
Pacific
Journal of
Mathematics

FACTORIZATION OF p-COMPLETELY BOUNDED
MULTILINEAR MAPS

CHRISTIAN LE MERDY

Volume 172 No. 1 January 1996



PACIFIC JOURNAL OF MATHEMATICS

Vol. 172, No. 1, 1996

FACTORIZATION OF P-COMPLETELY BOUNDED
MULTILINEAR MAPS

CHRISTIAN LE MERDY

Given Banach spaces Xι,... , XN, Yί,... , Yjγ,X, Y and sub-
spaces Si C B(Xi,Yi) (1 < i < N)9 we study p-completely
bounded multilinear maps A : SN x x Si -> B(X,Y). We
obtain a factorization theorem for such A which is entirely
similar to the Christensen-Sinclair representation theorem for
completely bounded multilinear maps on operator spaces. Our
main tool is a generalisation of Ruan's representation theo-
rem for operator spaces in the Banach space setting. As a
consequence, we are able to compute the norms of adapted
multilinear Schur product maps on B(ί™).

1. Introduction and preliminaries.

1.1. Introduction. In a recent paper, Pisier [Pil] proved that the Witt-
stock factorization theorem for completely bounded maps (cf. [Ha], [Pal],
[Pa2], [W]) has a natural generalization to the more general framework of
p-completely bounded maps defined on sets of Banach space operators. The
main goal of this paper is to prove a version of the Christensen-Sinclair
theorem (cf. [CS, PS]) in this extensive setting.

Let us first recall the definition of p-complete boundedness as introduced
(or suggested) in [Pi]. Let 1 < p < +oo be a number. Let X,Y be Banach
spaces. We denote by B(X,Y) the space of all bounded operators from X
into Y. Let S C B(X,Y) be a subspace. We denote by Mn,m{S) the vector
space of all nxm matrices with entries from S. Any s = [si<7 ] £ Mn^m(S) may
be canonically identified with a bounded operator from ί™(X) into £p(Y).
Under this identification, s has the following norm:

= sup

Then the usual concept of complete boundedness has the following natural
extension.
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188 CHRISTIAN LE MERDY

Definition 1.1. Let Xu ... , XN, Yu ... , YN, X, Y be Banach spaces. For
each 1 < i < JV, let S{ C i?(Xn Y») be a subspace. Let A : 5^ x - x SΊ -»
J5(X, Y) be a TV-linear map. We will say that A is p-completely bounded if
there is a constant C > 0 for which the following holds.

For any

sN e Mn^N_l(SN):sN^1 e MkN_lykN_2(SN-ι)i - ,

we have:

•N-I)") S(N-l)(rN-ι,rN-2) )

l<r£<ke

Moreover, we denote by || A\\pcb the least constant C > 0 for which this holds.
We will prove that whenever p G]1, +OO[, a p-completely bounded multi-

linear map A as above factors as a product of ̂ -completely bounded linear
maps defined on each Si (see Theorem 5.1 for a precise statement). Thus
using Pisier's generalization of the Wittstock theorem, we obtain a represen-
tation of A which is quite similar to the Christ ensen-Sinclair representation
for a completely bounded multilinear map on operator spaces. This answers
the question raised by Pisier in the Final Remark of [Pil]. Note that our
result is new only for N > 3. However, even in the case TV = 2, we feel that
our proof is simpler than Pisier's one.

The recently developped theory of operator spaces (see [B, BP, BS, ER1,
ER2]) has emphasized the role of the Haagerup tensor product in the study
of completely bounded multilinear maps. It is now well-known to specialists
(see [B, Theorem 2.4] for example) that the Christensen-Sinclair theorem
may be viewed as a combination of the factorization theorem for completely
bounded bilinear forms (which goes back to [EK]), Ruan's representation
theorem for operator spaces (see [R, ER3]) and simple properties of the
Haagerup tensor product. In this approach, the crucial point is that given
two operator spaces, their Haagerup tensor product is again an operator
space. This essentialy follows from Ruan's theorem. In order to prove our
main Theorem 5.1, we will follow the above scheme. We will especially
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prove a generalization of Ruan's theorem (see our Theorem 4.1) which is of
independant interest.

Let us now explain the organization of the paper. In the two follow-
ing subsections, we recall Pisier's result about p-completely bounded linear
maps and introduce necessary definitions about matrix normed spaces. In
Section 2, we define a generalized Haagerup tensor product ®h adapted to
our definition of p-complete boundedness and prove elementary properties
which will be needed later. In Section 3, we combine ideas from [E], [ER3]
and [Pil] in order to prove an abstract factorization theorem which is used
in the two following sections. Section 4 is devoted to our generalization
of Ruan's theorem. We follow the same line of attack as Eίfros and Ruan
[ER3]. Our main result explained above is proved in Section 5. In the last
Section 6, we investigate some of the properties of our new tensor product
®ft. We then prove a theorem about multilinear Schur products on B(ί^, ££)
which generalizes previous works on this subject (see [ER4, Gr, Ha, S] for
example).

1.2. Pisier's theorem. We wish to recall Pisier's theorem as stated in
[Pil]. It will be formulated in the language of ultraproducts. We first
introduce a notation which will be frequently used in this paper.

Definition 1.2. Let E and X be Banach spaces. Let 1 < p < +oo be
a number. We will write E G SQP(X) provided that E is (isometric to) a
quotient of a subspace of an ultraproduct of spaces of the form Lp(μ\ X).

Let X\,Y\ be Banach spaces and S C JB(-XΊ, Yi). Consider a number 1 <
p < +oo. Let (Ωj, βj)jeJ be a family of measure spaces and let U be an ultra-
filter on the index set J. Let us denote by X\ and YΊ respectively the ultra-
products relative to U of the families (Lp(μj X1))jeJ and (Lp(μj Yi))jGj.
For any a G B(XuYλ), we may define π](a) : Lp(μό Xi) ->J^p(μj Yί)
by setting (πj(a)f)(w) = a.f(w). We denote by π(α) : Xλ -+ YΊ the map
associated to the family (π J(α)) j E J . Let N C M C Xλ and N' C M' C Yi be
closed subspaces such that for any s G S, π(s)(M) C M' and π(s)(N) C N'.

MM'
Then letting G — — and G' = —-, we obtain that π/S canonically induces

a map π : S -> B(G,Gf). Namely we may set π(s)(m + N) = π(s)(m) + Nr

for any (s,m) G S x M. Such a map will be called a p-representation from
S into B(G,G'). More precisely we state the following:

Definition 1.3. Let G G SQp(Xλ) and G1 G 5QP(YΊ) be two Banach
spaces. Let π : S -> B(G, G') be a bounded linear map. We will say that π
is a ^-representation provided that it may be constructed as above.

Theorem 1.4 ([Pil, Theorem 2.1]). Let S C B{XuYλ), let A : S ->
B(X, Y) be a linear map and let C be a constant. The following assertions
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are equivalent:
(i) A is p-completely bounded and \\A\\pcb < C.

(ii) There are two Banach spaces G G SQp(Xι),Gt G SQP(Y1) and a p-
representation π : S -> B(G, G') as well as operators V : X —> G and
W : G" -> Y with \\V\\ \\W\\ < C such that:

V s G S, A{s) = Wπ(s)V.

1.3. Matrix normed spaces. Let S be a complex normed space. Let us
denote by Mn^m(S) the vector space ofnxm matrices over S. As usual, we
just denote by Mn(S) the space Mn,n(S). In the case when S — C, we will
simply write M n > m or Mn for these spaces. We will say that S is a matrix
normed space provided that we are given norms || | | n m on each Mn^m(S)
satisfying Mx (S) — S and:
(i) For any s G Mn,m(S), s' e Mn,k(S),

Ί,,m-\-k

(ii) For any s G Mn,m(S),0 G Mntk(S),

(iii) For any s € Mn>m(5),s' e MKm{S),

m a x

(iv) For any s 6 Mn,m(S), 0 € M,,m(5),

n-\-k,m

Actually, these are very weak conditions. They are chosen to ensure two
reasonnable properties. First, for any n,m < A:, the canonical embedding of
Mni7n(S) in Mk(S) is isometric. Secondly, for any 5 = [s^ ] G Mnί7n(S),

(1.2)

Thus MΠ ϊ T n(5) and 5'n m are isomorphic as normed spaces. From now on,
we leave the notation || \\nm and merely denote by || || the norm on all the
spaces MniTn(S). We will have to distinguish a possible property of a matrix
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normed space S. For any s G Mnj7n(S), s1 G Mn^m>{S), we set s Θ s1 —

1 , 1 6 Mn + n/m + m/(S f). We will say that S satisfies V^ whenever the

following condition is fulfilled:

V^i F o r a n y ^ M ^ μ Έ M ^ ^ ) , \\s Θ s'|| - max {||s||, ||s'||} .
The latter property is one of the characteristic conditions in Ruan's rep-
resentation theorem for operator spaces. It will play a similar role in our
Theorem 4.1.

Let us now introduce some standard definitions and traditional notation.
Let S, T be two matrix normed spaces and let u G B(S,T). We define u^

LMn(S) -> Mn(T) by ] We let ||ti||c6 - sup LM
We say that u is completely bounded (in short c.b.) provided that |M|c 6 <
+00. We denote by CB(S^T) the resulting normed space. We say that u is
completely contractive (in short c.c.) when ||w||c6 < 1 and u is completely
isometric provided that for any n > 1, u^n>) is isometric.

2. p-matrix normed spaces.

We introduce a special kind of matrix normed spaces.

Definition 2.1. Let p,q e]l,+oo[ be such that ± + -q = 1. Let S be a
matrix normed space. We will say that S is a p-matrix normed space if it
satisfies the condition Ί)^ above and the following:

(2.1)

(2.2)

(2.3) For any s G MΛtm{S),ae Mm | 1,

(2.4) Forany 5GMn,m(S),/?GM 1 ) n, \\βs\\ < \\s\\ (Σ?= 1

Example 2.2. Let X,Y be Banach spaces. Let S C B(X,Y) be a sub-
space. Let us equip each Mn^m(S) with the norm defined by (1.1). Recall
that this yields an isometric embedding Mntm(S) C B{P£(X),(%{Y)). Then
it is not hard to check that S becomes a p-matrix normed space. Let us em-
phasize for further that given a finite family {sj)ι<j<n in 5, the corresponding
column and row matrices have the following norms:

(2.5) = sup / x G l , \\x\\ < 1
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(2.6)

Throughout the rest of the paper, we fix a number p G]l,+oo[ and let
q = n_i (i.e.: - + - = 1). Given a subspace S of some B(X,Y), we will
always assume that it is endowed with its p-matrix normed space structure
as defined in Example 2.2. As announced in the introduction, our purpose is
to define an adapted variant of the Haagerup tensor product. Although we
will be mainly concerned by matrix normed spaces S C B(X, Y) as above, it
is convenient to work in the slighly more general setting of p-matrix normed
spaces. We will only give short proofs of the results listed below since they
are all variants of known results of the classical theory of operator spaces.
We will use the following well-know fact :

ί θpap θ~qbq 1
(2.7) V (α,6) G R*_, ab = inf I + / θ > 0 L

Let 5,T be two p-matrix normed spaces. Given 5 — [sir] G Mn,k(S) and
k

t = [trj] G Mfc,m(T), we define 5 0 ί - [ ^ 5 i r ® t r j ] G M n,m(S®T). For any
r—l

z € Mn,m(S ®T) we set:

(2.8) N | Λ = inf {||s|| ||t|| / s e Mn,k(S),t e Mk,m(T),z = s Qt} .

Proposition-Definition 2.3. The function || ||Λ is a norm on each space
Mn^m(S®T). Endowed with these norms, S®T becomes ap-matrix normed
space.

We will denote by S ®h T this ^-matrix normed space.

Proof. Let z = s © t and z1 = s' Θ V G Mn,m(S ® Γ). Then z + z' =

(s,s')© ( w) . Therefore, applying (2.2) to (5,5'), (2.1) to ί * | and (2.8), we

deduce that || | |h is a semi-norm on Mn^m(S®T). It is clear that these semi-
norms satisfy all the conditions (i), (ii), (iii), (iv) required in the definition
of a matrix normed space. Hence by (1.2), in order to prove that || | |Λ is a
norm on each Mn^m(S®T), it is enough to show that || ||Λ is non-degenerate

N

on S ® T. Let z = ] Γ <?r <g> tr G S ® T. Let 5* G 5*,ί* G T*. Since the
r=l

/Λ \1/q

s p a c e 5 s a t i s f i e s ( 2 . 3 ) , w e h a v e : I 2 ^ | ( θ * , s r ) | Q 1 < | | s * | | \ \ ( s u ... , s N ) \ \ .
\r=l /
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Analogoulsy,

Now,

hence we obtain

<ιis*ι ι ι ι n

Therefore, \\z\\h — 0 implies z — 0 and we are done.
It remains to check the condition V^ and the four properties (2.1) - (2.4).

Mn,m(S ® T) and *' = s' Θ t' e Mn,,m,(S T). ThenLet z = s Θ t

I , = ( s θ s ' ) Θ / ) Hence, applying V^ to s θ s' and (2.1) to [
V J V J V

obtain that S®T satisfies (2.1). The proofs of (2.2), (2.3), (2.4) and
are similar, we omit them.

we

D

Remark 2.4. In the case when S and T are operator spaces, the space

S ®hT defined above is the usual Haagerup tensor product of S and T.

Remark 2.5. The tensor product ®h is associative. Thus given p-
matrix normed spaces S Ί , . . . ,SN, we may define unambigously the space
SN <8>h ''' ®h Si. Let us now come back to Example 2.2. Let TV > 2
and -XΊ,... ,XN,Yι,... ,YN be Banach spaces. For any 1 < i < N, we
give ourselves Si C B(Xi:Yi). From above, we may consider the p-matrix
normed space S = S^ ®h • ®Λ SΊ Let X,Y be two Banach spaces and
let A : SN x x SΊ -> S(X, y ) be a multilinear map. It may be viewed
as a linear map A : S -> i?(-X", Y) as well. Now it is easy to see that A
is p-completely bounded in the sense of Definition 1.1 if and only if A is

completely bounded. Moreover, - \\AL
Web " U p c b '

Let E be a Banach space. The identification E — B(C,E) allows us
to define a p-matrix normed space structure on E. To conform with the
notation used in the operator space theory, we denote by Ec the p-matrix
normed space above. Similarly, we denote by E* the p-matrix normed space
structure on E* defined by the identification E* — B(E,C). Two simple
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facts should be noticed:

(2.9) For any xu ... ,xn <E E,

l/p

= Σw

* = i

Ec

any x 1 ? . . . , x n t i^ , IK^i, J^TJHE*

\ /
We end this section by two simple lemmas about these p-matrix normed
spaces.

L e m m a 2.6. Let S be a p-matrix normed space and let J5, F be Banach
spaces.
(a) For any u : S -> Ec,

(b) For any υ : 5-> Fr%

Proof. Apply (2.9), (2.3) to show (a) and apply (2.10), (2.4) to show (b).
D

Let S be a p-matrix normed space and let E: F be Banach spaces. Let
u : S —>• B(E,F**) be a linear map. We can regard u as a trilinear form ύ
on F* x 5 x E by setting:

Lemma 2.7. Tfte map u\-+ u gives rise to the isometric identification

DProof. Apply (2.9) to E and (2.10) to F.

Remark 2.8. It should be noticed that the one-dimensional vector space
C may be endowed with several different p-matrix structures. Very natural
examples may be obtained as follows. We give oursleves a Banach space X.
Let us denote by Ix the identity map on X. Then we set

(2.11) Cx =Span {IX}CB{X,X)
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and this provides us a p-matrix structure on C. We refer to Section 3 below
for more about Cx. In the sequel, we keep the notation C to refer to the
p-matrix normed space C 0 . Now let S be a p-matrix normed space. We wish
to point out two simple facts.

(a) For any linear form ξ : S -> C, \\ξ\\ = \\ξ\\cb. This is a straightfoward
consequence of the assertions (2.3) and (2.4).

(b) Let X, Y be Banach spaces. Let J (resp. Λ, J2) be the canonical
identification map from S onto Cγ (g)̂  S Θ^ Cx (respectively S 0^
C x , C y ®Λ 5). Then it follows from (2.3) and (2.4) again that J, J 1 } J 2

are isometric. Moreover they are obviously c.c. maps. However, in
general, they are not completely isometric. We will come back to this
problem in Remark 4.3.

3. An abstract factorization theorem.

Let X be a Banach space. Given a = [α^] G M n ? m , we let

(3.1) \\a\\PιX = sup

where the supremum runs over all the Xι,... ,xm in X which satisfy

To understand the relation between this definition and preceding ones,
consider the subspace S = Cx C B(X, X) defined by (2.11). Let s = a®Ix G
^n,m(5') Then the definitions (1.1) and (3.1) obviously give | |s | | = | |o| | x

The following criterion of Hernandez will be used several times.

Theorem 3.2 [Hel, He2]. Let E and X be Banach spaces. Then E E

SQP(X) if and only if:

V α G Afn, \\a\\PtE < \\a\\pX .

Proof. We follow [Pil, Section 3] and refer to this for more informations.
Let A : Cx -> B(E,E) be defined by A(IX) - IE Then A is c.c. iff
V a E M n , | H | p £ ; < IMIpx Hence the result follows from Pisier's theorem
1.4. Finally we should mention that in the particular case X = C, this result
goes back to Kwapien [K]. D

In order to prove our Theorem 3.4 below, we will need techniques used

by Pisier in the proof of Theorem 1.4. As in [Pil], the following form of the

Hahn-Banach theorem will prove useful.
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L e m m a 3.3. Let A be a real vector space equipped with a cone Λ+. Let
λ : Λ -> 1R be sublinear and let μ : Λ+ —>> M+ δe superlinear. Assume that
μ < λ on Λ+. TΛen ί/iere 25 α positive linear form f : Λ —> R sue/i £Λα£ μ < f

on Λ+ and f < λ on A.

We are now ready to prove the main result of this section.

Theorem 3.4. Let X1,X2,Yί,Y2 be Banach spaces and let T C B(XUY1),
Z C B(X2,Y2) be subspaces. Let S be a matrix normed space and σ : Z x
S x T -ϊ C be a trilinear map. Assume that S satisfies the condition V^
and that for any zu . . . ,zm E Z, s = [s^ ] E Mm(S), t u ... , t m G T :

(3.2) Σ <\\s\

Then there exist Banach spaces E E SQp(Yι),F E SQP(X2) and three com-
pletely contractive maps φ : S —> β(£^, F), u : T -+ Ec and v : Z -^ F* such
that:

V (z,s,t) eZ x SxT, σ(z,s,t) = (φ(s)u(t),v(z)).

Proof. Let Λ be the set of all functions φ : X\ x Y2 -> !R for which there
exist a > 0, β > 0 such that

(3.3) V(xuy*2)€X1xY2*, \φ(Xl,y*2)\ < ap H ^ f + β" \\y*2\\q .

Then Λ is a real vector space and the subset Λ+ of non-negative functions in
Λ is a cone. We will apply Lemma 3.3 in this space. For any φ E Λ, we let:

where the infimum runs over all (α,/?) E M+2 such that (3.3) holds. This
clearly defines a sublinear map λ : Λ —> IR. For any φ E Λ+, we let:

Reσ(zi,sij,tj)

where the supremum runs over all m > 1,
ti, • , t m E Γ such that | |s| | < 1 and

E ^, 5 = [«sZJ] E Mm(S),

v
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We claim that μ is superadditive on Λ+. To check this, consider φ,φ' E

Λ+,(2i)i<i<n, {z[)ι<τ<m in Z, (*j)i<j<n,(*i-)i<i<m in T such that for any
{xuy*2)EX1 xY*:

VΪ) > Σ WΦi)WP + Σ H (̂%*) and
2 = 1

Then letting
/ //

and

V j / j<n+m V 1 ? ' "

we obtain for all Xι,y% :

n+m

? ^ n j ^ l j • • 5 ^"m/

n+m

Γ + Σ » "
Now the point is that if we consider 5 = [si<7 ] E Mn(S) and s' = [5^] E Mm(S)
with norms less than one and let 5" = 5 ® s' = [«ŝ ] E M n + m (S r ) , we have
||5 / ; | | < 1 (by our assumption on S) and

, 4 , t?) = X; iϊe σ(^, s^t,) z[, s'

We thus obtain μ(φ+φ') > μ(φ)-\-μ(φ') as claimed above. Hence μ : Λ+ ->

is a non-negative superlinear map. Let us now prove that:

V φ E Λ+, μ(</>) <(3.4)

We give ourselves (α,/3) E M^2, ( î)i<»<m in ^ and {tj)ι<j<m in Γ such that

for any (xi^y^) ^ -^i χ ^2* :

Then < α and < β by (2.5) and (2.6). Hence for

any s = [s»j] G Mm(S) of norm less than one, we have by (3.2):
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Therefore / Reσ(zi,Sij, tΛ < 1 whence (3.4).

By Lemma 3.3, we thus obtain a positive linear form / : Λ

(3.5) V φ G Λ, f(φ) < λ(φ)

such that:

(3.6) μ(φ) < f(φ).

We now come to the definitions of E, F, u, v. We proceed with similar con-
structions as in [Pil].

Let Qι be the set of all the functions φ : Xι —» Y± for which there exists
a > 0 such that for any x1 G Xu \\ψ(xi)\\ < & \\xι\\. Clearly Qλ is a complex
vector space. Moreover, for any φ G G\, the function φ : Xλ x Y£ -> M
defined by φ{x\^y^) — | |^(a;i) | |p belongs to Λ, hence we may define:

The function Nx is a semi-norm on Qγ. We denote by G\ the Banach space
obtained after passing to the quotient by the kernel of Nλ and completing
the resulting normed space.

For any t G Γ, let us denote by φt G Q\ the function defined by φt(xi) —
t(xι). We may define a linear map u : T —> GΊ by setting (up to equivalence
classes): u(t) =pιfpφt.

Let us regard u a s a map from T into (Gι)c. Then ||t*||c 6 < 1. Indeed for
any finite family ( ί 1 ? . . . , tn) in T:

Hence the result follows from Lemma 2.6 (a).
In the same manner, we can introduce the vector space Q2 of all the

functions φ : F2* -> X$ for which there exists β > 0 such that for any y^ G
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Yf, \\1>(V2)\\ < /ΊlvSH Letting 1>{xuvD = \\<ψ(y*2)\\q and N2(φ) =
we can similarly define a Banach space G2 from (G2,N2). We then define a
map v : Z —> G2 by letting (up to equivalence classes) ^ ( z ) ^ ) = Q1^q^*{y2)'
Then using (2.6) and Lemma 2.6 (b), we obtain that υ : Z —> (G^)* satisfies

IML < i

Finally, we set E = u(T),F = v(Z)* and can consider that we actually
have u:T -+EC and υ : Z -* Fr* with | |u | | c 6 < 1 and ||v||c6 < 1.

In view of Theorem 3.2, we clearly have Gγ G SQp(Yι) and therefore
E e SQpiYx). Similarly, we obtain that G2 G 5Qg(X2*). Thus by a simple
duality argument, we deduce that F E SQP(X2).

In order to complete the proof of Theorem 3.4, it remains to show that
for any zu . . . , zm G Z, s = [s^ ] G M m (5) , tu... , t m G T, we have:

(3.7)

Indeed, such an inequality allows to define φ : S -> B(E,F) by letting

(φ(s)u(t), υ(z)) = σ(z, 5, £) and proves that ^ is c.c. Let us now check (3.7).

By trivial scaling, we may assume that | |s| | = 1 and ̂ 2σ(zi^sϋ^j) ^ ^ +

We define φ G Λ+ by setting φ[xuy*2) = ]Γ Ht^xOlΓ + ̂  IK(»5)IΓ • T h e n

3 i

we have:

<μ(φ)<f(φ) by (3.6)

Since we have ^ σ ( ^ , s ^ , tj) = ]Γ^σ(0 lzi->sij >^j) f° r a n y # > 0, the pre-

ceding inequality implies for all θ > 0 :

From (2.7), we deduce that (3.7) holds. D

4. A generalization of Ruan's representation theorem.

Let X and Y be Banach spaces and let S C B(X, Y) be a subspace. For any
n, m > 1, we may define (unambigously) a p-matrix structure on Mntm(S)



200 CHRISTIAN LE MERDY

by letting M J M(Mn,m(S')) = MknJm(S) for all k,l > 1. In other words,
this p-matrix structure is given by the canonical embedding Mn^m(S) C
B(ί™(X),£%(Y)). Now let X be a Banach space and let n > 1 be an integer.
Recall the definition (2.11). We set :

(4.1) J # = M l t Π ( C * ) .

Actually, R% is a p-matrix structure on the Banach space tn

q.

Indeed for any t = (ί(-£))i<*<n € tn
q, let t : i%(X) -> I be defined by

/

<• τhen 1*1 l W = ll*lland w e

£=l \t=l 1

have:

Rn ={t/teς}cB(ίn

p(X),X).
In the same manner, given a Banach space Y, we set for any n > 1 :

(4-2) Cr = M n > 1 (C r ) .

C^ is a p-matrix structure on £%. For any z = (z(k))ι<k<n € ^ , we may let
% ) = {z(k)y)k<n E ln

p{Y) for all y e Y and:

The spaces i ϊ^ and C^ will be used in the proof of Proposition 4.2.
The following is the main result of this section:

T h e o r e m 4.1. Let X,Y be Banach spaces and let S be a matrix normed

space. The following assertions are equivalent:

(i) S satisfies the two following conditions:

V^ . For any s E M n , m (5), s' G M n W ( S ) ,

MPiYiX: For any a G M n , m , s G Mm(S),b E M m , n ,

(ii) TΛere earisί Banach spaces E G SQP(X),F G S'QpίY) β ĉί α completely
isometric map J : S -+ B(E, F).

This statement will allow us to consider any matrix normed space S which
satisfy V^ and Mp,γ,χ as a subspace of B(E,F) for some suitable Banach
spaces E, F. In the particular case when p = 2 and X = F — C, we recover
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Ruan's representation theorem [R, ER3]. However for 1 < p φ 2 < +oo,
the particular case X — Y — C is already new. We will come back to this in
the last Section 6. We do not know whether Theorem 4.1 can be extended
to the case p = 1. Before coming into the proof of Theorem 4.1, note that a
matrix normed space S satisfying the condition (i) above for some Banach
spaces X and Y is obviously a p-matrix normed space as defined in Section
2. Although we could not find any convincing example, it seems unlikely
that the converse is true. The problem arising here is the following: given a
p-matrix normed space *S, does there exist a couple of Banach spaces X and
Y for which Mp^χ holds ?

In order to prove Theorem 4.1, we will follow the approach of [ER3].

More precisely, we will deduce the non-trivial implication (i) => (ii) from a

convenient factorization of the linear forms ξ G Mn(S)*.

Proposition 4.2. Let S be a matrix normed space satisfying the assumptions

D ^ and MpΎ,x. Let n > 1 and ξ G Mn(S)* with \\ξ\\ = 1.
Then there exist Banach spaces E G SQP(X),F G SQP(Y) and a com-

pletely contractive map φ : S —> B(E,F) such that: V s G Mn(S), \ξ(s)\ <

hin)(s)\\.

Proof. We denote by T = R% and Z — C% the two p-matrix normed spaces

defined in (4.1) and (4.2). Fix ξ G M n (5)* with ||ξ|| = 1.

Given z = (z(k))k<n G Z and t = {t(£))t<n G T, we denote by zt G Mn

the matrix obtained by the product of the column matrix \ with the

z{n)
row matrix ( ί ( l ) , . . . ,t(n)). Namely, we have zt — [z(k)t(i)]. With the above
notation, we define σ=^ZxSxT-^Cby letting σ(z, 5, t) = ξ(zt 0 5).

We claim that σ satisfies the assumption (3.2) of Theorem 3.4. In order to
show that, consider zu... , zm G Z, < l r . . , ί m G Γ and 5 = [si3] G Mm(S).
Let a = [aki] G M n ? m and 6 = [bjέ] G M m , n be defined by aki = zt(k) and bj£ =

lj(i) Clearly we have 22σ(zι,sij,tj) — ξ(asb) hence

\asb\\ . Note that from the definitions (4.1) and (4.2), we have | |α | | p y =

u . . . ,zm)\\ and \\b\\PtX = . Therefore, the assumption ΛdPiγtχ

implies that (3.2) holds.
Moreover we assumed that S satisfies V^. Hence we may apply The-

orem 3.4 to the trilinear map σ and this yields two Banach spaces E G
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SQP(X),F E SQP(Y) and three c.c maps u : Γ -> Ec,υ : Z -+ Fr* and
φ : S -> B(E,F) such that σ(z,s,ί) = (<p(s)u(<),i;(2)) for all (*,s,*) E
Z x S x T. Let us denote by {ηj)i<j<n

 a n d (^)i<«<n the canonical bases of
T and Z respectively. Then for any s = [s^] E Mn(S),

hence

n n

Now ^ | | ^ ( % ) f < 1 and ^ ||v(i/<)|Γ < 1 by Lemma 2.6. Hence \ξ(s)\ <
j=l z = l

||(^(n)(s)|| . This achieves the proof. D

Proof of Theorem 4.1. We assume (i). Let In be the unit sphere of Mn(S)*
and let / = U In. For any ξ E /n, we may apply Proposition 4.2 and thus

n>l

obtain Eξ G 5Q p (X),F ξ G SQP{Y) and a c.c. map φi : 5 -> B{Ei,Fi) such

that for any s E M n (S), |^(^)l < | | ^ n ) | |
Let E = Θ # £ and F = Θ F£. Of course we have E e SQJX),F e

SQP(Y). We now define J : S -> B(E,F)by setting

Since each J(s) acts diagonally we have for any 5 E Mn(S) :

| | ^

Therefore, J is a completely isometric map. This proves (i) => (ii). The
converse implication is obvious. D

Remark 4.3. Let S be a ;>matrix normed space. Note that S satisfies V^.
Therefore an obvious reformulation of Theorem 4.1 is that the two following
are equivalent:
(i) The canonical identification Cγ ®h S ®h Cx = S is completely iso-

metric.

(ii) There exist Banach spaces E E SQP(X), F E SQP(Y) and a completely
isometric embedding S C B(E,F). This complements Remark 2.8 (b).
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Remark 4.4. It is not hard to modify the proofs of Proposition 4.2 and
Theorem 3.4 in order to settle an isomorphic variant of Theorem 4.1. Con-
sider the three following properties depending on some constants Cι,C2,C3.
( a ) F o r a n y S! € M n i > m i ( S Ί ) , s 2 <Ξ M n 2 ^ { S 2 ) , . . . , s k € M n ^ m k { S k ) ,

| | * i θ . θβfc|| < CΊmax

(b) For any a G Mn<m, s € Mm (S), b € Mm>n,

\\asb\\ < C2 \\a\\PιY \\s\\ \\b\\PtX .

(c) There exist Banach spaces E E SQP(X),F E SQP(Y) and a complete
C3-isomorphic embedding J : S -» B(E, F).

Then, the assertion (c) implies that (a) and (b) hold with CΊ = C2 = C3.
The converse (and more significant result) is that if (a) and (b) hold, then
condition (c) is fulfilled with C3 = CλC2.

5. Representation of p-completely bounded multilinear maps.

In this section we show how to deduce a representation theorem for p-c.h.
multilinear maps from our previous work. We will give two formulations of
this result. Here is the first one:

Theorem 5.1. Let -Xi,... ,XNlYu... ,YN,X,Y be Banach spaces. For
each 1 < i < N, let St C B(Xii Yi) be a subspace. Let S — SN ®h •' ®Λ 5Ί
(see Remark 2.5 for the definition) and let A : S -> B(X,Y) be a c.b. map.

Then there are Banach spaces Kt (1 < i < N—l) and c.b. maps A\ : SΊ —>
,ϋΓi), Aj : Sj -»• BiKj^Kj) (2 < j < N- 1), AN : SN -> 5 ( ^ - 1 , F)
that

and:
V ( θ ^ , . . . ,sι) e SN x •- x Su

A(sN,... ,sχ) = A

The proof of Theorem 5.1 will rely upon two lemmas which are now simple
corollaries of Section 3 and 4.

Lemma 5.2. Let X1,Y1,X2iY2 be Banach spaces and letT C B{Xι,Yλ) and
Z C B(X2,Y2) be subspaces. Then there are Banach spaces E £ SQp(Xι),
F e SQp(Y2) and a completely isometric map J : Z <g>hT -ϊ B(E,F).

Proof. Let z G MmΛ(Z), t E MΛ, r o(T), a G M n > m , & E M m , n . Then α(z © t)b -
α^ 0 tδ and | |α^| | < | | α | | p y 2 | |^| |, ||t&|| < | |t | | | | 6 | | p X l Hence we may apply
Theorem 4.1 with S = Z (g>Λ T, X = Xu Y - Y2. D
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Lemma 5.3. The statement of Theorem 5.1 holds in the case N — 2, X —

Proof. We consider a c.c. map A : S2 ®h Sλ -> C. Let 5 = CYl C J5(Yi, Yi)
and let σ : S2 x S x SΊ —> C be defined by σ(52,/y1,5i) = A(s2,s1). Then
we may clearly apply Theorem 3.4 with T = SΊ and Z = S2 and this yields
the result. D

Proof of Theorem 5.1. We follow the approach of [B, Theorem 2.4]. Since

Lemma 5.2 allows us to use induction, we only need to consider the case

N — 2. We thus consider a c.c. map A : S2 ®h SΊ —> 5pΓ, Y) Let us define
A : (Yr* ®Λ S2) ®h (Si ®Λ Xc) -> C by setting:
(5.1)
V (y*,s2,sux) eY* x S2x SλxX, A(y* ® s2,sλ ® x) =

From the associativity of ®^ (see Remark 2.5) and Lemma 2.7, we have

\A < 1. Apply Lemma 5.2 to Si <&h Xc and Y* ®h S2 together with
cbcb

LemmaJ5.3. This yields a Banach space K and two completely contractive
maps Aι : Si ®h Xc -> Kc and A2 : Y* ®h S2 -> K* such that:

(5.2) v z e Y ; Θ h S 2 , v t e s x ® h x c , A(z,t) = (ii(t),i2(*)).

We now proceed with converse identifications. We define A\ : Si —> B(X, K)

and A2 : S2 -> 5(^,1"**) by setting

(5.3) V(5 i ,x) G S i x X , Ai(5i)(a;) = A ί ( 5 i ® re).

(5.4) V ( 5 2 ,y ) G S 2 x y*, (A 2 (s 2 )) (y*) - X2(y* ® 5 2).

Clearly, (5.1), (5.2), (5.3), (5.4) imply that for any {s2,s1) G S 2 x Su

A(s2,s1) =A2{s2) o

Now it is easy to see that we may as well assume that K — Aι(S\)(X) and
then, A2 is actually a c.c. map from S2 into B(K,Y). This concludes the
proof. D

Remark 5.4. The converse of Theorem 5.1 obviously holds. Namely,
given c.c. maps Ax : SΊ -» B[X,KX), AN : SN -> S(ίίΛr_i,y) and ^ :
Ŝ  -> BiKj-uKj) (2 < j < TV-1), the map A : SN x • x SΊ -> B(X,Y)
defined by A(sN,... , Si) = AJV(SJV) o o Ai(si) provides a c.c. map from
SN®h--'(S>hS1 into B(X,Y).
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Remark 5.5. In view of Lemma 5.2, we could have been more precise
in the statement of Theorem 5.1. For example we may write that for any
1 < j < N - 1, Kj e SQp(Yj). However, we shall see in Theorem 5.6 that
such an information is not really an improvement.

We now turn back to the terminology of p-completely bounded maps
defined in the introduction (see Definition 1.1). Recall that given S C
B(XuYλ) and two Banach spaces G e SQp(Xι),G' e SQp(Yi), it made
sense to define a notion of ^-representation from S into B(G,Gf) (see Defi-
nition 1.3).

Then by an obvious combination of Theorem 5.1, Remark 5.4, Remark
2.5 and Theorem 1.4, we obtain:

Theorem 5.6. Let Xϊ:... ,XN,YU... ,YN,X,Y be Banach spaces. For
each 1 < i < N, let Si C B(XuYi) be a subspace. Let A : SN x x Sλ ->
B(X, Y) be a N-linear map and let C be a constant. The following assertions
are equivalent:
(i) A is p-completely bounded and \\A\\ b < C.

(ii) There exist Banach spaces

G, € SQP{X,){1 < j < N), G'j e SQp(Yj)(l < j < N),

p-representations Έj : Sj —> B(Gj1G'J) (1 < j < N) and operators
Vo : X -> Gi, VN : G'N -> Y and Vj : G'ά -> Gj+1 (1 < j < N - 1) such
that \\V0\\... ||VN\\ <C and V (sN,... , Si) G SN x x Su

A(sN,... ,5X) = VNπN(sN)VN-ι.. .V2π2(s2)V1π1(sι)Vo.

6. Complements.

6.1. Some remarks about ®h. The Haagerup tensor product of operator
spaces has been extensively studied recently (see [B, BP, BS, ER2, PS]). A
main feature of this tensor product is that it is both injective and projective
in the category of operator spaces. It is then natural to study similar prop-
erties in our more general framework. We will easily obtain that our tensor
product (g>h is projective and is not injective. Let us make these statements
precise.

Let S be a matrix normed space and let T C S be a closed subspace. We

may define a norm on each Mn>m I — j by setting Mn>m I — j — M

r h m}T\

S
Endowed with these norms, — becomes a matrix normed space. Moreover,
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if we assume that S is a p-matrix normed space, then — is also a p-matrix

normed space.
The announced surjectivity of ®Λ is:

Proposition 6.1. Let Sι,S2 be two p-matrix normed spaces. For i = 1,2,
c

S
S

c
let Ti C Si be a closed subspace and let qι : Sτ —> -φ be the associated quotient

map. Consider Q = q2 ® q\ : S2 ®h S\ —> Λ, p

T/ien Q is α complete quotient map, i.e. for any n > 1, ζ ^ «5 α quotient
map.

Proof. Mimic the proof of [ER2, Proposition 3.1]. D

Remark 6.2. The tensor product ®^ is not injective. Indeed let E, F, G be
Banach spaces such that E C F. Let j : G*<S>h^c —> G*r®hFc be the canonical
embedding. We wish to prove that j is not isometric in general. Assume for
simplicity that G is reflexive. Then (G* ®h Ec)* = B(E,G), (G*r ®h F c)* =
B(F,G) and j * : B(F,G) -» B(E,G) is the restriction map. Therefore, j *
is onto if and only if any bounded linear map from E into G has a bounded
linear extension to F. This fails in general and then, j is not even isomorphic
in general.

We now fix two Banach spaces X, Y. Let us denote by Cχ^γ the class of
all p-matrix normed spaces 5 defined by a completely isometric embedding
S C B(E,F) for some E e SQP(X) and F e SQP(Y). Note for further the
following straightforward consequence of our Theorem 4.1:

(6.1) — E Cχ?y whenever S E Cχ,y.

The end of this subsection is devoted to a convenient identification result
about CXjY. Let S be a p-matrix normed space. Recall from Section 4 that
given z E C% and £ E ϋ ^ , we may define zt E M n j m as a matrix product.
Thus we can introduce a canonical map

by letting J(z <g) s <g>t) = zt ® s.

Proposition 6.3. Assume that S E Cχ,γ. Then the above map J induces a
completely isometric identification

(6.2) Cl®hS®hRl = Mn,m(S).

Proof. 1st step. Under our assumption, it is clear from the proof of Propo-
sition 4.2 that the map J is isometric (see also Remark 4.3).
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2nd step. We claim that for any k,N,n >, 1, we have canonical isometric
identifications :

(6.3) Mhk {Cjj ®h Cl) = Mhk (C%n)

(6-4) ΛfM (R* ®h R%) = Mktl {R*N) .

Let us check (6.3). We have the following isometric identifications

Mljk (Cjj ®h Cl) = Cjj ®h Cl ®h Rζ by the first step

= MNik (Cl) by the first step

= Mhk (ClN) by (4.2)

whence (6.3). The proof of (6.4) is similar.
3rd step. We now prove that (6.2) is indeed a completely isometric iden-

tification. Fix N > 1. Then we have (isometrically):

MN {Cζ ®h S ®h Rl) = Cl ®h Cl ®h S ®h R^ ®h R* by the first step

- Cγ

Nn ®h S ®h R^N by (6.3) and (6.4)

= MNri}Nm(S) by the first step

and thus MN (C% ®h S ®h R%) - MN(Mn,m(S)). D

6.2. Multilinear Schur products on B{t%). Although Schur products
have been studied for a long time (see [Gr, Be]), Haagerup [Ha] was the
first to realize the link between Schur products and the theory of completely
bounded maps. Namely he proved that for any Schur product map φ :
B(t%) -> fi(^), we have \\φ\\ = \\φ\\ch. This approach was lately exploited
in [PPS]. We refer to this paper for further information. Recently, Effros
and Ruan [ER4] proved that multilinear Schur products may be naturally
defined on B(ί™) and that their c.b. norms may be easily computed from
the Christensen-Sinclair theorem. Moreover, it is not hard to deduce from
[S] that for such a multilinear Schur product map φ : B(ί2

n) x x B{ί2

n) ->
J3(£^), we have \\φ\\ — \\φ\\cb as in the linear case. In this last subsection, we
will indicate how to generalize all these results to multilinear Schur products
on B(ί;).

In the sequel, we will simply denote by Rn and Cn the p-matrix normed
spaces i?^ and C^ defined by (4.1) and (4.2). Similarly, the notation SQP

will stand for SQP(C) and C will stand for Cc,c Let (ε;)i<i<n and (^
be the canonical bases of Rn and Cn respectively. We set:

Gn = Span [ετ ® ε\ j iφ j) C Rn ®h Cn.
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Recall that (Rn ®h Cn)* = B{ί™) (see Lemma 2.7 for example). In this
duality, G^ is clearly identified with the space of diagonal operators on

ίp). Thus G^ — ί7^ and therefore we have isometrically:

(6.5)

Now the quotient formula (6.5) defines a p-matrix structure on i™ (see the
Subsection 6.1). In the sequel we will always consider I™ as the p-matrix
normed space defined above. Note that from Lemma 5.2, we have Rn®hCn G
C. Thus by (6.1) we obtain that t™ G C. Note also that when p = 2, this space
is nothing but Max {1%). Thus the following is not really surprising.

L e m m a 6.4- Let E, F be Banach spaces and let A : £% -> B(E, F) be a linear
map. Assume that E G SQP and F G SQP. Then we have \\A\\cb = ||A|| .

Proof. Let (r^)i<z<n be the canonical basis of I™. For any 1 < i < n, let
Ά = A{ητ) G B{E~F). We define A : F; ®h Rn ®h Cn ®hEc-+C by setting:

V 1 < i, j < n, A(/*,ε n ε; ,e) = δτj(Tτ(e)J*).

By Lemma 2.7 and Proposition 6.1, we have A — || A| | c 6 . Since E,F G S'Qp,

Proposition 6.3 implies that Cn ®h Ec = (^(£?))c and Fr* ®Λ i?n = {t%{F))*r

completely isometrically. Thus by Lemma 2.7 again:

(F; »„ R, ®k Cn β 4 £«)• = Mn(B(E, F")).

Γ1 Ί
Under this identification, A becomes the diagonal matrix " . . There-

\ -Ln/

fore \\A\\ = Sup-<n | |T 2 | | . Since ||A|| = Sup ί<n \\Ti\\, the result follows. D

We now turn to multilinear Schur products. Let N > 1 and let n 0 , . . . , nN

be some fixed positive integers. We give ourselves a finite family of complex

numbers a = (αiΛΓ,...,i0) o<i<;v . Note that any m(j) G B U^~\(^3) has a

canonical matrix representation m(j) — [m(j)ljjlj_1]ij^j_1 with respect to
the canonical bases of i^-1 and i™j. We define the JV-linear Schur product

Φ R (OnN-i pnN\ /ov, . . . /ov D (pnι 0n2\ /5>L D ̂ /no pnΛ . r> ίpn0 pnN\

a s s o c i a t e d t o a as follows. For a n y 1 < j < N, let m(j) — [mij)^,i3-.x\i3 ,i3-t ^

B [ίn

v

J-\ίn

v^ . Then we set
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We now introduce another map naturally asociated to a. For any 0 < j <
N, let us denote by (ηiJ)i<ij<nj the canonical basis of £™3. Then we define
φa :tΐN®h... ®h iΐ1 ®l if U C by setting ψa (ηiN,... , ηio) - aiN_ f i o. We
are now ready to state our last result. We keep the notation above.

Theorem 6.5. The following are equivalent.

(i) l | Φ « l l < i
(ϋ) l | Φ α | | c 6 < l

(iϋ) | I V α | | < l

(iv) There are Banach spaces K\,... ,KN which are all in SQP and there

are linear contractions Tio : C -> Kx (1 < i0 < n 0 ), Ti} : Kj -^

Kj+1(l <j<N-l,l<iά< rij), TiN : KN -> C(l < iN < nN) such

that for all i 0 , . . . ,%N :

Q>iN,...,i0 =TiNo-.-oTh oTio.

Proof. Recall that for any 0 < j < N, the p-matrix normed space ί™3' belongs
to C. Thus the equivalence (iii) Φ=4> (iv) follows from Theorem 5.1, Remarks
5.4, 5.5 and Lemma 6.4. Let us now check that (ii) <̂ => (iii).

Let s = B(ίn

p

N-\ίn

p

N) ®h...®hB(i ^i ή ®hB(ίn

p«,ίn

P

λ)

By Proposition 6.3, each B ί ^ " 1 , ^ ' ) m a Y ^ e completely isometrically

identified with Cn. ®h Rnj_Ύ. Thus by Lemma 2.7, this yields:

CB [s,B(ίl\ηr)) - (RnN ®h CnN ®h- Θh Cni ®h R
no

Now since ®h is projective (see Proposition 6.1), ( ^ N ®h ®h i"1 ®

may be viewed as a subspace of (RnN ®h CnN ®h ' " ®/ι Cno)*. As a con-

sequence, we obtain an isometric embedding p : (ίιN ®h m'' ®h ^ΐ°T ~^

GB (S,B UP°JP

N)) . Now it is not hard to see that the range of p is ex-

actly the set of ΛΓ-linear Schur products from S into B (tp°,£pN^ and that

p{ψa) — Φα This achieves the proof of (ii) <=> (iii).

Since (ii) => (i) is obvious, it remains to show that (i) ==> (ii). We

follow the approach of [S, Theorem 2.1]. First note that given βeB (ip

N^ ,

ae B (^°) and m(j) £ B (i^~\i^) (1 < j < N), we may set β{m(N) ®

• ® m(l))α = βm(N) ® ®m(l)a. By linearity this allows us to consider

the product βsa for all s E S. It is easy to check that for any a.\,... , am G
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B (e ή ,βu...βmeB (e ή, s = [sek] e Mm(S) •.

(6.6) Σ ,
l<ί,k<m

a

\\(βu ••-,

We now define Dno C B (^°) (resp. DnN C B{i^N)) as the space of all

the diagonal operators on B K™0) (resp. B (ipN)) A main feature of Schur

products is that:

(6.7) V (ft s, a)eDnNxSx Dno, Φa{βsa) - βΦa{s)a.

We are now ready to show that | | Φ α | | c 6 < 1. In order to achieve this, take

s = [sik] E Mm{S) a n d x u . . . ,xm G in

v\ y j , . . . ,y*m G ( ^ ) * = ίn

q

N s u c h

that II5II < 1 and

(6.8) <

k=l ι=ι

We thus have to show that:

(6.9) < 1.

For any 1 < t, k < m, write xk = (xk(io))i<io<no and j / | = {y*£(iN))i<iN<nN-

We define x G ^° and y* G £ ^ by letting x(i0) = ( ^ \xk{io)\P ) and

y*(i^) = ] Γ |% (̂ τv)Γ • τ h u s ( 6 8) imply:

(6.10) | | ί | | < l and ||y*ll < 1-

Now we define ak G Dno as follows. We set ak(i0) = J?f\ \ for any 1 < i0 <

n0
ίwith the usual convention π — 0j and we let ak —

Similarly we define βι =

βι{nN);



P-COMPLETELY BOUNDED MAPS 211

Obviously, we have for all 1 < k,ί < m : xk = ak(x) and y\ — β%(y*)
Hence we have:

(Φa(Σι,kβtStk<Xk)3,P)\ by (6.7)

/αΛ

<\\(βu... ,βm\\ : by (6.6) and (6.10).

Clearly we have

Oil 1/p

l<ιo<τn \k==

Hence we have

< 1.

Similarly, | | (A, . . . ,/3m)|| < 1 and therefore, (6.9) follows. D

Remark 6.6. In the particular case N — 1, the previous factorization

theorem can be refined as follows. We give ourselves a family a — (atj) ι<^<n

to which we associate a Schur product map Φa : B{t™,t™) -> B(ί™,lp) as

above as well as the linear map ua : ί™ -> i7^ of canonical matrix a. Then

the following are equivalent:

0) l | Φ α | | < l
(ii) The map ua factors contractively through Lp-spaces, i.e. there exist a

measure space (Ω,μ) and linear contractions 7\ : ίψ —ϊ Lp(Ω,μ), Γ2 :
Lp(ίl,μ) -+ f^ such that ua = T2TX.

Indeed by Theorem 6.5, | |Φ α | | £ 1 if and only if ua factors contractively
through S'Qp-spaces. From the lifting property of ίγ and the extension prop-
erty of £00, this is equivalent to (ii).

The (linear) result mentioned in this remark was learned to me by G.
Pisier. It is stated in [Pi2, Chapter 5] where explanations on its origine are
given.
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