ON MODULI OF INSTANTON BUNDLES ON \mathbb{P}^{2n+1}

Vincenzo Ancona and G. Ottaviani

Let $M_{\mathbb{P}^{2n+1}(k)}$ be the moduli space of stable instanton bundles on \mathbb{P}^{2n+1} with $c_2 = k$. We prove that $M_{\mathbb{P}^{2n+1}(2)}$ is smooth, irreducible, unirational and has zero Euler-Poincaré characteristic, as it happens for \mathbb{P}^3. We find instead that $M_{\mathbb{P}^{5}(3)}$ and $M_{\mathbb{P}^{5}(4)}$ are singular.

1. Definition and preliminaries.

Instanton bundles on a projective space $\mathbb{P}^{2n+1}(\mathbb{C})$ were introduced in [OS] and [ST]. In [AO] we studied their stability, proving in particular that special symplectic instanton bundles on \mathbb{P}^{2n+1} are stable, and that on \mathbb{P}^5 every instanton bundle is stable.

In this paper we study some moduli spaces $M_{\mathbb{P}^{2n+1}(k)}$ of stable instanton bundles on \mathbb{P}^{2n+1} with $c_2 = k$. For $k = 2$ we prove that $M_{\mathbb{P}^{2n+1}(2)}$ is smooth, irreducible, unirational and has zero Euler-Poincaré characteristic (Theor. 3.2), just as in the case of \mathbb{P}^3 [Har].

We find instead that $M_{\mathbb{P}^{5}(k)}$ is singular for $k = 3, 4$ (theor. 3.3), which is not analogous with the case of \mathbb{P}^3 [ES], [P]. To be more precise, all points corresponding to symplectic instanton bundles are singular. Theor. 3.3 gives, to the best of our knowledge, the first example of a singular moduli space of stable bundles on a projective space. The proof of Theorem 3.3 needs help from a personal computer in order to calculate the dimensions of some cohomology group [BaS].

We recall from [OS], [ST] and [AO] the definition of instanton bundle on $\mathbb{P}^{2n+1}(\mathbb{C})$.

Definition 1.1. A vector bundle E of rank $2n$ on \mathbb{P}^{2n+1} is called an instanton bundle of quantum number k if

(i) The Chern polynomial is $c_t(E) = (1 - t^2)^{-k} = 1 + kt^2 + (k+1)t^2 + \ldots$

(ii) $E(q)$ has natural cohomology in the range $-2n - 1 \leq q \leq 0$ (that is $h^i(E(q)) \neq 0$ for at most one $i = i(q)$)

(iii) $E|_r \simeq O_r^{2n}$ for a general line r.

Every instanton bundle is simple [AO]. There is the following characterization:
Theorem 1.2 ([ST], [AO]). A vector bundle E of rank $2n$ on \mathbb{P}^{2n+1} satisfies the properties (i) and (ii) if and only if E is the cohomology of a monad

\[(1.1) \quad \mathcal{O}(-1)^k \xrightarrow{A} \mathcal{O}^{2n+2k} \xrightarrow{B} \mathcal{O}(1)^k.\]

With respect to a fixed system of homogeneous coordinates the morphism A (resp. B) of the monad can be identified with a $k \times (2n + 2k)$ (resp. $(2n + 2k) \times k$) matrix whose entries are homogeneous polynomials of degree 1. Then the conditions that (1.1) is a monad are equivalent to:

A, B have rank k at every point $x \in \mathbb{P}^{2n+1}$, $A \cdot B = 0$.

Definition 1.3. A bundle S appearing in an exact sequence:

\[(1.2) \quad 0 \to S^* \to \mathcal{O}^d \xrightarrow{B} \mathcal{O}(1)^c \to 0\]

is called a Schwarzenberger type bundle (STB).

The kernel bundle $\text{Ker } B$ in the monad (1.1) is the dual of a STB.

Definition 1.4. An instanton bundle is called special if it arises from a monad (1.1) where the morphism B is defined in some system of homogeneous coordinates $(x_0, \ldots, x_n, y_0, \ldots, y_n)$ on \mathbb{P}^{2n+1} by the matrix

\[B = \begin{bmatrix} x_0 & \cdots & \cdots & x_n \\ \vdots & \ddots & \ddots & \vdots \\ x_n & x_0 & \cdots & x_n \\ y_0 & \vdots & \ddots & \vdots \\ y_n & y_0 & \cdots & y_n \end{bmatrix}\]
Example 1.5. Take

\[
A = \begin{bmatrix}
 y_n & \cdots & y_0 & -x_n & \cdots & -x_0 \\
 \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 y_0 & \cdots & -x_n & \cdots & -x_0
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
x_0 \\
\vdots \\
x_n \\
y_0 \\
\vdots \\
y_n
\end{bmatrix}
\]

\[
E = \text{Ker } B / \text{Im } A
\]

is a special instanton bundle.

Property (iii) of the definition 1.1 can be checked by the following:

Theorem 1.6 [OS]. Let \(E = \text{Ker } B / \text{Im } A \) as in (1.1). Let \(r \) be the line joining two distinct points \(P, Q \in \mathbb{P}^{2n+1} \). Then

\[
E|_r \simeq \mathcal{O}_r^{2n} \iff A(P) \cdot B(Q)
\]

is an invertible matrix.

Example 1.7. Consider the special instanton bundle \(E \) of the example 1.5. Let \(P = (1, 0, \ldots ; 0, \ldots, 0) \), \(Q = (0, \ldots ; 0, \ldots, 1) \). Then

\[
A(P) = \begin{bmatrix}
 & & & -1 \\
 & \ddots & & \\
 & & 1 & \\
-1 & & &
\end{bmatrix}
\]

\[
B(Q) = \begin{bmatrix}
1 \\
\ddots \\
& 1
\end{bmatrix}
\]

and \(A(P) \cdot B(Q) = \begin{bmatrix}
 & & & -1 \\
 & \ddots & & \\
 & & 1 & \\
-1 & & &
\end{bmatrix} \) is invertible. Hence \(E \) is trivial on the line \(\{ x_1 = \ldots = x_n = y_0 = \ldots = y_{n-1} = 0 \} \).

Proposition 1.8. Let \(E \) be an instanton bundle as in (1.1). Then

\[
H^2(\mathcal{O} \otimes \mathcal{O}^*) = H^2[\text{Ker } B \otimes (\text{Ker } A^t)]
\]
Proof. See [AO] Theorem 3.13 and Remark 2.22. □

Remark 1.9. If $E \cong E^*$, then

$$H^2(E \otimes E^*) = H^2[(\text{Ker } A^t) \otimes (\text{Ker } A^t)] = H^2[(\text{Ker } B) \otimes (\text{Ker } B)].$$

Remark 1.10. The single complex associated with the double complex obtained by tensoring the two sequences

$$0 \to \text{Ker } A^t \to \mathcal{O}^{2n+2k} \xrightarrow{A^t} \mathcal{O}(1)^k \to 0$$
$$0 \to \text{Ker } B^t \to \mathcal{O}^{2n+2k} \xrightarrow{B^t} \mathcal{O}(1)^k \to 0$$

gives the resolution

$$0 \to (\text{Ker } A^t) \otimes (\text{Ker } B) \to \mathcal{O}^{2n+2k} \otimes \mathcal{O}^{2n+2k}$$
$$\to \mathcal{O}^{2n+2k} \otimes \mathcal{O}(1)^k \otimes \mathcal{O}(1)^k \otimes \mathcal{O}^{2n+2k} \to \mathcal{O}(1)^k \otimes \mathcal{O}(1)^k \to 0$$

where $\alpha = (A^t \otimes \text{id}, \text{id} \otimes B)$.

Hence

$$H^2(E \otimes E^*) = \text{Coker } H^0(\alpha)$$

and its dimension can be computed using [BaS]. For the convenience of the reader we sketch the steps needed in the computations.

A, B^t are given by $k \times (2n + 2k)$ matrices whose entries are linear homogeneous polynomials.

$$A \otimes \text{Id}_k = (a_1, \ldots, a_{k(2n+2k)})$$

and

$$\text{Id}_k \otimes B^t = (b_1, \ldots, b_{k(2n+2k)})$$

are both $k^2 \times (2n + 2k)k$ matrices. Let

$$C = (a_1, \ldots, a_{k(2n+2k)}, b_1, \ldots, b_{k(2n+2k)}).$$

We will denote by $\text{syz}_m C$ the dimension of the space of the syzygies of C of degree m. Then

$$h^2(E \otimes E^*) = h^0(\mathcal{O}(2)^{k^2}) - (4n + 4k)h^0(\mathcal{O}(1)^k) + \text{syz}_1 C$$

$$= k(n+1)[k(2n-5) - 8n] + \text{syz}_1 C$$

$$h^1(E \otimes E^*) = h^2(E \otimes E^*) + 1 - k^2 + 8n^2k - 4n^2 + 3nk^2 - 2nk^2$$

$$= 1 - 6k^2 - 8kn - 4n^2 + \text{syz}_1 C.$$
Note also that \(h^0(E(1)) = \text{syz}_1 B^t - k \) and \(h^0(E^*(1)) = \text{syz}_1 A - k \).

Remark 1.11. In the same way we obtain
\[
\begin{align*}
\text{h}^1(E \otimes E^*(-1)) &= \text{syz}_0 C \\
\text{h}^2(E \otimes E^*(-1)) &= 2k(nk - 2n - k) + \text{syz}_0 C.
\end{align*}
\]

2. Example on \(\mathbb{P}^5 \).

Let \((a, b, c, d, e, f)\) be homogeneous coordinates in \(\mathbb{P}^5 \).

Example 2.1. \((k = 3)\) Let

\[
B^t = \begin{bmatrix}
 a & b & c & d & e & f \\
 a & b & c & d & e & f \\
 a & b & c & d & e & f
\end{bmatrix},
\]

\[
A = \begin{bmatrix}
 f & e & d & -c & -b & -a \\
 f & e & d & -c & -b & -a \\
 f & e & d & -c & -b & -a
\end{bmatrix}.
\]

The corresponding monad gives a special symplectic instanton bundle on \(\mathbb{P}^5 \) with \(k = 3 \). With the notation of remark 1.10, using \([\text{BaS}]\) we can compute syz\(_0\) \(C = 14 \), syz\(_1\) \(C = 174 \). Hence \(h^2(E \otimes E^*) = 3 \) from the formulas of Remark 1.10. Moreover \(h^0(E(1)) = 4 \).

Example 2.2. \((k = 3)\) Let \(B^t \) as in the Example 2.1 and

\[
A = \begin{bmatrix}
 f & e & d & -c & -b & -a \\
 e & d & 2f & -b & -a & -2c \\
 d & f & -a & -c & -b
\end{bmatrix}.
\]

We have \(\text{syz}_0 C = 10, \text{syz}_1 C = 171 \). Hence \(h^2(E \otimes E^*) = 0 \). We can compute also the syzygies of \(B^t \) and \(A \) and we get \(h^0(E(1)) = 4, h^0(E^*(1)) = 3 \), hence \(E \) is not self-dual.

Example 2.3. \((k = 4)\) Let

\[
B^t = \begin{bmatrix}
 a & b & c & d & e & f \\
 a & b & c & d & e & f \\
 a & b & c & d & e & f \\
 a & b & c & d & e & f
\end{bmatrix},
\]

\[
A = \begin{bmatrix}
 f & e & d & -c & -b & -a \\
 f & e & d & -c & -b & -a \\
 f & e & d & -c & -b & -a \\
 f & e & d & -c & -b & -a
\end{bmatrix}.
\]
E is a special symplectic instanton bundle with $k = 4$. We compute

$$h^2(E \otimes E^*) = 12.$$

Example 2.4. $(k = 4)$ Let B^4 as in the Example 2.3. Let

$$A = \begin{bmatrix}
 f & e & d & -c & -b & -a \\
 e & d & 2f & -b & -a & -2c \\
 3d & f & e & -3a & -c & -b \\
 f & e & d & -c & -b & -a
\end{bmatrix}.$$

In this case $h^2(E \otimes E^*) = 6$, $h^0(E(1)) = 4$, $h^0(E^*(1)) = 3$.

Example 2.5. $(k = 4)$ Let B^4 as in the Example 2.3. Let

$$A = \begin{bmatrix}
 f & e & d & -c & -b & -a \\
 e & d & 2f & -b & -a & -2c \\
 3d & f & e & -3a & -c & -b \\
 5d & f & e & d + f & e & -5a & -c & -b & -a & -c & -b
\end{bmatrix}.$$

Now $H^2(E \otimes E^*) = 0$, $h^0(E(1)) = 4$, $h^0(E^*(1)) = 2$.

3. **On the singularities of moduli spaces.**

The stable Schwarzenberger type bundles on \mathbb{P}^m (see (1.2)) form a Zariski open subset of the moduli space of stable bundles. Let $N_{p_m}(k, q)$ be the moduli space of stable STB whose first Chern class is k and whose rank is q. The following proposition is easy and well known:

Proposition 3.1. The space $N_{p_m}(k, q)$ is smooth, irreducible of dimension $1 - k^2 - (q + k)^2 + k(q + k)(m + 1)$.

We denote by $\text{MI}_{p_{2n+1}}(k)$ the moduli space of stable instanton bundles with quantum number k. It is an open subset of the moduli space of stable $2n$-bundles on \mathbb{P}^{2n+1} with Chern polynomial $(1 - t^2)^{-k}$.

On \mathbb{P}^5 (as on \mathbb{P}^3) all instanton bundles are stable by [AO], Theorem 3.6. $\text{MI}_{p_{2n+1}}(2)$ is smooth ([AO] Theorem 3.14), unirational of dimension $4n^2 + 12n - 3$ and has zero Euler-Poincaré characteristic ([BE], [K]).

Theorem 3.2. The space $\text{MI}_{p_{2n+1}}(2)$ is irreducible.

Proof. The moduli space $N = N_{p_{2n+1}}(2, n + 2)$ of stable STB of rank $2n + 2$ and $c_1 = 2$ is irreducible of dimension $4n^2 + 8n - 3$ by Prop. 3.1
For a given instanton bundle E there is a STB S associated with E, which is stable ([AO], Theorem 2.8) and unique (ibid., Prop. 2.17). It is easy to prove that the map $\pi : M \rightarrow N$ defined by $\pi([E]) = [S]$ is algebraic, moreover π is dominant by [ST]. If $m = [E] \in M$, the fiber $\pi^{-1}(\pi(m))$ is a Zariski open subset of the grassmannian of planes in the vector space $H^0(\mathbb{P}^{2n+1}, S^*(1))$, where $\pi(m) = [S]$; by the Theorem 3.14 of [AO], $h^0(\mathbb{P}^{2n+1}, S^*(1)) = 2n + 2$, hence $\dim \pi^{-1}(\pi(m)) = 4n$.

In order to prove that M is irreducible, we suppose by contradiction that there are at least two irreducible components M_0 and M_1 of M. Then $M_0 \cap M_1 = \emptyset$ (M is smooth), $\pi(M_0)$ and $\pi(M_1)$ are constructible subset of N by Chevalley’s theorem. Looking at the dimensions of M_0, M_1, N and the fibers of π we conclude that both $\pi(M_0)$ and $\pi(M_1)$ must contain an open subset of N, which implies $\pi(M_0) \cap \pi(M_1) \neq \emptyset$ by the irreducibility of N. This is a contradiction because the fibers of π are connected.

For $n \geq 2$ and $k \geq 3$, it is no longer true that $M_{\mathbb{P}^{2n+1}}(k)$ is smooth. In fact on \mathbb{P}^5 we have:

Theorem 3.3. The space $M_{\mathbb{P}^5}(k)$ is singular for $k = 3, 4$. To be more precise, the irreducible component $M_0(k)$ of $M_{\mathbb{P}^5}(k)$ containing the special instanton bundles is generically reduced of dimension $54(k = 3)$ or $65(k = 4)$, and $M_{\mathbb{P}^5}(k)$ is singular at the points corresponding to special symplectic instanton bundles.

Proof. Let E_0 be the special instanton bundle on \mathbb{P}^5 of the Example 2.2($k = 3$) or of the Example 2.5($k = 4$). Then $h^2(E_0 \otimes E_0^*) = 0$ and $M_0(k)$ is smooth at the point corresponding to E_0, of dimension $h^1(E_0 \otimes E_0^*) = 54(k = 3)$ or $65(k = 4)$. In particular, $M_0(k)$ is generically reduced. If E_1 is a special symplectic instanton bundle on \mathbb{P}^5, the computations in 2.1 and 2.3 show that $h^2(E_1 \otimes E_1^*) = 3(k = 3)$ or $12(k = 4)$, and $h^1(E_1 \otimes E_1^*) = 57$ or 77 respectively. Hence $M_{\mathbb{P}^5}(k)$ is singular at E_1 for $k = 3$ and 4.

Remark 3.4. It is natural to conjecture that $M_{\mathbb{P}^{2n+1}}(k)$ is singular for all $n \geq 2$ and $k \geq 3$.

Theorem 3.5. Let E be an instanton bundle on \mathbb{P}^{2n+1} with $c_2(E) = k$. Then $h^1(E(t)) = 0$ for $t \leq -2$ and $k - 1 \leq t$.

Proof. The result is obvious for $t \leq -2$. It is sufficient to prove $h^1(S^*(t)) = 0$ for $t \geq k - 1$. We have

$$S^*(t) = \bigwedge^{2n+k-1} S(t - k).$$
Taking wedge products of (1.2) we have the exact sequence
\[
0 \to O(t + 1 - 2n - 2k)^{\alpha_0} \to \ldots \to O(t - k - 1)^{\alpha_{2n+k-2}} \to O(t - k)^{\alpha_{2n+k-1}} \to \bigwedge^{2n+k-1} S(t - k) \to 0
\]
for suitable \(\alpha_i \in \mathbb{N} \) and from this sequence we can conclude.

Ellia proves Theorem 3.5 in the case of \(\mathbb{P}^3 \) ([E], Prop. IV.1). He also remarks that the given bound is sharp. This holds on \(\mathbb{P}^{2n+1} \) as it is shown by the following theorem, which points out that the special symplectic instanton bundles are the "furthest" from having natural cohomology.

Theorem 3.6. Let \(E \) be a special symplectic instanton bundle on \(\mathbb{P}^{2n+1} \) with \(c_2 = k \). Then
\[
h^1(E(t)) \neq 0 \text{ for } -1 \leq t \leq k - 2.
\]

Proof. For \(n = 1 \) the thesis is immediate from the exact sequence
\[
0 \to O(t - 1) \to E(t) \to J_C(t + 1) \to 0
\]
where \(C \) is the union of \(k + 1 \) disjoint lines in a smooth quadric surface. Then the result follows by induction on \(n \) by considering the sequence
\[
0 \to E(t - 2) \to E(t - 1)^2 \to E(t) \to E(t)|_{\mathbb{P}^{2n-1}} \to 0
\]
and the fact that, for a particular choice of the subspace \(\mathbb{P}^{2n-1} \), the restriction \(E|_{\mathbb{P}^{2n-1}} \) splits as the direct sum of a rank-2 trivial bundle and a special symplectic instanton bundle on \(\mathbb{P}^{2n-1}([ST] 5.9) \).

Remark 3.7. In [OT] it is proved that if \(E_k \) is a special symplectic instanton bundle on \(\mathbb{P}^5 \) with \(c_2 = k \) then \(h^1(\text{End } E_k) = 20k - 3 \).

In the following table we summarize what we know about the component \(M_0(k) \subset \text{MIP}_5(k) \) containing \(E_k \).

<table>
<thead>
<tr>
<th>(k)</th>
<th>(h^1(E_k \otimes E_k^*))</th>
<th>(h^2(E_k \otimes E_k^*))</th>
<th>(\text{dim } M_0(k))</th>
<th>(\text{MIP}_5(k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>0</td>
<td>14</td>
<td>open subset of (\mathbb{P}^{14})</td>
</tr>
<tr>
<td>2</td>
<td>37</td>
<td>0</td>
<td>37</td>
<td>smooth, irreduc., unirat.</td>
</tr>
<tr>
<td>3</td>
<td>57</td>
<td>3</td>
<td>54</td>
<td>singular</td>
</tr>
<tr>
<td>4</td>
<td>77</td>
<td>12</td>
<td>65</td>
<td>singular</td>
</tr>
<tr>
<td>(k \geq 2)</td>
<td>(20k - 3)</td>
<td>(3(k - 2)^2)</td>
<td>(?)</td>
<td>(?)</td>
</tr>
</tbody>
</table>
References

[BaS] D. Bayer and M. Stillman, Macaulay, a computer algebra system for algebraic geometry.

Received January 5, 1993. Both authors were supported by MURST and by GNSAGA of CNR.

DIPARTIMENTO DI Matematica
VIALE MORGAGNI 67 A
I-50134 FIRENZE
E-mail address: ancona@udininw.math.unifi.it

AND

DIPARTIMENTO DI Matematica
VIA VETOIO, COPPITO
I-67010 L'AQUILA
E-mail address: ottaviani@vxscq.aquila.infn.it

Added in proof. After this paper has been written we received a preprint of R. Miró-Roig and J. Orus-Lacort where they prove that the conjecture stated in the Remark 3.4 is true.
On H^p-solutions of the Bezout equation

ERIC AMAR, JOAQUIM BRUNA FLORIS and ARTUR NICOLAU

Amenable correspondences and approximation properties for von Neumann algebras

CLAIRE ANANTHARAMAN-DELABOCHE

On moduli of instanton bundles on \mathbb{P}^{2n+1}

VINCENZO ANCONA and GIORGIO MARIA OTTAVIANI

Minimal surfaces with catenoid ends

JORGEN BERGLUND and WAYNE ROSSMAN

Permutation model for semi-circular systems and quantum random walks

PHILIPPE Biane

The Neumann problem on Lipschitz domains in Hardy spaces of order less than one

RUSSELL M. BROWN

Matching theorems for twisted orbital integrals

REBECCA A. HERB

Uniform algebras generated by holomorphic and pluriharmonic functions on strictly pseudoconvex domains

ALEXANDER IZZO

Quantum Weyl algebras and deformations of $U(g)$

NAIHUAN JING and JAMES ZHANG

Calcul du nombre de classes des corps de nombres

STÉPHANE LOUBOUTIN

On geometric properties of harmonic Lip$_1$-capacity

PERTTI MATTILA and P. V. PARAMONO

Reproducing kernels and composition series for spaces of vector-valued holomorphic functions

BENT ØRSTED and GENKAI ZHANG

Iterated loop modules and a filtration for vertex representation of toroidal Lie algebras

S. ESWARA RAO

The intrinsic mountain pass

MARTIN SCHECHTER

A Frobenius problem on the knot space

RON G. WANG

On complete metrics of nonnegative curvature on 2-plane bundles

DAVID YANG

Correction to: “Free Banach-Lie algebras, couniversal Banach-Lie groups, and more”

VLADIMIR G. PESTOV

Correction to: “Asymptotic radial symmetry for solutions of $\Delta u + e^u = 0$ in a punctured disc”

KAI SENG (KAISING) CHOU (TSO) and TOM YAU-HENG WAN