VELOCITY MAPS IN VON NEUMANN ALGEBRAS

L. J. Bunce and John David Maitland Wright
VELOCITY MAPS IN VON NEUMANN ALGEBRAS

L.J. Bunce and J.D. Maitland Wright

When A is a C^*-algebra, a function $d : A_{sa} \to A_{sa}$ is said to be a velocity map if, for each commutative subalgebra B of A_{sa}, $d : B \to A_{sa}$ is a derivation.

Let A be a norm closed ideal, or quotient, in a von Neumann algebra without Type I_2 part and let $P(A)$ be the set of projections in A. It is shown that if $d : P(A) \to A$ is a bounded function such that $d(ef) = ed(f) + d(e)f$ whenever $ef = fe$, then d extends uniquely to a derivation of A. Hence every velocity map of A_{sa} bounded on the unit ball extends to a derivation of A.

Let A_{sa} denote the self-adjoint part of a C^*-algebra A. A function $d : A_{sa} \to A_{sa}$ is said to be a velocity map if

(i) $d(\lambda x) = \lambda d(x)$, for all $\lambda \in \mathbb{R}$, $x \in A_{sa}$

(ii) $d(x + y) = d(x) + d(y)$, for all $x, y \in A_{sa}$ with $xy = yx$

(iii) $d(xy) = xd(y) + d(x)y$, for all $x, y \in A_{sa}$ with $xy = yx$.

Velocity maps are motivated by their relevance to quantum dynamics. Briefly, A_{sa} is identified with the bounded observables (of a physical system) the rate of change of which is measured by the velocity maps on A_{sa}; only when two observables commute are they simultaneously measurable and is their product again an observable. See [4] for more details.

The point of interest and natural question is: When do velocity maps extend to derivations?

It transpires that linear velocity maps always extend to derivations (see Proposition 1). If linearity is not assumed then we are still able to obtain positive results for a large class of C^*-algebras that includes Calkin algebras and all von Neumann algebras without Type I_2 part. In fact we prove something more.

Given a C^*-algebra, A, we let $P(A)$ denote the set of projections of A. Our main result is the following.

Let M be a von Neumann algebra without Type I_2 part and let A be a norm closed ideal of M or a quotient of a norm closed ideal of M. Let $d : P(A) \to A$ be any bounded function satisfying

$$d(ef) = d(e)f + ed(f), \text{ whenever } ef = fe.$$
Then d extends uniquely to a derivation of A.

We will show by example that the exclusion of Type I_2 algebras from the above statement is necessary.

By an ingenious direct constructive argument Rajarama Bhat [4, Theorem 3.5] proved that every linear velocity map on $B(H)_{sa}$ extends to a derivation of $B(H)$ when H is separable. We need to show that this extension theorem holds for all C^*-algebras. In fact, we have:

Proposition 1. Let B be any C^*-algebra and let $d : B_{sa} \to B$ be a (real) linear map such that

$$d(xy) = d(x)y + x d(y), \text{ whenever } xy = yx.$$

Then d extends to a derivation of B.

Proof. Recall that the Jordan product $a \circ b$ of $a, b \in B$ is given by $a \circ b = \frac{1}{2}(ab + ba)$. So, $d(a^2) = 2d(a) \circ a$, for each $a \in B_{sa}$.

Given $x, y \in B_{sa}$ we have

$$d(x \circ y) = \frac{1}{2}[d((x + y)^2) - d(x^2) - d(y^2)]$$

$$= (d(x + y)) \circ (x + y) - d(x) \circ x - d(y) \circ y$$

$$= d(x) \circ y + d(y) \circ x.$$

By a simple calculation we see that

$$\overline{d}(x \circ y) = \overline{d}(x) \circ y + x \circ \overline{d}(y), \text{ for all } x, y \in B,$$

where $\overline{d} : B \to B$ is the complex linear extension of d. In other words, \overline{d} is a Jordan derivation of B and hence, by a result of Sinclair [6], is a derivation of B as required.

In all that follows M is a von Neumann algebra without Type I_2 direct summand and I is a norm closed two sided ideal of M. We let I_0 denote the norm closed two sided ideal of I generated by the abelian projections in I. (A projection e of M is abelian, or Type I_1, if the algebra eMe is abelian.)

We will need an extension of the solution of the Mackey-Gleason Problem given by the authors in [1], [2] and summarised in [3]. By way of preparation we note that if Ω is a maximal abelian C^*-subalgebra of I, then $\Omega = I \cap \overline{\Omega}$ and so is an ideal of $\overline{\Omega}$, the (abelian) weak closure of Ω in M. By spectral theory Ω is (as therefore is I) the norm closed linear span of its projections. Given $e, f \in P(M)$ with $e \leq f$ and $f \in P(I)$ we have $e \in P(I)$. For arbitrary $e, f \in P(I)$ we have $e \vee f - e \sim f - e \wedge f$.
A projection e of M is said to be a Type I_n projection, where $n < \infty$, if the von Neumann algebra eMe is of Type I_n.

Lemma 1. Let e_1, \ldots, e_n be Type I_3 projections in M and let p be a (possibly zero) abelian projection in M. Then $(e \vee p)M(e \vee p)$ (and hence eMe) has no Type I_2 direct summand, where $e = e_1 \vee \ldots \vee e_n \vee p$.

Proof. If $(e \vee p)M(e \vee p)$ has a Type I_2 direct summand, then $z(e \vee p) = (ze_1) \vee \ldots \vee (ze_n) \vee (zp)$ is a Type I_2 projection for some central projection z of M. Since for $i = 1, \ldots, n$, e_iMe_i has no Type I_2 direct summand this means that $ze_i = 0$ so that $z(e \vee p) = zp$ is abelian, which is a contradiction. \qed

Lemma 2.

(i) $P(I)$ is an increasing approximate unit of I.

(ii) If M has no Type I_1 direct summand (as well as no Type I_2 direct summand), then

$$\{e_1 \vee \ldots \vee e_n : e_i \text{ is a Type } I_3 \text{ projection in } I, i = 1, \ldots, n, n \in \mathbb{N}\}$$

is an increasing approximate unit of I_0.

Proof.

(i) Note that $P(I)$ is an increasing net in I. Let x be in I, where $x = x^*$, and let $\epsilon > 0$. By the preamble there exist real numbers $\lambda_1, \ldots, \lambda_n$ and mutually orthogonal projections e_1, \ldots, e_n in I such that $\|x - \sum_1^n \lambda_i e_i\| < \epsilon$. So, $\|x(1 - p)\| < \epsilon$ where $p = \sum_1^n e_i$. If $q \in P(I)$ with $p \leq q$, then

$$\|x(1 - q)\| = \|x(1 - q)x\|^{\frac{1}{2}} \leq \|x(1 - p)x\|^{\frac{1}{2}} = \|x(1 - p)\| < \epsilon.$$

(ii) Suppose that M has no Type I_1 direct summand and let p be an abelian projection of M contained in I and so in I_0. Because M has no Type I_2 direct summand either, there exist projections q and h in M such that p, q, h are mutually orthogonal and equivalent. The projection $e = p + q + h$ is then a Type I_3 projection in I dominating p. We note that e is in I_0.

For any projection p in I_0, pMp is a postliminal C^*-algebra because I_0 is postliminal as follows from [5, §6.1] for example. So pMp is a direct sum of finitely many Type I_k von Neumann algebras for certain $k < \infty$ and hence $p = p_1 + \cdots + p_r$ for certain abelian projections p_i in I_0. So $p \leq e_1 \vee \ldots \vee e_r$ from some Type I_3 projections e_1, \ldots, e_r of I_0 by the above.

Since, by (i), $P(I_0)$ is an increasing approximate unit for I_0 it now follows that the increasing net in $P(I_0)$ described in the statement is also an approximate unit of I_0. \qed
In the case when $A = M$, the following proposition is [2, Theorem A]. See also [3].

Proposition 2. Let the C^*-algebra A be equal to a quotient of I, where I is a norm closed ideal of M, and let X be a Banach space. Let $\rho : P(A) \to X$ be a bounded function such that

$$\rho(e + f) = \rho(e) + \rho(f), \quad \text{whenever } ef = 0.$$

Then ρ extends uniquely to a continuous linear map $\overline{\rho} : A \to X$.

Proof. (a) Let $A = I$. Suppose first that $X = \mathbb{C}$.

Because the maximal abelian subalgebras of I are generated by projections we have, precisely as in [1, §1], that ρ extends uniquely to a function $\overline{\rho} : I \to \mathbb{C}$ bounded on the unit ball of I satisfying $\overline{\rho}(a + ib) = \overline{\rho}(a) + i\overline{\rho}(b)$ wherever $a = a^*$ and $b = b^*$, and which is linear on every abelian C^*-subalgebra of I.

We make the harmless normalising assumption that $\overline{\rho}$ sends the unit ball of I into the unit disc. We show that $\overline{\rho}$ is linear.

If M has Type I_1 direct summand zM, where z is central projection of M, then $I = zI \oplus (1 - z)I$ and $\overline{\rho}$ is already linear on zI. Passing to $(1 - z)I$, we may therefore suppose that M has no Type I_1 direct summand (as well as having no Type I_2 direct summand).

We show first that $\overline{\rho}$ is linear on I_0. Invoking Lemmas 1 and 2 we can an increasing approximate unit (e_λ) of I_0 contained in $\rho(I_0)$ for which the algebras $e_\lambda Me_\lambda$ and $(e_\lambda \vee p)M(e_\lambda \vee p)$ have no Type I_2 direct summand, for all λ and for all abelian projections p in I_0. Consequently, $\overline{\rho}$ is linear on all of these algebras by [2, Theorem A].

Let x be a self-adjoint element of I_0 and let $\epsilon > 0$. There is a λ_0 such that $\|e_\lambda xe_\lambda - e_\mu xe_\mu\| < \epsilon$, for all $\lambda, \mu \geq \lambda_0$. Linearity of $\overline{\rho}$ on $(e_\lambda \vee e_\mu)M(e_\lambda \vee e_\mu)$ implies that $|\overline{\rho}(e_\lambda xe_\lambda) - \overline{\rho}(e_\mu xe_\mu)| < \epsilon$, for all $\lambda, \mu > \lambda_0$. Consequently, $\rho(e_\lambda xe_\lambda)$ converges for all x in I_0 and we see that the map $\tau : A \to \mathbb{C}$ defined by $\tau(x) = \lim \overline{\rho}(e_\lambda xe_\lambda)$ is linear.

When p is an abelian projection in I_0, linearity of $\overline{\rho}$ on all $(e_\lambda \vee p)M(e_\lambda \vee p)$ and the fact that $\|e_\lambda pe_\lambda - p\| < \epsilon$ for all large enough λ, gives $\rho(p) = \lim \overline{\rho}(e_\lambda pe_\lambda)$ by similar reasoning. Hence $\rho(e) = \tau(e)$ for all $e \in P(I_0)$, because every projection of I_0 is a finite orthogonal sum of abelian projections in I_0. It follows that $\overline{\rho}$ agrees with τ on all of I_0 and so is linear there.

Now let e be any projection in I. We have $eMe = M_1 \oplus M_2$, where M_1 is Type I_2 or zero and M_2 has no Type I_2 direct summand. But then $M_1 \subset I_0$ and so $\overline{\rho}$ is linear on M_1 by the above. By [2, Theorem A], ρ is linear on M_2. Hence $\overline{\rho}$ is linear on eMe, for all $e \in P(I)$. Now, repeating appropriately the arguments of the previous paragraph, this time for the approximate unit $P(I)$ of I, we have that $\overline{\rho}$ is linear on I.
The general case, for an arbitrary Banach space \(X \), now follows as in Lemma 1.1. of \([2]\) or \([3]\).

(b) Let \(A = I/J \), where \(J \) is a norm closed two-sided ideal of \(I \) and let \(\pi : I \to I/J \) be the canonical homomorphism. By the above, \(\rho \pi : P(I) \to X \) then extends to a continuous linear map \(\varphi : I \to X \) vanishing on \(J \). The induced linear map \(\bar{\varphi} : I/J \to X \) extends \(\rho \) (uniquely) as desired. This completes the proof. \(\square \)

We can now prove our main result.

Theorem. Let \(M \) be a von Neumann algebra without Type \(I_2 \) part and let \(A \) be a norm closed ideal of \(M \) or be a quotient of a norm closed ideal of \(M \). Let \(d : P(A) \to A \) be a bounded function such that
\[
d(ef) = d(e)f + e(df), \quad \text{whenever } ef = fe.
\]
Then \(d \) extends uniquely to a derivation of \(A \).

Proof. We note that \(d(p) = d(p)p + pd(p) \), for all projections \(p \) of \(A \). Let \(e \) and \(f \) be orthogonal projections of \(A \). Thus, as \(ef = fe = 0 \), we have
\[
d(e)f + ed(f) = d(f)e + fd(e) = 0.
\]
In addition, since \(e = e(e + f) = (e + f)e \), we have
\[
d(e) = d(e)(e + f) + ed(e + f) = (d(e + f))e + (e + f)d(e),
\]
so that
\[
2d(e) = ed(e + f) + (d(e + f))e + d(e)(e + f) + (e + f)d(e),
\]
and hence, using (*)&
\[
d(e) = ed(e + f) + (d(e + f))e + d(e)f + fd(e).
\]
Similarly,
\[
d(f) = fd(e + f) + (d(e + f))f + d(f)e + ed(f).
\]
The final two equations, together with (*)&, imply that
\[
d(e) + d(f) = (e + f)d(e + f) + (d(e + f))(e + f) = d(e + f).
\]
Therefore, by Proposition 2, \(d \) extends uniquely to a continuous linear map \(\bar{d} : A \to A \). It follows that the assignment
\[
h(x, y) = \bar{d}(xy) - \bar{d}(x)y - xd(y)
\]
is continuous and bilinear on $A \times A$. Let Ω be an abelian C^*-subalgebra of A. By assumption $h(e, f) = 0$ for all projections e, f in Ω. But Ω is the norm closed linear span of its projections. Hence, by continuous bilinearity, h is identically zero on $\Omega \times \Omega$. Therefore,

$$
\overline{d}(xy) = \overline{d}(x)y + x\overline{d}(y), \quad \text{for all } x, y \text{ in } A_{sa} \text{ with } xy = yx.
$$

Hence, by Proposition 1, \overline{d} is a derivation. \hfill \Box

Corollary. Let A be as in the Theorem and let $d : A_{sa} \to A_{sa}$ be a velocity map bounded on the ball of A_{sa}. Then d extends to a derivation of A.

The Theorem and its Corollary apply to all von Neumann algebras without Type I_2 direct summand and to their norm closed two sided ideals and quotients. So, for instance, they apply to the Calkin algebra and also to every dual C^*-algebra without Type I_2 representations. But the exclusion of Type I_2-algebras is necessary. The following example explains why.

Example. Let $M = M_2(\mathbb{C})$.

Let $p = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $u_n = \begin{bmatrix} \cos(\theta_n) & \sin(\theta_n) \\ -\sin(\theta_n) & \cos(\theta_n) \end{bmatrix}$ and $p_n = u_np_n^*$ where $\theta = \pi/5^n$, for all $n \in \mathbb{N}$. Notice that the p_n are mutually non-orthogonal and that

$$
\overline{p}_n = p_n\overline{p}_n + \overline{p}_n p_n, \quad \text{where } \overline{p}_n = u_n \begin{bmatrix} 0 & (-1)^n \\ (-1)^n & 0 \end{bmatrix} u_n^*,
$$

for all $n \in \mathbb{N}$. Define a bounded function, $d : P(M) \to M_{sa}$, by

$$
d(p_n) = \overline{p}_n, \quad \text{for all } n \in \mathbb{N}
$$

$$
d(1 - p_n) = -\overline{p}_n, \quad \text{for all } n \in \mathbb{N}
$$

$$
d(q) = 0, \quad \text{whenever } q \text{ is not in } \{p_n : n \in \mathbb{N}\} \cup \{1 - p_n : n \in \mathbb{N}\}.
$$

Since commuting non-zero projections are either equal or are orthogonal with sum 1 it is easy to see that d satisfies

$$
d(ef) = ed(f) + d(e)f, \quad \text{whenever } ef = fe
$$

$$
d(e + f) = d(e) + d(f), \quad \text{whenever } ef = 0.
$$

Also, by direct calculation, (or a simple version of arguments deployed in the proof of the Theorem) we observe that d has a unique extension to a velocity map $\overline{d} : M_{sa} \to M_{sa}$ bounded on the unit ball. But \overline{d} is not linear because d is discontinuous. For example, $p_n \to e$ whereas $d(p_n)$ fails to converge. So d (and \overline{d}) cannot extend to a derivation of M.
References

Received December 14, 1992 and revised June 11, 1993.

READING UNIVERSITY
READING RG6 2AX,
U.K.
E-MAIL ADDRESS: MATHS@READING.AC.UK

AND

ISAAC NEWTON INST. FOR MATH. SCIENCES
20 CLARKSON ROAD
CAMBRIDGE CB3 OEH
U.K.
E-MAIL ADDRESS: WRIGHT@NEWTON.CAM.AC.UK
CONTENTS

N. Ben Amar, Tangential deformations on the dual of nilpotent special Lie algebras ... 297
Martin Bendersky, Donald M. Davis and Mark Mahowald, v_1-periodic homotopy groups of $Sp(n)$... 319
Georgia Benkart, Seok-Jin Kang, Kailash C. Misra, Indefinite Kac-Moody algebras of special linear type ... 379
Robin Brooks and Charles Odenthal, Nielsen numbers for roots of maps of aspherical manifolds ... 405
L.J. Bunce and J.D. Maitland Wright, Velocity maps in von Neumann algebras ... 421
Bradley N. Currey, Smooth decomposition of finite multiplicity monomial representations for a class of completely solvable homogeneous spaces ... 429
R.J. Daverman and D.F. Snyder, On proper surjections with locally trivial Leray sheaves ... 461
Patrick N. Dowling, Zhibao Hu and Mark A. Smith, MLUR renormings of Banach spaces ... 473
Tuval Foguel, Finite groups with a special 2-generator property ... 483
Mourad E.H. Ismail and Mizan Rahman, Some basic bilateral sums and integrals ... 497
Wojciech Jaworski, Strong approximate transitivity, polynomial growth, and spread out random walks on locally compact groups ... 517
N. Kutev and F. Tomi, Nonexistence and instability in the exterior Dirichlet problem for the minimal surface equation in the plane ... 535
A. Nobile, Equisingularity Theory for Plane Curves With Embedded Points ... 543
Dominikus Noll, Directional differentiability of the metric projection in Hilbert space ... 567

Vol.170, No.2 October 1995
Tangential deformations on the dual of nilpotent special Lie algebras
NABIHA BEN AMAR

v_1-periodic homotopy groups of Sp(n)
MARTIN BENDERSKY, DONALD M. DAVIS and MARK MAHOWALD

Indefinite Kac-Moody algebras of special linear type
GEORGIA BENKART, SEOK-JIN KANG and KAILASH C. MISRA

Nielsen numbers for roots of maps of aspherical manifolds
ROBIN B. S. BROOKS and CHARLES ODENTHAL

Velocity maps in von Neumann algebras
L. J. Bunce and JOHN DAVID MAITLAND WRIGHT

Smooth decomposition of finite multiplicity monomial representations for a class of completely solvable homogeneous spaces
BRADLEY CURREY

On proper surjections with locally trivial Leray sheaves
ROBERT JAY DAVERMAN and DAVID FRED SNYDER

MLUR renormings of Banach spaces
PATRICK DOWLING, Zhibao Hu and MARK ANDREW SMITH

Finite groups with a special 2-generator property
TUVAL S. FOGUEL

Some basic bilateral sums and integrals
MOURAD ISMAIL and MIZAN RAHMAN

Strong approximate transitivity, polynomial growth, and spread out random walks on locally compact groups
WOJCIECH JAWORSKI

Nonexistence and instability in the exterior Dirichlet problem for the minimal surface equation in the plane
NIKOLAI KUTEV and FRIEDRICH TOMI

Equisingularity theory for plane curves with embedded points
AUGUSTO NOBILE

Directional differentiability of the metric projection in Hilbert space
DOMINIKUS NOLL