Y) of Y at go. (p can be equipped with the inner
product arising from the Killing form restricted to p and this in turn
gives the Riemannian structureon Y = G/K.) Let ¢ =9-9, 9 € G
and Exp, the ‘Exponential map’ at ¢ of the Riemannian manifold
Y. If r > 0, it follows from the identification made above that for
any f € C(Y)

(Lo f)(q) & (Exp, 7X)do(X) =

‘/{X:”X”Tq(M):l} f

exprX - do(X).
/{Xep:||X||p=1}f (gexprX - go)do(X)

In the first integral do(X) denotes the normalized surface measure
on the unit sphere in T,(Y) and in the second integral it is the
normalized surface measure on the unit sphere in p. L, is thus
a linear map of C(Y) into C(Y) and will be called the spherical
mean value operator corresponding to r. Actually, L, extends to a
linear bounded self adjoint operator from L?(Y) to L3(Y'). This will
be clear from the discussion to follow later. (Actually, generically
speaking, L, will even be a compact operator - see [Sul] - but we
will not need this fact in this note.)

We will now describe some facts from elementary harmonic anal-
ysis on compact symmetric spaces. A good source for this is [H2].
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Equip Y with the canonical Riemannian measure which in this case
is just the canonical G-invariant measure on G/K. By LP(Y) we
mean the set of LP-functions with respect to this measure. A func-
tion f (or a measure p) on Y = G/K will sometimes be viewed
as a function (or measure) on G which is right invariant under K.
Thus we will sometimes view C(Y'), LP(Y") etc as subspaces of C(G),
L?(G) etc.

Fix r > 0. We will now associate with r a certain specific proba-
bility measure v on Y as follows:

f(exprX - qo)do(X), f € C(Y).

v(f) /{XED:IIXH:l}
Thus v can be viewed as a right K-invariant probability measure
on G. Due to the properties of the Cartan decomposition, one can
show that the above probability measure is also left K-invariant.
Further one can also show that, considered as a measure on G, v is
invariant under the map g — ¢~! of G onto G. Using all this one
can easily show that if f € C(Y), then:

L.f = f*v.

(On the right hand side the convolution is on the group G and since
f is a continuous right K-invariant function and v is K-biinvariant,
f*v is right K-invariant and hence can be viewed as a continuous
function on Y. Recall that if A is a function on G and u is a measure,
(h*p)(9) = [ h(g9z~")du().)

We record the above discussion in the form of a lemma:

LEMMA 2.1. With the identifications described above, L, f = fxv,
for f € C(G/K) = C(Y). Thus L, extends to a bounded self-adjoint
operator on L*(Y).

(The boundedness is clear because L, is realized as convolution
against a probability measure. That it is self-adjoint follows from
the fact v is real and invariant under g — g=1.)

Notice that if f is a constant function, then f is an eigenfunction
for L, with eigenvalue +1. Adopting the terminology in [Sul] we
have:

DEFINITION 2.2. L, is said to be ergodic iff L, = f, f € L*(Y)
implies f=constant (a.e). In this case we say +1 is a simple eigen-
value of L,.
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In order to state the main consequence of Lemma 2.1, we need
to introduce some terminology from harmonic analysis. Let 7 be
an irreducible unitary representation of G on a (finite dimensional)
Hilbert space H. Then 7 is said to be class-1 if 30 # vy € H
such that m(k)vy = vg, Vk € K. It is known that if 7 is a class-1
representation, then dim Hy = 1, where
Hy = {v : n(k)v = v,Vk € K}. G; will denote the collection of
pairwise inequivalent irreducible unitary (finite dimensional) class-
1 representations of G. Let 7 € Gy and H be a Hilbert space on
which 7 acts. Let vy € Hp, ||vo|]| = 1 and let ¢, be defined by:
&x(9) = (vo, m(g)vo). Then we will call ¢, the elementary spherical
function associated with =. (Notice if vj € Hp, |lvg]| = 1, then
(m(g)vo, vo) = (m(g)vg, vp), since dim Hy = 1.) Further ¢, is a K-
biinvariant continuous (in fact real analytic) function and ¢,(e) = 1.
If 7 € G, and p is a K-biinvariant measure on G, define C, . by

Cor = /G b (2)dp(z).

The function 7 — C), » defined on @1 is called the “spherical Fourier
transform” of the measure pu.

We now record a fact from the harmonic analysis on G/K: Let
T, be the bounded linear operator on L?(G/K) defined by T,,(f) =
f*p. Then by Frobenius reciprocity it follows that each 7 € G; “oc-
curs” exactly once in the decomposition of L?(G/K) under the left
regular action of G. If we denote the subspace of L%(G/K) corre-
sponding to 7¢ by L?(G/K),, then T, acts as the scalar C), » on this
space. From this it follows that the eigenvalues of 7}, are precisely
Cﬂﬂflneél' (Here 7¢ is the irreducible representation contragredient
to .)

Now let v be the specific K-biinvariant measure associated with
L, described earlier. Then:

Cyr= (exprX - qo)do(X).
’ /{Xepznxn=1}¢ (exprX - go)do(X)

(Note that here we are viewing ¢, as a function on Y = G/K.)
For t > 0, let 1, be the function defined by

nlt) = /{X@:”X”:H be(exptX - go)do(X).
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Thus v, (t) is the average value of ¢, on {exptX-go}. Note that if Y’
is a rank-1 symmetric space then 1, (t) = ¢,(exptXp) for any X, €
p with || X,|| = 1. This is because in this case, K acts transitively
on the unit sphere of p. (Also in this case a complete list of rank-1
compact symmetric spaces is available and for these spaces one can
get explicit expressions for ¢, and ¥, in terms of well-known special
functions.)

We now return to the main question discussed in the introduction:
Fix r > 0 and consider the eigenvalue problem L.f = Af, f €
L*(G/K). Let

Eig(L,) = {\: 30 # f € L*(G/K) such that L,f = Af}.
Lemma 2.1 and the preceding discussion immediately yield:

PROPOSITION 2.3. Eig(L,) = {¢»(r) : 7 € G1}.

REMARK. To the harmonic analysts among the readers this
Proposition should not come as a surprise at all.

Next we would like to take up the question of the special eigen-
values +1 and —1. Before that we need some preliminary results.
The first proposition is a simple group theoretic lemma and is well-
known in the ‘folklore’. We therefore omit the proof.

PROPOSITION 2.4. Let L be a compact group and p a probability
measure on L. Assume that the group generated by supp u is dense
in L. (Here supp u denotes the (closed) support of p.) Then if
f € LYL) and fxu = f or uxf = f, then f = const(a.e).

We now come to one of the main results of this section. Fix r > 0
and let u be the specific probability measure on Y introduced ear-
lier associated with L,. We again think of v as a right K-invariant
probability measure on G. Then we have the following crucial ob-
servation:

PROPOSITION 2.5. Let the rank of Y considered as a compact
symmetric space be greater than 1. Then for any r > 0, the group
generated by supp v is dense in G.

Proof. As usual let g=Lie algebra of GG, €&=Lie algebra of K, p the
orthogonal complement of ¥ with respect to the Killing form and g =
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€®p the ‘Cartan decomposition’ (see [H1]). Let 7: G - G/K =Y
be the canonical map. Then dr is an isometry from p to T, (Y') and
further m(exp X) = Exp,, (dn(X)) for X € p. Thus it follows that
if S, denotes the sphere of radius r in T;,(Y’), then Exp,[S,]) =
m{expX : ||X|| = r}. Hence n~'(Exp,,(S;)) = exp[SP]K (where
S? denotes the sphere of radius r in p). This is clearly supp v in
G. Thus it suffices to prove that the group generated by exp(S?) K,
denoted by gp([exp S?]K) is dense in G. Let a be a maximal abelian
subalgebra of p. Then dima = rankY > 1. Let A be the analytic
(abelian) subgroup of G corresponding to a. Let A; = A. (Remark:
in the case of non-compact symmetric space A obtained as above
will be closed but in the compact situation, this may not be the case
- that is why we are forced to take the closure.) Clearly A =expa
and A; = expa. Clearly A; is a torus in G, dimA; > dim A > 2.
Let a; be the Lie algebra of A;. Then a; is abelian and a; D a.
Let [ be the orthogonal complement of a in a;. Then one can show
using the properties of the Cartan decomposition that [Np = 0
and in fact [ is orthogonal to p and hence [ C ¢. Now since A; is a
torus of dimension m > 2, by Kronecker’s theorem, for any X C a;
whose coordinates (with respect to an o.n. basis) (zi,...,Zm) are
such that 1, z, ..., z,, are rationally independent, exp X generates
a dense subgroup of A; (see [CFS]). Now consider the subset S =
{X1+ X, : X; € S8 X, €[}, ie. the cylinder on S? in a;. Then
by an elementary measure theoretic argument one can show that
there exists X € S whose coordinates (zy,...,Zn) are such that
1,1y, ..., Ty are rationally independent. (Note that dim.S? > 1.)
Hence A; = gplexp(S)] and kA;k~! = gp(k[exp(S)]k~1), Vk € K.
Now one may write any X € Sas X = X; + Xo, X1 € S}, Xp € |
and since [ X7, X5] = 0 we have (exp X)™ = (exp X;)™(exp X2)™.
So gp(exp X) C gp(exp X,)K, VX € S. Thus

kgp(exp X)k™! C gp(klexp(X1)]k™ 1)K, VX € S, k € K,
i.e. kgp(expS)k~! C gp[k(exp S)k~|K.
But k(exp S8)k~! = exp(Adk - S?) C expS?) since S¢ C SP and
Adk preserves S?, Vk € K i.e.

kgplexp S]k~'K C gplexp(SP)|K, Vk € K.
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But since CK = CK, C C G (G is compact, as is K), one has
k gplexp S]k~1K C gplexp SFIK.

However

k gplexp S]k—1 = kgplexp(S)]k~! = kA k™.

So

kA k~'k C gplexp SFIK, Vk € K.
Now G = Ui(kAk™ 1)K by Theorem 6.7 Ch.V in [H1] and
ACA = G = UgkAdik™)K. So G = gplexp SF]K. But
note that gplexp S?]K C gplexp SPK] and so G = gplexp SfK],
which is what we wanted and the proof of the proposition is com-
plete. O

REMARK. It isinstructive to see what the above proposition says
in the group situation i.e. let L be a compact, connected Lie group
such that the dimension of the maximal torus of L is strictly greater
than 1. Fix a biinvariant Riemannian structure on L and let [ be the
Lie algebra of L. Fix r > 0 and let S, = {exprX : X € [, || X|| =
1}. Then the group generated by S, is dense in L. Of course this
follows from Proposition 2.5, thinking of L as the symmetric space
(L x L)/A where A is the diagonal {(g,9) : g € L}. However the
proof of this fact is much simpler and more direct though one uses
the same basic idea as in the proof of Proposition 2.5.

An immediate consequence of Proposition 2.4 and Proposition 2.5
is a theorem of Sunada:

THEOREM 2.6 [Sul]. Let Y be a compact symmetric space of
rank greater than 1. Then for any r > 0, L, is ergodic (i.e. +1 is a
simple eigenvalue).

Proof. For f € L*(Y), L.f = fxv by lemma 2.1. Now use propo-
sitions 2.4 and 2.5. O

From this we immediately have another result of Sunada:

THEOREM 2.7 [Sul]. Let r and Y be as above. Then —1 is nat
an eigenvalue of L, i.e. f € L*(Y) and L.f = —f implies f = 0
(a.e.).

Proof. L,f = —f = fxw = —f. Thus fx(v¥v) = —f*v =
~(—f) = f. Now since v is a probability measure, it is easy to



342 V. PATI, M. SHAHSHAHANI AND A. SITARAM

show supp(v+v) = (suppv) - (suppv). G is a compact, connected
Lie group and it follows easily that since the closure of the group
generated by suppv in G (Prop. 2.5), the closure of the group
generated by (supp v) - (supp v) is also G. Hence by Proposition 2.4,
f = const(a.e.). But now L,f = —f implies f = 0 (a.e.). O

We now take up the case of compact symmetric space of rank-one.

We first need to make a few observations. Let € be a Lie algebra
of K. Then since rank(G/K) = 1, it follows that €& is a maximal
Lie sub-algebra of g. (This is true for any irreducible symmetric
pair (g, £) and so in particular for rank-1 pairs.) We use this to see
that if S is any closed submanifold of G/K such that dimS > 1
and 7 : G = G/K is the canonical map, then the group generated
by 7~1(S) is dense in G. For if L is the closure of this group then
dim L > dim K, because L will contain a subset homeomorphic to
something of the form U; x U,, U; a neighborhood in K and U a
neighborhood in S C G/K. Now L clearly contains K and so if [ is
the Lie algebra of L, we would have

dim [ > dim €. Therefore [ = g by the maximality of €.

Next, in the case of rank-1 compact symmetric spaces all geodesics
are closed and have the same length = 2L, say. Now consider S, =
{exprX -qo: X €p,||X|| =1}. If r < L, then one knows from [H1]
that S, is a diffeomorphic copy of {rX € p: || X]|| =1} Ifr =L,
Sy, is the so-called antipodal manifold to g and we have to consider
two cases: (a) Y =Sphere - In this case Sy, is a single point; (b) Y is
not a sphere. In this case Sy, is a proper submanifold of Y = G/K.
(These facts follow from Theorem 10.3, Ch.VII in [H1].) Putting all
the above discussion together we have: (i) if Y is a sphere the group
generated by 77!(S,) is dense in G if r ¢ {L,2L,3L,...}. Thus,
since clearly supp v = 771(S,), in this case the group generated by
suppv is dense in G (i7) If Y is not a sphere, the group generated
by 715, is dense in G if r ¢ {2L,4L,6L,...}. Again in this case
the group generated by supp v is dense in G.

We have thus established.

THEOREM 2.8 [Sul]. Let Y = G/K be a compact symmetric
space of rank - 1. (a) IfY 1is the k-sphere (in Rt k = 2,3,...),
then for r ¢ {L,2L,3L,...}, +1 is a simple eigenvalue of L, and
—1 is not an eigenvalue of L,. (b) If Y is not a sphere, then for
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r ¢ {2L,4L, ...}, +1 is a simple eigenvalue of L, and —1 is not an
eigenvalue of L,.

Our approach to the proofs of Theorems 2.6 and 2.8 “explains”
why there is a difference between spheres and other rank-1 spaces
and also why there is a difference between rank-1 spaces and spaces
of rank greater than 1.

Finally, in conclusion, we would like to point out that the question
of whether 0 is an eigenvalue is also of independent interest and is
related to the so-called Pompeiu problem (see for instance [BeZ]). In
fact, Badertscher ([Ba]) also views L, as a convolution operator in
order to analyze the Pompeiu problem on locally symmetric spaces.
The spherical mean value operator has also been considered for the
Heisenberg group (see for instance [T]).
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