THE POSITIVE DIMENSIONAL FIBRES OF THE PRYM MAP

JUAN-CARLOS NARANJO

The fibres of positive dimension of the Prym map are characterized.

Let C be an irreducible complex smooth curve of genus g. Let $\pi : \tilde{C} \rightarrow C$ be a connected unramified double covering of C.

The Prym variety associated to the covering is, by definition, the component of the origin of the Kernel of the norm map

$$P(\tilde{C}, C) = \text{Ker}(Nm_\pi)^0 \subset J\tilde{C}.$$

It is a principally polarized abelian variety (p.p.a.v.) of dimension $g(\tilde{C}) - g = g - 1$.

One defines the Prym map

$$P_g : R_g \rightarrow A_{g-1}$$

$$(\tilde{C}, \pi) \mapsto P(\tilde{C}, C),$$

where R_g is the coarse moduli space of the coverings π as above and A_{g-1} stands for the coarse moduli space of p.p.a.v.'s of dimension $g - 1$.

It is well-known that this map is generically injective for $g \geq 7$ (Friedman-Smith, Kanev). On the other hand this map is never injective; this is a consequence of the tetragonal construction due to Donagi (see [Do1] for a description of the construction). This fact is already implicit in the results of Mumford ([M]):

The coarse moduli space $R\mathcal{H}_g$ of unramified double coverings of smooth hyperelliptic curves of genus g has $[\frac{g-1}{2}] + 1$ irreducible components $R\mathcal{H}_{g,t}$, $t = 0, ..., [\frac{g-1}{2}]$. For an element $(\tilde{C}, C) \in R\mathcal{H}_{g,t}$ there exist two hyperelliptic curves

$$p_1 : C_1 \rightarrow \mathbb{P}^1, \quad p_2 : C_2 \rightarrow \mathbb{P}^1$$

of genus $g(C_1) = t \leq g - t - 1 = g(C_2)$ such that

a) $\tilde{C} = C_1 \times_{p_1} C_2$ and

b) $C = \tilde{C}/(\sigma_1 \circ \sigma_2)$, where σ_1 (resp. σ_2) is the involution on \tilde{C} attached to the branched covering $\tilde{C} \rightarrow C_1$ (resp. $\tilde{C} \rightarrow C_2$).
Mumford proves (loc. cit. p. 346) that one has an isomorphism of p.p.a.v.

\[P(\tilde{C}, C) \cong JC_1 \times JC_2. \]

Consequently the fibres of the restriction of \(P_g \) to \(\mathcal{R}H_g \) have positive dimension. In fact \(P_g(\mathcal{R}H_{g,t}) \) is contained in the product \(JH_t \times JH_{g-t-1} \), where \(JH_s \) stands for the locus of Jacobians of hyperelliptic curves of genus \(s \). Thus

\[\dim \mathcal{R}H_{g,t} = 2g - 1 > \dim JH_t \times JH_{g-t-1} = \begin{cases} 2g - 4 & \text{if } t \neq 0, \\ 2g - 3 & \text{if } t = 0. \end{cases} \]

On the other hand positive dimensional fibres also appear for some coverings of bi-elliptic curves (a curve is called bi-elliptic if it can be represented as a ramified double covering of an elliptic curve).

In this note we characterize the fibres of positive dimension of the Prym map. To state our theorem we need some notation: let \(\mathcal{R}B_g \) be the coarse moduli space of the unramified double coverings \(\pi : \tilde{C} \to C \) such that \(C \) is a smooth bi-elliptic curve of genus \(g \). This variety has \(\lfloor \frac{g-1}{2} \rfloor + 2 \) irreducible components

\[\mathcal{R}B_g = \left(\bigcup_{t=0}^{\lfloor \frac{g-1}{2} \rfloor} \mathcal{R}B_{g,t} \right) \cup \mathcal{R}B'_g \]

(see [N] for more details).

We obtain:

Theorem. Assume \(g \geq 13 \). A fibre of \(P_g \) is positive dimensional at \((\tilde{C}, C)\) if and only if \(C \) is either hyperelliptic or \((\tilde{C}, C) \in \bigcup_{t \geq 1} \mathcal{R}B_{g,t} \).

Proof. If \(C \) is hyperelliptic we apply the results of Mumford. On the other hand, all the irreducible components of the fibres of \(P_g|_{\mathcal{R}B_{g,t}} \) are positive dimensional for \(t \geq 1 \) (see [N, §20]). This finishes one implication.

The first step to see the opposite implication is to prove that the curve \(C \) is tetragonal (i.e. there exists a \(g^1_4 \) on \(C \)).

Let \(\eta \in JC \) be the two-torsion point characterizing the covering and denote by \(L \) the line bundle \(\omega_C \otimes \eta \). It is easy to check that \(L \) is very ample if \(C \) is non-tetragonal. Let \(\Phi_L \) be the projective embedding of \(C \) defined by \(L \).

As in Beauville ([B, p. 379]), we replace \(\mathcal{R}_g \) and \(\mathcal{A}_{g-1} \) by the corresponding functors. Then, the Prym map defines a morphism of functors \(Pr_g \). Our
hypothesis on the fibre of P_g implies that the cotangent map to Pr_g at (\tilde{C}, C) is not surjective. By loc. cit. Prop. (7.5), this map can be shown as the cup-product map

\[S^2 H^0(C, L) \rightarrow H^0(C, L^{\otimes 2}) \]

followed by the isomorphism induced in cohomology by $L^{\otimes 2} \cong \omega^{\otimes 2}$. Hence, the non-surjectivity implies that $\Phi_L(C)$ is not a projectively normal curve.

We recall Theorem 1 in [G-L]: If L is very ample and

\[\deg(L) \geq 2g + 1 - 2h^1(L) - \text{Cliff}(C), \]

then $\Phi_L(C)$ is projectively normal (where Cliff(C) is the Clifford index of C).

Since $h^1(L) = 0$ and $\deg(L) = 2g - 2$ one obtains $\text{Cliff}(C) \leq 2$. By using Clifford’s Theorem and [Ma, Propositions 7 and 8], it follows that the curve either possess a g_1^4 or is plane curve of degree six. The second case contradicts $g \geq 13$.

Thus C is tetragonal. Since $g \geq 13$ the results in [De] can be applied: either the fibre is finite (generically, three elements) or we are in one of the following three possibilities: C is either hyperelliptic or bi-elliptic or trigonal.

Assume that C is bi-elliptic. Theorems (9.4), (10.9) and (10.10) in [N] states that $P_{g-1}^{-1}(P(\tilde{C}, C))$ consists of two points for every $(\tilde{C}, C) \in \mathcal{R}B_{g,0} \cup \mathcal{R}B'_{g,1}$, hence

\[(\tilde{C}, C) \in \bigcup_{t \geq 1} \mathcal{R}B_{g,t}. \]

To finish the proof we have to rule out the case: C trigonal. In [R], Recillas (cf. also [Do2]) establishes an isomorphism

\[\tau : \mathcal{R}T_g \cong \mathcal{M}_{g-1}^{\text{tet},0}, \]

where $\mathcal{R}T_g$ is the coarse moduli space of unramified double coverings of trigonal curves and $\mathcal{M}_{g-1}^{\text{tet},0}$ is the moduli space of pairs (X, g_1^4) of tetragonal curves X and a base-point-free tetragonal linear series on X not containing divisors of the form $2x + 2y$. This map satisfies that

\[\tau(\tilde{C}, C) = (X, g_1^4) \mapsto P(\tilde{C}, C) \cong JX \quad \text{(as p.p.a.v.)}. \]

Let us fix (\tilde{C}, C) as above and let $(\tilde{D}, D) \in \mathcal{R}_g$ such that $P(\tilde{D}, D) \cong P(\tilde{C}, C) \cong JX$. Since C is not hyperelliptic, then the singular locus of the theta divisor of $P(\tilde{D}, D)$ has codimension 3 by [M, p. 344]. In loc. cit. a list of the Prym varieties with such property appear. We obtain that D is either trigonal or bi-elliptic. Since $P(\tilde{D}, D)$ is the Jacobian of a curve the bi-elliptic case contradicts [S].
Hence it suffices to prove that all the fibres of the restriction of P_g to \mathcal{RT}_g are zero dimensional. This follows from the bijection τ. Indeed, a curve X of genus $g \geq 12$ has at most one base-point-free g^1_4 without divisors of the form $2x + 2y$; otherwise there exists a map $f : X \to \mathbb{P}^1 \times \mathbb{P}^1$ and then either the genus is ≤ 9 or X is bi-elliptic. By [T, Lemma (4.3)] the linear series of degree 4 and dimension 1 on a bi-elliptic curve come from g^1_2 linear series on the elliptic curve, thus divisors of the forbidden form appear.

Now the classical Torelli Theorem says that

$$\mathcal{M}^{tet,0}_{g-1} \to \mathcal{A}_{g-1}$$

$$(X, g^1_4) \mapsto JX$$

is injective. Composing with τ we are done. □

Remark. Note that if one drops the hypothesis on the genus, at least one gets that the Clifford index of C is ≤ 2.

References

Received March 1, 1993. The author was partially supported by the European Science Program, "Geometry of Algebraic Varieties" project, contract no. SC1-0398-C(A) and by the DGICYT no. PS90-0069.

DEPARTAMENT D'ALGEBRA I GEOMETRIA
UNIVERSITAT DE BARCELONA, GRAN VÍA 585
08007 BARCELONA, SPAIN
E-mail address: naranjo@cerber.ub.es
A class of incomplete non-positively curved manifolds
Brian Bowditch

The quasi-linearity problem for C^*-algebras
L. J. Bunce and John David Maitland Wright

Distortion of boundary sets under inner functions. II
José Luis Fernandez Perez, Domingo Pestana and José Rodríguez

Irreducible non-dense $A_1^{(1)}$-modules
Vjacheslav M. Futorny

M-hyperbolic real subsets of complex spaces
Giuliana Gigante, Giuseppe Tomassini and Sergio Venturini

Values of Bernoulli polynomials
Andrew Granville and Zhi-Wei Sun

The uniqueness of compact cores for 3-manifolds
Luke Harris and Peter Scott

Estimation of the number of periodic orbits
Boju Jiang

Factorization of p-completely bounded multilinear maps
Christian Le Merdy

Finitely generated cohomology Hopf algebras and torsion
James PeiCheng Lin

The positive-dimensional fibres of the Prym map
Juan-Carlos Naranjo

Entropy of a skew product with a Z^2-action
KyeWon Koh Park

Commuting co-commuting squares and finite-dimensional Kac algebras
Takashi Sano

Second order ordinary differential equations with fully nonlinear two-point boundary conditions. I
H. Bevan Thompson

Second order ordinary differential equations with fully nonlinear two-point boundary conditions. II
H. Bevan Thompson

The flat part of non-flat orbifolds
Feng Xu