THE QUASI-LINEARITY PROBLEM FOR C^*-ALGEBRAS

L.J. Bunce and J.D. Maitland Wright

Let A be a C^*-algebra with no quotient isomorphic to the algebra of all two-by-two matrices. Let μ be a quasi-linear functional on A. Then μ is linear if, and only if, the restriction of μ to the closed unit ball of A is uniformly weakly continuous.

Introduction.

Throughout this paper, A will be a C^*-algebra and A will be the real Banach space of self-adjoint elements of A. The unit ball of A is A_1 and the unit ball of A is A_1. We do not assume the existence of a unit in A.

Definition. A quasi-linear functional on A is a function $\mu : A \rightarrow \mathbb{R}$ such that, whenever B is an abelian subalgebra of A, the restriction of μ to B is linear. Furthermore μ is required to be bounded on the closed unit ball of A.

Given any quasi-linear functional μ on A we may extend it to A by defining

$$\tilde{\mu}(x + iy) = \mu(x) + i\mu(y)$$

whenever $x \in A$ and $y \in A$. Then $\tilde{\mu}$ will be linear on each maximal abelian $*$-subalgebra of A. We shall abuse our notation by writing μ instead of $\tilde{\mu}$.

When $A = M_2(\mathbb{C})$, the C^*-algebra of all two-by-two matrices over \mathbb{C}, there exist examples of quasi-linear functionals on A which are not linear.

Definition. A local quasi-linear functional on A is a function $\mu : A \rightarrow \mathbb{R}$ such that, for each x in A, μ is linear on the smallest norm closed subalgebra of A containing x. Furthermore μ is required to be bounded on the closed unit ball of A.

Clearly each quasi-linear functional on A is a local quasi-linear functional. Surprisingly, the converse is false, even when A is abelian (see Aarnes [2]). However when A has a rich supply of projections (e.g. when A is a von Neumann algebra) each local quasi-linear functional is quasi-linear [3].

The solution of the Mackey-Gleason Problem shows that every quasi-linear functional on a von Neumann algebra \mathcal{M}, where \mathcal{M} has no direct summand of Type I_2, is linear [4, 5, 6]. This was first established for positive quasi-linear functionals by the conjunction of the work of Christensen [7] and...
Yeadon [11], and for σ-finite factors by the work of Paschciewicz [10]. All build on the fundamental theorem of Gleason [8].

Although quasi-linear functionals on general C^*-algebras seem much harder to tackle than the von Neumann algebra problem, we can apply the von Neumann results to make progress. In particular, we prove:

Let \mathcal{A} be a C^*-algebra with no quotient isomorphic to $M_2(\mathbb{C})$. Let μ be a (local) quasi-linear functional on \mathcal{A}. Then μ is linear if, and only if, the restriction of μ to A_1, is uniformly weakly continuous.

1. Preliminaries: Uniform Continuity.

Let X be a real or complex vector space. Let \mathcal{F} be a locally convex topology for X. Let V be a \mathcal{F}-open neighbourhood of 0. We call V symmetric if V is convex and, whenever $x \in V$ then $-x \in V$.

Let B be a subset of X. A scalar valued function on X, μ, is said to be uniformly continuous on B, with respect to the \mathcal{F}-topology, if, given any $\epsilon > 0$, there exists an open symmetric neighbourhood of 0, V, such that whenever $x \in B$, $y \in B$ and $x - y \in V$ then

$$|\mu(x) - \mu(y)| < \epsilon.$$

Lemma 1.1. Let X be a Banach space and let \mathcal{F} be any locally convex topology for X which is stronger than the weak topology. Let μ be any bounded linear functional on X. Then μ is uniformly \mathcal{F}-continuous on X.

Proof. Choose $\epsilon > 0$. Let

$$V = \{x \in X : |\mu(x)| < \epsilon\} = \mu^{-1}\{\lambda : |\lambda| < \epsilon\}.$$

Then V is open in the weak topology of X. Hence V is a symmetric \mathcal{F}-open neighbourhood of 0 such that $x - y \in V$ implies

$$|\mu(x) - \mu(y)| = |\mu(x - y)| < \epsilon.$$

Lemma 1.2. Let X be a subspace of a Banach space Y. Let \mathcal{G} be a locally convex topology for Y which is weaker than the norm topology. Let \mathcal{F} be the relative topology induced on X by \mathcal{G}. Let B be a subset of X and let C be the closure of B in Y, with respect to the \mathcal{G}-topology. Let $\mu : B \to C$ be uniformly continuous on B with respect to the \mathcal{F}-topology. Then there exists
a function \(\tilde{\mu} : C \to C \) which extends \(\mu \) and which is uniformly \(G \)-continuous. Furthermore, if \(\mu \) is bounded on \(B \) then \(\tilde{\mu} \) is bounded on \(C \).

Proof. Since \(\mathcal{F} \) is the relative topology induced by \(G \), \(\mu \) is uniformly \(G \)-continuous on \(B \). Let \(K \) be the closure of \(\mu[B] \) in \(\mathbb{C} \). Then \(K \) is a complete metric space. So, see [9, page 125], \(\mu \) has a unique extension to \(\tilde{\mu} : C \to K \) where \(\tilde{\mu} \) is uniformly \(G \)-continuous.

If \(\mu \) is bounded on \(B \) then \(K \) is bounded and so \(\tilde{\mu} \) is bounded on \(C \). \(\square \)

Lemma 1.3. Let \(X \) be a Banach space. Let \(X_1 \) be the closed unit ball of \(X \) and let \(X_1^{**} \) be closed unit ball of \(X^{**} \). Let \(\mu : X_1 \to \mathbb{C} \) be a bounded function which is uniformly weakly continuous. Then \(\mu \) has a unique extension to \(\tilde{\mu} : X_1^{**} \to \mathbb{C} \) where \(\tilde{\mu} \) is bounded and uniformly weak*-continuous.

Proof. Let \(\mathcal{G} \) be the weak*-topology on \(X^{**} \). For each \(\phi \in X^* \)
\[X \cap \{ x \in X^{**} : |\phi(x)| < 1 \} = \{ x \in X : |\phi(x)| < 1 \}. \]

So \(\mathcal{G} \) induces the weak topology on \(X \). So \(\mu \) is uniformly \(\mathcal{G} \)-continuous on \(X_1 \). Since \(X_1 \) is dense in \(X_1^{**} \), with respect to the \(\mathcal{G} \)-topology, it follows from Lemma 1.2 that \(\tilde{\mu} \) exists and has the required properties. \(\square \)

2. Algebraic Preliminaries.

Lemma 2.1. Let \(B \) be a non-abelian \(C^* \)-subalgebra of a von Neumann algebra \(\mathcal{M} \), where \(\mathcal{M} \) is of Type I\(_2\). Then \(B \) has a surjective homomorphism onto \(M_2(\mathbb{C}) \), the algebra of all two-by-two complex matrices.

Proof. We have \(\mathcal{M} = M_2(\mathbb{C}) \otimes C(S) \) where \(S \) is hyperstonian. For each \(s \in S \) there is a homomorphism \(\pi_S \) from \(\mathcal{M} \) onto \(M_2(\mathbb{C}) \) defined by
\[
\pi_S \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \begin{pmatrix} x_{11}(s) & x_{12}(s) \\ x_{21}(s) & x_{22}(s) \end{pmatrix}.
\]
Clearly, if \(\pi_S[B] \) is abelian for every \(s \) then \(B \) is abelian. So, for some \(s \), \(\pi_S[B] \) is a non-abelian*-subalgebra of \(M_2(\mathbb{C}) \) and so equals \(M_2(\mathbb{C}) \). \(\square \)

Lemma 2.2. Let \(\pi \) be a representation of a \(C^* \)-algebra \(\mathcal{A} \) on a Hilbert space \(H \). Let \(\mathcal{M} = \pi[\mathcal{A}]'' \) where the von Neumann algebra \(\mathcal{M} \) has a direct summand of Type I\(_2\). Then \(\mathcal{A} \) has a surjective homomorphism onto \(M_2(\mathbb{C}) \).

Proof. Let \(e \) be a central projection of \(\mathcal{M} \) such that \(e\mathcal{M} \) is of Type I\(_2\). Since \(\pi[\mathcal{A}] \) is dense in \(\mathcal{M} \) in the strong operator topology, \(e\pi[\mathcal{A}] \) is dense in \(e\mathcal{M} \). Since \(e\mathcal{M} \) is not abelian neither is \(e\pi[\mathcal{A}] \). So, by the preceding lemma, \(e\pi[\mathcal{A}] \), and hence \(\mathcal{A} \), has a surjective homomorphism onto \(M_2(\mathbb{C}) \). \(\square \)
3. Linearity.

We now come to our basic theorem.

Theorem 3.1. Let \mathcal{A} be a C^*-algebra which has no quotient isomorphic to $M_2(\mathbb{C})$. Let π be a representation of \mathcal{A} on a Hilbert space H. Let \mathcal{M} be the closure of \mathcal{A} in the strong operator-topology of $L(H)$. Let μ be a local quasi-linear functional on $\pi[\mathcal{A}]$, which is uniformly continuous on the closed unit ball of $\pi[\mathcal{A}]$ with respect to the topology induced on $\pi[\mathcal{A}]$ by the strong operator topology of $L(H)$. Then μ is linear.

Proof. We may suppose, by restricting to a closed subspace of H if necessary, that $\pi[\mathcal{A}]$ has an upward directed net converging, in the strong operator topology to the identity of H. Clearly $\pi[\mathcal{A}]$ has no quotient isomorphic to $M_2(\mathbb{C})$ for, otherwise, $M_2(\mathbb{C})$ would be a quotient of \mathcal{A}.

So, to simplify our notation we shall suppose that $\mathcal{A} = \pi[\mathcal{A}] \subset L(H)$.

Let \mathcal{M} be the double commutant of \mathcal{A} in $L(H)$. Let M_1 be the set of all self-adjoint elements in the unit ball of M. Then, by the Kaplansky Density Theorem, A_1 is dense in M_1 with respect to the strong operator-topology of $L(H)$.

Then, by Lemma 1.2, there exists $\overline{\mu} : M_1 \to \mathbb{C}$ such that $\overline{\mu}$ is an extension of $\mu \mid A_1$ and such that $\overline{\mu}$ is continuous with respect to the strong operator topology. Since $\mu[A_1]$ is bounded so, also, is $\overline{\mu}[M_1]$.

We know that for each $a \in A_1$ and each $t \in \mathbb{R}$,

$$\mu(ta) = t\mu(a).$$

We extend the definition of $\overline{\mu}$ to the whole of M by defining

$$\overline{\mu}(x) = \|x\|\overline{\mu}\left(\frac{1}{\|x\|}x\right)$$

whenever $x \in M$ with $\|x\| > 1$. It is then easy to verify that if (a_λ) is a bounded net in A which converges to x in the strong operator topology of $L(H)$ then

$$\mu(a_\lambda) \to \overline{\mu}(x).$$

Also, whenever $(x_n)(n = 1, 2, \ldots)$ is a bounded sequence in M, converging to x in the strong operator topology, then

$$\overline{\mu}(x_n) \to \overline{\mu}(x).$$

Let x be a fixed element of M and let (a_λ) be a bounded net in A which converges to x in the strong operator topology. Then, for each positive whole number n, $a_\lambda^n \to x^n$ in the strong operator topology. So $\mu(a_\lambda^n) \to \overline{\mu}(x^n)$.

Let ϕ_1, ϕ_2 be polynomials with real coefficients and zero constant term. Then, since μ is a local quasi-linear functional,

$$\mu \{\phi_1(a_\lambda)\} + \mu \{\phi_2(a_\lambda)\} = \mu \{\phi_1 + \phi_2)(a_\lambda)\}.$$

Now

$$\phi_1(a_\lambda) \to \phi_1(x), \phi_2(a_\lambda) \to \phi_2(x).$$

and

$$(\phi_1 + \phi_2)(a_\lambda) \to (\phi_1 + \phi_2)(x)$$

in the strong operator topology. So

$$\bar{\mu} \{\phi_1(x)\} + \bar{\mu} \{\phi_2(x)\} = \bar{\mu} \{\phi_1(x) + \phi_2(x)\}.$$

Let $N(x)$ be the norm-closure of the set of all elements of the form $\phi(x)$, where ϕ is a polynomial with real coefficients and zero constant term. Then, since each norm convergent sequence is bounded and strongly convergent, $\bar{\mu}$ is linear on $N(x)$.

Let p_1, p_2, \ldots, p_n be orthogonal projections in M. Let

$$x = p_1 + \frac{1}{2}p_2 + \ldots + \frac{1}{2^{n-1}}p_n + \frac{1}{2^n} \{1 - p_1 - p_2 - \ldots - p_n\}.$$

Then $(x^k)(k = 1, 2, \ldots)$ converges in norm to p_1. So p_1 is in $N(x)$. Then

$$\{(2x - 2p_1)^k\} (k = 1, 2, \ldots)$$

converges in norm to p_2. Similarly, p_3, p_4, \ldots, p_n and $1 - p_1 - p_2 - \ldots - p_n$ are all in $N(x)$.

Let $\nu(p) = \bar{\mu}(p)$ for each projection p in M. Then ν is a bounded finitely additive measure on the projections of M.

Since \mathcal{A} has no quotient isomorphic to $M_2(\mathbb{C})$, it follows from Lemma 2.2 that \mathcal{M} has no direct summand of Type I$_2$. Hence, by Theorem A of [4] or [6], ν extends to a bounded linear functional on \mathcal{M}, which we again denote by ν. From the argument of the preceding paragraph, $\bar{\mu}$ and ν coincide on finite (real) linear combinations of orthogonal projections. Hence by norm-continuity and spectral theory, $\bar{\mu}(x) = \nu(x)$ for each $x \in M$. Thus μ is linear.

As an application of the above theorem, we shall see that when a quasi-linear functional μ has a "control functional", it is forced to be linear. We need a definition.
Definition. Let \(\phi \) be a positive linear functional in \(\mathcal{A} \) and let \(\mu \) be a quasi-linear functional on \(\mathcal{A} \). Then \(\mu \) is said to be uniformly absolutely continuous with respect to \(\phi \) if, given any \(\epsilon > 0 \) there can be found \(\delta > 0 \) such that, whenever \(b \in A_1 \) and \(c \in A_1 \) and \(\phi((b - c)^2) < \delta \), then \(|\mu(b) - \mu(c)| < \epsilon \).

Corollary 3.2. Let \(\mathcal{A} \) be a \(C^* \)-algebra which has no quotient isomorphic to \(M_2(\mathbb{C}) \). Let \(\mu \) be a local quasi-linear functional on \(\mathcal{A} \) which is uniformly absolutely continuous with respect to \(\phi \), where \(\phi \) is a positive linear functional in \(\mathcal{A}^* \). Then \(\mu \) is linear.

Proof. Let \((\pi, H)\) be the universal representation of \(\mathcal{A} \) on its universal representation space \(H \). We identify \(\mathcal{A} \) with its image under \(\pi \) and identify \(\pi[A]^\prime \) with \(\mathcal{A}^{**} \).

Let \(\xi \) be a vector in \(H \) which induces \(\phi \), that is, \(\phi(a) = \langle a\xi, \xi \rangle \) for each \(a \in \mathcal{A} \).

Choose \(\epsilon > 0 \). Then, by hypothesis, there exists \(\delta > 0 \) such that, whenever \(b \in A_1 \) and \(c \in A_1 \) with
\[
\|(b - c)\xi\|^2 < \delta
\]
then
\[
|\mu(b) - \mu(c)| < \epsilon.
\]
So \(\mu \) is uniformly continuous on \(A_1 \), with respect to the strong operator topology of \(L(H) \). Hence, by the preceding theorem \(\mu \) is linear.

Theorem 3.3. Let \(\mathcal{A} \) be a \(C^* \)-algebra with no quotient isomorphic to \(M_2(\mathbb{C}) \). Let \(\mu \) be a (local) quasi-linear functional on \(\mathcal{A} \). Then \(\mu \) is a bounded linear functional if, and only if, \(\mu \) is uniformly weakly continuous on the unit ball of \(\mathcal{A} \).

Proof. By Lemma 1.1 each bounded linear functional on \(\mathcal{A} \) is uniformly weakly continuous. We now assume that \(\mu \) is uniformly weakly continuous on \(A_1 \). Let \((\pi, H)\) be the universal representation of \(\mathcal{A} \). Let \(\mathcal{M} = \pi[A]^\prime \). Then \(A^{**} \) can be identified with \(\mathcal{M} \) and \(A^{**} \) with \(\mathcal{M} \).

By Lemma 1.3 there exists a function \(\overline{\mu} : M_1 \to \mathbb{C} \) which is uniformly continuous with respect to the weak*-topology on \(M_1 \) and such that \(\overline{\mu}|A_1 \) coincides with \(\mu|A_1 \).

The weak*-topology on \(M_1 \) coincides with the weak-operator topology of \(L(H) \), restricted to \(M_1 \). This is weaker than the strong operator-topology restricted to \(M_1 \). So \(\overline{\mu} \) is uniformly continuous on \(M_1 \) with respect to the strong operator topology of \(L(H) \). Thus \(\mu \) is uniformly continuous on \(A_1 \).
with respect to the strong operator topology of $L(H)$. Then, by Theorem 3.1, μ is linear.

\[\square \]

References

Received June 25, 1993.

THE UNIVERSITY OF READING
Reading RG6 2Ax, England

AND

ISAAC NEWTON INSTITUTE FOR MATHEMATICAL SCIENCES
20 CLARKSON ROAD
Cambridge, U.K.
A class of incomplete non-positively curved manifolds
Brian Bowditch

The quasi-linearity problem for C^*-algebras
L. J. Bunce and John David Maitland Wright

Distortion of boundary sets under inner functions. II
Jose Luis Fernandez Perez, Domingo Pestana and José Rodríguez

Irreducible non-dense $A_{1}^{(p)}$-modules
Vjacheslav M. Futorny

M-hyperbolic real subsets of complex spaces
Giuliana Gigante, Giuseppe Tomassini and Sergio Venturini

Values of Bernoulli polynomials
Andrew Granville and Zhi-Wei Sun

The uniqueness of compact cores for 3-manifolds
Luke Harris and Peter Scott

Estimation of the number of periodic orbits
Boju Jiang

Factorization of p-completely bounded multilinear maps
Christian Le Merdy

Finitely generated cohomology Hopf algebras and torsion
James Peicheng Lin

The positive-dimensional fibres of the Prym map
Juan-Carlos Naranjo

Entropy of a skew product with a Z^2-action
Kye Won Koh Park

Commuting co-commuting squares and finite-dimensional Kac algebras
Takashi Sano

Second order ordinary differential equations with fully nonlinear two-point boundary conditions. I
H. Bevan Thompson

Second order ordinary differential equations with fully nonlinear two-point boundary conditions. II
H. Bevan Thompson

The flat part of non-flat orbifolds
Feng Xu