ON THE UNIQUENESS OF CAPILLARY SURFACES OVER AN INFINITE STRIP

JENN-FANG HWANG
ON THE UNIQUENESS OF CAPILLARY SURFACES
OVER AN INFINITE STRIP

JENN-FANG HWANG

In 1987, Tam proved that the solution of the capillary
surface equation without gravity over an infinite strip
must be a rigid rotation of a cylinder. Here we give a
simple proof for Tam's Theorem and generalize his re-
sult.

1. Introduction. Let Ω be a domain in \mathbb{R}^n. Consider the equa-
tion of prescribed mean curvature

\[(1) \quad \text{div } Tu = H \text{ in } \Omega\]

where $Tu = \frac{Du}{\sqrt{1 + |Du|^2}}$ and Du is the gradient of u.

Finn [4] proved that if $H = n$, Ω contains the unit ball B_1 of \mathbb{R}^n, and (1) has a solution u, then Ω has to be exactly B_1 and u must be a lower hemisphere. We emphasize that no boundary condition
is imposed.

In the case Ω is unbounded, Finn [4] conjectured that the only
solution of (1) with $H = 2$ over an infinite strip of width 1 in \mathbb{R}^2 is a
cylinder. Wang [9] and Collin [2] independently showed that other
different solutions can appear, so Finn's conjecture is not true.

In [7], [8] Tam considered the problem related to Finn's conjecture
as follows:

\[(2) \quad \begin{cases} \text{div } Tu = H & \text{in } \Omega, \\ Tu \cdot \nu = \cos \alpha & \text{on } \partial \Omega \end{cases}\]

where H and α are constants, Ω is the infinite strip $(-\frac{1}{2}, \frac{1}{2}) \times \mathbb{R}$, ν
is the unit outward normal of $\partial \Omega$. The boundary value problem (2)
determines the height of a capillary surface without gravity. Note
that if (2) has a solution, then $H = 2 \cos \alpha$ ([7]).
Tam [7] proved that any solution of (2) is of the form $\phi_\beta + \text{constant}$ for some $|\beta| < 1$ if $\frac{\pi}{2} > \alpha > 0$, where

$$
\phi_\beta = -\frac{1}{\sqrt{1-\beta^2}} \sqrt{\left(\frac{1}{2\cos \alpha}\right)^2 - x^2} + \frac{\beta}{\sqrt{1-\beta^2}} y,
$$

that is, any solution of (2) must be a cylinder.

The statement above is still true for $\alpha = 0$ and was proved by the author first, and then Tam modify his own method in [7] to give a unified proof for all cases $\frac{\pi}{2} > \alpha \geq 0$, (c.f. [8], where the author’s name was spelled by Tam as "C. Wong").

In this paper, we do not give our original proof for the case $\alpha = 0$, but give a simple proof for the cases $\frac{\pi}{2} > \alpha \geq 0$. We shall prove that if $\int_{\Gamma_{y_0}} T u \cdot \nu_1 \, d\sigma$ is given where y_0 is a constant, $\Gamma_{y_0} = \{(x, y_0) | -\frac{1}{2} \leq x \leq \frac{1}{2}\}$, $\nu_1 = (0, 1)$. Then the solution of (2) is unique up to an additive constant. Therefore we not only obtain Tam’s Theorem but also generalize it (§2).

The author is grateful to Prof. Finn’s kind suggestion on this paper.

2. Simple proof for Tam’s Theorem. To simplify the proof for Tam’s Theorem, the well-known inequality

$$
(Du - Dv) \cdot (Tu - Tv) \geq \frac{|Du - Dv|^2}{\max(1 + |Du|^2, 1 + |Dv|^2)}
$$

[6] will be sharpened, and actually we will use the following inequality (3) to deal with integral estimates:

Lemma 1. Let $\Omega \subset \mathbb{R}^n$ and let $u, v \in C^1(\Omega)$. Then

(3) \hspace{1cm} (Du - Dv) \cdot (Tu - Tv)

$$
\geq \frac{|Du - Dv|^2}{\sqrt{1 + (|Du| + |Du - Dv|)^2}} \left(1 - \frac{|Du|}{\sqrt{1 + |Du|^2}}\right).
$$

Proof. Let $|Du| = \alpha$ and $|Du - Dv| = b$. After choosing a suitable coordinates, we may assume $Du - Dv = (b, 0, \ldots, 0)$, $Du = (\alpha \cos \theta, \alpha_2, \ldots, \alpha_n)$ where $0 \leq \theta \leq \pi$, $\alpha^2 \cos^2 \theta + \alpha_2^2 + \cdots + \alpha_n^2 = \alpha^2$. \hfill \Box
Then $Dv = (\alpha \cos \theta - b, \alpha_2, \ldots, \alpha_n)$. Hence

$$\left(\frac{Du}{\sqrt{1 + |Du|^2}} - \frac{Dv}{\sqrt{1 + |Dv|^2}} \right) \cdot (Du - Dv) = b \left(\cos \theta \left(\frac{1}{\sqrt{1 + \alpha^2}} - \frac{1}{\gamma} \right) \right)$$

where $\gamma = \sqrt{1 + \alpha^2 - 2\alpha \cos \theta + b^2}$. $\gamma - 2\alpha \cos \theta + b$ and since $\sqrt{1 + \alpha^2 - 2\alpha \cos \theta + b^2} \leq 1 + (\alpha + b)^2$, we have

$$(Tu - T\nu) \cdot (Du - D\nu) \geq \frac{b^2}{\sqrt{1 + (\alpha + b)^2}} \left(1 - \frac{\alpha}{\sqrt{1 + \alpha^2}} \right).$$

This completes the proof. \square

Now we generalize Tam’s Theorem.

THEOREM 2. Let Ω be the infinite strip $(-1/2, 1/2) \times \mathbb{R}$ in \mathbb{R}^2. Let u, ν be $C^2(\Omega)$ functions satisfying $Tu, T\nu \in C^0(\bar{\Omega}) \cap C^1(\Omega)$. Suppose that for every ε with $0 < \varepsilon < 1/2$, $|Du|$ is uniformly bounded in $[-1/2 + \varepsilon, 1/2 - \varepsilon] \times \mathbb{R}$. And if

$$\begin{cases}
\text{div } T\nu = \text{div } Tu & \text{in } \Omega \\
Tv \cdot \nu = Tu \cdot \nu & \text{on } \partial \Omega \\
\int_{\Gamma_{y_0}} Tv \cdot \nu_1 \, d\sigma = \int_{\Gamma_{y_0}} Tu \cdot \nu_1 \, d\sigma & \text{for some constant } y_0,
\end{cases}$$

where ν is the unit outward normal of $\partial \Omega$, $\nu_1 = (0,1)$, $\Gamma_{y_0} = \bar{\Omega} \cap \{(x,y) | y = y_0\}$, then we have $\nu \equiv u + \text{ constant}$.

REMARK. In (4), we assume neither div $Tu = \text{ constant}$ nor $Tu \cdot \nu = \text{ constant}$, hence we generalize Tam’s Theorem.
As for more general domains Ω, the results are stated in Theorem 4.

Proof of Theorem 2. For any two numbers y_1, y_2 with $y_1 < y_2$, we set $\Omega_{y_1,y_2} = \Omega \cap \{(x,y) \mid y_1 < y < y_2\}$. By divergence theorem, we have

$$
\int_{\partial\Omega_{y_1,y_2}} (Tu \cdot \nu - Tv \cdot \nu) \, d\sigma = \int_{\Omega_{y_1,y_2}} \text{div} \; Tu - \text{div} \; Tv = 0.
$$

Since $(Tu - Tv) \cdot \nu = 0$ on $\partial\Omega$, $\nu = \nu_1$ on Γ_{y_2} and $\nu = -\nu_1$ on Γ_{y_1}, we obtain

$$
\int_{\Gamma_{y_2}} (Tu - Tv) \cdot \nu_1 \, d\sigma - \int_{\Gamma_{y_1}} (Tu - Tv) \cdot \nu_1 \, d\sigma = 0.
$$

Hence

$$
\int_{\Gamma_{y_1}} (Tu - Tv) \cdot \nu_1 \, d\sigma = \text{constant} = \int_{\Gamma_{y_0}} (Tu - Tv) \cdot \nu_1 \, d\sigma = 0
$$

for every $y_1 \in \mathbb{R}$.

Similarly, applying divergence theorem again, we have

$$
\int_{\Gamma_{y_2}} \tan^{-1}(u - v)(Tu - Tv) \cdot \nu_1 \, d\sigma
- \int_{\Gamma_{y_1}} \tan^{-1}(u - v)(Tu - Tv) \cdot \nu_1 \, d\sigma
= \int_{\Omega_{y_1,y_2}} \frac{(Du - Dv)}{1 + (u - v)^2} \cdot (Tu - Tv)
+ \int_{\Omega_{y_1,y_2}} \tan^{-1}(u - v)(\text{div} \; Tu - \text{div} \; Tv)
= \int_{\Omega_{y_1,y_2}} \frac{(Du - Dv)}{1 + (u - v)^2} \cdot (Tu - Tv) \geq 0, \quad (y_1 < y_2).
$$

For each $y \in \mathbb{R}$, let us write

$$
f(y) = \int_{\Gamma_y} \tan^{-1}(u - v)(Tu - Tv) \cdot \nu_1.
$$

By (6), $f(y)$ is increasing in y, hence $\lim_{y \to \pm\infty} f(y)$ exist. We claim that $\lim_{y \to +\infty} f(y) = 0$. Otherwise, there exist two constants y'_0 and C_1 such that $0 < C_1 < 1$ and

$$
|f(y)| \geq C_1 \text{ for every } y \geq y'_0.
$$
Define \(m(y) = \frac{1}{|\Gamma_y|} \int_{\Gamma_y} \tan^{-1}(u - v) \, d\sigma \) for every \(y \geq y_0 \) where

\[
\Gamma_y' = \left[\left\{-\frac{1}{2} + \frac{C_1}{8\pi}, \frac{1}{2} - \frac{C_1}{8\pi} \right\} \times \{y\}, \right.
\]

\(|\Gamma_y'|\) is the length of \(\Gamma_y' \). It follows that \(|m(y)| \leq \frac{\pi}{2} \) for every \(y \geq y_0 \).

From (5), we see that

\[
\int_{\Gamma_y} m(y)(Tu - Tv) \cdot \nu_1
\]

\[
= m(y) \int_{\Gamma_y}(Tu - Tv) \cdot \nu_1 = 0 \text{ for every } y \geq y_0'.
\]

By hypothesis, \(|Dv|\) is uniformly bounded in

\[
\left[\left\{-\frac{1}{2} + \frac{C_1}{8\pi}, \frac{1}{2} - \frac{C_1}{8\pi} \right\} \times \mathbb{R}, \right.
\]

so there exists a positive constant \(C_2 \) (independent of \(y \)) such that

\[
|Du| \leq C_2 \text{ in } \left[\left\{-\frac{1}{2} + \frac{C_1}{8\pi}, \frac{1}{2} - \frac{C_1}{8\pi} \right\} \times \mathbb{R}, \right.
\]

Hence for each \(y \geq y_0' \),

\[
\left| \int_{\Gamma_y} (\tan^{-1}(u - v) - m(y))(Tu - Tv) \cdot \nu_1 \right|
\]

\[
\geq \left| \int_{\Gamma_y} (\tan^{-1}(u - v) - m(y))(Tu - Tv) \cdot \nu_1 \right|
\]

\[
- \left| \int_{\Gamma_y \setminus \Gamma_y'} (\tan^{-1}(u - v) - m(y))(Tu - Tv) \cdot \nu_1 \right|. \]

By direct computation, we have

\[
\left| \int_{\Gamma_y \setminus \Gamma_y'} (\tan^{-1}(u - v) - m(y))(Tu - Tv) \cdot \nu_1 \right|
\]

\[
\leq 2 \cdot \frac{C_1}{8\pi} \left(\frac{\pi}{2} + \frac{\pi}{2} \right) \cdot 2 = \frac{C_1}{2}.
\]

Combining this result with (7)-(9) and (11), we have

\[
\left| \int_{\Gamma_y} \tan^{-1}(u - v) - m(y))(Tu - Tv) \cdot \nu_1 \right|
\]

\[
\geq \frac{C_1}{2} \text{ for every } y \geq y_0'.
\]
Applying Poincaré inequality to the left hand side of (12), we obtain

\[
\frac{C_1}{2} \leq 2 \int_{\Gamma_y} |\tan^{-1}(u - v) - m(y)|
\]

\[
\leq 2|\Gamma_y'| \int_{\Gamma_y'} \frac{|Du - Dv|}{1 + (u - v)^2}
\]

\[
\leq 2|\Gamma_y'| \left(\int_{\Gamma_y' \cap \{|Du - Dv| < 8^{-1}|\Gamma_y'|^{-2}C_1\}} \frac{|Du - Dv|}{1 + (u - v)^2}
+ \int_{\Gamma_y' \cap \{|Du - Dv| \geq 8^{-1}|\Gamma_y'|^{-2}C_1\}} \frac{|Du - Dv|}{1 + (u - v)^2} \right)
\]

\[
\leq \frac{C_1}{4} + 2|\Gamma_y'| \int_{\Gamma_y' \cap \{|Du - Dv| \geq 8^{-1}|\Gamma_y'|^{-2}C_1\}} \frac{|Du - Dv|}{1 + (u - v)^2}.
\]

Hence for every \(y > y_0 \), we have

\[
\frac{C_1}{8|\Gamma_y'|} \leq \int_{\Gamma_y' \cap \{|Du - Dv| \geq 8^{-1}|\Gamma_y'|^{-2}C_1\}} \frac{|Du - Dv|}{1 + (u - v)^2}.
\]

From (10), we have

\[
|Du - Dv| \leq \sqrt{1 + (|Du| + |Du - Dv|)^2} \left(1 - \frac{|Du|}{\sqrt{1 + |Du|^2}} \right)
\]

\[
\geq \frac{|Du - Dv|^2}{\sqrt{1 + (C_2 + |Du - Dv|)^2}} \left(1 - \frac{C_2}{\sqrt{1 + C_2^2}} \right)
\]

\[
\geq |Du - Dv| \frac{8^{-1}|\Gamma_y'|^{-2}C_1}{\sqrt{1 + (C_2 + 8^{-1}|\Gamma_y'|^{-2}C_1)^2}} \left(1 - \frac{C_2}{\sqrt{1 + C_2^2}} \right)
\]

in \(\Gamma_y' \cap \{|Du - Dv| \geq 8^{-1}|\Gamma_y'|^{-2}C_1\} \). Combining (13) with the inequalities (3) and (14), we obtain the estimate

\[
\frac{C_1}{8|\Gamma_y'|} \leq 8|\Gamma_y'|^2C_1^{-1} \sqrt{1 + (C_2 + 8^{-1}|\Gamma_y'|^{-2}C_1)^2} \left(1 - \frac{C_2}{\sqrt{1 + C_2^2}} \right)^{-1}
\]

\[
\cdot \int_{\Gamma_y' \cap \{|Du - Dv| \geq 8^{-1}|\Gamma_y'|^{-2}C_1\}} \frac{(Du - Dv) \cdot (Tu - Tv)}{1 + (u - v)^2}.
\]
Since $\Gamma'_y \subseteq \Gamma_y$, it is easy to see that
\begin{equation}
C_3 \leq \int_{\Gamma_y} \frac{(Du - Dv) \cdot (Tu - Tv)}{1 + (u - v)^2}
\end{equation}
for every $y \geq y'_0$ where
\begin{equation}
C_3 = \frac{C_1^2}{64|\Gamma_y|^3 \sqrt{1 + (C_2 + 8^{-1}|\Gamma_y|^{-2}C_1)^2}} \left(1 - \frac{C_2}{\sqrt{1 + C_2^2}}\right).
\end{equation}
By (6), (7), (15) and Fubini's Theorem, for every $y \geq y'_0$, we have
\begin{equation}
\int_{\Gamma_y} \frac{\tan^{-1}(u - v)(Tu - Tv) \cdot \nu_1}{(Du - Dv) \cdot (Tu - Tv)}
= \int_{\Gamma'_y} \frac{\tan^{-1}(u - v)(Tu - Tv) \cdot \nu_1}{(Du - Dv) \cdot (Tu - Tv)}
= \int \int_{\Omega_{y'0,y}} \frac{(Du - Dv)}{1 + (u - v)^2} \cdot (Tu - Tv)
= \int_{y'_0}^{y} \left(\int_{\Gamma_t} \frac{(Du - Dv)}{1 + (u - v)^2} \cdot (Tu - Tv) \, d\sigma\right) \, dt
\geq \int_{y'_0}^{y} C_3 |\Gamma_t| \, dt
= C_3(y - y'_0).
\end{equation}
Note that $|\int_{\Gamma_y} \tan^{-1}(u - v)(Tu - Tv) \cdot \nu_1| \leq \pi |\Gamma_y| = \pi$. Let $y \to +\infty$ in (16), we get a contradiction. Thus we obtain $\lim_{y \to +\infty} f(y) = 0$. Similarly, we have $\lim_{y \to -\infty} f(y) = 0$. Using (6) again and letting $y_2 \to +\infty, y_1 \to -\infty$, we have $\int_{\Omega_1} \frac{(Du - Dv)}{1 + (u - v)^2} \cdot (Tu - Tv) = 0$, hence $(Du - Dv) \cdot (Tu - Tv) \equiv 0$ in Ω, and $Du \equiv Dv$ in Ω. This completes the proof. \hfill \Box

Tam's Theorem is an immediate consequence of Theorem 2.

Corollary 3. Every solution u of (2) is of the form $\phi_\beta + \text{constant}$ for some $|\beta| < 1$, where Ω is the infinite strip $\left(-\frac{1}{2}, \frac{1}{2}\right) \times \mathbb{R}$,
\begin{equation}
\phi_\beta = -\frac{1}{\sqrt{1 - \beta^2}} \sqrt{\left(\frac{1}{2 \cos \alpha}\right)^2 - x^2} + \frac{\beta}{\sqrt{1 - \beta^2} y},
\end{equation}
\(\beta \) satisfies \(f_{\Gamma_y} T \phi_\beta \cdot \nu_1 = f_{\Gamma_y} T \nu \cdot \nu_1, \) for some constant \(y_0. \)

Tarn's Theorem for more general domains \(\Omega \) is stated in the following Theorem:

Theorem 4. Let \(g_1, g_2 \in C^1(\mathbb{R}) \) satisfy \(g_2 < g_1 \) in \(\mathbb{R}. \) Set \(\Omega = \{(x, y) | g_2(y) < x < g_1(y)\}. \) Let \(u, \nu \in C^2(\Omega) \) satisfy \(T \nu, T \nu \in C^0(\Omega) \cap C^1(\Omega) \). Suppose that for every \(\varepsilon > 0, |D \nu| \) is uniformly bounded in \(\{(x, y)| g_2(y) + \varepsilon < x < g_1(y) - \varepsilon\}. \) And if

\[
\begin{align*}
\text{div} \, T \nu &= \text{div} \, T \nu \\
T \nu \cdot \nu &= T \nu \cdot \nu \\
f_{\Gamma_y} T \nu \cdot \nu_1 \, d\sigma &= f_{\Gamma_y} T \nu \cdot \nu_1 \, d\sigma \\
|\Gamma_y| &= O(|y|^{\frac{1}{3} - \alpha}) \\
\end{align*}
\]

for some constant \(y_0, \) for some constant \(\alpha \) with \(0 < \alpha < \frac{1}{3}, \) where \(\Gamma_y = [g_2(y), g_1(y)] \times \{y\}, \) then we have \(u = \nu + \) constant in \(\Omega. \)

Proof. The proof is similar to that of Theorem 2. Here we only sketch the proof.

For each \(y \in \mathbb{R}, \) let us write

\[
f(y) = \int_{\Gamma_y} \tan^{-1}(u - \nu)(T \nu - T \nu) \cdot \nu_1.
\]

By (6), \(f(y) \) is increasing in \(y, \) hence \(\lim_{y \to \pm \infty} f(y) \) exist. We claim that \(\lim_{y \to +\infty} f(y) = 0. \) Otherwise, there exist two positive constants \(y_0' \) and \(C_1 \) such that

\[
|f(y)| \geq C_1 \quad \text{for every} \quad y \geq y_0' > 0.
\]

Hence \(C_1 \leq \left| \int_{\Gamma_y} \tan^{-1}(u - \nu)(T \nu - T \nu) \cdot \nu_1 \right| \leq \pi |\Gamma_y|, \) and we have \(|\Gamma_y| \geq \frac{C_1}{\pi} \) for every \(y \geq y_0'. \) Define \(m(y) = \frac{1}{|\Gamma_y|} \int_{\Gamma_y} \tan^{-1}(u - \nu) \, d\sigma \) for every \(y \geq y_0', \) where \(\Gamma_y' = [g_2(y) + \frac{C_1}{8\pi}, g_1(y) - \frac{C_1}{8\pi}] \times \{y\}. \)

By hypothesis, \(|Du| \) is uniformly bounded in \(\bigcup_{y \geq y_0'} \Gamma_y', \) so there exists a positive constant \(C_2 \) (independent of \(y \)) such that

\[
|Du| \leq C_2 \quad \text{in} \quad \bigcup_{y \geq y_0'} \Gamma_y'.
\]
Hence for each $y > y_0$, we have

\[(12') \quad \left| \int_{\Gamma'_y} (\tan^{-1}(u - v) - m(y))(Tu - Tv) \cdot \nu \right| \geq |f(y)| - \frac{C_1}{2} \geq \frac{|f(y)|}{2}.\]

Applying Poincaré inequality to the left hand side of (12'), we obtain

\[
\frac{|f(y)|}{2} \leq 2 \int_{\Gamma'_y} |\tan^{-1}(u - v) - m(y)| \leq 2|\Gamma'_y| \int_{\Gamma'_y} \frac{|Du - Dv|}{1 + (u - v)^2} \leq \frac{C_1}{4} + 2|\Gamma'_y| \int_{\Gamma'_y \cap \{|Du - Dv| \geq 8^{-1}|\Gamma'_y|^{-2}C_1\}} \frac{|Du - Dv|}{1 + (u - v)^2}.
\]

Hence for every $y > y'_0$, we have

\[(13') \quad \frac{|f(y)|}{8|\Gamma'_y|} \leq \int_{\Gamma'_y \cap \{|Du - Dv| \geq 8^{-1}|\Gamma'_y|^{-2}C_1\}} \frac{|Du - Dv|}{1 + (u - v)^2}.\]

Combining (13') with the inequalities (3) and (14), we obtain

\[
\frac{|f(y)|}{8|\Gamma'_y|} \leq 8|\Gamma'_y|^2 C_1^{-1} \sqrt{1 + (C_2 + 8^{-1}|\Gamma'_y|^{-2}C_1)^2} \left(1 - \frac{C_2}{\sqrt{1 + C_2^2}}\right)^{-1} \int_{\Gamma'_y \cap \{|Du - Dv| \geq 8^{-1}|\Gamma'_y|^{-2}C_1\}} \frac{(Du - Dv) \cdot (Tu - Tv)}{1 + (u - v)^2}.
\]

Since $\Gamma'_y \subset \Gamma_y$,

\[
|\Gamma'_y|^2 \sqrt{1 + (C_2 + 8^{-1}|\Gamma'_y|^{-2}C_1)^2} \leq |\Gamma_y|^2 \sqrt{1 + (C_2 + 8^{-1}|\Gamma_y|^{-2}C_1)^2},
\]

it is easy to see that

\[
|f(y)| \leq 64|\Gamma_y|^2 C_1^{-1} \sqrt{1 + (C_2 + 8^{-1}|\Gamma_y|^{-2}C_1)^2} \cdot \left(1 - \frac{C_2}{\sqrt{1 + C_2^2}}\right)^{-1} \int_{\Gamma_y} \frac{(Du - Dv)(Tu - Tv)}{1 + (u - v)^2},
\]
hence we have
\[(15') \quad C_4 |\Gamma_y|^{-3} |f(y)| \leq \int_{\Gamma_y} \frac{(Du - Dv) \cdot (Tu - Tv)}{1 + (u - v)^2}
\]
where
\[C_4 = 64^{-1} C_1 \left(1 + \left(C_2 + 8^{-1} \left(\frac{C_1}{\pi}\right)^{-2} C_1\right)^2\right)^{-\frac{1}{2}} \left(1 - \frac{C_2}{\sqrt{1 + C_2^2}}\right).
\]
By Fubini's Theorem, we have
\[
\int_{\Gamma_y} \frac{(Du - Dv) \cdot (Tu - Tv)}{1 + (u - v)^2} = f'(y).
\]
Hence
\[(17) \quad \frac{f'(y)}{|f(y)|} \geq C_4 |\Gamma_y|^{-3} \geq C_5 y^{-1+3\alpha} \text{ for } y \geq y_0' > 0
\]
where \(C_5\) is a positive constant. Integrate (17) from \(y_0'\) to \(y\), \(y > y_0'\), we obtain
\[(18) \quad |\log |f(y)|| - |\log |f(y_0')|| \geq \frac{C_5}{1 - 3\alpha}(y^{3\alpha} - y_0'^{3\alpha}).
\]
Note that \(|f(y)| \leq \pi |\Gamma_y| = O\left(y^{\frac{1}{2} - \alpha}\right)\). Let \(y \to +\infty\) in (18), we get a contradiction. The remainder of the proof is similar to that of Theorem 2.

Remark. Let \(\Omega\) be a domain (bounded or unbounded) in \(\mathbb{R}^n\) and let \(k\) be a positive constant, where \(n \geq 2\) is an integer. Suppose that \(\alpha\) is defined on \(\partial \Omega\) with \(0 \leq \alpha \leq 2\pi\). Then the boundary value problem
\[
\begin{cases}
\text{div } Tu = ku & \text{in } \Omega \\
Tu \cdot \nu = \cos \alpha & \text{on } \partial \Omega
\end{cases}
\]
determines the height \(u\) of a capillary surface in a uniform gravitational field.
It was proved by Finn and the author [5] that if (19) has a solution then it is unique. We point out that neither growth condition of u nor condition on the form of Ω at infinity is imposed.

REFERENCES

Received October 29, 1992. Partially supported by grant NSC 82-0208-M-001-078.

INSTITUTE OF MATHEMATICS
ACADEMIA SINICA
TAIPEI 11529
TAIWAN, R.O.C.
Minimal sets of periods for torus maps via Nielsen numbers

Lluís Alseda, Stewart Baldwin, Jaume Llibre, Richard Swanson and Wieslaw Szlenk

Diagonalizing Hilbert cusp forms

Timothy Atwill

A splitting criterion for rank 2 vector bundles on P^n

Edoardo Ballico

Controlling Tietze-Urysohn extensions

Marc Frantz

Length of Julia curves

David H. Hamilton

On the uniqueness of capillary surfaces over an infinite strip

Jenn-Fang Hwang

Volume estimates for log-concave densities with application to iterated convolutions

Marius Junge

A reflection principle in complex space for a class of hypersurfaces and mappings

Francine Antoinette Meylan

Jean Bourgain’s analytic partition of unity via holomorphic martingales

Paul F.X. Müller

Characters of Brauer’s centralizer algebras

Arun Ram