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We develop an operator C^Q) on the space Sk{λί, Φ) of
Hubert cuspforms as an alternative to the Hecke operator
Tq for primes q dividing λί. For f G Sk{λί, Φ) a newform,
we have f | Cq(Φg) = f | Γq. We are able to decompose the
space Sk(Λf, Φ) into a direct sum of common eigenspaces
of {Γp, Cq(Ψg) : p \ λί, q I ΛΓ}, each of dimension one.
Each common eigenspace is spanned by an element with
the property that its eigenvalue with respect to Tp (resp.
Cq(ΦQ)) is its p t h (resp q t h) Fourier coefficient. We finish
by deriving bounds for the eigenvalues of

Introduction. Let Sk{λί, Φ) denote the space of Hubert cusp
forms of Hecke character Φ. Shemanske and Walling [7] char-
acterized the newform theory for Sk(Af, Φ) which is analogous to
that derived in [1] for the elliptic modular case. They decompose
the space Sk(λί, Φ) into a direct sum of common eigenspaces for
the Hecke operators {Tp : p \ λί}. The non-zero elements of the
one-dimensional common eigenspaces are called newforms, and a
newform can be normalized such that its p t h Fourier coefficient is
equal to its eigenvalue for Tp. They also show that each common
eigenspace of {Tp : p \ λί} has a basis of the form {g | B& : g G
<Sfc(ΛΊ,Φ) a newform , M \ λί,Z \ λίM~1}. While the Hecke op-
erators {Tq : q I λί} act invariantly on these eigenspaces, there
generally does not exist a basis for these eigenspaces which consists
of eigenforms for {Tq : q | λί}.

In this work, we resolve this particular difficulty by replacing Tq,
q I λί by the operator C q(Φς). It is defined using the Hecke operator
Tq and the Hubert analog of the Atkin-Lehner WQ operator of [7],
and hence depends upon a choice of Hecke character ΦQ. We are
able to diagonalize the space Sk(λί, Φ) with respect to the family
{Tp, C q (Φ Q ) : p \ λί, q I λί}. Further, we are able to establish
that each common eigenspace is one-dimensional and is spanned by
a form whose pth (resp qth) Fourier coefficient is its eigenvalue with
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respect to Tp (resp. Cq(Φg)) (Theorem 2.7). In addition, for a
newform f G Sk(λf, Φ), we show that f | Cq(Φg) = f | Tq regardless
of the choice made for Φg, and hence the newform theory of [7] is
left intact when we replace Tq by C q (Φς). Our results generalize
those in the elliptic modular case, where the Cq operator was first
introduced by Pizer in [5] for trivial character, and by Li in [4] for
non-trivial character.

We finish by investigating the eigenvalues of Cq(Φg). In the case
of elliptic cusp forms, one has the sharp Deligne bound of 2q^k~1^2

for the magnitude of the qth Fourier coefficient of a newform. In
the Hubert case, the best corresponding bound is Shahidi's bound
of 2iV(q)(fc~1)/2+χ/5 given in [6]. If one tries to adapt the methods of
[4] to the Hubert case, this weaker bound gives rise to complications
when dealing with ideals of low norm. Because of these difficulties,
we implement a significantly different method of proof to arrive at
bounds for the magnitude of the eigenvalues of Cq(Φg) (Theorem
3.2). Essentially, the bound is 2N(q)k/2, except for the case where
q\\λίoτ N(q) < 11.

1. Notat ion. For the most part, we follow the notation of [9]
and [10]. Let K be a totally real number field of degree n over Q
with ring of integers O and different D. Let % denote the complex
upper half-plane, and GL^K) be the group of 2 x 2 matrices with
entries in K and totally positive determinant. We define an action

A-z =

where a® denotes the i-th conjugate of a over Q. Also, for k =
(ku ...,kn)e Ί\, we denote the product Γ L ( c w ^ + d ( i ))* i by (cz +
d)k and Πi(α ( i )d ( i ) - 6 » c « ) ^ by (det^ί)*.

Define for N e Z+ the set ΓN = {A G SL2(O) : A - I2 e
NM2(O)}, and denote by Mk(ΓN) the complex vector space of all
holomorphic functions / on Ή,n such that
f(A z) = (det A)-k'2(cz + d)kf(z) for A e ΓN and which are
holomorphic at all of the cusps of Γ^. Let M& = UJV
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For an integral ideal λf and a fractional ideal X, set

By a numerical character modulo λf, we mean a character φ :
(O/λί)x -> C x . As in [9] and [10], we define for a numerical
character φ modulo Λf and a character θ on the totally positive
units, the space Mk(To(Λf, X), φ, θ) which consists of all functions
f e Mk such that

- bc)(ad - bc)-k'2{cz + d)kf(z)

for all (2*) e ΓQ(λf,l). As in [10, (9.20)], we shall assume that
φ(e)θ(e2) = sgn(e)fc for all e £ (9X. This imposes no real restriction
since without this assumption, the space of modular forms is zero.
We note the existence of an m G Rn such that θ(a) = aιm for all
totally positive units a. While this m is not unique, we will fix an m
which satisfies the previous equality for the remainder of the article.

Fix a complete set of strict ideal class representatives Xi,... ,X ,̂
and denote Γo(Λ/*, T\) by ΓY Then we put

θ).
i-l

We are interested in the /ι-tuples (/i,..., fh) £ VJlki-hf, φ, θ).
In order to make the notation easier to handle, we follow Shimura

and describe the above h-tuples as functions on an idele group. To
do this, we must define an assortment of objects. Let K% denote
the set of ideles of K and let GA be the adelization of GL2(K),
which can be identified with GL2(KΛ). Note that GL2(K) can be
embedded in GA as the set of diagonal elements, and when viewed
this way, they will be denoted GK- Also, let GΌo = GL2(R)n and
Goo+ = GL2(M)n. In the following, we will use α, 6, c, . . . to denote
elements of K^ and w, x, y, z to denote elements of GA- lΐ λf is
an integral ideal of Ό and p a prime ideal, define the subsets Yp(λf)
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and Wp{λί) of GL2(KP) as follows:

l ( a b ) e ( °* d~1

\ [ ) [ p op )•

detx eK^(aOp, λίθp) = l l ,

Wp(λί) = {x€ Yp(ΛT) : ordp(detx) = 0}.

We then use these to define

Y(λί) = GAΠ ( ^

If a 6 K%, then άO denotes the fractional ideal of O which is
canonically identified with α, and, similarly, for any ideal I of O,
we set άX = (αC?)X. Also, let (α)^ (resp. (α)o, (2)<x>) denote the
jV-th part (resp. finite part, infinite part) of α. Fix /ι elements
ί i , . . . , 4 in X^ such that ίλ^ = λ̂? (*λ)oo = 1 a n d for each ίλ,
define x\ = ί j y . Also, fix ίδ so that ί^C = δ, (4)oo = l By
Strong Approximation, one can see that

GΛ = U Gκα:λW(Λr) = (J GKx?W(AT)
λ = l λ = l

where ( ^ ) ι ( )
Given a numerical character >̂ modulo Λί, define a homomor-

phism ψγ : Y(λί) -> C* by ^y ((«;)) = 0(α^ mod λί). Follow-
ing Shimura [10, (9.20)], if (fι,...,fh) € mk(λί,φ,θ), we define
the C-valued function f on GA by

where a € GK, W G W(λί), i = (i, i , . . . , z), and

,v_*. - faz + b^

Given f, one can recover / i , . . . , /Λ, and thus we say f = (/i,..., /h).
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As in [9] and [10], we identify 9Jlk(J\f,φ,θ) with the functions
f : GA -» C such that

i) f(axw) = φγ(wL)f(x) for all a G Gκ, x G GA, w G W(λf),
with WOQ = 1 and

ii) For every λ, there exists an f\ G Mk such that f(xχLwoo) =

detίti ooj^/λllti ooίi) for all Woo G <?«,+.
We denote the space of such functions by UJlk(Λf, Ψ, m) where m G
Rn is the fixed element with θ(a) = aιm for all totally positive
units α. We denote the corresponding subspace of cusp forms by
βk{λf,ψ,m).

By a Hecke character, we shall mean a multiplicative character Φ
on K\ such that Φ(α) = 1 for all a G ifx. We will denote numerical
characters by lower case Greek letters, and Hecke characters by
upper case Greek letters. Let φ^ : K% —> C x be given by φoo{o) =
sgn(άo o) / c |αo o |2 z m, with m G Rn as above. We then say that a Hecke
character Φ extends ^ o o if Φ(δ) = φip.jsί mod A/r)'0c»(S) for all δ G
-̂ oo x Πp Op. If the previous equality holds for ψooip) — sgn(αoo)

/c,
then we say Φ extends φ. Let Φ be a character of ϋfjj, and denote
by Mk(λfj Φ) the subspace of ^Kk{M,φ,m) consisting of f such
that i(sx) = Φ(5)f(x) for all s e K%. Since f(sx) = f(x) for all
s G Kx, we have Mk(λί, Φ) = {0} unless Φ is a Hecke character,
and, in addition, by [9, (9.22)], we know such a Φ must extend φφoo
It is shown in [11] that there exists only h such Hecke characters,
and that fflk(λf,φ,m) = ΘyMk(λf, Φ). Let Sk(λί, Φ) denote the
subspace of cusp forms in Mk(λί, Φ).

It is easy to show that if λί is the ίί-modulus of φ, then the
conductor of a Hecke character Φ which extends φφoo divides ΛΛPoo
This allows us to define an ideal class character Φ* modulo
by

o if(,,
W ^Φ(τfq) if (q,

where (τrq)oo == 1 and πqθ = q. Observe that for any δ 6 K%
such that (aO, λί) = 1, we have Ψ(α) = 1Φ*(άO)φ(άλr)φO0(ά). In
addition, note that both Φ and Φ* have modulus 1.

Let f = (Λ,. . . , Λ) 6 Mk{Λf, Φ), with / λ e M f c(Γλ, φ, θ). Then
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fχ has the Fourier expansion

fx(z)=aχ(0)+ Σ aλ(ξ)exp(2πιTr(ξz)).

As in Shimura, we set

i N(xn\k°l2n^(f\f~~kl2~irn if m — fJ~x C Π

0 if m £ £>

where A:o = max{A;i,..., kn}. We call C(m, f) the Fourier coeffi-
cient of f at m, and we use these Fourier coefficients to associate a
Dirichlet series to f, namely

D{w,ϊ) = 2^ G(τn, f)iV(m) .
mCO

Note that, while the Fourier coefficients off determine f, the Dirich-
let series does not.

Finally, we define some basic operators on elements of
?ΰlk{λί,φ,m). For more details, one is directed to [9]. First, we
define the slash operator for f G UJlk(λί,φ,m) and z G GA by
f I z(x) = f(xzL). For n an ideal of Ό, we follow [9] and define
f I Bn = N(n)"ko/2ΐ I (5 ft-i), where n G K% is such that n(9 = n
and ΠQO = 1. One can then show that Bn maps λAk(λί, Φ) to
Mk(λίn, Φ), and C(m,f | β n ) = ^ ( m n - 1 , ^ . Thus, f \ Bn \ Bm =
f I 5 n m . Finally, for m an integral ideal of Ό, we have from [9] the
Hecke operator T^f of level λί. It is shown that Γm = Γ ^ maps
λ4k(λίη Φ) to λ4k(λί, Φ), regardless of whether (m, λί) — 1 and
[9, 2.20] gives C(m,Tn) = Σm^nCa^*(^)N(a)ko~ιC(a-2mn,f). We
note that both Bn and Tn take cusp forms to cusp forms.

2. The Cq(Φg) operator. In this section, we introduce the op-
erator Cq(Φg) and develop its properties. For the most part, these
properties mimic those of Tq, q | λί, with the additional property
that Cq(Φg) is normal with respect to the Petersson inner product.
We then establish a multiplicity one condition on Sh(λί, Φ) with
respect to the operators {Tp, Cq(Φg) : p \ λί, q | λί} (Theorem
2.7).

Fix a space λΛk(λf, Φ) C UJlk(λί, ψ, m), where Φ is a Hecke char-
acter which extends φφoo- To define the Cq(Φg) operator, we will
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need the Hubert analog of the Atkin-Lehner WQ operator, as de-
fined in [7]. For the convenience of the reader, we state its def-
inition as follows. For a prime divisor q of Λf, let Q = qoτά^λί)1

and choose a Hecke character Φ Q which extends ΦQ (here, we write
Φ — ΦQΦΛTQ-1! where ΦQ (resp. ΦMQ-I) is a character modulo Q
(resp. modulo ΛfQ~1)). In the following, if ΦQ = 1, we will always
choose Φ Q Ξ 1 to extend it. Choose a matrix y = ^yj e GA

so that yoo = 1, det yO = Q and aO, dO C Q, bO C 0"1, and
cθ C Λf*. Then the WQ operator for f G Sk(Λf, Φ) is defined by

f I Wa(*a)(x)

x)φQ(btj) mod

This operator is independent of the choice of α, 6, c, d, and sends

Γ, Φ) to Sk(λί, Φ Φ | ) . Define C q (Φ Q ) as follows

Tq if ^ is not a character mod Afq ι

if ^ is a character mod jVq"1 and <\\\M

if φ is a character mod Λfq ι and q2 | Λf.

Here, Γq is as in [9], and WQ
by [7, Proposition 2.2]. It is easy to check that the above is an
endomorphism of the space Sk(Λf, Φ).

In what follows, we let p denote a prime which does not divide
Λf, and let q denote a prime which does divide Λf. Also, suppose w&
have fixed a Hecke character Φ Q which extends ΦQ for each q | Λf.
We now establish properties of Cq(ΦQ).

PROPOSITION 2.1. Cq(ΦQ) commutes withTp, p\Λf,
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q'l-ΛΛ
Proof. This is because

and T<WQ{9Q) = ** e(q')W e(*e)2V

for q' =̂  q by [7, Proposition 2.4]. D

Thus, Cq(Φg) preserves a common eigenspace of {Tp : p \Λί} on

PROPOSITION 2.2. Cq(Φg) commutes with Bz ifq \ £.

Proo/. Recall Cq(Φg) takes <S*(ΛΛ Φ) to Sk(Λf£, Φ). As the defi-
nition of Cq(ΦQ) depends only upon the order of q dividing λί and
the conductor of ψ, we have that Cq(Φg) is the same on Sk(λίj Φ) as
it is on Sk(Λf£, Φ). Thus, we have C q (Φg)£c = B£Cq(^Q) because
Tq£?£ = 5 £ Γ q and WQ(*Q)BZ = Φ*g(£)#£Wg(Φg) on Sk(λί^) if
q f £, by [7, Proposition 2.3]. D

The Petersson inner product on Sk(Λf, Φ) is defined to be (f, g) =
Σλ(/λ)9'λ)5 where the inner product on Mk(Γ\,ψ,m) is given by
[9, (2.27)]. To gain some insight into how Cq(Φg) acts with respect
to this inner product, we examine how it acts on component func-
tions. Before we do this, we set some notation. Given x = (o ϋ,) £
F(Λ/"), we can find for each λ an element aχ € xχY(Λf)x~Lf)Gκ
such that x\x = aχxμw, with w £ W(λί). Given aχ, define the set
{v\j}j=ι C X\Y(λί)x~L Π G# to be a common set of coset represen-
tatives of Γ λ α Λ Γ μ , i.e., Γ λ α λ Γ μ = Us

j=1TxvXj = Us

j=ιvXjFμ. With this
notation, we can state

PROPOSITION 2.3. Iff e Sk(J\f^), then

i) (f I T q ) λ =

ii)
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Proof. Part i) is simply a restatement of [10, (9.24)]. To prove
ii), we first remark that [9, (2.10)] and tedious but straightforward
manipulations give us

f I WQ{*Q)T<W?(*Q){Z)

where W{λί) (J *° ) W(λf) = U'j=ιW(J\ί)xj, and y is as in the above

definition of W e ( Φ c ) One can check that W(Λί) (*« J) W(Λ0 =
1 = U|=1?/~'1WΛ(Λ/')a;jy, and, in addition, we have

l D = U* = 1 W(Λ0^K>^\ by [8, Proposition
2.3]. Thus, in the following computations, we can let
{yxL

μ(υLχj)oXχLy~~1} play the role of {XJ} in the above.

Let z G Ήn, and let w^ G GL2(R)n be such that WOQΊ = z, and
let f = (/{,..., f'h) = f I ̂ Q ( Φ Q ) T q ^ 1 ( Φ Q ) . We then have

fx(z) - Λ||^oo(i) = (detti co)-^(f

= (det ti oo)-^ y
j=ι

3 = 1

by a series of uncomplicated calculations, and using the fact that all
of the above matrices, with the exception of UOo, have trivial infinite
parts.

Let (vχj)o = (a^ ~Y If we let M — NQ~ι, then the above

equation simplifies to

[ψM(μjjx mod
3=1

iάj modλί)fμ\\vXj.

Note that ψ{άj mod λί) =
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To complete the proof, we need only compute the term in brack-
ets. Since W(λί) (*«•;) W(λί) = Us

j=1W(λί)xL

μ(vL

χj)0Xχ\ there ex-
ists, for each j = l , . . . , s , matrices w\j, w2j G W(λί) such that

( ) > a n d h e n c e

τrq =

for each j . As (detwijU^j)"1 G K^ x Πp ̂ ? w e have

ΦΦQ((det WijW2jY
ι) 1

and hence the bracketed term is equal to

This finishes the proof. D

REMARK. Let f, g e Sk(Λf, Φ) C &k(Λf,ψ,m). If φ is not a
character modulo ΛΛp1, then, by definition, we have f | Cq(Φg) —
f I Tq. Hence, in general, there is no relation between (f | Cq(Φg), g)
and (f, g I Cq(Φg)). This is not the case if φ is a character modulo
ΛΛ}"1, as can be seen in

PROPOSITION 2.4. //f, g e Sk(Λf,Φ) C Θ(λf,φ,m), and φ
is character modulo Nc\~ι, then (f | Cq(Φg),g) = ΦΦg(πq)(f,g |
Cq(Φg)); where (,) is the Petersson inner product of [9, (2.28)] on

Proof. We first prove that

(f I WQ{*Q)T,WQ\*Q), g) = ΦΦβ(πq)<f, g I Tq).

We have, by definition,

(f I W ^ Φ β J T ^ ί Φ β ) , g)

= Σ ( ( f I Wrβ(Φβ)ΓqWQ1(Φfi)) ,gx) .
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Let Γ be a congruence subgroup such that Mfc(Γ) contains both
(f I WQ(^Q)TqWQ1(^Q))χ and gλ. Then

μ(Γ\Hn) ((f I Wα(ΦQ)ΓqWQ1(ΦQ))λ , gx)

υ\j^μ)Jμ\\υ \j\z)y\\z) y u>H'\Z)

= Irχn, «β(*JΛW
s

-lgx\\vXj(z) yk dμ(z)

(g|Tq)μ>.

Hence, (f | WQ^Q^WQ^Q)^) = ΦΦQ(τfq)(f,g | Tq). Simi-
larly, we can show

(f I Tq, g) = ΦΦQ(7rq)<f, g I WQ(pQ)TqW?(*Q)).

If q\\λί and φ is a character modulo Λ/"q~x, then [7, Proposition 4.1]
implies (f | WQ(ϊ),g) = Φ(q)(f,g | WQ(1)). This completes the
proof. D

An immediate consequence of Proposition 2.4 is the following.
The proof is a direct generalization of the proof of [4, Corollary 2.5].

COROLLARY 2.5. C^Q) is diagonalizable on Sk(λί^).

PROPOSITION 2.6. Iff e Sk(λf, Φ) C &k{λί, φ, m) is a newform,
thenΐ | C q ( Φ Q ) = f |Γ q .

Proof. The claim is immediate if φ is not a character modulo
λίq'1. If φ is a character modulo Λfq~ι, then f | Tq = 0 = f |
WQ{^Q)Tq by [7, Theorem 3.3(3)], and hence f | Cq(ΦQ) = 0 if
q2 I Λί. If φ is a character modulo Λ^q"1 and q||Λ/*, then the propo-
sition follows from the fact that f | WQ(l)TqWQl(l) = C(q,f)f by
[7, Theorem 3.3(1)], and f | WQ(1) = -N(q)-k^2+1C(qJ)f by a
straightforward generalization of [3, Theorem 3 iii)]. D
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REMARK. The above proposition shows that the substitution of
the Cq(^o) operator for the Hecke operator Tq for q | Λί leaves the
newform theory of [7] intact, regardless of which choice is made for
the Hecke character Φg.

With Propositions 2.1-2.4, and the newform theory of [7], one can
emulate the proof of [4, Theorem 3.6] to arrive at similar results for
the Hubert modular case. As the proof is long, and no substantially
new ideas are introduced, we omit it, and state

THEOREM 2.7. For each q \ Λί, let ΦQ be a Hecke character
extending ΦQ. Then the space Sk(Λίj Φ) can be decomposed into a
direct sum of common eigenspaces of {Tp : p \ Λί} and {Cq(Φg) :
q I Λί}, each of dimension one. In each common eigenspace, there
exists a form h with Dirichlet series

D(w,h)= Σ C(m,h)N(m)-w

mCO

in which C(O,h) = 1, h | Γp = C(p,h)h for all p \ Λί, and h |
Cq(Φg) = C(q,h)h for all q | Λί. In addition, for such h, we have
C(mn, h) = C(m, h)C(n, h) for (m, n) = 1.

REMARK. By Proposition 2.6, the newforms of Sk(Λί, Φ) are
among the above mentioned basis elements for Sk(Λί, Φ).

3. Eigenvalues of Cq(Φg). In this section, we find bounds for
the eigenvalues of Cq(Φg) on Sk(Λί, Φ) C ek(Λί,ψ,m). To do so,
we follow the methods of [4] and restrict our attention to a common
eigenspace V of {Tp : p \ Λί} in Sk(Λί, Φ). We find a polynomial
whose distinct roots consist of the eigenvalues of Cq(ΦQ) on V. By
determining bounds on the size of this polynomial's roots, we arrive
at the bounds presented in Proposition 3.2.

For the following section, we let V be a common eigenspace of the
Hecke operators {Tp : p \Λί}, and let g e Sk(M, Φ), where M \ Λί,
be the newform such that {g | B% : £ | ΛίΛΛ~1} generates V. Fix
a prime divisor q of Λί, and a Hecke character ΦQ which extends
ΦQ. Let r(q) = ord^ΛΛM"1), ί(q) = ordq(^Vί), and denote by g the
newform in Sk(Λί, Φ Φ | ) such that g | W Q ( Φ Q ) = λg. With δid the
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Kronecker delta, we emulate [4, (3.3), (3.4)] and define

/q,o(a0 = 1, U,i(x) = x - C(q, g)

i f r (q)>3

for 3 < s < r(q) - 1

)

(xfqΛ<ι)-ι(x) - ΛΓ(q)*°ΦΦQ(πq)/q,r(q)_2(z))

if r(q) > 2

ifr(q) = 2

and

Fi(x) = •Mfl(*q)/vW.1(i) if r(q) > 0

ifr(q) = O.

Following [4], it is a straightforward exercise to show that the roots
of Fq(x) are distinct and are, in fact, the eigenvalues of Cq(Φg).

We now estimate the size of the roots of Fq(x). If r(q) = 0, then
the root of Fq(x) is C(q,g), and thus we may assume r(q) > 1
in the following. The assumption r(q) > 1 implies that φ is a
character modulo λfq~ι, and hence, by Proposition 2.4, we know
λ = ΦΦQ(πq)λ for all eigenvalues λ of Cq(Φg) on V.

As C(q,g) and C(q,g) are integral to the definition of Fq(x), we
break our discussion into the following four cases, which result from
[7, Lemma 4.3, Proposition 3.3]:

q I M and φ is not a character modulo Mq~ι, so that

(3-1) _

C(q,g) = ΦΦQ(τfq)C(q,g) and |C(q,g)| = 0 or iV(q)(*»-

q||.M and ψ is a character modulo Mq~ι, so that

(3.2) C(q, g) = C(q, g) and C(q, g)2 = ΦΦQ(τίq)JV(q)*°-2
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q2 I Ai and ψ is a character modulo .Mq"1, so that

(3.3) C(q,g)=0 =

q t M, so that C(q, g) = C(q, g) = ΦΦQ(π q)C(q, g) and

(3.4)

where the last estimate for |C(q,g)| is due to Shahidi [6].
In cases (3.1), (3.2), and (3.3), the methods of [4] for finding

bounds on the roots of Fq(x) can be generalized easily to the Hubert
case. In addition, if r(q) = 1, then the proofs of [4] for all four cases
can be emulated, to get similar results. We will state these results
without proof in the final statements of this section.

In case (3.4), however, the methods of [4] rely on the sharp
Deligne bound of 2q(k~1^2 for the modulus of the qth Fourier co-
efficient of an elliptic newform. In the case of Hubert cusp forms,
the best bound presently known is Shahidi's bound given above. If
one tries to adapt the methods of [4] to find a bound on the roots
of Fq(x) in case (3.4), the difference between Shahidi's bound and
Deligne's bound gives rise to complications when dealing with ideals
of low norm. It is because of these difficulties that we must imple-
ment a significantly different method than [4] when examining the
roots of Fq(x) in case (3.4).

Choose a square root ΦΦQ(τΓq)1/2 of ΦΦg(τrq). For a complex
number λ, define λ' by λ = ΦΦQ(τfq)

1/2Λ/r(q)A:o/2λ/. Now, assume
^(q) ^ 2, and define the polynomials

ffa) = i,

f's(x) = xfUW ~ f'.-2(x) for 5 > 3

and further, we define the polynomials

G0(x) = - (JV(q)-1* - C(q,g)') (jV(q)"1* ~ C(q,g)')

+ (l -
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1 (C(q, g)' + C(q, g)' -

G2(x) = (x - C(q,g)') (x - C(q,g)') - (l - ΛΓ(q)"1)2

Gs(x) = (x- C(q, g)') /;_!(*) - (l - N(q)-1) f's_2(x) for « > 3.

If η = ΦΦQ(τfq)
1/2ΛΓ(q)A:o/2, then it is easy to see that, when we

are in case (3.4), we have /q,5(x) = fr

s(x')js for s < r(q) and that
Fq(x) = 7 r ^ + 1 ( l - ^ ( q ) - 1 ) - i G r ( q ) + 1 ( a ; / ) . Hence λ is a root of Fq(x)
iff λ' is a root of G>(q)+i(x). Note that Gs(x) — xGs-ι(x) — Gs-2{x)
for 5 > 2. If we set Hs(x) = Gs(x + x~λ) for 5 > 0, then, for x2 φ
0,1, [2, Theorem 6.2.2] tells us that Hs(x) = a{x)xs + b{x)x~s =
Gs(x + x~ι). We now prove

PROPOSITION 3.1. Suppose we are in case (3.4), and that xo € C
is a non-zero root of Hs(x). Then \xo\ = 1.

Proof. If xo = ±1? then we are done. Thus, assume Xo φ ± 1 .
Recall that, in case (3.4) we have C(q,g) ; = C(q,g)' G E, and

,g)Ί < 2Λ/r(q)-1/2+1/5. This first identity gives us

=a(x0) + b(x0)

= (1 + iV(q)"1)2 - Wqy^xo + r^1)

= xo + xo1 - 2C(q, g)' + 2ΛΓ(q)-1C(q, g)'

Linear elimination and simplication yields

Hs(x0) = (xl - l )" 1 [ (N(q)xl - C(q, g)'N(q)x0 + l ) 2 x^

- {4 - C(q, g)'ΛΓ(q)*o + ̂ (q)) ' V ]

As we know Hs(x0) — 0 and as we have assumed x\ φ 1, we have
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In order for xQ to satisfy the above equation, it must necessarily
satisfy

(3.5)

|2s-2 _ xl-C(q,g)'N(q)xo+N(q)
N(q)x2

0-C(q,g)'N(q)x0

2

Note that 1 - N(q) 2 < 0, and, in addition,

(1 + N(q)) (\xo\2 + l ) - 2 Re(xo)C(q, g)'TV(q)

> (1 + N(q)) (|xo|2 + l) - (2|xo|ΛΓ(q)) /

with f(\χ\) = iV(q)1/2~V5(1 + iV(q))(|x|2 + 1) - \x\N(q). Using

elementary calculus, we find that the absolute minimum of /( |x |) is

positive for any prime q, and so

[(N(q) + l)(\x\2 + 1) - 2Re(z)C(q, g)'N(q)] > 0 for all x e C.

By examining (3.5), we see we must have |α:o| = 1, for otherwise one
side of equation (3.5) is greater than 1, while the other side is less
than 1. This finishes the proof. D

Recall that we are looking for zeroes of Fq(x) by examining zeroes
of Gr(q)+ι(x). We have Hr(q)+ι(x) = Gr(q)+ι(x + x~ι) and the above
theorem tells us that in case (3.4), if x0 φ 0 is a zero of Hs(x), then
XQ\ — 1. Thus, if ZQ is a root of Gr(q)+i(x) in case (3.4), then ZQ is

of the form 2 cos(0). We noted before that a complex number ZQ is a
zero of G r ( q ) +i iff Λ^(q)fc°/2(ΦΦQ(πq))1/2z0 is a zero of Fq(x). Hence,
if we incorporate what we have shown with the generalized results
of [4, Theorem 4.5], we have

THEOREM 3.2. Let r(q) > 0. Then the roots of the polynomial
Fq(x) are distinct and of the form Λ^(q)/co/2(ΦΦQ(7rq))1/2Λ/ where λ'
is as follows: ifr(q) = 1, then X — C(q,g)rά:l in cases (3.2) — (3.4),

and (l/2)(C(q, g)'+'C(^± ((C(q, g)' - U(^gy)2 + A)1'2 in case

(3.1); when r(q) > 2, |Λ'| < 2.

Let h be an a simultaneous eigenfunction of C'q(Φg), q | M in V
with associated Dirichlet series Σaco C(a, h)N(a)~w and C(O, h) =
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1. Then C(q,h) is the eigenvalue of h for ^ ( Φ Q ) , and thus the
above theorem gives a bound for |C(q,h)|.

COROLLARY 3.3. If φ is not a character modulo Λfq~ι, then
|C(q,h)| = JV(q)^0-1)/2 or 0. Ifφ is a character modulo Mq~ι, then
|C(q,h) | < 2iV(q)fe°/2, except for the case when ordq(jV) = 1 and
N(q) < 11. In this last case, |C(q,h)| < N(q)k^2(2N(q)-1/2+ι/β ±

1).

Proof. The first statement is due to [7, Theorem 3.3]. The last
statement follows from Theorem 3.2 and from the fact that
βΛΓfaJ-^+i/δ ± 1| < 2 for N(q) > 11. D
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