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In this paper we calculate the 2-primary υ\-periodic homo-
topy groups of the symplectic groups Sp(n). The proof utilizes
new methods of calculating the unstable Novikov spectral se-
quence. One corollary is that some homotopy group of Sp(n)
contains an element of order 22n~1.

1. Main theorem.

In this paper we calculate the 2-primary υi -periodic homotopy groups of the
symplectic groups Sp(n). The odd-primary ^-periodic homotopy groups of
Sp(n) were determined in [13]; they are an immediate consequence of the
groups of SU(n). In Section 5, we apply our results to James numbers and
exponents of actual homotopy groups.

The Vι-periodic homotopy groups of a space, whose definition we recall in
the next paragraph, are a localization of the actual homotopy groups. Very
roughly, they are the portion of the homotopy groups detectable by real and
complex K-theory and their operations. A first attempt at computing the
^-periodic homotopy groups of Sp(n) was made in [16]. The method there
was to study the exact sequence of Vι -periodic homotopy groups associated
to the fibration

(1.1) Sp(n - 1) -> Sp(n) -> 5 4 n " 1 .

Difficulties in determining the homomorphisms in this exact sequence oc-
curred in [16] as early as n = 3; indeed, there is a minor mistake in the
calculation of v^ιπ*(Sp(i)) in [16].x We employ a similar method, but we
use the unstable Novikov spectral sequence (UNSS) to lend precision to the
calculations.

The p-primary vι-periodic homotopy groups of any space X were defined
in [15] by

(1.2) v-ι<κn{X) = dirlim v^n+1{X

lrΓhe άi-differential in the chart on [16, p. 228] should not be present. The image of
Mimura and Toda's boundary morphism cited there is in fact not v\ -periodic.
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320 M. BENDERSKY ET AL

where
= dirlim [M*""'"1 (pe),X],

with the latter direct system being taken over Adams maps of the mod pe

Moore spaces. We say that X has an ϋΓ-space exponent at p if, for some e and
L, ΩLX-^-»ΩLX is null-homotopic. For such spaces, which include spheres
and compact Lie groups, v^π^X) is a direct summand of some πL(X),
provided vϊιπn(X) is a finitely-generated abelian group, which is true in
the cases just mentioned. The importance of vϊ 1π*(X) is that it is often
computable and yet gives significant information about actual homotopy
groups. Much of the importance of our calculation of υf ιπ*(Sp(n)) here is
just that we were able to do it. It was an extremely challenging problem,
requiring new methods of analysis of the UNSS.

Moreover, our result is new in a fundamental sense. The results for
υΐ 1π*(SU(n)) proved in [13] and [9] yielded the same numbers that had
come up in the work of Crabb and Knapp ([11]), although it was impor-
tant to learn that all V\ -periodic homotopy classes were of this standard
type. The same could be said for the large summands which we obtain in
υΐ1π^(Sp(n))] closely related groups have come up in the work of Morisugi
([26]) and Walker ([32]). But the way in which the Z2's from the various
spheres contribute to Sp(n), as described in Proposition 1.8, is completely
new, and should have further ramifications.

Let ek be defined by 0 < ek < 1 and ek = k mod 2. Our results involve
numbers defined for k > n by

As usual, u(—) = v2{—) denotes the exponent of 2. The numbers e(A;, n) were
called oί̂ (fc,n) in [26]. They are periodic in A;, and are extended to k < n
using this periodicity. This periodicity is proved similarly to [12, 3.15], using
the following alternate form for the coefficients in (1.3).

(i 4) jD-WW-o2*-
2=0

In Section 5, we will tabulate some values of the numbers e(A;,n), which,
along with the explicit calculations in [26], may shed some light on an unil-
luminating definition.

We now state our main result. We will denote by G(n) some abelian
group satisfying \G(n)\ = n. We make no claim about the precise structure
of G(n), and, moreover, if G(ή) occurs in two different formulas with the
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same n, we do not claim that the two groups are isomorphic. We denote by
Z 2 the cyclic group of order 2, and by nG the direct sum of n copies of the
abelian group G.

Theorem 1.5. For 1 < t < 8 and any integer h, the 2-primary Vι-periodic
homotopy group

-^sh+t(Sp(n)) =

Z/2 e ( 2 f t + 1 > n )

if

if

if

if

if

t-1

t = 2

ί = 3

t = 4

ί = 5

l[log 2(f)]Z2

if t = 7

if ί = 8.

The G(—)-group when t = 1, 5; or 7 Λαs α̂  Zeαsί [log2(4n/3)] direct sum-
mands. The group υϊιπ8h+7{Sp(n)) is an extension (possibly the trivial ex-
tension) of two 7*2-vector spaces of dimension [log2(4n/3)].

One novel aspect of the result is the occurrence of arbitrarily many Z2's in
a single vx-periodic homotopy group, which had not occurred explicitly2 in
previous examples such as SU(n). For the reader who wishes to obtain some
feeling for these groups without studying the entire proof, we recommend
reading the rest of this section, together with the portion of Section 5 which
tabulates values of the numbers e(A;, n). You might also take a look at Figure
4.4, which displays the final stage of the UNSS converging to vϊ1π^(Sp(n)),
and the recapitulation of the proof which precedes that figure.

The heart of the proof is the calculation of the ϋ^-term of the UNSS
converging to vf 1π«(5p(n)). This is done using the exact sequences of vλ-
periodic UNSS's induced by (1.1) to give a spectral sequence (SS) converging
to VγlE2(Sp(n)) whose initial term is

(1.6)
\<i<n

2But see Proposition 1.17.
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where vx

 ιE2 refers to the ϋ^-term of the ̂ -periodic UNSS of [4]. We call
this the cellular SS, or CSS. Strictly speaking, this isn't quite accurate, since
Sp(n) has more cells than the S"^"1, but the name "cellular" seems to have
the right flavor.

A complete description of vf 1E2(S4i~ι) is given in [4, p. 58] and repro-
duced in our Figure 3.24. In later sections, we will make use of some of
the technical names of classes given there, but to describe the result, we
prefer the simpler form which we give in Figure 1. Note that the horizontal
component in Figure 1 refers to the homotopy group, and not the stem, as
it does in Figure 3.24. The letter i is part of the notation of all of these
classes in υ^1E2(S4ι~1) because we shall be combining the charts for various
values of i. The letters i, i\ iu, and i'u each represent an 77-tower; this is
an infinite collection of elements {ηjx : j > 0} of order 2, where η is the
UNSS representative of the Hopf map. The action of the element 77, which
we will also denote by /ii, moves one position to the right, and one position
up; the diagonal arrows in Figure 1 suggest this. The boxes which contain
the elements Ui and i'u also contain a second element, which is part of the
77-tower labeled i — 1, and is implicit by the periodicity of the chart. The
symbols Si and Ui represent cyclic 2-groups of the same order. The letters
suggest "stable" and "unstable." The groups Si and Ui are Z/8 if i = k mod
2, while if i φ k mod 2, they are Z/2m with m = min(i/(fc - i + 1) + 3, n).

/
Ui

/

Si

/

V iu

/

/
i

t - s = Ak+

Figure 1.7: v^E'/iS4^1)

These charts are superimposed as in (1.6), with ^-differentials always
going from Es'1 to £7S+1'*, and decreasing i by r. Thus they always go to the
group one unit above and one to the left of the source class. There are dr-
diίferentials from SV-groups to ί7;_r-groups which cause v^1 E\^k+2>{Sp{n))
to be cyclic of order 2e5p(Λ+1>n), as proved in [10]. Here eSp{k + l,n) is as
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defined in (1.15). Since |E7i| = \Si\ and there are no differentials in the CSS
going out from the groups Uu the portion of the group υΐ1 E2

Λk+3 (Sp(n))
built from the C/ί's will also have order 2esp(k+ι'n\ but it will not necessarily
be cyclic.

In Section 3, we will prove the following result, which establishes all dif-
ferentials among the 7?-towers in the CSS.

Proposition 1.8. In the CSS o/(1.6), the differentials among the η-towers
depicted in Figure 1.7 satisfy, for all values of k,

(1.9)

(1.10)

(1-11)

(1.12)

dj.+i((:

d2.+i{((2i

di{(2i)')

2» + 3)2e)

+ 3)2e)J

= ((2< + l)2 e;

= (ί2i + l)2 e)

if*

if*

)' if»

u i f»

= 2e

= 2e

> 1 ,

> 1 ,

or 3 2e, e > 0

, e > 0

e > 0 or i = e =

e>0,

provided 2i<n in (1.9) am/ (1.10), and (2i + 3)2e < n in (1.11) and (1.12).

The restrictions are present because in other cases one of the classes will

have been involved in an earlier differential. For example, rfδ(lθ) = 5M is

masked by d4(10) = 6' and d2(5u) = 3'u.
The reader can easily verify that every class except " 1 " is involved in one

of the differentials if n = oo. This is consistent with Bott periodicity for
Sp. However, if n satisfies i — r < n < z, then a ^-differential from a class
numbered i to one numbered i — r cannot occur in Sp(n), and so it frees
the (i — r)-class to survive the CSS. In Proposition 1.14, we enumerate the
number of unstable 77-towers that survive all the differentials in Sp(n).

We illustrate in Figure 1.13 the pattern of differentials among the 77-towers
in the CSS converging to vϊ1E2{Sp(10)). Classes in Figure 1.13 which are not
involved in differentials survive to 77-towers in vf1 E2(Sp(10)). In Figure 1.16,
we will show how the surviving classes in υϊιE2{Sp(ri)) are situated, and in
Theorem 4.1 and Corollary 4.3 we will establish the cZ3-differentials among
them. Figure 4.4 shows a final picture of the UNSS for Sp(n). Theorem 1.5
is a consequence of this analysis.

The following result shows how the [log2(4n/3)] in Theorem 1.5 arises, as

an enumeration of the number of 77-towers in υϊxE2(Sp(n)).

Proposition 1.14. The number of classes of the form i'u in Sp(n) which

are not hit by differentials in Proposition 1.8 is [log2(4n/3)].

There is only one class, namely " 1 , " of the form "i" which does not support
a differential. Consequently, there will also be 1 + [log2(4n/3)] 77-towers
beginning in the box at height 2 and t — s — 4k + 3 which survive the CSS.
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Figure 1.13: Cellular SS for υ^1 E2(Sp(10))

To understand this, the reader may find it helpful to refer to Figure 1.13,
where [log2(40/3)] = 3 .
Proof of Proposition 1.14. We must count the number of integers j < n for
which 2j > n if j is a 2-power, and j + 2"^ + 1 > n if j is not a 2-power.
There is one such 2-power.

Define
j+2"<'> + 1 - l

where S is the set of positive integers which are not 2-powers. Our desired
answer is 1 plus the coefficient of yn in /(I, y). Collecting terms over common
values of v(j) yields

f(x,y) = 2^x2 y2 [z 2 e + 1 2 e + 1 —
f r i V i - χ 2 y 2 l - y J

jes

Setting x — 1 allows some cancellation in the latter product, from which we
obtain

32'

The coefficient of yn in this is the number of 3 2e's which are equal to or
less than n. This is 1 plus the number of 2e's with e > 1 which are less than
or equal to n/3. This number of 2e's is [log2(n/3)], from which we obtain
the answer claimed. D
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The result of the differentials of Proposition 1.8 is the following chart,
Figure 1.16, for vϊ1E2(Sp(n)). Here a represents a Z2 (of the type "1"
when t — 2s = 3 mod 4, and nf or (n — l)' when t — 2s = 1 mod 4), while "log"
represents a Z2-vector space of dimension [log2(4n/3)]. For j = 1 and 2, we
abbreviate eSp(2h + j ,n) to βj in the chart. Here and elsewhere eSp{k,n) is
as in [10]; it is defined by

(1.15) = min
3>n

v2 ( coef

These numbers are obtained from the numbers e(k1n) defined in (1.3) by
removing the numbers ek-i and €k-j As already noted, β5P(fc, n) determines
the size of the 1-line group of the UNSS. We shall show in Section 4 that
the efc_i which is added in forming e(kJn) corresponds to an extension to
the 3-line of the SS, and the ek_j which might be subtracted corresponds to
a ^-differential in the SS.

As in Theorem 1.5, G(2e) indicates an abelian group of order 2e. These
2-line groups are built from the {/^groups of Figure 1. In Section 4, we
will discuss how Theorem 1.5 is deduced from this chart, by inserting da-
differentials and extensions.

s = 1

I - $ = 8M- 1

/

/'log

/

//log7

/

/

//log

/

Z/2e'

/

/

//log

/

/

/log

X log

/

/

//log7

y

/

•

/

/

//log7

/

/

//(2ej)

//log7

/

/

//log7

/

Z/2e*

/

/

//log7

/

/

/log

//log7

/

/

//log7

/

/

/

Figure 1.16: v^lEs

2

l

Except for changes in values of e,, this vx

 xE2{Sp(n)) has horizontal period
4; the period 8 is used in Figure 1.16 in order to display the 77-towers more
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clearly, and for later use in inserting ^-differentials, most of which have
period 8. The only additional justification required for the chart is for the
77-extension from the G in filtration 2 to the log in filtration 3. This is a con-
sequence of [4, 5.4], which says that η : v^1 E^* (Sp(n)) -> v^1 E2'

t+2 {Sp(n))
is surjective. This //-extension implies that G(2e(k>n^) has at least [Iog2(4n/3)j
summands for all values of k.

A similar analysis yields new and surprising information about

We recall from [9,1.1] that vΐ 1π2k(SU(2n+l)) is a cyclic 2-group of exponent
min{ι/(coef(z7A;!, (ex-l)j)) : 2n+l <j< k}, while vϊ1π2k-ΛSU(2n+l)) is

an abelian group of the same order. We can now show that v^ιπ2k-i (SU(2n+
1)) will often have many summands.

Proposition 1.17. For every integer j , the abelian group

v-1π8j.1(SU(2n + l))

can be written as the direct sum of at least [log2(4n/3)] summands.

Proof. Similarly to [10, §2], there is an exact sequence

(1.18) -+ t;1-
1Exti 8 i + 1 (SP.(ΣJΪP n )) -* v?Έξ*j+1 (Sp(n))

In the case n = 00 of this sequence, v^Ext1^1 (BP^(ΣHP°°)) sits between
two 0 groups (using [10, 1.1]) and hence is 0. Thus the exact sequence

implies that v^Extl;8^1 (BP*(ΣHPn)) is 0 for n > 2j, is a quotient of Z
(and hence cyclic) for n = 2jf — 1, and is a subgroup of this cyclic group,
and hence cyclic, for n < 2j — 1. By the calculation of υ^1E2{Sp(n)),
whose result is illustrated in Figure 1.16, vΐλE%'sj+1 (Sp(n)) is a direct sum
of l + [log2(4n/3)] copies of Z2. Thus by (1.18) v^1E^1{SU(2n+l)) must
have at least [log2(4n/3)] direct summands.

Now we refer to the analysis in [9] beginning on page 485 which involves
the space Rm — SU(2m + l)/SU(2m — 1). This space was called Qm in
[9], but we have changed the name to avoid confusion with the quaternionic
quasi-projective space Qn, which will occur frequently in this paper. It was
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shown in [9] that υf 1πs(t(i2m) -> vϊ1 E%'*+2(Rm) is bijective when * is odd.
Since by [9, 2.3a] υϊ 1π*(Rm) -» v^1 E^**1 (Rm) is bijective when * is even,
the 5-lemma and induction imply that

2n + 1)) -> v~ιE2

2

a+*(SU'{2n + 1))

is bijective when * is odd. Here we have also used injectivity of

2n - 1)) -+ v^ιπ2j{SU(2n + 1))

and the concentration of the Vι-periodic J52-term of i2m, and hence SU(2n —
1), in filtrations 1 and 2.

The conclusions of the above two paragraphs imply the proposition. D

In order to handle some of the d3-differentials in the periodic UNSS for
S'p(n), we will need a comparison with the periodic (stable) NSS for the
quaternionic quasi-projective space Qn. These spaces, discussed in [26] and
[32], have one cell in each dimension 4i—1 for 1 < i < n, and embed naturally
in Sp(n). The analysis of this periodic NSS, which may be of independent
interest, will be carried out in Section 2. Some of the techniques employed
there will be used in the more delicate UNSS calculations which follow.

We close the introduction by presenting, for comparison, the easier calcu-
lation of v^ιπ*(Sp). Note the shift of dimensions: Z/2°° C v^π^Sp) if and
only i fZCπ i + 1 (Sp) .

Theorem 1.19. For any prime p,

\ Ίj/p°° if i is even
| 0 if i is odd.

If p = 2, then

( Z/2°° if i ΞΞ 2 mod 4
Z 2 if i = 4 or 5 mod 8
0 otherwise.

Proof. As SU is similar and easier, we just prove it for Sp. The exact
sequence

πn+1(Sp)-^πn^1{Sp) -> [Mn + 1(2 e), Sp] -> πn(Sp)-^πn{Sp)

and Bott's results for π*(Sp) show that [Mn+1(2e),S'p] has summands, for
n > 0, of Z/2e if n = 2 mod 4, Z2's coming from the bottom cell of the
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Moore space if n = 4 or 5 mod 8, and Z2's coming from the top cell of the
Moore space if n = 3 or 4 mod 8. The Adams map induces an isomorphism

[Mn + 1(2e), Sp]-^[M n + 2 e + 1 + 1 (2 e ), Sp],

and so vϊιπn(Sp; Z/2e) is the sum of the above summands. We consider the
morphism

^ ; Z/2e+1)

induced by the map p which has degree 1 on the bottom cell and degree 2 on
the top cell. This sends the summand Z/2e injectively, is 0 on the Z2's due
to the top cell of the Moore space, and sends the Z2's due to the bottom cell
of the Moore space injectively. Clearly, the direct limit of (1.2) for X = Sp
is as claimed in this theorem. D

2. The periodic stable Novikov spectral sequence.

The 2-primary v\-periodic homotopy groups of a spectrum X are defined
in [15] by

υ-^iiX) = dirlim π^X Λ M"L 2 e(2 e)).

Here Mn(k) is a mod k Moore spectrum with top cell in dimension n, and
the direct system is over Adams maps of Moore spaces (for increasing L)
and maps p1 defined below (for increasing e). This is compatible with the
definition, (1.2), of V\-periodic unstable homotopy groups since the Moore
spectrum is self-dual. The υx -periodic stable homotopy groups of a space X,
denoted vϊιπl(X), are defined to be the t^-periodic homotopy groups of the
suspension spectrum of X.

Analogously, we define the vλ-periodic Novikov SS (NSS) of a space or
spectrum X by

(2.1) v-λEs/{X) = dirlim ^ ( i Λ M ^ f y ) ) ,

where the SS on the right is the ordinary NSS. As described in [27, 4.4.1],
this ordinary NSS satisfies

ES/(Y) = Exts^BP(BP*,BP*(Y)).

The reader should be warned that the same symbol, E2, is used for each
of the spectral sequences in this paper. These include the cellular SS, the
UNSS, and the (stable) NSS. Which SS is intended should be clear from the
context. For the ^-periodic SS's, we use v{1E2 instead of E2.
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There are compatible Adams maps Mn(2e) -> Mn~2e 1(2 e) and canonical
maps Mn(2 e)-^-»Mn(2β + 1) among the Moore spaces which define the direct
system. The maps p1 are dual to those of [15, 2.1] and those used in the
proof of Theorem 1.19. The reason for the shift in s-filtration in (2.1) is that
in the direct system of exact sequences based on the cellular decomposition
of the Moore spaces, such as

\ Q~^\ a \Es~1't~1(X Λ Λ/°) ^ >Fι
J2 \

it is the part mapped by β which persists in the direct system.
We sketch the computation of vΐ1E*'t(S°). We begin by noting that

η : E£* -* J5?2+M+2 acts on the SS and satisfies 2η = 0. We first describe
dirlim £ 2

M ( M - L 2 e ( 2 e ) ) , using results and methods from [27, pp. 199-200].
For all odd integers i, dirlim E^iM"12* (2e)) has cyclic summands in (s, t) =
(0,ί) and (l,t) of order ί if i = 1 mod 4, and of order 2m i nM< + 1)+1 'e> if t = 3
mod 4. These summands are acted on freely by 77, subject to 2η = 0. There
are nonzero d3-differentials from the generators in (0, i) and (l,i) with i = 3
or 5 mod 8. They hit elements divisible by 77s, except that the differential
from (0, k2e~ι + 3) hits the sum of the two elements in the box. These
d3-diίferentials act naturally on the entire 77-tower. There is a nontrivial
extension from the Z/4 in Ee^ for e = 0 or 1, and i = 3 mod 8, to the Z 2 in
£^J~2>*+2 which is in the 77-tower which begins in filtration e.

Part of this dirlim E8/(M'L2e (2e)) is depicted in Figure 2.2. In this chart
a represents a 2Γ2, while a letter or number represents a cyclic 2-group with
that symbol as exponent. For example, a 3 denotes a

- 2 - 1 0 1 2 3 4 5 6 7 8

Figure 2.2: Part of limL E
s/{M~Lr {2e))

The map M(2e)-^-»M(2e + 1) which has degree 1 on the top cell and degree

2 on the bottom cell induces a morphism of the SS's just described. The
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direct limit of these morphisms is, after a shift on one s-filtration, the Vι-
periodic NSS for the sphere spectrum, according to (2.1). For i + 1 φ 0,
the direct limit is determined by the morphisms for e > v(i + 1) + 1. These
morphisms send the group in (0, ϊ) and its 77-tower isomorphically, while
(unless i = 1) the second summand in (l,i) (the one not divisible by η) and
its 77-tower are mapped by multiplication by 2. The Z/2e's in (0,-1) and
(1, —1) are both mapped injectively to Z/2e + 1. The morphism sends η times
the generators in both (0,-1) and (1,-1) to 0, and it sends the other Z2

in (1,1) to the sum of the two Z2's in the box. We remind the reader that
(—, —) here refers to (s,£) before the shift of filtration.

Prom this information we can read off dirlim E^1\M~LT (2e)), and then
use (2.1) to yield the following result, a portion of which is displayed in
Figure 2.4.

Theorem 2.3. The v1-periodic NSS for S° satisfies
a. v^Es/(S°) has

• for every even integer i φ 0 a cyclic summand in (s,t) = (l,i) of
order 2ifi = 2 mod 4, and of order 2"( i)+1 if i = 0 mod 4. Each
of these summands supports an η-tower.

• a Z/2°° summand in (s,t) = (1,0) and (2,0).
• a Z 2 in (2,2) supporting an η-tower.

b. There are nonzero d3-differentials on the classes in (l,i) for i = 4 and
6 mod 8, and on the η-towers arising from them.

c. There is a nontrivial extension (multiplication by 2) from (l,ϊ) to (3,i +
2) ifi = 4 mod 8.

4

3

2\

1 V

\

/

y*>
y

oo

y
/

X
\

/ \:
V

A
X

X
\
V

X
X

X
/

t-s = - 3 - 2 - 1 0

Figure 2.4: Part of periodic NSS for S°

Let Qn denote the quaternionic quasi-projective space with top cell of
dimension 4n — 1. The standard cofibrations induce exact sequences

(2.5) -> v^Es/(Qn-λ) -> υ-λEs/(Qn) -> v^1Eζ't(SAn"1) -> .
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These can be spliced to give a cellular SS

(2.6)

Differentials in the SS (2.6) correspond to boundary morphisms in the exact
sequences (2.5). We describe now the way in which they are related to the
coaction

^ P m BP*(Qn)

and the reduced coaction ψ(x) = ψ(x) — x <8> 1 — 1 ® rr. Here we introduce
the common notation Γ = BP+BP.

The cobar complex for calculating the NSS is described, for example, in
[27]. It satisfies

CS(X) = Γ® ®Γ®BP,X,

with s factors of Γ. Here and throughout, tensor products are always over
BP*. The formula for d : Cs —>• C s + 1 is the usual alternating sum of comulti-
plications and coactions. It is a derivation and satisfies d(υ) = ηn(υ) — υ for
v G BP*. This is illustrated as follows. Suppose g G BP*(X) and v G BP*.
Suppose that the coaction satisfies φ(g) = 1®<7 + Σ)7i®5i. Then

~ [v]g ~
= [ηR(υ)-v]g-vd{g).

The classes in the ^i-periodic NSS are all present in this cobar complex.
To calculate

d : Es

2(S4n-χ) -> E^iQ71'1)

on a class z represented by a cycle A ® 64n_χ, we first note that in the cobar
complex for Qn, A®φ{gn) pulls back to an element 7n_2 G Cs+1(Qn~1). Here
we have introduced generators gι G BP±i-ι(Qn) which are compatible under
inclusion maps, and reduce to the generator of jBP4i_1(54i~1) under the
collapse map. More about the selection of these classes </< will be prescribed
in the proof of Proposition 2.7.

Assume that by varying it by boundaries you have pulled the class 7n_i
back to 7; G C'^iQ*). Project j { into C^iS**'1). If this class is not a
boundary, then it represents d(z) in the SS. Otherwise, this class is d(B ®
t4i-i) in C*+1{S4i"1) for some B G Γ^5. Then η{ - d(B ® g{) pulls back
to 7i_i G Cs+1(Qi~1). This procedure of pulling back to smaller QiJs is
continued as long as possible.

Explicit calculation of the coaction in BP*(Qn) can be performed by a
method similar to that of [10], but the formulas are extremely complicated.
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Instead we opt for calculating a homomorphic image of the coaction which
contains the information relevant to our application.

The formula for the coaction is obtained using the Adams operation Φ3 in
bu*(—), but the route between them is somewhat tricky. We begin with the
easy part, the evaluation of the operations. Recall that bu* is a polynomial
algebra over Z(2) on a single generator v of degree 2. Then bu*(Qn) is a free
ίm*-module on classes g{ of degree 4i — 1, for 1 < i < n. An explicit choice
of these generators will be made in the proof of Proposition 2.7.

Proposition 2.7. Generators gι for bu*(Qn) can be chosen so that

n-l

i=0

Since the inclusion maps Qι -> Qn send g$ to g^ this proposition can be
used to read off Φ3(#ΐ) in bu*(Qn) for all i < n.
Proof. The spectra Qn and ΣHPI2 are 5-dual. Here HPl2 is a spectrum
which we think of as a shifted version of the suspension spectrum of the
stunted quaternionic projective space HPAZ^ with A highly divisible. (A
must be a multiple of the appropriate number of [31].)

It is standard that KU(HPn) - Z[ 7]/7n + 1 with Φ 3( 7) = 7(7 + 3)2. Let
v G bu~2(S°) denote the Bott element, which acts on any bu*(—). It satisfies

I = 3υ. Let Xi G bu4A-An(HPAI2) be chosen to satisfy

Then

_ V^ ί2{A-n)\^2(A-n)-i A-n+i

We cancel 32^-271^-2^ a n d n o t e t h a t s i n c e A i s highly divisible, (2Λ~2n)
should be considered as {~2n) = (-l)^2"4"/"1). This yields the following
formula in bu-An{HPl2).

n - l

i=0

Letting v2(n-*)gi G ί>w4n-i(Qn) be S-dual to x{ e bu^n{HPll), we obtain
the desired formula in 6w4n-i(Qn) Π
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Using the (~2n)-form for the binomial coefficient immediately yields the
following corollary.

Corollary 2.8. In bu/(2)*(Qn),

Q • \ O I /( n) + 2 _ _

* (9n) =9n+V2 £n-2"(nHi + T,

T 6 (v2ign-i : < > 2"

We will use Corollary 2.8 to obtain information about the J5P-coaction
of Qn. The following result, well-known to experts, will be useful. In it, BP
and bu denote the 2-local spectra, as they have throughout this paper.

Proposition 2.9. There is a multiplicative map Φ # P : BP -> BP which
is compatible with Φ^u : bu —ϊ bu under the usual reduction p : BP -> bu.

The operation Φ^M here is the same as Φ 3 of 2.7 and 2.8; we just use the
subscript to distinguish it from the SP-operation.

Proof. The map Φ # P was first defined in [2], and is also discussed in [33, §11].
It is defined by

(2.10) *3(x) = §[3](z),

where x e BP2(CP°°) denotes the standard generator, and [2](x) is the
usual 3-series, defined from the formal group law (FGL). The map p induces
a map of FGL's to the 2-typical FGL of bu. Hence, if Φ 3 : bu -> bu is defined
from (2.10) using the 2-typical FGL for ίm, it will be compatible with Φ ^ P .
The usual formula for Φ 3 in 6u, which was used in Proposition 2.7, is also
derived from (2.10), but using the FGL defined by F(rr, y) = x+y—vxy. This
FGL is well-known to be equivalent to the 2-typical FGL (see [20, 2.3.1]),
and hence the Φ 3 derived from it is the same map bu —> bu, but just using
a different choice of generator in bu2(CP°°). This establishes the desired
compatibility. D

The proof of the following result shows how the Adams operations in bu
are used to give information about the jBP-coaction. We recall that BP* =
Z(2)[vi, v 2,. . .] and Γ = BP*BP = BP+[tut2,...], with | ^ | = \U\ = 2(2*-l).
In much of the paper, we will use the alternate generating set {/ii, /12, • }?
where hi = c{U), with c denoting the conjugation.

Proposition 2.11. Let φ : BP+BP —> Z2[v] be the ring homomorphism

defined by

(2-12) ΦiU) = φ(υt) = l°υ x H l
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Let Qi E BP4i_ι(Qn) be the generator defined as in the proof of 2.7, using
S-duality and the standard generators of BP*(HPm). Suppose the coaction

P. BP*(Qn)

satisfies

(2.13)

Then

ί 0 if n - 2"<n>+1 < i < n

The reader should be careful to distinguish between the coaction φ and
the Adams operation Φ3.
Proof. The relationship between the coaction φ and the Adams operation
* £ P is given by the following result of [1, p. 72]: If the 5P-coaction is given
by (2.13), then

(2.14) ^Bp{9n) &

Here, for z E BP*BP, &BP{z) = {^%P,z) E BP* denotes the Kronecker
pairing. We will prove in the next paragraph that, for i > 1,

(2.15) *BP(Λ<) = V%p(vi) = HpiVRVi) = Vi mod 2.

Since Ψ3

BP is multiplicative, this will imply that p* o Φ ^ p o c = φ, where
p : BP -> bu/2 is the usual reduction. Thus we obtain

(2.16)

and this last expression was evaluated in Corollary 2.8, yielding the claim of
this proposition.

Now we prove (2.15). It is elementary that

(2.17) $Bp(Vi) = S 2 '" 1^ = υi m o d 2

See, e.g., [33, p. 142], from which we also take the formula

(2-18)
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Here we have also used ([33, 3.14]) that the conjugate formal sum on the
left hand side of (2.18), defined by Σ F * K = cYf c(Λ<), is the BP-analogue
of b = Σbi G MU*MU. We next use that if x +F y = Σai,jχiyji then
X^+F* V = ΣVR(aij)χiyj Using also (2.17) and the formula ^BP(VR(~)) =
* B P ( - )

 o f [33> H.48iii], the left hand side of (2.18) equals

(2.19)

On the other hand, the right hand side of (2.18) is congruent mod 2 to

(2.20)

using [33, 3.17] and [3](a?) = x + F [2](x). Comparing terms of (2.19) and
(2.20) one degree at a time yields ^3

BP{hi) = v^ as desired. D

The following result will be useful in applying Proposition 2.11, since
d(a) — ̂ nip) — a for a £ BP*.

Proposition 2.21. The morphism φ defined in (2.12) sends r?/*(α) — a to
0, for every a G BP*.

Proof. By multiplicativity of ηR, it suffices to show φ{ηn{vi)) is nonzero if
and only if i = 1. We modify the formal group law of BP by applying φ to
the coefficients. Thus if x +F y = Z ^ M ^ V \ then x +φ y = ΣΦ(aΐ,j)χtyj•
Applying 0 to [28, Theorem 1], deleting terms which involve φ(vi) or φ(U)
for i > 1, and letting φ(ηRVj) = δjV23"1 yields

Σ * δjυ2'-1 +φ T
Φ

 n v ^ t ; 2 ' - 1 ) 2 = v+φυ
3 mod 2.

By induction on j , this implies ίx = 1 and 5j = 0 when j > 1. D

With these preliminaries out of the way, we return to the detemination
of the differentials in the SS (2.6). In this SS, shifted copies of Figure 2.4
(without d^s) are summed to give the initial term. There will be n copies of
Z2 in each box [t — s, s] — [4j, 1] for all j G Z, with η acting freely on them.
We use square brackets to represent chart position to avoid confusion with
(s, t) notation used earlier. Think of the square bracket as box position. This
unusual notation will be followed throughout the remainder of the paper. It
will usually be the case that an element in Epι will appear in position [ί—s, 5].
We label these Z2 summands 1, 2, ... ,n according to the value of i in the
initial sum in (2.6). The value of j (in [4j, 1]) will not be incorporated into
the notation, as its role is minimal. There will also be n Z2's in each box
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[4j — 1,2] for j E Z, with 77-towers arising from each; these will be labeled
i' according to the summand of (2.6). In each box [Aj — 2,1] there are
summands of order 2 I /^~^+ 3 for all values of i satisfying 1 < % < n. Finally,
there is a Z/2°° summand in each [4j — 3,2] for 1 < j < n.

We will prove the following result about the differentials in the SS (2.6).

Proposition 2.22. In the CSS (2.6), there are differentials from the η-
tower labeled i to the η-tower labeled (i — 2 " ^ + 1 ) ' , whenever i is not a 2-
power and i < n. These are the only nonzero differentials in this SS. Thus
vϊιE^*(Qn), the E2-term of the Vι-periodic NSS converging to vϊιπl(Qn),
consists of

• [Iog2(2n)] η-towers emanating from each position [4j, 1], The labels of
these are all 2e satisfying 1 < 2e < n.

• [Iog2(2n)] η-towers emanating from each position [Aj — 1,2]. The labels
of these will be primed integers. The only odd integer among these
equals n or n — 1.

• An abelian group in [Aj — 2,1] of order 2s, with S = 3n + Σ ^ = 1 v(j — i) -

• A summand of Z/2°° in [Aj - 3,2] for 1 < j < n.
If n = oo? the analogous result holds, except that there are no elements of
the second type, i.e., no η-towers arising from [Aj — 1,2].

We illustrate for Q 1 0 . The differentials go 3 -> Γ, 5 -* 3', 6 -> 2', 7 -> 5;,
9 ->• 7', and 10 -> 6'. Thus 1, 2, 4, 8, 4', 8', 9', and 10' survive. The resulting
υf1£?2>*(Q10) is pictured in Figure 2.23. The orders of the groups Gx and
G2 are as in Proposition 2.22. They depend on h. This chart is assumed to
have 2h > n so that there are no Z/2°°'s in filtration 2.

Before discussing the differentials and extensions in the V\-periodic NSS
for Q n , we prove Proposition 2.22.
Proof of Proposition 2.22. To prove the differential on the 77-tower, it suffices
to prove it on the bottom element, since differentials commute with the
action of η. It also suffices to prove it on the element labeled n in Q n .
The first main step is to show that gn can be varied so that d([ ]gn) has
a particularly nice form, where d is the boundary in the cobar complex.
Indeed, we show that there exist elements Vι G BP* and A{ € BP+BP such
that if

2"<»>+i-i

(2.24) 9'n = 9n+

then

(2.25) d([}g'n)= ^ [ ^ (mod 2).
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t-S = 8h+ 10

Figure 2.23: v^Es/(Q10) if 2h > n

The point here is that, mod 2, the first 2^n)+ 1 terms of d([ ]g'n) are 0. It also
follows from Proposition 2.21 that φ(g'n) — φ(gn)-

If M is a Γ-comodule, we abbreviate ExtΓ(BP*,M) as Ext(M). Recall
that Ext^BP*) is the homology of the sequence

(2.26) JBP*-AΓ-^Γ®Γ.

Recall that unadorned tensor products are always over BP*. Let Z = ker(Δ)
denote the cycles. Then Proposition 2.21 implies that the restriction to Z
of the homomorphism φ defined in (2.12) factors through a homomorphism

Ext1 (BP*) ->Z2[v].

If all groups in (2.26) are reduced mod 2, the homology becomes

Extι(BPm/(2)),

and φ\Z can be factored as

z-
By [27, 5.3.13], φ sends the image of p injectively.

Suppose that g'n has been chosen similarly to (2.24) except that 2u^n)+1 is
replaced by some smaller number J, and that it satisfies

d([ }g'n) = ^ (mod 2)
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with φ(Ai) =Oifi< 2 ί / ( n ) + 1 . Since φ(Aj) = 0, Aj is a boundary mod 2.
That is, there exists Vj 6 BP* with d(Vj) = Aj mod 2 in (2.26). Moreover,
Vj can be chosen to satisfy φ(Vj) = 0, since the only monomials of BP* with
nonzero φ are t>ί, and they have the property that d(v{) — (vι — 2hιY — v{
is divisible by 2, so that they may be removed from this mod 2 calculation.
Subtracting Vjgn-j from g'n yields a new g'n such that

k»-< ( m o d 2 )

with φ(A\) = 0 if t < 2" ( n ) + 1 . To see 0(AJ) = 0 we use the derivation
property of d, Proposition 2.21, and φ(Vj) — 0. This extends the induction,
establishing the existence of a generator as in (2.24) satisfying (2.25).

The differential which we wish to establish amounts to computing the
homomorphism

(2.27) vλ Jb2 (b )—>vλ h2 (Q )

where p is reduction mod 2. It suffices to consider this reduction since the

homomorphism p here is injective. The generator of ?;f 1 £' 2 ' 4 / ί + 4 n + 1 (5 ' 4 n ~ 1 )

is the element usually called α^fc+i^n-i The element a2k+ι was called

α2fc+1 in [7, pp. 245-6], where it was shown that it is represented by v\kh\.

The image p(d(pt2k+iiΊn-i)) ι s determined from the mod 2 reduction of

d([a2k+ι]gr

n) by the procedure outlined earlier. Since α 2 f c + i is a mod 2 cycle,

this image equals υ\khx times the reduction of a class, d(g'n), which pulls

back to an element of vϊιE\Λn~ι {Qn~2U n ;Z 2) whose projection, A, into

?;Γ1£;2

1 '4 n~1(S'4 n-2 I ' ( n ) + 3-1;Z2) maps nontrivially under φ. By the calculation

ofυϊ1E2(S2n^1) sketched earlier, v f 1 E 2

1 ' 4 n - 1 (S 4 n - 4 d - 1 ) « Z2 > and the mod

2 reduction of the nonzero element equals v2d~Au by [27, 5.3.13c]. Here

u — t\ + vλt\ + υ\t\ + vit2 + v2tι, and so φ(υld~4u) φ 0. Since φ is an injec-

tion on the 1-line group, this implies that A = vf " ~4u mod boundaries.

Thus the image of (2.27) is

v2 hi ® v2 ~ u ® gn_2»{n)+i.

The Vi's can be shifted across the ® mod 2, since T)R(VI) — υx = 2/iχ, and so
this element is the desired element (n — 2 I / ( n ) + 1) /, again using [27, 5.3.13c]
to see that (n - 2 ϊ / ( n ) + 1 ) / is represented by υf^Λα ®u®g.

The final ingredient in the proof of Proposition 2.22 is the following result,
which implies that there are no differentials from the [4A; + 2, l]-box to the
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[4A: + l,2]-box. The proof of this lemma involves methods foreign to the
NSS, and is relegated to the end of Section 6.

L e m m a 2.28. The boundary morphism

is zero.

This completes the proof of Proposition 2.22, the determination of the E2-
term of the ^-periodic NSS for Qn. The analysis of the higher differentials
in the SS is easier. In fact, the differentials are immediate from those in the
spheres.

Proposition 2.29. In the Vι-periodic NSS for Qn, whose E2-term was de-
scribed in Proposition 2.22, there are d3-differentials from certain η-towers
to the preceding η-tower with the same number as follows:

• from the η-tower labeled 1 beginning in [8h + 8,1];

• from each η-tower labeled 2e with 2 < 2e < n beginning in [8h + 4,1];

• from the η-tower labeled m! with m odd beginning in [8h + 7,2];

• from each η-tower labeled m1 with m even beginning in [8h + 3,2].

There is also a d3-differential from the group in [8h + 6,1] to the only odd

primed class in [8h + 5,4], and there are [Iog2(n)] d3-differentials from the

group in [8/i + 10,1] to the classes labeled m1 with m even in [8/ι + 9,4]. Thus

vf 1JBoo(Qn) consists of
• [Iog2(n)] η-towers truncated at η3 = 0 emanating from each position

[8h + 8,1]. The labels of these are all T satisfying 2 < 2e < n.

• An η-tower truncated at η3 = 0 emanating from each position [8Λ+4,1],

labeled 1.

• [Iog2(n)] η-towers truncated at η2 = 0 emanating from each position
[8h + 7,2]. The labels of these will be primed even integers.

• An η-tower truncated at η2 = 0 emanating from each position [8/ι+3,2],
labeled m', where m = n — 1 or n and is odd.

• An abelian group in [4k—2,1] of order 2s', with S = 3n—J9+]CΓ=i K&~
i), with D = 1 if k is even, and D = [Iog2(n)] if k is odd.

• A summand of ΊLfT0 in [4fc - 3,2] for 1 < k < n.
All elements in [4k + 2,3] are divisible by 2 in V^TΓKQ71). This is accom-
plished by nontrivial extensions from the 1-line.

Ifn = oo, a similar description holds without the primed classes, and with
D = 0.
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Proof. The differentials are all induced by naturality from the maps Qι ->
£4ι-i Th^e c a n J3β n o other differentials since all remaining classes are in
filtration 1, 2, and 3, and t odd. The extensions can be seen from their
presence in the spheres, or from the observation that if x € π*(X) satisfies
2x — 0, then η2x must be divisible by 2. This is true because there is a map
from the mod 2 Moore spectrum M to X sending the bottom class of τr*(M)
to x, and the relation is true in π*(M). •

We illustrate with a chart, Figure 2.30, for the d3-differentials in Q10,
and then the much simpler chart, Figure 2.31, for υϊ 1ECX)(Q10). The groups
Gi> G2, G[, and G'2 in Figures 2.30 and 2.31 are the appropriate abelian
groups described in the propositions. The primed groups are smaller than
the unprimed ones, as they are the kernels of d3. The chart for vϊ 1EOO(Q°°)
is like Figure 2.31, with the classes i' and the short 77-towers on them omitted,
infinitely many short η-towers going up from [8/1 + 8,1], namely one for each
even 2-power, and the G^-groups replaced by Gι. These groups will be of
infinite order.

t - s = 8/1+ 7 8 9 10

Figure 2.30: Periodic NSS for Q 10

3. Determination of vλ E2(Sp(n)).

In this section, we prove Proposition 1.8. That is, we compute the differen-
tials among the 77-towers in (1.6). This yields υϊ 1E2(Sp(n)), which we have
depicted in Figure 1.16.
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Figure 2.31: v^EsJ{Q10)

We discussed in the paragraph containing (1.6) the use of the exact se-
quence of UNSS's and ^-periodic UNSS's associated to (1.1). For the UNSS,
the existence of these exact sequences is proved similarly to the proof for
SU(n) in [3], while for the periodic UNSS it follows since the exact se-
quences commute with the morphisms A" of [4, pp. 50-51] which define the
direct systems whose direct limit is vΐ 1E2(—).

We expand upon this a bit, in order to set the stage for the more com-
plicated situation which follows. Indeed we review the definition and basic
properties of the UNSS. We follow the exposition of [3, §2]. If X is a space,
a space BP(X) is defined as limnΩn(BPn Λ X), where B P n denotes the
nth space in the Ω-spectrum for BP. Define Dι(X) to be the fibre of the
unit map X -> BP(X), and inductively define DS(X) to be the fibre of
D'-^X) -> Ds~ι(BP(X)). This gives rise to a tower of fibrations

>D2{X)->D1{X) ->X.

The homotopy exact couple of this tower is the UNSS of X.
In general, computing this SS can be next to impossible, but if BP*(X) is

free as a J?P*-module and cofree as a coalgebra, then it becomes somewhat
tractable. Indeed, in such a case

ES/(X) Exts

u(Mt,P(BP*(X))),

where Mt denotes a free 2?P*-module on a generator of dimension t, P(-)
denotes the primitives in a coalgebra, and U denotes the category of un-
stable Γ-comodules. We sketch a definition of the category ZY, referring the
reader to [3, p. 744] or [7, §7] for more details. Recall that Γ = BP*BP =
BP*[hι,h2,... ]. If M is a free £P*-module, then U(M) is the JS/Vsubmodule
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of Γ ®BP. M spanned by all elements of the form h1®m satisfying 2(iχ + i2 +
• ) < |ra|, where h1 — h^h%

2 . We shall not need the definition of U(M)
when M is not BP*-fτee. We define US(M) by iterating U(—). The cate-
gory U consists of £?P*-modules M equipped with morphisms M—>U(M),
U(M)—>U2(M), and U(M)-^-ϊM satisfying certain properties.

The category U is abelian. We abbreviate Exts

u(Mt,N) to Ext^iV).
These groups may be calculated as the homology groups of the unstable
cobar complex C*'*(iV), defined by CS^(N) = Us(N)t, with boundary C8 ->
C s + 1 defined as an alternating sum of Γ—>T ® Γ and M—>U(M).

The coalgebra BP*(Sp(n)) is cofree on the primitive elements ê  with
\ei\ = 4i — 1 for 1 < i < n which are in the image from BP4i^1(Qn). Letting
Nn denote the free i?P*-module on {βi,... , en}, it follows that the ίs^-term
of the UNSS, E^iSpin)), is isomorphic to Ext^(iVn). Prom the short exact
sequence in U

0 -> Nn_x -> Nn -> M4 n_! -> 0,

we obtain the desired long exact sequence

(3.1) -> Es/(Sp(n - 1)) -> Es/(Sp(n)) ~> ̂ ( S 4 * " 1 ) -+ .

We could in principle obtain all differentials in the cellular SS which results
from these exact sequences, or their Vx-periodic analogues, by using the
coaction, similarly to the method used in the stable SS for E2(Qn) in Section
2. Indeed, for differentials from stable classes on the 1-line to stable classes
on the 2-line, this method works fine. However, in order to more easily
relate stable and unstable classes, we prefer to work with ΩS/?(n), and this
complicates the theory.

The following known result will be useful.

Proposition 3.2. ([24], [21]) There exist z2i-ι G HU-2(βSp(n)',Z) for
1 < i < n such that there is an isomorphism of algebras

The coalgebra structure is given by

where z2j is defined inductively by
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The mod 2 reduction ~Zi satisfies Z2e(2i+i) = z^ +i ^ e m°d % dual Steenrod
operations are given by

Λ, = B P or 6ιx, £Λere are elements gι € /i4i_2(ΩS'p(n)) /or 1 < i < n

such that there is an isomorphism of algebras

)) « K[gu g2,... ,gn].

The reduction from h*(—) to /fZ2*(—) sends gι to z2i-ι

Note that BP*(ΩSp(n)) is not a cofree coalgebra, and so the E2-teτm of its

UNSS cannot be handled by the methods which were used for Sp(n).

We will need the exact sequences of the UNSS and Vι-periodic UNSS of

these loop spaces.

Proposition 3.3. There is an isomorphism of E2-terms of the UNSS

(3.4) Es/-ι{nSp(n)) « Es/{Sp{n)).

There are exact sequences

{n - 1)) -> Es/(nSp(n))

(n - 1))

and

(3.5) -> ^ " ' ^ ( Ω ^ n - 1)) -+ υ^E'

n - 1)).

Proof. The exact sequences follow from (3.4) and (3.1). The proof of (3.4)
is completely analogous to that for S2n+ι in [8, §6], but we review it, since
the methods will be required later. Indeed, we will provide a rather compre-
hensive review of the Hopf ring structure of i?P*(BPn), since this plays an
essential role in the proof.

There are two products on the spaces in the Ω-spectrum for BP. One is a
map BPjfc x BP* ->> BP* induced by loop multiplication. It induces the *-
product in BP-homology. The other is a map BP* x B P r -> BP*+ r induced
by the ring spectrum structure. It induces the o-product in BP-homology.

There is a map x : CP°° -> B P 2 representing a generator of BP2(CP°°).
Dual to xn is a class βn e BP2n(CP°°). We let b{i) = x*(β2ή <E BP2i+i(BP2).
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If / = (i0, <i,...), then bo1 G 5P*(BP 2 ( / | ) denotes the class 6gj o &°g o . •.

If k < 0, then πo(BP f c) = BPk = J3P_*, and so we have for each element
v G 5 P * an element [v] G BP 0(BP f e). It follows from [29] that the set of
all 6(j) and all [υ] generate J3P*(BP*) under * and o products. Moreover,
jE?P*(BPfc) is a polynomial algebra with respect to the *-product on a family
of indecomposable elements which are identified in [29]. The stabilization
map BP*(BPk)~^Γ ® Mk sends *-products to zero, and is injective on the
indecomposables. We will frequently identify elements of J3P*(BP#) with
their stable images under σ*.

We first note that the class 6(0) is special. It corresponds to the suspension
operator. Indeed, 6?Λ stabilizes to 1 ® ι2n in Γ ® M 2 n . The class 6(i) lives
in J B P 4 ( B P 2 ) and stabilizes to h\ ® t2. In general, b% stabilizes to h\ ® L2J

mod (vi,V2,- )Γ, by [7, 8.3]. The class [υ] stabilizes to VR{V). Thus, for
example, the class b°^ ob(0) ° [vi] stabilizes to ηiι{vι)h\ ® t4 = h\ ®VXL4. Note
that both classes have degree 10, and the Hopf ring class is defined on BP4
since [vx] is defined on BP_ 2 . Also this class is in the image of the double
suspension from i?P8 (BP 2) since there is a factor of 6(0).

Since the 6(n)'s and [v]'s generate BP*(BPk) as a polynomial algebra, the
*-indecomposables in i?P*(BP*.) stabilize to the i?P*-span of h1 ® ιk with
2|/| < k. (The above examples justify this description for even k. It is
shown in [29, 5.1] that the same description works for odd k.) By [29, 5.3],
the primitives in BP*(BPk) are the image of the suspension. Hence, since
6(0) is suppressed in the stable notation, we see that the stable image of the
primitives is the i?P*-span of h1 ® tk with 2|/| < k. Whenever there is no
chance of confusion, we prefer to use the stable names. So, for example, we
will write ι*2

k for the class (6°^)*2, even though (bfy)*2 stabilizes to 0.

Having described the stable image of the primitives, we want to under-
stand their names back in BP3,(BP ik). For this, we use the fact ([29]) that
i?P* (BPfc) is a bipolynomial Hopf algebra. By [30], such Hopf algebras over
Z(2) can be written as a tensor product of the universal Hopf algebras B(x2n)
constructed in [22]. As an algebra, B(x2n) is a polynomial algebra generated
by classes x2sn with s > 1. The primitives in the coalgebra are of the form

(3.6) x\n — 2{x4n) + + (—2)sx2*+ιn

with s > 0. For example, we have the primitive in BP4k(BP2k) given by
2hk ® L2k — 1 ® 6^, or in Hopf ring notation 2bfy — (b°^)*2. We explain how
this class is a primitive in the sense of the earlier description, namely that it
is in the image of o6(0). The answer is given by a relation in the Hopf ring,
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proved in [29, p. 261]. This suspends to the familiar formula, ηiι{vι) = vx —
2/iχ, for the right action on V\ and inductively gives the double desuspension
of 2h\®L2k. Up in BP±k(BP2k), 26°̂  does not desuspend. This is prevented
by the *-decomposable class in the formula.

We now generalize the above discussion to the case of a JBP*-module M
which is free on a set of generators {mj. Let BP(M) be the zeroth space
of the Ω-spectrum associated to the homology theory BP*(-~) ® M. Then
G(M) is defined to be BP*(BP(M)). In particular, BP(Mk) = BP*, and
G(Mk) = J5PJle(BPjfc). In terms of the basis, a non-canonical description of
G(M) is given by G(M) = £ P , ( Π B P | m i | ) .

The stabilization map
G(M) -> Γ ® M

is injective on the *-indecomposables, and U(M) and V(M) are defined to
be the images of the primitives and indecomposables, respectively. As above,
U{M) is the £P*-span of all h1 ®m satisfying 2|/| < |m|, while V{M) is
the i?P*-span of all h1 ®m satisfying 2|/| < \m\. We will sometimes write
U(M) C G(M) for the primitives when we need the specific representations
of elements in G(M) rather than their more familiar stable images.

Thus U(M) agrees with that which we considered earlier this section. Note
that if M is concentrated in even degrees, then U(M) is properly contained
in V(M), while U(σM) « σV(M), where the suspension σ increases degrees
by 1. As we did with £/, we define VP(M) by iterating the functor V.

The modules G(M) lie in the nonabelian category Q of unstable BP*-
coalgebras discussed in [7, §6]. It was shown there that if X is a simply-
connected space with BP*(X) a free J5P*-module, then the £J2"term of the
UNSS of X is given by Extg(BPinBPi,(X)). As we will need some un-
derstanding of how this Ext is computed, we go into some detail about
G-structure.

For a space X for which BP*(X) is a free jBP*-module, we abbreviate
G(BP*(X)) to G{X). We note that G{X) = BP,(J5P(X)), for the space
BP(X) defined earlier. As in the case of G(Sk)1 we use a mix of stable and
unstable notation. We will be primarily interested in X = Ω5p(n), for which
BP*(ΩSp{n)) is given by Proposition 3.2. In G(ΩSp(n)), the jBP*-module
generators act as an indexing set for the factor of BP*(BPk). For example,
1 <g> g\ is the bottom class in the factor of G(QSp(n)) corresponding to the
generator g\ of BP*(Ω,Sp(n)), while 1 ® g^2 is the *-square of the bottom
class in the factor corresponding to the generator g2. The class 1 (2) g\ is
primitive in the G-coproduct, while 1 ® g%2 is not. One has to keep in mind
that G(X) does not see any of the structure of BP*(X).

The G-structure map ηx : BP*(X) -» G(X) is obtained by applying
BP*(-) to the Hurewicz map η : X -> BP(X). The coaction <ψ of BP*(X)
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is obtained from this as

(3.7) BPm(X)^G(X) = BP*{BP{X))^+T ® BP*{X),

while the coproduct Δ is obtained as

(3.8) BP*(X)^>G{X) = BP*(BP(X))^>G(X) <g> G(X)

Here e satisfies e(l®#i) = g^ while e applied to any other monomial is 0. The
coaction and coproduct are related by the following commutative diagram.

BPm(X) -A Γ®BP*(X)

(3.9) | Δ

BPm(X) ® BP*(X) ^t Γ ® BP*X ® Γ <

Now we proceed with the proof of (3.4). Let N = QBP*(ΩSp(n)), with

Q denoting the indecomposable quotient. Thus σN is the module Nn con-

sidered earlier. Similarly to [5, 4.2] or [8, p. 387], there is a cosimplicial

resolution

(3.10)

where the co-augmentation ξ is the composite

(3.11) BP*{ΩSp(n)) η a ^ ) G(BP*{ίlSp(n))) -> G(N).

The acyclicity follows just as it did for ΩS2"*1 in [8, p. 387].
We apply Hom^(SP*, —) to (3.10), and taking the alternating sum of the

coface maps yields a chain complex whose homology is

Extg(BPm{ΩSp(n))),

which by [7, 6.17] is E2(ΩSp(ή)). Since Έlomg(BP*,G(T)) « T, this com-
plex, whose homology equals E2(ΩSp(n)), is isomorphic to the complex

(3.12) N -> V(N) -> V2(N) -+ .

Since N is concentrated in even degrees, (3.12) is isomorphic to the complex

N -> σ^UiσN) -> σ^U^σN) -> ,

and the homology of this complex is σ~1Extκ(P(BPi)c(Sp(n))))J where P(—)
denotes the primitives. By [7, p. 240], this homology is

σ-ιE2{Sp{n)).
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Thus

as desired. •

The following result is instructive.

Proposition 3.13 The morphism ξ o/(3.10) is a ring homomorphism.

Proof. There is a commutative diagram

BPm(ίlSp{n))ηa^) G(ΩSp(n)) -^ Γ ® BP*(ΩSp{n))

(3.14) \ £ |σ(p) jr0 P

G(N) -^> Γ®N

If Xχx2 G BP*(ΩSp(n)) is decomposable, then, using (3.7),

<r*ξ(xiX2) = (Γ ® p)σ*ηnsp(n)(xiX2) = (Γ ® p)φ(xι)φ(x2) = 0,

since p annihilates decomposables. Hence

(3.15) £(zi*2) € ker(σ*) = Γ\

where / is the augmentation ideal.
Next we observe that both maps in the composite (3.11) which defines ξ

are morphisms in the category Q, and hence so is ξ. In particular there is a
commutative diagram

BPm(ΩSp(n)) - ^ G(N)

(3.16) | Δ JΔ

BP*(ΩSp{n)) ® BP*(ΩSp(n)) ^% G(N) ® G(N),

where Δ is the reduced coproduct. This diagram implies that

There are only two classes in G(N) satisfying Δ(—) = 2g{ ® gu namely g*2

and 2/ιf-1 ® gim (To see that Δ(2Λ?i"1 ® g<) = 2ft ® ft, note that

since this difference is a primitive.) By (3.15), ξ(gf) is decomposable, which
2hlι~1 ® ft is not, and so ξ(g2) must equal #*2.
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We can now prove that ξ(gk) — g*k by induction on k. The diagram (3.16)
and induction hypothesis imply

which leaves g*k as the only candidate for ξ{gk). We deduce similarly that
ζ(9i9lj) — 9*k9jli a n d similarly for larger products. D

The other result which we need before calculating the differentials con-
cerns the interlocking EHP and double suspension sequences. Here H is the
obstruction to desuspension, and H2 is the obstruction to double desuspen-
sion, both of which are described in [5].

Theorem 3.17. There is a commutative diagram.

J^ v-^Exts

ιΓ
1(BPJ(2){x4n.1})

(3.18) j * [δ

where δ is the Bockstein homomorphism, H is the ordinary James-Hopf
invariant, and H2 is a factorization of the double suspension Hopf invariant.

Before we begin the proof, we make a few remarks. Let W(n) denote, as
in [5] and [8], the free J3P*/(2)-module with basis {x^n-i i > 2}. The
morphism

is shown on [4, p. 57] to send the stable classes bijectively, and the unstable
classes to 0. Moreover, it is shown there that the morphism

of [4, (2.5)] factors through i*, yielding the morphism, also called H2, of our
(3.18).

The analogue of Theorem 3.17 before inverting Vι is claimed in the meta-
stable range in [5, 5.7]. The metastable condition was required in order to
guarantee that the image of H2 lies on the bottom cell, which is true without
the metastability condition after localization.

Implicit in Theorem 3.17 is the statement that the image of the James-
Hopf invariant double desuspends. This is not always true in periodic ho-
motopy or in the unlocalized UNSS, but is true in the localized E2-teτm.
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Now we begin the proof of Theorem 3.17. Throughout this proof, let
M = M2n denote the free £?P*-module on a generator of degree 2n. We
consider the cosimplicial resolution (of coalgebras, by [7, 6.10])

(3.19) £P*(ΩS2 n + 1)-^G(M) zXG{V{M)) ^G{V2(M))

analogous to (3.10). Taking primitives in (3.19), we obtain, as in [5, §4], a
chain complex

(3.20) U{M)^U{V{M))^U(V2(M)) -> •

where dι is the alternating sum of the coface operators. Here U(M) denotes
the primitives in G(M). As noted earlier, this U(M) maps isomorphically
to U(M) C Γ ® M. We use U(—) when we are interested in the specific
representations of elements in G(-) rather than their image in Γ® —. Since
G(M) is a free coalgebra, the homology of (3.20) in homological degree i is
the ith derived functor of P(BP*(ΩS2n~hl)). In particular, it has no homology
in homological degree greater than 1, by [5, 4.1].

We now embed (3.20) into a double complex whose homology is
σ~1E2(S2n+1), but from which we can identify the James-Hopf map. This
double complex has, for p, q > 0, (p, g)th group Up(U(Vq(M)), with vertical
differential that of (3.20). The homology of the qth row is ΈyLtp

u(UVqM) = 0
if p > 0, while if p = 0 it is VqM « σ~ιUq(σM). (This is true since, for
any JV, U(N) is injective in ZY, satisfying Έxty(U(N)) « N.) Hence the
homology of the total complex is the homology of the complex whose qth.
term is Vq(M) « σ~ιUq(σM), and this homology can be interpreted as
either E2(ίlS2n+ι) or σ" 1 £; 2 (5 2 n + 1 ), by (3.4).

We let T(ΩS'2n+1) denote this double complex. A double complex analo-
gous to this can be constructed for ΩSp(n) using N = BP*{gι,... , #n} as
M. Thus Ts(ΩSp{n)) = ®Us-q(U(Vq{N))). It is the U here which causes
*-products of grclasses to come into play here.

Returning to the case M = M 2 n, we now take homology in the opposite
direction. The homology of the pth column is obtained by applying Up to the
homology of (3.20). This is possibly nonzero only in q = 0 and q = 1, where
it is Up(RqP), since U commutes with homology. Here and throughout the
remainder of this proof, we let P = P(J5P!(t(ΩS'2n+1)), and Rq denotes the
qth right derived functor. Taking horizontal homology of this yields a 2-line
spectral sequence which reduces to the double suspension exact sequences
as in [8, §8].

The homology of the total complex in homological dimension s is carried

by

(3.21) U3{U(M)) θ U-
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Recall that U(M) = P(BP*(BP2n)). By [29, 5.3], the first two indecom-
posables in BP*(BP2n) are b™ and &°n, and, as discussed earlier, the im-
ages of these in Γ <g> M are 1 ® t2n and h\ ® t2n. By [5, 3.6], 2h" ® ί,2n

is the image of a primitive of C/(M), and by 3.6 this primitive must be
2h" ® L2n — 1 ® ^ . (Here we are using the stable/unstable notation intro-
duced earlier.) Thus an element in the first term of (3.21) can be written as
OLi(l®L2n)+a2(2hrl®L2n-l®i2

x2

n) mod later primitives, with α< e BP*BP®S.
As for the second term of (3.21): By [5, 4.3] and the paragraph which pre-
cedes it, the vertical homology of our total complex at U(V(M)) is J? 1P,
and the bottom class of this equals 1 ® h" ® L2n, mod terms that desuspend.3

Under the isomorphism RλP « W(n), this bottom class equals the class
called x±n-i in the paragraph following the statement of Theorem 3.17.

Now we note, by [4] or, more explicitly, [5, 5.3ii], that any class y G
vΐιE2(S2n+1) may be represented, mod terms that desuspend, as y = a ®
K ® i2n with a E Γ 0 ^ " 1 ) . The projection of this y to t ^ E x t ^ i ^ P ) =
v^Ext^1 (W(n)) is just JζΓ2(ϊ/) — Q?®#4n-i I n terms of the double complex,
y is represented by

+ α 2

G [C/5Ϊ7(M)] + [27—1/21J>],

mod terms of higher vertical filtration in the double complex and terms with

higher powers of i2n.

Since y is a cycle, and a is a mod 2 cycle, evaluating the coefficient of

1 ® 2/ι? ® * 2 n in d(y) yields

0 = α 2 ( l ® 2/ι^ ® 42 n) + - i Γ ^ 1 ® 2hi ® 2̂n

Thus α 2 = ^ i = ί(α), where 5 is the Bockstein. Now the James-Hopf map

yields a map of double complexes T(Ω5 2 n + 1 )- ί ^Γ(ΩS r 4 n + 1 ) which sends ιfn

to ι±n. Hence H(y) = a2 = #(α), establishing the following proposition,

since a = H2(y).

Proposition 3.22. An element x G ί;["1£ ? |(Ω52 n + 1) can 6e represented in
T(ΩS2n+1) as a ® /ι" ® ̂ 2 n + /̂  ® 1 ® L

2n
 m°d higher powers of ι2n and terms

which desuspend. Then a = H2(x) and β = δ(a). The James-Hopf map H
sends this to β® i4n E vΐ1E*(ΩS4n+1).

3There is a minor misprint in [5, 4.3], which should say P(BP*(Ω5 2 n + 1)) instead of
P(A(2n)).
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Theorem 3.17 is just a restatement of this proposition. Note that the
thing that makes Theorem 3.17 work in the ^-periodic setting but not for
unlocalized E2 is the fact that vϊ 1Extu{W(n)) is built entirely on the bottom
class of W(n). If we had to worry about elements of Έιxty(W(ή)) built on
#8n-i5 then the next Husemoller primitive,

would have to be taken into account.
Proposition 3.22 links h™ ® ι2n with L*2, while the following result links it

with L2.

Proposition 3.23. If the mod 2 reduction of φ(gn) £ BP*(ΩSp{n)) con-
tains the term hi ® g\ι2J then it also contains the term Vih™*1 ® gnf2.

Proof. We first note that if A(gn) contains the term evιgn/2 ® gn/2 > then,
assuming the hypothesis of the proposition, (1 ® A)(ψ(gn)) contains the
terms 2hι®gn/2®gn/2 and l®ev1gn/2®gn/2, while mΓ(ψ®ψ)A(gn) contains
evi ® gnj2 ® gn/2. Using T]R(VI) = V\ — 2/ιx, the equating of these which is
implied by diagram (3.9) yields 2/iχ + e{vχ — 2h\) = e^i, and hence e = 1.
Thus Δ(<7n) contains the term Vιgn/2 ® gn/2.

In the proof of Proposition 3.13, it was shown that the map AG of (3.8)
sends only Vih™*1 ® gn/2 to V\gn/2 ® gnf2. Thus the composite (3.8) im-
plies that ηnsp(n)(9n) goes to Vih"'1 ® gn/2 plus other monomials. Now the
composite (3.7) implies the proposition. D

We will need to make frequent reference to the chart of the periodic UNSS
for 5 2 n + 1 given on page 58 of [4]. We reprint it in Figure 3.24 for the
convenience of the reader. We have included a few classes which are involved
in d3-differentials which were not included in [4]. The notation is explained
on page 53 of [4]. For us, the most important part is that an element y
denoted {Ah1} means that y pulls back to Sf2ι+1, where it satisfies H2(y) = A.
The horizontal component of the chart is the mod 8 value of the stem, not
the homotopy group.

We provide one other bit of background before proceeding with the proof
of Proposition 1.8: the explicit manner in which the remaining differentials
are computed. This is similar to the method in Section 2 for the stable NSS.
It involves the chain complex Γ(X) described above, whose homology equals
the £2-term of the UNSS for X = ίlS2n+ι or ΩSp(n). lίΰ(-) is identified
with [/(-), then TS(X) becomes a subset of Γ ® ® Γ ® QBP^X), with
s + 1 factors of Γ. However, the only terms that we will ever have need to
consider are the third and fourth terms in (3.21), both of which involve a
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\n=l,2

{ηhAk}h*

\n=l,2

\n = 0,3

4 5 6 7

Figure 3.24: £?2 of periodic UNSS for spheres
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1® which can be omitted, so that we actually view the elements as involving
the 5-fold tensor product of Γ.

As in the stable situation,

d : E^nS4"-1) -> E°+ι(nSp{n - 1))

is calculated on a class z by finding a representative cycle c for z for which
the reduced coaction ψ(c) pulls back to a class in T8+1(ΩSp(i)) for i as small
as possible. The projection of ψ(c) into T^^ΩS'4*"1) yields d(z). This can
be done for the complex T(—) just as well as for the complex C(—) used in
Section 2, because the fibration

ΩSp(n - 1) -

induces a short exact sequence of T(—), and the boundary morphism in the
associated long exact homology sequence is as described above.

Explicit calculation of the coaction in BP*(ΩSp(n)) can be performed by
a method similar to that of [10], but the formulas are extremely complicated.
Instead we opt for calculating a homomorphic image of the coaction which
contains the information relevant to our application, exactly as we did for
Qn in Section 2.

This formula is obtained similarly to that given earlier in Qn. We use the
description of bu*(ΩSp(n)) given in 3.2. Since Φ3 is a ring homomorphism,
it suffices to determine Φ3 on the generators &. Although we do not have
complete information about the action of Φ3 in bu*(ΩSp(n)), the following
will suffice for our applications.

Proposition 3.25. In bu*(ΩSp{n)/Sp([n/2])),

i=0

Since the inclusion maps ΩSp(i) -> ΩSp(n) send g$ to <7j, this proposition
can be used to read off Φ3(pi) in bu*(ΩSp(n)/Sp([n/2])) for all i < n.
Proof. Let Qn denote the quaternionic quasi-projective space which embeds
naturally into Sp{n), and let ζ>£ = Qn/Qk~1. Then Q"n/2]+ι embeds in
Sp(n)/Sp([n/2]), and is a suspension for dimensional reasons. Thus we shall
work with Qfn/2]^ι^ a n d let Y satisfy ΣY = Qfn/2]+ι By adjointing, we
obtain a map Y—>ΩSp(n)/Sp([n/2]). Letting g{ denote the image under /*
of the generators of bu*(Y), the result follows from Proposition 2.7.

Using the (~^n)-form for the binomial coefficient immediately yields the
following corollary.

Corollary 3.26. In bu/(2)*(ΩSp(n)/Sp{[n/2})),

Φ3fen) = 9n + ̂ ^ n ^ e o + i + T,
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where T G (v2ign^ : i > 2u^+ι).

Of course, if n —2 ί / ( n ) + 1 < [(n —1)/2], then this corollary must be interpreted
as saying Φ 3(# n) = gn (mod 2). This will be the case iff n = 2e or 3 T for
some e.

Exactly analogous to Proposition 2.11, we have the following result.

Proposition 3.27. Let φ : BP+BP ->> Z2[υ] be the homomorphism defined

in Proposition 2.11. Let g{ G BP4i_2(ΩSp(n)/Sp([n/2])) be the generator

defined, similarly to the proof of 2.7, using S-duality and the standard gen-

erators of BP*(HPm). Suppose the coaction

*Γ ® BP*(ΩSp(n)/Sp([n/2]))

satisfies

Then
/ if n - 2<n^1 <i<n

Note that ψ(gn) cannot contain any <7?-terms for dimensional reasons.
Now we are ready to calculate the differentials in Proposition 1.8. We

begin with the stable differentials (1.11). These follow by the same argument
that was used to prove Proposition 2.22. Or they can be deduced from it,
using the map from the UNSS of Sp(n) to the stable NSS of Qn discussed
in Proposition 4.6. The reason that the differentials of (1.11) are not given
on classes 2e or 3 2e with e > 0 is that differentials (1.9) are seen first on
these classes.

Next we will prove the differentials (1.9) and (1.10). This proof will be
by induction on i. We assume that it has been proved for all values of i less
than n. This, along with (1.11), implies that there are no stable classes (i
or i1) for the η-tower 2n to hit. Thus we want to determine the boundary
homomorphism

(3.28) v-1E1

2

Ak{nSSn-1)^v-ιE2

2

Ak(ΩSp(2n - 1))

in (3.5), and the target group consists only of unstable classes. By Figure
3.24, the source of the morphism (3.28) is the element £*2*-4n+i#2n5 where,
as above, otj is the element of order 2 on the 1-line in the (2j — l)-stem for
spheres, as described, for example, in [4, p. 52]. By [7, p. 246], ct2k-4n+i92n
is represented by v\k~Anhι ® g2n-
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We work now in the complex T*(ΩSjp(n)), which involves U(N) C G(N).
Recall that N — QJ3P*(ΩSp(n)). This involves classes gf but no classes g2.
Note that φ{g2n) € Γ ® G(iV) cannot contain any terms B ® #*2 with i > n
for dimensional reasons. It does contain the term hx ® gf*2 since Proposition
3.2 implies that (^4n-i)Sq2 = £2n-i Here we use that hλ is detected by Sq2,
and that the *-produet reduces to the homology product. This observation
about the effect of the nonzero Sq2 is the key to this family of differentials.
This sort of information about ψ was not seen in Proposition 3.27, which
was only capable of seeing the stable range.

Thus there is a representative 72n-i for d{a2k~An+ι ® 92n) which lies in
T2{ΩSp(2n - 1)) and has ^2 f c~4 n/i! ® hx ® g*2 as its leading #*2-term. That
is, it contains no terms of the form B ® g*2 with i > n.

We will inductively pull our class 72n~i back to a class j n € T2(QSp(n)).
Assume that for some j satisfying n < j < 2n, there is a representative

Ίj for d{a2k_4n+1g2n) which lies in T2(QSp{j)) and has υ2^71^ ® hλ ® g*2

as its leading #*2-term. We project this to η^ G ^ ( Ω ^ 4 ^ " 1 ) . As observed
earlier, this cannot equal the nonzero stable class here, because that already
supported a differential. If 7^ is to be the nonzero unstable class, then it
must contain the following terms in ^ ^ 1

f(3.29) v\k ~4j+1hx ® h\j~ι ® 9j + v^hx ®hλ® g

To see this, we use Figure 3.24 to see that the unstable element w at height
2 and stem = 0 mod 4 satisfies H2(w) = t;2 A :~4 j + 1/ι1. Then we use Propo-
sition 3.22 to see that this must be accompanied by δ(H2{w))gγ, and use
[27, 5.3.13] to evaluate the Bockstein <5(^ f e-4 i + 1/h) = v?fc~4jΛi ® hx.

But our induction hypothesis is that 7^ does not contain this gf-teτm.
Thus 7^ must be a boundary in T2(flS4^~ι), We can vary 7,- by the boundary
of an element of T*(ttSp(j)) which corresponds to the bounding element in
T*(Ω,S4j~1)^ obtaining a class jj^x which extends the induction hypothesis.
The boundary can be chosen to be of the form d(A 0 vgj) with φ(v) = 0 as
in the stable situation considered in proving 2.25, and hence cannot produce
detecting terms. Consequently by induction we obtain a representative j n

which pushes to an element of T2(ΩS'4 n~ I) containing the term v\k~4nhi 0
hi ® * 4n_2 By Proposition 3.22 and Figure 3.24, this must be the nonzero
unstable class n u .

Next we will use the 2n -> nu differential just established to prove the
differential (2n)' -> n'u by precomposing the first differential with the E2-
element corresponding to the Hopf map σ in the 7-stem. We will use the no-
tation of [27, p. 199), which denotes this element of Ext(jE?P*) by y4, and its
reduction to Ext(BP*/(2)) by u. Since we have shown that (3.28), which rep-
resents the (2n -~» nlx)-differential, sends the generator of Vi1 El*4k(
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into an element in the image of

ι l Λ \ ± ι 2 Λ k 2 n - 1)),

the same will be true when this generator is precomposed by y4. The element
of υϊ1ElAk+* (ΩS871-1) obtained as this composite is y4 ® v\k~4nhι ® g2n.
When this is reduced mod 2 (which we may do since we are looking at mod
2 classes), one obtains as the coefficient the stable class u ® v\k~4nhι =
hi ® v\k~4nu, since stable Ext is commutative. By [27, 5.3.13c], this equals
the mod 2 reduction of what is called ηdέ4k-4n+4 in Figure 3.24, which is the
coefficient of the element (2n)'. Thus the source of our proposed differential
is the desired σ-composition.

The element in E2

Ak+s(ΩS4n~ι) which is nu precomposed with σ has
leading term y4 ® hi ® Wi*"4"*1^"'1^. By [5, 5.3], this unstable class x
satisfies

H2{x) =yA® M?*~ 4 f l + 1 = hi ® uvlk-4n+1.

Here H2 denotes the double suspension Hopf invariant, which yields a stable
mod 2 class. But this is exactly what Figure 3.24 tells us is H2 of our
proposed target class n'u, namely the element at height 3 in the chart with
horizontal coordinate 3 or 7 depending upon the parity of n. This establishes
the differential (2n)' -> n'u.

Now we are ready to derive (1.12). By naturality, it suffices to prove it
on the top class nu in the spectral sequence for vϊ1πAc(Sp(n)/Sp([n/2])). By
3.22, the unstable classes involved in the proposed differential are detected
by their <7*2-terms, and so we begin by studying the reduced coaction φ{g^)
As we are looking at elements of order 2, and d o d = 0, this will consist of
terms of the form z{ ® g*2, where z{ is a mod 2 cycle. Here we are also
using the multiplicativity of φ with respect to the *-product. It is shown in
[27, 5.3.13a] that any such cycle can be written, mod boundaries, as

(3.30) Zi = evf+3Λi + e'vku,

where e and e' = 0 or 1, and u = t\ + υit\ + v\t\ + vxt2 + v2tx. The
homomorphism φ defined in (2.12) sends the class in (3.30) to (e + e')v4.
Proposition 2.21 shows that it sends any boundary to 0. Combining these
remarks with Proposition 3.27 and the multiplicativity of φ on *-products
shows that

(3.31) ψ(9*n

2) = Σie^'*-1^ + e'^-^u + d{ai)) ® gf mod 2,

withα* G BP* and Cj+eJ = 0 if i > n-2v<n>+1, and ê +ê  = 1 if i = n-2v^
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The source x of our proposed differential, also denoted nw, is the element
of E%Ak'h8n(Ω,S/kn-1) corresponding to the unstable element at height 2 and
horizontal component 0 or 4 in Figure 3.24. The notation of that chart says
that it satisfies H2(x) = vfk+1hι, and thus by Proposition 3.22

(3.32) x = vlk+ιhλ ® h\n'1 ®gn + hι® v\khι ® g*n

mod terms that desuspend or contain higher powers of gn. Here we have
used [27, 5.3.13d] to evaluate δ(H2(x)). In the same chart, a target element
2/i, labeled i'u in (1.12), would be the element at height 3 and horizontal
component 3 or 7, and so would satisfy

(3.33) H2{yi)^hι®uv2ιm+1

for appropriate m. The differential, or boundary in the exact sequence,
is calculated by applying ψ to gn and #*2 in (3.32), and then modifying by
boundaries. By Proposition 2.21, these boundaries cannot produce detecting
terms. Thus the differential on nu hits i'u for largest possible i such that
hi ® v\khλ ® (eivf^hi -f e[vil~4u) ® gf equals ht®u® v\mhi ® gf. Here we
have applied (3.31) to the second term of (3.32) to get the first expression,
and have applied 3.22 and [27, 5.3.13d] to (3.33) to get the second expression.
Since these coefficients are stable mod 2 classes, their factors commute. Thus
the differential hits i'u if and only if ê  = 0 and e[ = 1. By (3.31), this can
first happen when i = n — 2U^+1. Moreover, it must happen for this value
of i, since we cannot have ê  = 1 and e\ = 0 since that would imply the
differential hits a class z whose James-Hopf invariant H(z) reduces mod 2
to v{wrhι ®h1®h1. By Theorem 3.17 such a class would have δ(H2(z)) =
v{wrhι ® hi ®hλ. But the only possible value of H2{z) is given by (3.33), and
so this possibility cannot occur since δ(hi ®uvlm+1) = hi ®u®v\mhι. D

4. Differentials and extensions.

In this section we establish the differentials in the UNSS converging to
vΐ 1π*(S'p(n)), whose E2-teτm was depicted in Figure 1.16. We will also
establish the exotic group extensions, and from this deduce Theorem 1.5.

The following theorem gives most of the higher differentials among the
elements of Figure 1.16. Positions are the [x,y] = [t — s,s] coordinates of
that chart. We use the phrase "log classes" for the elements of the Z2-vector
space of dimension [log2(4n/3)] which is written "log" in Figure 1.16.

Theorem 4.1. In the UNSS for vϊιπ*(Sp(n)), there are the following
families of d3-differentials, referring to Figure 1.16 for the description of
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1. d3 sends the η-tower of log classes starting in [8h + 3,2] isomorphically
to the η-tower of log classes starting in [8h + 2,5].

2. d3 sends the η-tower of log classes starting in [8Λ+2,3] isomorphically to

the η-tower of log classes starting in [8Λ + 1,6], (These latter elements
are not actually represented in Figure 1.16, except as a shifted version
of the η-tower going up from [8h + 6,3].) It also sends the η-tower of
•-classes beginning in [8/ι, 1] to the one beginning in [8h — 1,4]

3. d3 sends the group in [8h + 1,2] onto the group in [8/i, 5] (which can be
envisioned as a shifted version of the group in [8h + 8,5],). Thus the
group G(2ei) has [log2(4n/3)] summands which support differentials
(and perhaps also some which do not).

4. The η-tower on the in [8Λ + 7, 2] is mapped isomorphically by d3 to the

η-tower on the in [8h + 6,5].

Proof. Parts 1 and 2 follow immediately from the corresponding ^-differenti-
als in i?4*"1. Indeed, part 1 is the differential in Figure 3.24 emanating from
filtration 2 in horizontal position 0 or 4, while the log-part of part 2 is the
differential in Figure 3.24 going from filtration 3 and horizontal position 3
or 7. Remember that in Figure 3.24 horizontal position is stem, while in
Figure 1.16 it is the number of the homotopy group. The classes involved
in the •-differential in part 2 come from S3. They appear in 3.24 as the
G?3-differential on the element α 4 f c + 3 .

The differential in part 3 is immediate from the 77-connection from G to
log, which was already established, and the d3's on the log-part established
in part 2. The classes involved in part 4 are stable classes coming from SAn~1

if n is odd, and S4n~5 if n is even. For example, if n — 10, they correspond
to the 9' in Figure 1.13. They should appear in Figure 3.24 as ηa±k+2 in
[4,2] with a d3 going to an element which is η times the top element listed
in column 2 there. These differentials (with elements unlabeled) can be seen
in [9, p. 488]. D

What remains from Figure 1.16 after the differentials of Theorem 4.1 are
taken into account is pictured in Figure 4.2. Here H(2eι) is a group which
fits into a short exact sequence

0 -» H(2ei) -> G(2 e i )-^[log 2 (4n/3)]Z 2 -> 0.

Thus the order of ί f(2 e i ) is 2ei-llo**(*nW.
It was proved in [10, 1.3] that the groups E\^k~λ are cyclic of order

2esrίk>n\ where esp(k,n) is defined as in (1.15). It is similar to the number
e(fc,n) which appears in Theorem 1.5 except that esp{k,n) does not involve
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Figure 4.2: A stage of the periodic UNSS for Sp(n)

the terms ek-ι and ek-j which appear in the definition, (1.3), of e(k,n).
Recall that in our figures eά = eSp{2h + j ,n) . In order to pass from Figure
4.2 to Theorem 1.5, we must consider extensions in the SS and additional
{^-differentials from the 1-line.

First, the extensions: There is an extension from the cyclic group
vϊιEl'8h+r(Sp{n)) to the element in v^1 E^8*1*9(Sp(n)) which is in the image
from ElM+9(Sp(l)). This element is the one indicated by a in [8h + 6,3]
in Figure 4.2. By "extension," we mean a nontrivial extension in the short
exact sequence

0 0.

This accounts for the efc_χ in e(fc, n) in (1.3). To see this extension, one
needs merely to observe that the element of order 2 in v^1 J5^8/ι+7(Sp(n))
is in the image from 5p(l), and the extension is present in the UNSS for

As for other extension questions: In 8h + 1, there could very well be
nontrivial extensions. The two groups together, namely iJ(2€l) at height 2
and log at height 4, yield a group of order 2ei or 261"1, the latter being the
case if there is a nonzero d3-differential into vf 1E%'sh+b(Sp(ή)). Theorem 1.5
makes no claim about the structure of the group v^πsh+iiSpin)). In 8/Ϊ + 4,
the extension is ruled out by the fact that the class in filtration 1 pulls back
to 5p(l), while the class in filtration 3 does not. In 8/ι-h5, there is a possible
extension from G(2e2) to the . This is incorporated into the G(21+€(2Λ+2>n))
in Theorem 1.5. If there is no d3-differential into υ^ιE^8h+9(Sp{n)), then
e(2/ι + 2,n) = e2 + 1. In 8/ι + 7, we cannot solve the extension question.
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The remainder of the work in this section is devoted toward proving the
following result, which will complete the proof of Theorem 1.5.

Theorem 4.3. The differential

is nonzero if and only ife(k,n) < efc_i + esp(k,n).

Note that the hypothesis on this proposition says exactly that the ek-j in
Definition 1.3 affects the value of e(k,n).

Before embarking upon the lengthy proof of Theorem 4.3, we recapitulate
the proof of Theorem 1.5.

• There is a spectral sequence converging to v^1 E2(Sp(n)) with initial
term given by summing Figure 1 over i < n. The differentials among
the η-towers are given by Proposition 1.8, while the ^-groups build a
cyclic 2-group of exponent esp(&,n), and the [/̂ -groups build a group
of the same order. The number of unstable Z2's in each bigrading
surviving these differentials is [log2(4n/3)], and so vγι E2(Sp{n)) is as
in Figure 1.16.

• All the 77-towers in υ^1 E2(Sp(n)) are involved in d3-differentials implied
by differentials in the spheres. What remains after these are accounted
for is pictured in Figure 4.2; it includes the 1-line cyclic groups, part
of the 2-line groups, and a few initial elements of target 77-towers.

• There is a nonzero ^-differential on the group in vγιE\Ak~ι(Sp(n))
if and only if e(k,n) < tk-ι + esP(k,n). There is an extension in
vϊl^Ak-2{Sp{n)) if k is even; this accounts for the ek-\. In Figure
4.4, we show how Figure 4.2 is modified by these considerations. The
dotted differentials are present only when e(/c,n) < e&_i + βsp(fc,n).

The proof of Theorem 4.3 will proceed in a sequence of propositions. The
first one handles the nonzero differentials.

Proposition 4.5. Ife(k,n) < e^-i + esp(k,n), then

d3 φ 0 : v^E\Λk-\SV{n)) -* v^1 E4

2'
4k+1 (Sp(n)).

Proof. In the exact sequence

) -> El

2

M~l{Sp{n)) -> 0,

the first two groups are infinite cyclic, and the third is Z/2es^k^n). In [32, 0.2]
or [26, p. 868], it is shown that the mod torsion index of p*(π4k-i(Sp(k))) in
7Γ4fc-i (Sp(k)/Sp(n)) has 2-exponent equal to or less than e(k, n). Assume, for



υι -PERIODIC HOMOTOPY GROUPS OF Sp(n) 361

4

3

2

1

log

/

/«
/G(2^)'

/• log

Λ
^

log

log

log

t - s - 8/H- 1 2 3 4 5 6 7 8

Figure 4.4: The final stage of the periodic UNSS for Sp{ri)

starters, that ek_λ = 0, or, equivalently, that k is odd. Then the hypothesis
implies that the mod torsion index of the homotopy homomorphism p* is
less than that of the jE^'^^morphism p*. This implies that there must be
a nonzero differential from the group E2

y4k~ι{Sp{k)/Sp{n)).
Next we claim that this implies that E\Λh~~ι{Sp{n)) must also support

a nonzero differential. If not, then the element of E2'
s+4k~2 {Sp{k) / Sp{n))

{s > 2) which is the target of the differential in Sp{k)/Sp{ή) must be in the
image from E2'

8+4k~2{Sp{k)). This group is isomorphic to E2'
8+4k~2{Sp)1

which was shown in [10] to be 0 unless s = 3, in which case it has a single
nonzero element which supports a nonzero d3-differential in the UNSS of Sp.
This differential must also take place in Sp{k). The target in E2

Ak+3{Sp{k))
of this differential must pull back to an element in ϋ^'4**3{Sp{n)) which is
hit by a db from the generator of El'4k~ι (Sp(n)), contrary to our supposition
that this group did not support a nonzero differential.

The proof of [12, 3.12] shows that there will be a periodic family of values
of k for which e(fc,n) and esp{k,n) have the same values as they do for the
value of k specified in the hypothesis of the proposition. The same argument
as above applies to each of them, and so we conclude that the differential
must be vι-periodic. Hence it must be a cί3, since, after taking into account
the differentials of Proposition 4.1, v^1 E^s+4k~3 {Sp(n)) is nonzero only for
5 = 2 and 4.

A similar argument works when ek_ι = 1, so that k is even. The hypothesis
is that the mod torsion index of

> *4k-i(Sp(k)/Sp(n))

is equal to or less than that of EζM'ι{Sp{k)) -> E^
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This time there is a d3-differential on E%Ak~λ (Sp(k)) depicted in [10, p. 74].
This would make impossible the inequality relating the mod torsion indexes
unless there is a nonzero differential on E2Ak~1(Sp(k)/Sp(n)). The target
of that differential (and hence the differential itself) must map across to
JB^+1 #+4*-2(5p(n)), since there is nothing else in Es

2^
k~2 {Sp{k)) which can

map to it, by [10, p. 74]. Thus we have deduced the asserted differential in
), and, as in the case when k is odd, it must be a ^-periodic d3. D

In order to show that differentials are 0, we use the stable splitting map
Σ°°Sp(n) -* Σ°°(Qn). See, for example, [23, p. 50].

Proposition 4.6. The stable splitting map induces a morphism from the
UNSS ofSp{n) to the NSS ofQn which sends ElAk~λ {Sp(n)) isomorphically
to

Proof. The morphism can be thought of as the composite of the stabilization
morphism from the UNSS of Sp(n) to the stable NSS of Sp(n) followed by
the map of NSS's induced by the stable map from Sp(n) to Qn. On 2?2-terms,
this is

Extu(P(BP*(Sp(n)))) -> Exto(BP.(Sp(n))) -> Extg(BP*(Qn)),

and P(BP*(Sp(n))) and BP*(Qn) are isomorphic comodules.
Proposition 3.9 and Theorem 3.10 of [10] were proved for the UNSS based

on MU; however, they also apply to spectral sequences based on BP, and
to the stable NSS. The generators and coaction of BP*(Qn) correspond pre-
cisely to those of P(BP*(Sp(n))). Hence Proposition 4.6 follows from the
results of [10], which say that the groups are cyclic with order determined by
e applied to the coaction. For 5p(n), we did not need to write explicitly that
we are computing the kernel into E\Λk~1{Sp)y since this group is 0. D

The stable splitting map is useful because of the following result.

Proposition 4.7. The differential

d3 : vx Jb3 (y )-> v1 t,z (Q )

is nonzero if and only if e(k,n) < βk-ι +

Proof. The mod torsion index of
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is 2e (*'n ) by [26, p. 872], and it equals the order of the cokernel of

(4.8) E&«-ι(Qk) -> E^k~\Qk/Qn).

By [10, 1.1], d3 is nonzero on ElΛk~1{Qk) if and only if eΛ_j = 1. Also from

[10] is the result that the order of the cokernel of

is 2esp(kyn\ Thus the order of the cokernel of (4.8) has 2-exponent equal to
^5p(fe, n) + ek-i — m, where m is the number of nontrivial differentials on
E^4k~1(Qk/Qn). The proposition now follows by comparing with the earlier
description of this exponent as e(A;, n). D

We can now easily obtain our desired deduction regarding d3 = 0 when

k is even. Throughout the remainder of this section, Er refers to the UNSS

for Sp{m) and to the stable NSS for Qm.

Proposition 4.9. If k is even and e(k,n) = 1 + esp(k,n), then

(4.10) d3 = 0 : v-'E^-'

Proof. We prove the contrapositive. Suppose that d3 in (4.10) is nonzero. By
Figure 4.2, there is only one nonzero element in vϊ1 iϊ^'4*"1"1 (Sp(ή)) after the
d3-differentials of Proposition 4.1 are taken into account. If k is sufficiently
large, this stable element pulls back to an element of ϋ^'4**1(Sp(n)) which
maps nontrivially to ElΛk+ι(Qn). Thus

must also be nonzero, and hence by Proposition 4.7 e(fc, n) < 1 +
counter to the hypothesis of this proposition. D

The argument when k is odd is a little bit more delicate because

vf 1jE^>4*+1(Srp(n)) has more than one nonzero element.

Proposition 4.11. Assume k is odd and e(A;,n) = eSp(k,n). Then
i. If d3 is nonzero on v±lE\^k~λ{Sp(n)), then d3 is nonzero on

and e(k,n + 1) = eSp(k,n + 1).

ii. d3 = 0 on υf1 E1/1"1 (Sp(n)).
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Proof. Using induction on n, part i implies that Ίίd3 is nonzero on υ^ιE^4k~λ

(Spin)), then d3 is nonzero on v^1 E\Λk~ι (Sp{N)) for all N >n. This is cer-
tainly false for N>k, and hence d3 must have been zero on Dj" 1 ^ 1 ' 4 *" 1 (Sp(n)).
Thus part i implies part π, and so we concentrate on proving part i.

We begin with the case when n is even. The target of the differential
in Sp(n) must map nontrivially to vϊ1 E%'4h+1 (Sp(n + 1)). To see this,
we note that if it mapped trivially, then it must be in the image from
v^1ElΛk+ι{S4n+z), which is the group pictured in position [7,3] in Figure
3.24. Each nonzero element in this group supports a ^-differential in the
UNSS of S4n+3. The exact sequences in v^E2(-) and v^π^(-) would then
imply, similarly to the proof of Proposition 4.5, a nonzero c?5-differential in
Sp(n + 1), contradicting [4, 5.5].

The map Sp(n) —» Sp(n +1) implies that d3 must be nonzero between the
image classes in Sp(n+l). Thus v^1 E\Ak~λ (Sp(n)) must map isomorphically
to υϊ1 ElAk~λ(Sp{n + 1)) since υϊ1 E%Ah+1 (Sp(n + 1)) is a Z2-vector space.
Thus eSp(k,n) = eSp(k,n + 1). Since k + n is odd, Proposition 5.2c says
that e(k, ή) = e(&, n + 1). Hence e(&, n + 1) = esp{k, n + 1), completing the
argument when n is even.

If n is odd, the above argument fails because vϊ1 E3

Ak+1 (S4n+3) has a class
on which d3 is zero. Instead, we argue as follows.

Suppose that there is a nonzero differential on v±l E\Ak~ι (Sp{ή)) but not
on vΐιE\Ak~x (Sp(n + 1)). Then the target of the differential must be in the
image of the morphism

Now v^ElAk+l(S4n+z) is spanned by η(n + l)'u and r?2(n + 1). Of these,
only η2(n + 1) is sent nontrivially by d. We will show that under the stable
splitting map

d(rf(n + 1)) is sent nontrivially. This implies that there is a nonzero differ-
ential into vϊιE4Ak+1 (Qn) and hence by Proposition 4.7 e(A;,n) < esp{k,n),
contrary to our hypothesis.

To show that σ(d(η2(n +1))) φ 0, we argue as follows. Consider n to be a
fixed odd integer. It follows from Propositions 4.13 and 5.2a that there exist
odd values of A; such that e(A;, n) < e^_i +esp(k, n), and hence by Proposition
4.7 d3 φ 0 on ElΛk~ι(Qn). For such a value of k, the morphism

(4.12) v-ιEA/k+1{Sp{n))^v-ιEtM+\Qn)

must satisfy σ(<9(7?2(n+l))) φ 0. But the graded Z2-vector spaces E3

Λ*+1(X)
are acted on by period 8 Adams periodicity, which induces isomorphisms

Vl &3 (Λ) >Vλ t>3 (Λ)
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for X — Sp(n) or Qn, and A commutes with σ. Thus the morphism σ of
(4.12) is nonzero on d(η2(n + 1)) for all integers fc, and so in particular it is
nonzero for the value of k involved in the proposition.

Now we have shown that d3 is nonzero on vϊιElΛk~1(Sp(n)). We must
also prove that e(&,n + 1) = eSp(k,n + 1). If this were not true, then by
Proposition 4.7, d3 would be nonzero on υΐ1Ely4k"1(Qn+1). Since, as we
just showed, the nonzero d3-differential mapped nontrivially from Sp(n) to
Sp(n + 1), we must have esp(fc,n) = esp{k,n + 1) and hence the nonzero
differential on Q n + 1 is the image of a nonzero differential on Qn, which, with
Proposition 4.7, contradicts the hypothesis that e(fc, n) = eSp(k, n). D

The following result was used in the above proof. It implies by Proposi-
tions 5.2a and 4.7 that for each odd n, there are some odd values of k for
which there are nonzero ^-differentials on v^1 E\Λk~ι (Qn).

Proposition 4.13. Ifk = l mod 2e~ι, and n is odd and satisfies n < 2e~ι,
then esp(k,n) = 2n — 1 and esp(k,n + 1) = 2n + 1.

Proof. Let υv(K, J) = ι>(Σf=i (-!)'(:[)**)• We will prove that if K = 1 mod
2e, and J < T + 2, then vv(K, J) = J - 2 if J is odd, while if J is even,
then Vu(K, J) > J — 1. This implies that the numbers eυ(K, JV), defined as
mm{vu{K, J):J> N}, satisfy eυ{K, N)=N-2 (resp. N - 1) if N is odd
(resp. even). Letting K — 2k — 1 and N = 2n + 1 and 2n + 2, and using the
result of [10, 1.4] that

(4.14) eu(2k - l,2n) = eSp(k,n) = et/(2A; - l,2n + 1)

yields the desired result.
Now we prove the claim about vu(K, J). Mod 2e + 1, the terms in the sum

with i even are 0, while if i is odd, we have ik = i. Thus the result follows
from

i odd i even i=0

D

5. Applications to James numbers and exponents.

In this section we discuss specific computations of the numbers e(&, n) and
esp(fc,π), and give applications of our results to exponents of actual homo-
topy groups of Sp(n) and quaternionic James numbers.

The numbers e(k1n) and esp{k,ή) share many of the interesting proper-
ties of the slightly more basic numbers et/(fc,n) studied in [13] and [11].
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Computer algebra packages allow extensive computation of these numbers,
uncovering patterns that cry out for generalization and proof. We have used
Mathematica to perform many calculations. The program consists of just
three statements.

nutwo[x_] : =If [OddQ[x] ,0,1+nutwo[x/2]]
v[k_,j_,e_] :=nutwo[Sum[(-l)~i Binomial[2j , i ] PowerMod[j-i,2k,2~e] ,

vt[k_,jo_,je-,e_] : =Table [v [k, j , e] ,{j,jo,je}]

The first line defines a function that calculates the exponent of 2. The
second line calculates the basic numbers v(k,j) which are the exponents of 2
of the coefficients involved in (1.15), working mod 2e so as to take advantage
of the PowerMod function. Answers which it gives that are equal to or greater
than e imply only that the correct number here is > e. Here we have used
the alternate form for the coefficients of (1.15) given in (1.4). The third line
tabulates numbers for a range of values of j . In practice, a fourth line which
performs vt [-] over an arithmetic progression of values of k is useful.

For example, if we run vt [20,3,12,20], the output
{4, 4, 10, 15, 13, 11, 15, 16, 19, 19}

is almost immediate. Recalling that esp(20, ή) is the minimum of these num-
bers w(20,j) for j > n, this yields eSp(20,2) = e5p(20,3) = 4, e5p(20,4) = 10,
esp(20,5) = e5p(20,6) = e5p(20,7) = 11, etc. One can be assured that
there will not be a smaller value of υ(20, j) for some j > 12 since v(k,j) >
u2((2j-l)\) by [26, 1.2,1.3]. As for the numbers e(20,n), we subtract 1 from
each of the numbers υ(20,j) with j odd, do a similar minimizing, and then
add 1 (since eϊ9 = 1) to all numbers, obtaining e(20,2) = 4, e(20,3) = 5,
e(20,4) = 10, e(20,5) = e(20,6) = e(20,7) = 12, etc.

The numbers esp{k,n) and e(fc,n) are periodic in k by [26, 1.7]. This
makes it feasible to give complete formulas for these numbers for fixed n.
The following proposition was obtained in a few hours of work using the
above Mathematica program.

Proposition 5.1. a. Ifk is even, then

1 n = \
4 π = 2
4 n = 3

1,6 + z/(fc-4)) n = 4
.l,7 + i/(fc-4)) n = 5

min(15,10 + i/(Jfe - 6)) n = 6
min(18,10 + v\k - 230)) n = 7
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and
2 n = l
min(5,3 + v(k - 2)) n = 2
5 n = 3

min(12,8 + (̂A; — 4)) n = 5
12 n = 6, A; = 0 mod 4
min(16,10 + i/(fc - 6)) n = 6, fc = 2 mod 4
min(18,11 + î (it - 102)) n = 7

b. //A; is odd, then

and

1
3
min(8,4 +
min(8,6 +
min(14,7 -
min(14,9 -
min(16,11
min(21,ll

0
3
min(7,3 + 1
7

u{k - 7))
u{k - 3))
1- u(k - 37))
1- v{k - 37))

n = l
n = 2
n = 3
n = 4
n = 5
n = 6

+ u(k - 13)) n = 7, k = 1 mod 4
+ !/(*-7))

'(* - 7))

n = 7, k = 3 mod 4

n = 1
n = 2
n = 3
n = 4

min(13,6 + z/(A;-37)) n = 5
min(13,9 + i/(k - 5)) n = 6
min(15,10 + i/(fe - 13)) n = 7, k = 1 mod 4
min(20,10 + i/(fc - 7)) n = 7, fc = 3 mod 4

In the range of this proposition, we have e(fc, n) = esp(k, n) — 1 if A; and
n are odd. For awhile, it seemed important to know whether this was true
for all odd values of A: and n. We extended Proposition 5.1 through n = 18
for odd values of fc, and found that the only case in this range in which
e(A, n) = eSp(k, n) (with n odd) is when n = 13 and A; = 13 + 5 215 mod 219.
For such values of fc, we have v(Λ, 13) = 22, v(fc, 14) = 41, v(k, 15) = 40, and
υ(kj) > 41 for j > 16. Thus e(fc, 13) = eSp(A;, 13) = 40.

To prove things about the numbers eSp{k,n), it might be useful to use
(4.14), which relates them directly to the simpler numbers eu(k\n'). How-
ever, the numbers e(k,n) contain information not derivable from the ey-
numbers. We can easily derive some simple relationships between esp(k,n),
eSp{k,n + 1), and e(fc,n).
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Proposition 5.2. a. If k + n is even and e(fc,n) = ek_λ + eSp(k,n), then
eSp(k,n) = eSp(k,n + l).

b. If k + n is odd and esp{k,n) < ek-χ + eSp(k,ή), then esp(k,n) =
eSp(k,n + l).

c. If k + n is odd and esp{k,n) = eSp{k,n + l), then e(fc, ή) = e(A;,n + l).

Proof. As in the computer program above, let v(k,j) equal the exponent of
2 in the coefficient relevant to the esp-numbers.

a. The hypothesis implies that

min(?;(A;, n + 1) - 1, υ(k, n + 2), υ(k, n + 3) - 1,...)

(fc,n + l), v(k,n + 2), v(k,n + 3),.. .).

Thus the second minimum must equal min(v(k, n+2), t?(fc, n+3), . . . ) , which
implies the desired result.

b. The hypothesis implies that

min(υ(fc, n + 1), υ(fc, n + 2) - 1, υ(k, n + 3),...)

= min(v(k, n + 1), v(k, n + 2), v(k, n + 3),...) - 1,

and hence v(k, n + 1) cannot be less than min(v(k, n + 2), v(A;, n + 3),...).
c. The hypothesis implies that

min(v(/j, n + 1), ?;(A;,n + 2), v(k,n + 3),...

= min(υ(A;, n + 2), υ(k, n + 3),...).

Hence

min(υ(fc,n + l), w(fc,n+ 2) - 1, v(fc,n + 3),...)

= min(τ;(λ;, n + 2) - 1, υ(A;, n + 3),...).

D

We can apply our results to obtain a lower bound for the 2-exponent of
Sp(n), similar to the applications made for SU(n) in [13] and [9]. This is
new information about actual homotopy groups. Recall that the 2-exponent
of a space X, denoted exp2(^0, is the minimal e such that 2e annihilates the
2-torsion of π*(X). Since the ^-periodic homotopy groups occur as direct
summands of actual homotopy groups, the following results are immediate
from Theorem 1.5 and Proposition 5.1.

Proposition 5.3. Let efp(n) = max{e(fc,n) : k > n}. Then efp(n) <
exp2(Sp{n)).
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Corollary 5.4. For n = 1,... ,7, ίAe values of exp2(Sp(n)) are equal to
or greater than 2, 5, 7, 12, 13, 16, and 20, respectively.

This says, for example, that some homotopy group of Sp(7) contains an
element of order 220. Corollary 5.4 is sharp when n = 1. An optimistic
conjecture would be that exp2{Sp(n)) = efp(n), although the situation of
SU(3) noted in [15] dampens one's confidence.

The following theorem, similar to the result which was felt to be important
enough to be highlighted as Theorem 1.1 in [13], gives a simple and fairly
sharp lower bound for exp2(S'p(n)). It says that, for every n, some homotopy
group of Sp(n) has an element of order 22n~1.

Theorem 5.5. 2n - 1 < efp(n) < exp2(Sp(n)).

Proof. The proof of (5.6) of [13] given on page 539 of that paper shows that
max{ec/(A;, m) : k φ m mod 2} > m — 1. In other words, the lower bound for
e%(m) given there is obtained using values opposite in parity to m. Since,
by (4.14), eSp{k,n) = ev(2k - l,2n), we obtain e2

p(n) > 2n - 1. The result
now follows from Proposition 5.3. D

Finally we can deduce results about quaternionic James numbers similar
to those proved for complex James numbers in [13] and [9]. Letting Xn>k
denote the quaternionic Stiefel manifold, the quaternionic James number cn^
is defined as the index of p*π4n_i(Xn,fc) in π 4 n _ 1 (5 4 n - 1 ) . See [32] or [26] for
earlier work on these numbers. The stable James numbers cs

n k are defined
similarly using stable homotopy groups instead of ordinary homotopy groups.
Our main result about quaternionic James numbers is that, if the numbers n
and k are sufficiently large compared to their difference, then the stable and
unstable James numbers are equal, and they equal their conjectured values.
Here e and e(—, —) are as in 1.5.

Theorem 5.6. If, for fixed n, k is sufficiently large, then

v(Ck,k-n) = KcJU-n) = K(2* - 1)0 + 6*-! " β(Λ,n).

Proof. We prove

u((2k - 1)!) + e n - β(fc,n) < i/(cjffc.n) < i/(cM.n)

The first inequality is from [32, 0.2] or [26, pp. 867-8], and the second is
immediate from the definitions. The third follows similarly to [13, 4.3].
Indeed, we deduce from Theorem 1.5 that, if fc is sufficiently large, then there
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is a summand of π4fc_2(Sp(n)) of order 2e(*'n) which injects into π4jb_2(S'p(λ;-
1)) « Z/(2ek~1(2k — 1)!). The following commutative diagram then implies
the inequality.

π«_i(5p(A;)/1S'p(A-l))->π4

π4fc_2(5p(

[k-2(Sp(k

n)) -

- i ) ) -

+ 0

4 0

6. Interpretation involving J-homology.

When we began this project in [16], we intended to use charts of J-homology
groups to determine v{1π^(Sp(n)). For various reasons, this turned out to
be infeasible. Nevertheless, it was important in lending insight toward the
answer, and might lend insight to others. Therefore, we present a sketch of
this point of view. In this section, we also use J-methods to prove Lemma
2.28, and introduce a new spectrum J l 5 which has certain advantages over
J.

Let J*(—) denote (stable) connective J-homology, as used, for example,
in [25], where the crucial result

(6.1) v^π,(S2n+1) « υΓ1 J , ( Σ 2 n + 1 P 2 n )

is proved.4 The determination of vϊιπ*(Sp(n)) from the exact sequences in
v Γ l π *(~) associated to the fibrations

Sp(i - 1) -> Sp(i) -> S4i~\ 2 < i < n,

may be viewed as the problem of inserting differentials and extensions in the

chart for

(6.2)
i=l i=l

We sketch how vf* J*(P2m) is determined, and refer the reader to [25] or
[17] for more details. It is formed from

(6.3) v^1bo^(P2m) 0 ^~2σ~1?;{"16oJ,(P2m),

where φι increases filtration by i, and σj increases stem by j. The second
summand is actually υ^1 (Σ4bsp)*(P2m), suitably positioned to reflect its
appearance in the exact sequence associated to the fibration

(6.4) J —̂  bo —^ Έ4bsp.

4It was not until [19] that it was stated in this form.
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All these spectra are localized at 2. To form vx

 1J*(P2m) from (6.3), one
inserts ^-differentials (i.e., back 1, up r) from a tower in horizontal position
Aj — 1 of the first summand to the corresponding tower from the second
summand in position 4j — 2 if r = u2{j) + 1.

We illustrate with the computation of v{x J*(PU). In the left half of
Figure 6.5 we depict the standard calculation of 6o*(P14). See, for example,
[17] or [25]. In the right half is vf1 J«,(P14).

11 19

4A

A

λ

Figure 6.5: bo*(Pu) and ϊ f1 J*(P1 4)

To form v^1bo*(P14), the part of Figure 6.5 in the parallelogram is contin-
ued in both directions with period [8,4]. This involves extending the initial
parts of the chart into negative filtration. The rectangle on the right side of
Figure 6.5 displays a portion of υΐι J*(PU) which appears for every integer
h. There is a d2+i/(/ι)-differential from the tower in 8h — 1 provided v(h) < 2.
If u(h) > 2, then the differential from 8h — 1 to 8/ι — 2 is zero.

These charts are summed as in (6.2) to obtain the initial term of a cellular
SS converging to ^f1π*(5p(n)). As we shall discuss later, the problem here
is that we cannot prove that the β-filtrations are meaningful. In the left
half of Figure 6.6, we have listed 0 vϊιπ3 (Σ^^P4^2) in the range 8k + 3 <
j < 8k + 10, filtration s > Ak — 13. Elements of the first type in (6.3) are
indicated by , and those of the second type by o. The label on a connected
component of this chart is the integer i such that it comes from j]4*-1p4 1-2.
We have omitted elements involved in di-differentials.

Every vf1π*(54i""1) with 1 < i < n contributes four pairs of Z2's to
the chart for Vγ xπ*(5p(n)). The elements in each pair are connected by
η G 7Γj+ι(Sj)^ which is represented in the charts by a line of length 1 and
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slope 1. On the right side of Figure 6.6, we indicate each of these pairs of
Z2's by a single number, the i such that the pair comes from 54*"1. The four
pairs are characterized by whether they come from the 6o-part or δsp-part,
and whether they are stable or unstable. The fesp-parts, which always lie 1
unit to the left and 2 down from their 6o-counterpart, were o's in the left
part of Figure 6.6, and are indicated by primes ("s) in the right part of the
chart. The unstable parts lie below their stable counterparts (except on S3);
they are indicated by a subscript u in the right side of Figure 6.6.

4k + 3

4k- 1

4k-5

4k-9

4k-

]\
8k+ 3

Figure 6.6: J-type chart for υ^ 1π*(Sp(n))

The pattern of differentials in the right side of Figure 6.6 is the way in
which the Z2's cancel out in vf 1π*(Sp) if the 5-filtrations are meaningful.
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These differentials are not quite the same as those given by Proposition
1.8. The differentials of that proposition involved minimal change of the
number of the sphere, while those in Figure 6.6 involve minimal increase of
s. On Sp(n) only the Z2-pairs with number < n will exist. This opens up
other classes to a more complicated pattern of differentials, similar to that
of Proposition 1.8.

When the Z2's are removed from consideration, what remains are the pairs
of towers which would like to contribute to υfV^+i and t f 1 π 4 j + 2 . These
have a pattern of differentials and extensions which is very complicated from
this point of view. The Novikov point of view is much more convenient for
handling these elements.

The biggest problem with using Figure 6.6 is that it is not clear that its
s-filtrations are meaningful. The chart certainly depicts the initial term of
a cellular SS converging to υϊ 1π*(Sp(n))'1 however, if it is to be useful, we
need to know that the differentials in the SS increase s, and that they may
be filtered by the amount by which they increase s.

In [18], it was proved that there is a finite spectrum Xn such that
v^17r^(Xn) « v^1π^(Sp(n)). The nice thing about this is that for a spec-
trum X there is an isomorphism vΐ1π*(X) « vΐι J*(X), and there is a SS
converging to vϊι J*(X) with initial term

υ^bo^X) Θ φ^σ^υ^bo^X),

similarly to (6.3), and with meaningful s-filtrations. The spectrum Xn will be
built by cofibrations from suspensions Έki of E 4 l - 1 P 4 l ~ 2 . It is the suspensions
that are the problem. They cause bo*(Xn) to be spread out compared to
Figure 6.6. That is, if k{ » k^u the contribution from Σ 4 i " 1 + f c ί P 4 i - 2 will
appear far to the right and below the contribution from γ;4i~5+ki-i p4i~6

m The
chart for v^1 J*(Xn) formed in this way would have possible differentials that
we would like to rule out. There is a possible solution to this problem. It
involves controlling the Adams filtration of the attaching maps. If we know
that the attaching map from Σ4i~2+hiP4i~2 to Xi-\ has filtration s, then
we can form a chart for J,(X;) from J*{Xi-X) and t^" 1 J*(Σ 4 i - 1 + *P 4 ί - 2 ) .
(Recall that φ increases filtration.) The hope was (is) that these filtrations
can be controlled so that the desired chart is obtained, but some difficulties
in doing this have not been overcome.

This seems not to be terribly important anyway, since the Novikov meth-
ods seem to offer a cleaner way of handling the differentials among the Z2's
as well as the larger summands. Figure 6.6 can be used for insight even if
we don't know that it represents anything real.

One of the unpleasant features of the spectrum J is that the usual J-
charts are not actual ASS charts. They do not depict ExtA(H*(X Λ J),Z 2),
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as was discussed in [14]. However, in filtration > 2, the usual J-chart is
an Ext chart, as we can see by utilizing the spectrum J 1 ? defined to be the
fibre of the nontrivial map J -» HZ2. The principal properties of Jx are
established in the following result, in which A2 denotes the subalgebra of
the mod 2 Steenrod algebra A generated by Sq1, Sq2, and Sq4.

Proposition 6.7. As an A-module,

(6.8) H*Jλ « (0o,fli,ίfe : Sq^SqV + Sq^Sq 1 ^ + Sq'SqV

where \gi\ = i. For any connected spectrum X, the ASS converging to π*(XΛ
Ji) has

(6.9) E°/{X Λ Λ) = Ext%(H*(X) ® T2, Z2),

where T2 is the A2-module with generators and relations as in (6.8). The
usual chart for J*(X), formed, for example, as in [25, 7.1], has its E^*
isomorphic to E2~

lit~1(X Λ J\) for s > 2, with differentials agreeing under
this isomorphism.

Proof. Let boλ denote the fibre of the nontrivial map bo —• HZ2. Then there
is a fibration

and θ' induces the O-homomorphism in mod 2 cohomology. This is the
advantage of Jx over J, for it implies a short exact sequence in cohomology
and hence a long exact sequence

(6.10) -> Exts/(H*(Σ3bsp)) -> Ext^(ίΓ(Ji)) "> Ext8/(H*(box)) -> .

This sequence holds with any H*Y in the second variable, although we shall
always have Z2 in the second variable. The exact sequence also holds after
smashing the spectra with a spectrum X. In a turnaround from the usual
order of business, we can use the Ext-sequence to tell us the A-extensions in
the short exact sequence

0 -> JΓ (δoi) -> iΓ(Ji) -> H*(Σ3bsp) -> 0.

The chart for Ext^(iί*(Ji)) begins as in Figure 6.11. Here #'s represent
classes from 6o1? and o's from Έ3bsp. The dι-differentials represent the
boundary homomorphism in (6.10), which is known by comparison with the
exact sequence of 2£i-terms of (6.4). The /iχ-extension from 2 to 3 also follows
from this comparison.
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0 3 7

Figure 6.11: Chart for

Prom Figure 6.11, we see that iί*(Ji) has generators g0, gx, and g3, with
relations Sq1gOj Sq2#i+Sq3flf0, S q ^ + α i S i + c ^ o , and Sq5 g3+a3gλ+aAg0, with
di G A. The relations correspond to the elements at height 1 in Figure 6.11,
and the presence of Sq1 and Sq2 in these relations can be read off from the
action of h0 (vertical lines) and hλ (diagonal lines) in the chart. The presence
of Sq5<73 is a consequence of the known structure of H*(bsp) = A/A(Sq1, Sq5).
From the element in position [3,2], we deduce that there must be an element
6 in A such that

Sq^Sq 1 ^ + αisi + a2g0) + Sq2(Sq2

9 l + Sq3

ffo) + ^Sq'ίto)

is identically 0. This implies that aι = Sq2Sq1, o2 = Sq4, and b = Sq4. The
term Sq3Sq1 could also be included as a summand of α2, but since we already
know that Sq 1 ^ = 0, there is no need to include it. Similarly, we omit an
optional Sq3 summand from aλ.

The Ext chart tells us that Sq1(Sq5^3 + a3g1 + a4g0) is expandable to an
identity. This implies that Sq6Sqx cannot be a summand of α3, for there
is no way to cancel the Sq7Sq1g1 using the earlier relations. Moreover, it
implies that this fourth relation in H*Jι must be of the form

(6.12) Sq5<?3 + eSq7

9

as Sq1 times this equals

β'((Sq8 + Sq

(Sq8 + Sq6Sq2)9 o),

Sq4Sq2(Sq2^

We need not consider Sq5Sq2 as a summand of α3, or Sq^q 1 or Sq5Sq2Sq1

as summands of α4, because the resulting elements could be obtained from
the first two relations. Finally the fact that Sq2(Sq5#3 + a3gx + a^g0) is
expandable to an identity implies that e' = 0 in (6.12) since there would be
no way to cancel the Sq10 which it would create, while e = 1, since
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Sq2(Sq5<?3 + SqV) = SqWίfe + Sq'Sq^ + Sq4

5o)

+ (Sq7 + Sq^q'Sq^SqV + Sq3g0).

Since the coefficients in the relations for H*(Jι) are all in A2, we deduce
that H*(Jι) can be written as A ®A2 T2, where T2 is an A2-module with
generators and relations corresponding exactly to those of the ^4-module
presentation of H*(Jι). The standard change-of-rings theorem now implies
the Ext result.

It is standard that, for any A-module M,

Ext8/(M® tf (&θi),Z2) « Ext^ + 1 ' m (M® H*(bo),Z2)

if s > 0. The third part of the proposition then follows from a comparison
of the "XΛ"-version of (6.10) with the long exact sequence

-> E x t 7 M ( i Γ ( X Λ Σ4bsp)) -> ES/(JΛl)^ Ext'/{H*(X Λ bo)) -> .

D

Now we prove Lemma 2.28. We use the isomorphism

and we pull the classes back under the map JΊ*(Qn) -> vϊιJ*(Qn). We
calculate Jι*(Qn) by the ASS, for which an £?i-term is formed by summing
charts like Figure 6.11, suspended Ai — 1 times, for 1 < i < n. The bound-
ary homomorphism of Lemma 2.28 has source classes which appear as o's
in horizontal component congruent to 3 mod 4 in Figure 6.11, and target
class of the type of the right-most in Figure 6.11. Differentials (boundary
homomorphisms) cannot go from o's to 3s in that chart; this is implied by
the exact sequence (6.10). D
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