CORRECTION TO: “ASYMPTOTIC RADIAL SYMMETRY FOR SOLUTIONS OF $\Delta u + e^u = 0$ IN A PUNCTURED DISC”

KAI SENG (KAISING) CHOU (TSO) AND TOM YAU-HENG WAN
The negative case ($K < 0$) in the Theorem 3 of the above mentioned paper is incomplete. In this case, the authors considered three separate cases (page 273 Pacific J. Math., 163, No. 2, 1994). After handling the first two, the authors thought a similar argument would work for the third which turns out to be incorrect. Therefore, we need to reconsider the third case, namely, the function f may take the form

$$f(z) = \frac{e^{i\alpha} (1 + g(z) + \alpha \log z)}{1 - g(z) - \alpha \log z}$$

for some $\alpha \in \mathbb{R}$ and some single-valued analytic function g on the punctured disc $D^* = \{ z \in \mathbb{C} | 0 < |z| < 1 \}$. As in this paper, we may assume that $K = -4$ and $|f| < 1$. Then we conclude that

$$\text{Re} \, g(z) + \alpha \log r < 0, \quad \text{where} \quad r = |z|,$$

and hence

$$r^\alpha |e^{g(z)}| < 1.$$

Therefore, 0 is not an essential singularity of $e^{g(z)}$. It implies that $g(z)$ analytically extends across 0. So, in the negative case, we have

Theorem 1. Real smooth solutions of $\Delta u - 8e^u = 0$ in D^* are of the form

$$u = \log \frac{|f''|^2}{(1 - |f|^2)^2}$$

with f a multi-valued locally univalent meromorphic function of the form

$$f(z) = h(z)z^{\beta}, \quad \beta > 0$$

or

$$f(z) = \frac{1 + h(z) + \alpha \log z}{1 - h(z) - \alpha \log z}, \quad \alpha \in \mathbb{R}$$
for some single-valued analytic function $h(z)$ on the whole disc $D = \{z \in \mathbb{C} \mid |z| < 1\}$.

To find the asymptotic formula, observe that (1) gives

$$u = \log \frac{|zh'(z) + \alpha|^2}{4r^2 (\text{Re} h(z) + \alpha \log r)^2},$$

which implies that

$$u = -2 \log \left(r \log \frac{1}{r} \right) + O(1) \quad \text{as} \quad r \to 0.$$

Therefore, we have

Theorem 2. Let u be a smooth real solution of $\Delta u + 2Ke^u = 0$ for $K < 0$, then

$$u(z) = \alpha \log |z| + O(1), \quad \alpha > -2,$$

or

$$u(z) = -2 \log \left(|z| \log \frac{1}{|z|} \right) + O(1)$$

as $|z| \to 0$.

Finally, it is well-known that all such solution u are bounded by the Poincaré metric (the unique complete constant curvature K conformal metric) on D^* which has finite area near the origin. Therefore, all solution u satisfies $\int e^u < +\infty$ in any small region containing the origin.

We thank Prof. R. Finn for communicating to us a counterexample by Yamashita which falls into the third case of $K < 0$.

Received July 23, 1995.
On H^p-solutions of the Bezout equation

ERIC AMAR, JOAQUIM BRUNA FLORIS and ARTUR NICOLAU

Amenable correspondences and approximation properties for von Neumann algebras

CLAIRE ANANTHARAMAN-DELAROCHE

On moduli of instanton bundles on \mathbb{P}^{2n+1}

VINCENZO ANCONA and GIORGIO MARIA OTTAVIANI

Minimal surfaces with catenoid ends

JORGEN BERGLUND and WAYNE ROSSMAN

Permutation model for semi-circular systems and quantum random walks

PHILIPPE BIANE

The Neumann problem on Lipschitz domains in Hardy spaces of order less than one

RUSSELL M. BROWN

Matching theorems for twisted orbital integrals

REBECCA A. HERB

Uniform algebras generated by holomorphic and pluriharmonic functions on strictly pseudoconvex domains

ALEXANDER IZZO

Quantum Weyl algebras and deformations of $U(g)$

NAIHUAN JING and JAMES ZHANG

Calcul du nombre de classes des corps de nombres

STÉPHANE LOUBOUTIN

On geometric properties of harmonic Lip_1-capacity

PERTTI MATTILA and P. V. PARAMONOV

Reproducing kernels and composition series for spaces of vector-valued holomorphic functions

BENT ØRSTED and GENKAI ZHANG

Iterated loop modules and a filtration for vertex representation of toroidal Lie algebras

S. ESWARA RAO

The intrinsic mountain pass

MARTIN SCHECHTER

A Frobenius problem on the knot space

RON G. WANG

On complete metrics of nonnegative curvature on 2-plane bundles

DAVID YANG

Correction to: “Free Banach-Lie algebras, couniversal Banach-Lie groups, and more”

VLADIMIR G. PESTOV

Correction to: “Asymptotic radial symmetry for solutions of $\Delta u + e^u = 0$ in a punctured disc”

KAI SENG (KAISING) CHOU (TSO) and TOM YAU-HENG WAN