Vol. 169, No. 1, 1995

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Minimal sets of periods for torus maps via Nielsen numbers

Lluís Alsedà, Stewart Baldwin, Jaume Llibre, Richard Swanson and Wieslaw Szlenk

Vol. 169 (1995), No. 1, 1–32
Abstract

The main results in this paper concern the minimal sets of periods possible in a given homotopy class of torus maps. For maps on the 2-torus, we provide a complete description of these minimal sets. A number of results on higher dimensional tori are also proved; including criteria for every map in a given homotopy class to have all periods, or all but finitely many periods.

Mathematical Subject Classification 2000
Primary: 55M20
Secondary: 54H20, 57S25, 58F20
Milestones
Received: 30 September 1992
Revised: 10 June 1993
Published: 1 May 1995
Authors
Lluís Alsedà
Departament de Matematiques
Universitat Autonoma de Barcelona
Edifici Cc
08193 Universitat Autónoma De Barcelona
Spain
http://mat.uab.es/~alseda/
Stewart Baldwin
Jaume Llibre
08193 Bellaterra
Spain
Richard Swanson
Wieslaw Szlenk