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A CLASS OF INCOMPLETE NON-POSITIVELY CURVED
MANIFOLDS

B.H. BowbDITCH

In this paper, we describe a class of simply connected non-
positively curved riemannian manifolds which satisfy some
curvature constraints. Such manifolds have many of the prop-
erties of (complete) Hadamard manifolds, such as geodesic
convexity and the existence of an ideal boundary.

1. Introduction.

The geometry of Hadamard (complete, simply-connected, non-positively
curved riemannian) manifolds has been intensively studied for some time. A
general account of the basic theory can be found in [BaGS]. However, there
are interesting examples of non-positively curved manifolds which fail to be
complete, while retaining many of the geometric properties of Hadamard
manifolds. The best known is the Weil-Peterssen metric on Teichmiiller
space. This is negatively curved [Ah, Tro] and incomplete [W1], yet it ad-
mits an exhaustion by compact convex sets, and is thus geodesically convex
[W2]. We describe some further examples in Chapter 2. Also, incomplete
non-positively curved metrics have been used to construct interesting exam-
ples of complete non-positively curved manifolds by modifying the metric in
a neighbourhood of the ends (see for example [AbS]).

These examples suggest that certain incomplete metrics may be of some
interest in their own right. In this paper we restrict attention to metrics sat-
isfying certain curvature constraints, and show that they behave, in many
respects, like complete manifolds. We shall assume in particular that the
curvature “blows up” along any path of finite length that leaves every com-
pact set.

Let us first summarise a few properties of (complete) Hadamard manifolds.
Firstly, the exponential map based at any point gives a diffeomorphism of
R™ onto X. Moreover, there is a natural compactification, X, of X into a
topological ball, formed by adjoining the ideal sphere, X; = Xc\X. A point
of X; may be thought of as an equivalence class of geodesic rays, where two
rays are equivalent if they remain a bounded distance apart.

If, in addition, we assume that X has strictly negative curvature bounded
away from 0, then it follows that X is a “visibility manifold”, i.e. any two
points of X; may be joined by a bi-infinite geodesic [EO].
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If we go further, and impose another curvature bound away from —oo (so
that X has “pinched curvature”), then much more can be said about the
geometry of X. For example, we have Anderson’s result [An] that if Q C X
is any closed subset, and hull(Q) C X¢ is the closed convex hull of @, then
X;Nhull(Q) = X; N Q. For further results about convex sets, see [Bo).

To generalise to incomplete (i.e. not necessarily complete) manifolds, let
us assume that:

(A) X is a Riemannian manifold such that
(A1) X has non-positive curvature, and

(A2) X is simply connected.
We write d for the path-metric on X, and write (X, d) for the metric comple-
tion of (X,d). Given z € X, write x(z) for the maximal sectional curvature
of any tangent 2-plane at X.
Suppose we assume, in addition to (A), that:

(B) For all a € X\ X, there is some K > 0 and a neighbourhood U of a in

X such that for all z € X N U, we have x(z) < —1/K?d(z,a)?;

then, we claim that:

(1) X is geodesically convex. In fact, any two points z,y € X may be
joined by a geodesic segment [z,y] C X U{z,y}. Moreover, [z,y] is, up
to reparameterisation, uniquely length-minimising among all rectifiable
paths in X.

(2) The completion X is a CAT(0) space (as explained in Section 3.5).

(3) There is a natural compactification X of X so that X is homeomor-
phic to a closed ball, with X as its interior.

(4) There is a natural continuous injection + : X — X from X in the
metric topology to X¢ in its topology as a ball.

(5) Suppose (z,y) € (X¢ x Xc)\(XP x X§°) where X{° = X\ o(X).
Then, z and y may be joined by a unique geodesic [z,y] C X U {z,y},
(where [z,z] = {z}). Moreover, [z,y] is closed in X¢.

(6) The map [(z,) = [5,9]] : (X x Xo)\(X{® x X§°) — #(Xo) is
continuous, where ¥’(X¢) is the set of all closed subsets of X in the
Hausdorff topology (Section 5.2).

Suppose, in addition to (A) and (B), that X satisfies:

(C) There exist pp € X and Ly, Ry > 0, such that if z € X with d(z,po) >

Ry, then k(z) < —1/L2d(z,po)?; then it follows also that:

(5") If (z,y) € Xc x X, then z and y may be joined by a unique geodesic
[z,9] € X U {z,y}. ‘

(6') The map [(z,y) — [z,¥]] : Xc X Xe — ¥ (X¢) is continuous.
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More precise statements of these results will be given later. They will
all be proven in this paper: (1) Proposition 3.5.3. (2) Proposition 3.5.1,
(3) Proposition 4.5.2, (4) Proposition 4.3.4, (5) Lemma 4.1.4, Lemma 5.3.1,
(6) Proposition 5.3.4, (5') Lemma 6.2.1, Proposition 6.2.3, (6') Proposition
6.3.2.

If one adds additional hypotheses, such as pointwise pinching of curva-
ture, then we have variations of Anderson’s construction which enable us to
construct convex sets in X. Thus, for example, with appropriate hypotheses,
we can deduce that X has an exhaustion by compact convex sets. There is
also the possibility of generalising some of the results of [Bo] to such spaces,
though we shall not get involved with that here. Indeed we suspect that this
programme could be carried further, and that, for example, many analytic
results could be carried over to such spaces.

Note that in the complete case, pinched negative curvature is the same as
pointwise negative curvature together with bounded geometry. “Bounded
geometry” means that, for any fixed r > 0, the set of metric balls {N(z,7) |
z € X} (defined up to isometry) all lie in a compact set in the C?-topology.
There is an analogous statement in the incomplete case. In this case, if
X is negatively curved, properties (B) and (C) and pointwise pinching of
curvature are all implied by a single hypothesis of “bounded geometry up
to scale”. To explain what we mean, let B be the closed unit ball in R?,
with a standard orthonormal frame, Fy, at the origin, o. Let .# be the space
of smooth Riemannian metrics on B, with strictly negative curvature and
with smooth boundary, 9B, such that the frame Fj is orthonormal in each
metric, and such that 0B is always the unit sphere about 0. We give the
space & the C? topology. Suppose that X satisfies (A). Suppose that z € X,
and A > 0 is such that the ball N(z, ) is compact. Given any orthonormal
frame, F, at z, let e : B — N(z,A) be the composition of a dilation by
a factor of A on R* with the exponential map sending Fy to F'. Thus, e is
a diffeomorphism, so we can pull back the metric on X to get a metric on
B. This gives us a point of .##. We shall say that X has bounded geometry
up to scale if there is a compact subset, § C ., such that for all z € X,
we can choose A(z) > 0 such that N(z, A\(z)) is compact, and such that for
some frame at z, the the point of . constructed as above always lies in
S. (Note that we are free to choose A(z) as small as we like. However, the
sectional curvatures at the origin of metrics in S are all bounded away from
0. Thus, if A(z) is small, the scaling factor forces the curvature at z to be
large. Similarly, if the curvature at z is small, then there must be a large
compact metric ball centred on z.) We leave as an exercise the fact that this
property implies properties (B) and (C).

As remarked earlier, one motive for studying incomplete manifold might
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be to gain some further insight into the geometry of the Weil-Peterssen met-
ric on the Teichmiiller spaces. Wolpert [W2] shows that this is geodesically
convex. As an example, he considers the case of once-punctured tori. In this
case, the moduli space is a 2-dimensional Riemannian orbifold with two cone
singularities (orbifold points), and a cusp singularity (with the cusp point re-
moved), of the type obtained by spinning the graph of f(z) = 23,z > 0 about
the z-axis. It follows that the universal cover (i.e. Teichmiiller space) in this
case satisfies axioms (A) and (B) (see Chapter 2). For higher-dimensional
spaces, the situation becomes more complicated. The asymptotics of the
curvature tensor have been studied by Trapani [Tra]. It appears that in
general property (B) fails. However, one might still hope for some modifi-
cation of the hypothesis (B), for example, to take account to the directions
of the tangent 2-planes along which the curvature blows up, sufficient to
recover an ideal sphere analogous to Thurston’s compactification.

In general, incomplete simply connected manifolds of negative curvature
seem to have received little attention. Without some strong constraints on
the curvature, they can behave in ways quite unlike Hadamard manifolds.
For example, Hass [Ha| gives an example of a negatively curved metric on a
3-ball which contains a closed geodesic in its interior. This phenomenon is
not possible in dimension 2, nor with constant curvature in any dimension.
It might be interesting to explore further conditions under which this sort
of behaviour would be prohibited.

2. Examples.

In this chapter we give some examples of the kind of incomplete manifolds
we are considering. These particular examples have been chosen principally
to illustrate the assertions made in the introduction. We begin with some
manifolds satisfying properties (A) and (B).

Suppose —o0 < a < b < 0o, and that f : (a,b) — (0,00) is a smooth
function. Let ¢ be an arc-length parameter along the graph of f, graph(f) C
(a,b) x (0,00). Given t € graph(f) write p(t) € RU {oo} for the length
of the tangent at this point to the intercept with the z-axis. (Figure 2.)
We take the sign of p(t) to be the same as that of df /dt. We may form
a surface of revolution, S, by spinning graph(f) about the z-axis. Now, S
has two orthogonal foliations: one by generators of S which are intrinsically
geodesic, and the other by circles of curvature c(t) = 1/p(t). We see that S
has Gaussian curvature equal to

k(t) = _de_po L (fif~1) = —ldg,f.

dt p? \dt f dt?

Thus, for S to non-positively curved, we need that f be convex. Such a
surface, S, has two topological ends corresponding to the ends of the interval
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(a,b). We see that the end corresponding to a will be complete if and only
if a = —o0, or else a > —oo and f(z) — oo as ¢ — a. We call such an end
a tube. If we have a > —oco and f(z) — 0 and £ (z) — 0 as £ — q, then we
call the end a cusp. If S satisfies property (B), we see that it is necessary
(but not sufficient) that either both the ends of S be tubes, or that one end
be a tube, and the other be a cusp.

Figure 2.

As an explicit example, consider the graph of f(z) = zf for some 8 > 1,
defined on the interval (0,00). We have —f(lz) g;é(ac) = —B(8—1)z72. Now
xz/t — 1 as t — 0, and so the curvature of S blows up like —1/t* as we
approach the cusp point at 0. We see that S satisfies (A1) and (B), and so
its universal cover, X = § satisfies (A) and (B). The metric completion X of
X is obtained by adding a single point, p, at the origin 0. Thus, under the
natural inclusion ¢ : X — X, the point p maps to an ideal point ¢(p) € X;.
The remaining ideal points can be thought of as the endpoints of the geodesic
generators of X, as £ — oo. Thus, the set X of these remaining ideal points
has naturally the topology of an open interval. This is compactified into the
circle, X;, by adding the point ¢(p).

Suppose, more generally, that f : (0,b) — (0,00) is convex, and that
f(z) = 0 and % (z) —» 0 as z — 0. Then g = lim,,o, %(t) € (0,1] is well
defined. (Thus 4 = 1 if b < c©.) Let S be the surface of revolution, and
X = S the universal cover. We may coordinatise X using a radial coordinate
6 € R and an arc length coordinate ¢ € (0,00). In this way, S is the quotient
of X by the map [(¢,0) — (t,0 + 27)]. As before, X¢ is formed by adjoining
the arc {(c0, 0) |6 € R}, and then taking the one-point compactification with
the point 0 at the origin. Let Iy be the geodesic generator {(¢,0)|t € (0,00)}
of X. The total Gauss curvature of the sector of X lying between l,, and

lg, may be calculated as C(6p) = — [ (6o f) (%%) dt = —puby where 8y =
6, — 0;. Applying Gauss-Bonnet, we find that the ideal points (00, 8,) and
(00, 6,) can be joined by a bi-infinite geodesic in X if and only if C(6,) < —7
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i.e. if and only if 8y > 7/u. Now, u < 1, and so X cannot have the visibility
property. Note that %2 — 1 as t — oo, and so k(t) = = (%f - 1) = o(1/t?).
Thus Property (C) fails in this case.

By giving similar consideration to the case where both ends of S are tubes,
we see that no surface constructed in this way can satisfy all of properties
(A), (B) and (C).

The surfaces of revolution just described are a special case of the following
more general construction.

Suppose M is a Riemannian manifold, and that I C R is an open interval.
Let f : I — (0,00) be a smooth function. We define a Riemannian metric
on X = M X I by setting

ds® = dt* + f(t)* ) gi;dz'da?,
,j
where ¢ is arc length in I, g;; is the Riemannian metric on M with respect
to the local coordinate system (z*);, and ds is infinitesimal distance in X.

We remark that this is an example of a still more general construction
of “warped products” described in the paper of Bishop and O’Neill [BiO].
In a warped product, the interval I may be replaced by any non-positively
curved manifold. In the paper cited, there is a complete characterisation of
when a warped product is non-positively curved.

In our special case, we can derive the relevant inequalities fairly simply as
follows. Note that X has two orthogonal foliations, one by geodesics of the
form {z} x I for z € M, and the other by codimension-1 submanifolds of
the form M; = M x {t} for t € I. Each M, is totally umbilic, with principal
curvatures equal to c(t) = fgt) %( ). In the intrinsic metric, M, is isometric
to M with the metric scaled by a factor of f(t).

Write A = 9/0t for the vector field on X orthogonal to the M;. Now
suppose that IT is a tangent 2-plane at (z,t) € M x [ = X. If II is orthog-
onal to A(z,t), then II corresponds to a tangent 2-plane, Il at z in M.
Write Sy (II5,) for the sectional curvature of M in II,,. Thus, the sectional
curvature, in II, of the intrinsic metric of M, is Sy (I)/f(t)2. Applying
Gauss’s Theorema Egregium [S], we see that the sectional curvature, S(II),
of X in II is given by

f2SM(HM)"C f2 (SM(H ) - (ZJ;) )

On the other hand, suppose that II is a tangent 2-plane at (z,t) containing
the vector A(z,t). In this case the sectional curvature, S(II), of X in IT is
de , 1df

S(IT) =
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Now, if Y and Z are, locally, any two vector fields everywhere orthogo-
nal to A, then a simple calculation shows that R(A,Y,Y,Z) = 0, where
R is the Riemann curvature tensor. This symmetry implies that each sec-

tional curvature of X at (z,t) lies between ~}%§ and £Su(lly) — ¢ =

2
3 (SM(HM) - (%‘:—) ) for some tangent 2-plane IIp; at z in M. In par-

ticular, for X to be non-positively curved, it is sufficient that M be non-
positively curved, and that f be convex. (For more detailed computations
of this nature, see [BiO)].)

Examples of this construction are the surfaces of revolution described
above. In this case, we have M = R and f is thought of as a function of
arc-length, ¢, along graph(f) = I. In such a case, we must always have
4 <1.

“ With this last constraint removed, we can construct examples satisfying
(A), (B) and (C). For example, with M = I = R, and f(¢) = €', we obtain
the hyperbolic plane foliated by horospheres.

For another example, set M = R, I = (0,00) and f(¢) = t¥ with 8 >
1. Now, the curvature k(t) equals —%‘;—;ﬁ = —B(B — 1)/t*. This case is
qualitatively similar to the surface of revolution of [z — zP] described above,
except that now, X satisfies (C), and has the visibility property.

As a third example, set M = R, I = (0,1) and f(t) = t*/(1 — t)?. We
see that k(t) = —124 = —2(2t + 1)/t2(1 — t)°. Thus —k(t) grows like 1/¢
as t — 0 and like 1/(1 — £)? as t — 1. It follows that X satisfies (A) and
(B). Since it is bounded (has finite diameter), it trivially satisfies (C). Both
the completion, X, and the compactification, X¢, of X may be identified
set-theoretically as (R x [0,1])/~, where (z,0) ~ (y,0) for all z,y € R.
However, the topologies are different. Thus X may be thought of as the
one point compactification of X x (0, 1] by adding the point 0 = {(z,0)}/~,
whereas X is noncompact—a base of neighbourhoods of 0 being given by
{(Rx[0,€))/~|e > 0}. Note that the natural map X — X is a continuous
bijection.

One can construct higher dimensional examples, for example by taking M
to be euclidean n-space E", or hyperbolic n-space H*. Note that M = E",
I = R and f(t) = et gives us H"*'. So does M = H", I = R and f(¢t) =
cosht.

There are many variations on this theme one can explore. One can also go
on to construct further examples by gluing together examples of this type.
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3. Geodesic convexity.

In this chapter, we aim at establishing properties (1) and (2) for manifolds
satisfying (A) and (B). The following notation is used throughout.

Suppose X is a Riemannian manifold. We write T,, X for the tangent space
to X at z, and T X for the total space of the tangent bundle. Given &,( €
T, X, we write (£,() and |¢] = \/(£, &) respectively for the Riemannian inner
product and norm on T, X. If £,¢ # 0, set Z(&,¢) = cos™'({&,¢)/)€l|¢]) €
[0, 7] for the angle between & and ¢. We write d for the induced path-metric
on X.

We shall use the term “geodesic” in the Riemannian sense of a curve whose
first derivative is parallel. Thus, in terms of the metric d, a geodesic can
be characterised as a constant-speed path, for which all sufficiently small
subpaths are length-minimising.

3.1. Ruled maps. In this section we take X to be a Riemannian manifold
of non-positive curvature (Al). For z € X, we write x(z) € [~00,0] to be
the maximal sectional curvature at z.

Suppose that I = [ty,t;] C Ris a closed interval and J C R is any interval.
We write int I and int J respectively for the interiors of I and J. Given a
smooth map B : I x J — X, we shall denote by 3, and ' the maps

Bu=1[t— pltu)]: T —X
and
Bt =lur Bltu)]:J — X

where t € I and u € J. Thus 3,(t) = B'(u) = B(t,u). We refer to paths
of the form 3, and ' respectively as longitudes and transversals. We write
03/0t and 08/0u respectively for G, (9/0t) and 3.(3/0u). We say that Fisa
ruled map if for allu € I, B, is a geodesic. Thus I‘Z—f(t, u)‘ = (length 8,) /|t —
tol-

Suppose that for u € J, the geodesic (3, is non-constant. We see that the
map [t — g—ﬁ(t,u)] is the first variation of a geodesic along (,. Thus, the
component of %(t,u) parallel to 22(t, ) is linear in ¢. Moreover, since X is
non-positively curved, the Riemannian norm of the component orthogonal
to 22(¢,u) is convex (see the discussion of normalised ruled maps below). It
follows that the map [t — '%g(t, u)H is convex. This is also readily verified

in the case where 3, is constant. Integrating, we find that the map [t —~
length '] : J — [0, 00) is convex. In particular:

Lemma 3.1.1. For all t € [to,t,], we have
length ' < max(length 5%, length ).
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We shall say that a ruled map 8 : I x J — X is non-degenerate if (3,
is non-constant for all » € J. In such a case, we say that (t,u) € I x J is
a singular point if B fails to be an immersion at that point, i.e. if %g(t,u)
is some multiple of %(t,u). We say that 3 is non-singular if there are no
singular points in int I X J. In such a case, the pull back of the Riemannian
metric to int [ X int J is also a Riemannian metric of non-positive curvature.
In fact, the curvature at (¢, w) is at most x(8(¢,u)). This is Synge’s Inequality
(see [S]). In the particular context of ruled maps, it is discussed in a paper
of Aleksandrov [Alek].

By a ruled surface, we shall mean the image, P = B(I x J) C X, of a
ruled map 8 : I x J — X, where J is compact, and such that § is non-
singular and injective on int I X int J. We shall refer to the sets (I x {u})
for u € J as generating geodesics. We write kp(z) for the intrinsic curvature
of P at z. Thus kp(z) < k(z) < 0. Of particular interest is the case where
the boundary, P, of P is a piecewise geodesic path. This motivates the
following definition.

Definition. By a (non-positively curved) n-gon we mean a surface P,
which is topologically a closed disc with boundary 0P, together with a set
V C OP of n points, and a metric, p on P such that p restricted to the
interior int P = P\OP is a non-positively curved Riemannian metric, and
such that each component of 9P\V is geodesic.

We shall refer to the points of V' as vertices and the components of OP\V
as edges. At each vertex v € V, the adjacent edges meet at some well-defined
angle 6(v) > 0. Since the metric is not assumed to be Riemannian at the
point v itself, it may be possible to have 8(v) = 0 (if the curvature grows
sufficiently fast as we approach v). In such a case, we refer to v as a cusp.
In all cases we consider, P will be convex, i.e. # < 7 for all v € V. Now, the
Gauss-Bonnet formula tells us that

S 0(w) = (n— 2 + /P kp(2)dw(z),

veV

where kp(z) is the curvature at z € P, and dw is the area element. Note
that we must always have n > 3.

By talking about ruled surfaces, we avoid having to worry about the
technical complication of dealing with singular points; although intuitively
we would expect such points to work in our favour since they concentrate
negative curvature. The fact that singular points do not cause any real
problems has been made precise by Aleksandrov [Alek].

Another another type of restriction we shall want to place on ruled maps
is the following.
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We say that a non-degenerate ruled map 8: I x J — X is normalised if:
(R1) for all w € J, the longitude 8, = [t — B(t,u)] is a geodesic param-
eterised with respect to arc-length (i.e. ‘%%(t, u)' = 1 for all (¢,u));
and
(R2) for all (¢t,u) € I x J, we have
ap ap
(St 5w =0,
Thus, for a fixed u, the map [t — %(t,u)] is a Jacobi field along the

longitude g,. We write J(t) = I%(t, u)‘ From the Jacobi field equation [S],
we know that, except where it vanishes, J(¢) is smooth in ¢, and that

d*J

E{(t) > —k(B(t, u))J(¢).
Suppose that A : I — [0,00) satisfies A(t) < —x(B(¢,u)) for all t € [ =
[t0,t1]. The following is a simple consequence of the above differential in-
equality.

Proposition 3.1.2.  Suppose f : I — [0,00) is smooth and satisfies
%t—f-(t) = A)f(@t) for allt € I. If f(ty) = J(ty) and %(to) < L(ty) then

f@&) < J(t) forallt €1.
Corollary 3.1.3. Suppose f : I — [0,00) is smooth and satisfies %(t) =

A@)f(t) for allt € I. If f(to) = J(to) and f(t,) = J(t1), then f(t) < J(t)
foralltel.

Of particular interest will be the case where A has the form
At) =1/K*(t + h)®

for t > 0, and K,h > 0 fixed. The solutions of %(t) = X(t)f(t) have the

form (¢t + h)'** and (¢t + h)™* where p = (/1 +4K?) — 1 > 0. In particular,
if £(0) =1 and 4(0) = 0 we have the solution

ft) = 2“‘11 <<1+%>1+u+ (14—%) <1+%>Mu).

We shall refer to this later (Lemmas 3.4.1 and 6.1.1).
For the proof Lemma 3.4.1, we will need to describe a process of “normal-
ising” ruled maps.
Suppose that « : I x J — X is a non-degenerate ruled map, where now
I = [vg,v1]. We are looking for a subset S C RxJ andamap p:IxJ — S
with the following properties:
(N1) p is a smooth diffeomorphism of I x J onto S.
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(N2) For all u € J, the set SN (R x {u}) is a closed interval of the form

[g0(u), g1 (u)] x {u}.
(N3) For all w € J, the map p|(I x {u}) sends I x {u} linearly onto
[g0(u), @1 (u)] x {u}.
(N4) The map 8 = aop™!: S — X is a normalised ruled map (i.e. it
satisfies properties (R1) and (R2) above.)
We see that S has the form S = {(t,u) € R x J | go(u) <t < ¢;(u)}, where
go,q1 : J — R are smooth maps.
As before, we define longitudes, a,,, 3,, and transversals o, 3, by o’ (u) =
a,(v) = a(v,u) and B (u) = B.(t) = B(t,u). For i = 0,1, set y; = o
J — X, and 0; = [u = (¢;(u),u)] : J — S. Thus, v; = Boo;. We see that

Dy = 30) %P 0,0) + 22 (0,(0),

du ot + o’
and so J 4 o8
qi Vi )
) = ( T w), Z(olw) )
Note that 22(o;(u)) is the unit tangent vector &(u) = (”4[(—;%) 92 (v;,u) to

the geodesic a,,, where I(u) = length o, = length 3,,.
Now, suppose that we are given «, and want to construct S and p, and

hence 3. We can obtain the functions ¢;, up to an additive constant, by
integrating the quant1ty< i(u),&(u )> Note that 2 (q1(u) —qo(u)) = L (u),
and so we can arrange that g;(u) — go(u) = I(u) for all u € J. This, then,
defines the set S C R x J, and hence determines the map p: I x J — S.
One verifies that the map 8 = a o p~! satisfies properties (R1) and (R2) as

required.

3.2. The space of geodesics. For the moment, we can take X to be any
Riemannian manifold. Let (X,d) be the metric completion of (X, d). Since
(X,d) is a path-metric space it follows that (X,d) is a path-metric space.
We claim that every point of X\ X is accessible by a smooth path of finite
length:

Lemma 3.2.1. Suppose y € X\X; then there is a smooth path B : [0,1] —
X so that B(0) =y, B((0,1]) C X and length 8 < oco.

Proof. Certainly, y is accessible by a rectifiable path of finite length in X,
and we may use local convexity to approximate it by a smooth path. 0

Now, write path(X) for the set of all paths from [0, 1] to X. Given o, €
path(X), write

dsup(@, B) = max{d(e(t), B(t)) | t € [0,1]}.
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Thus dy,, is a metric on path(X). We see easily that:
Proposition 3.2.2. (path(X),d,.,) is a complete metric space.

We write path(X) C path(X) for the subspace of paths lying entirely in
X.
We define the endpoint map

7 :path(X) — X x X

by 7(8) = (8(0),5(1)). Clearly = is continuous.

Let geod(X) C path(X) be the subspace of those 3 € path(X) such that
either g is constant, or else 3((0,1)) € X and B|(0,1) is a constant-speed
geodesic. Let

geod(X) = geod(X) N path(X) = geod(X) N7~ (X x X).

Now, let us suppose that X is non-positively curved (Al). In this case,
the map 7 : geod(X) — X X X is a local homeomorphism:

Lemma 3.2.3. Suppose b € geod(X). Let n(8) = (x,y). Then, there are
netghbourhoods U of z and V of y in X, and a neighbourhood W of 8 in
geod(X) such that n|W : W — U x V is a homeomorphism.

Proof. This follows, exactly as in the complete case, using the Jacobi field
equation, and the implicit function theorem. O

We see that, if X has dimension n, then geod(X) is a 2n-dimensional
manifold, and inherits a smooth structure from X x X.

Suppose that v : J — geod(X) is a smooth path. By definition, the
paths v; = [u — y(u)(@)] : J — X for ¢ = 0,1 are smooth. We write
4:[0,1] x J — X for the map given by ¥(t,u) = y(u)(t).

Lemma 3.2.4. The map ¥ is smooth.

Proof. From the implicit function theorem, exactly as in the complete case.

O

Thus, 4 is a ruled map. Note that v, = 4* according to our previous
notation. Applying Lemma 3.1.1, we see that <y is a rectifiable path in.
(path(X),ds.,). In fact, if J' C J is any subinterval, then

length (y]|J') < max (length(vyo|J'), length(y,|J")) .

Since (path(X),d,,,) is complete, we have the following:
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Lemma 3.2.5. Suppose v : (0,1] — geod(X) is smooth, and lengthy; <
oo for i =0,1. Then, v extends (uniquely) to a map vy : [0,1] — path(X).

Suppose, in such a case, it happens that v(0)((0,1)) € X, so that v(0)|(0, 1)
must be geodesic. Thus, by definition, v(0) € geod(X). Our aim in the next
section is to show that this is always the case if X satisfies axiom (B), and
~(0) is non-constant.

3.3. The path-lifting property. Suppose that X is non-positively curved
(A1) and satisfies:

(B) For all a € X\ X, there is some K > 0 and a neighbourhood U of a in
X such that for all z € X NU we have x(z) < —1/K?d(z,a)?.

We aim to show that 7 : geod(X) — X x X is a covering map. A similar
idea can be found in [AlexB]. This result will be based on the following
path-lifting property.

Lemma 3.3.1. Suppose v : [0,1] — path(X) with v((0,1]) C geod(X),
and ¥|(0,1] smooth. For i = 0,1, write v; for the path [u — v(u)(3)] :
[0,1] — X. Suppose that for i = 0,1, we have lengthy; < oo. Then
7(0) € geod(X).

Proof. By definition, any constant path lies in geod(X), so we can suppose
that v(0) is non-constant. As remarked at the end of the last section, it
suffices to show that y(0)((0,1)) € X. Without loss of generality, we can
suppose that y(u) is non-constant for all u € [0,1]. Define a: [0,1]> — X
by a(v,u) = v(u)(v). Thus, & : [0,1] x (0,1] is a non-degenerate ruled
map. Now, the normalising procedure of Section 3.1 gives us a map p :
[0,1]x(0,1] — Rx (0, 1] so that 8 = aop™ : Sy — X is a normalised ruled
map, where Sy = p([0,1] x (0,1]) = {(t,u) € R x (0,1} | go(u) <t < g1 (u)}.
We have +,/(0,1] = 8 0 0; where o;(u) = (g;(u),u). Thus, for all u € (0, 1],

dy; i, 0 0
D) = 20y 90 (5, )) + L (o)
and so d d
q. Yi
‘_dt (u)’ <|=E (u)|-

dt
g;(0), as u tends to 0. Also, since [{(u) = lengtha, = qi(u) — go(u) for
all u € (0,1], and since oy = y(0) is non-constant, we see that ¢o(0) <
¢:(0). Let S = {(t,u) € Rx [0,1] | qo(u) < t < qi(u)}. We may extend
p to a homeomorphism p : [0,1]> — S mapping [0,1] x {0} linearly to
[90(0),q(0)] x {0}. Thus, 3 extends to a map 8 = aop™:S — X. As

e see that t(u)|du < length~y; < oo, and so gq;(u) tends to a limit,
Wi hat [} |%:(u)|du < lengthry d d limit,
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before, we define longitudes, §,, and transversals, S, by 8,(t) = B(u) =
B(t,u). We want to show that By((qo, q1)) = ¥(0)((0,1)) C X.

Suppose, for contradiction, that there is some ¢ € (qo,q;) with 3(¢,0) €
X\ X. For notational convenience, we shall assume that ¢+ = 0, i.e. that
£(0,0) € X\ X. Let a = 3(0,0).

Let U be the neighbourhood of o in X given by the hypothesis (B) above.
We can find t, > 0 and uy > 0 such that [—tg, t] X [0, ue] C S and B([—to, to] X

[O,Uo]) g U
Now, for all (¢,u) € S, we have that
op 9B dv;
7 (b W] < max o~ (01 (u)| < max | —=(u)].

The first inequality follows from Corollary 3.1.3 (with A = 0) and the second
comes from the formula for £j—%(u) given above. In particular, we see that
for all t € [—t(),to],

/uo
0

Given u € [0, uo], set

95+ )

5, (b w)| du < max length(7,][0, uo]) < co.

op

™ (O,w)l dw.

h(u):/ou

Thus, h(u) = length(8°|[0,u]) > d(a,B(0,u)). Since the longitude S, is a
geodesic parameterised by arc-length, we have, for all ¢t € [—{o, to]

d(IB(07 u), ﬂ(t7 U’)) = ltl

and so
d(a, B(t,u)) < [t| + h(u).

Thus, by hypothesis (B), we have
k(B(t,u)) < ~1/K*(Jt] + h(u))*.

Fix, for the moment, some u € (0,up]. For t € [—tg,t1] set J(t) =
gg(t,u)|. If J(0) # 0, then J is differentiable at 0. Suppose %(0) > 0,
Then, applying Proposition 3.1.2 on the interval [0,t,] and using the for-
mula given after the Proposition, we find that

" £\
It 2 7 <1+ h(u)> 7(0).
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If, on the other hand, %(0) < 0, then, by symmetry, we get the same lower
bound for J(—t,). Thus, in all cases, we get that

T(—to) + JI(tg) > — (1+ fo )H“J(O).

2u+1 h(u)
Thus,
uo
00 >/ 8ﬂ —to, U to,u) du
o |Ou
p o to o aﬁ
> 1 0,u)| d
=2u+1J ( +h(u)) au (O u)|du
M “o to 1+u dh
= 1 d
5%+ 1 Jo ( +h(u)) du
h(‘uo) 14+p
=+ (1 + t—o) dw
2M +1Jo w
= 00.
This contradicts the existence of a € v(0)((0, 1))N(X\X). Thus v(0)((0,1)) C
X, and so y(0) € geod(X) as required. a

Corollary 3.3.2. The map 7 : geod(X) — X x X is a covering map.

Proof. By Lemma, 3.2.3, we know that = is a local homeomorphism. Lemmas
3.2.5 and 3.3.1 together tell us that 7 has the path-lifting property for smooth
paths. The result follows by standard arguments. O

3.4. Properties of geodesics. In this section we shall add the assumption
(A2) that X is simply connected, i.e., altogether we are assuming that X
satisfies hypotheses (A) and (B).

Now, X x X is simply connected, and so by Corollary 3.3.2, we see that
each component of geod(X) maps homeomorphically to X x X under =.
Choose any point z, € X, and let geody(X) be the component of geod(X)
containing the constant path at zo. Let 7y be the restriction of 7 to geodo (X)
so that mp : geodp(X) — X x X is a homeomorphism. Given z,y € X,
write [z — y] = 75! (z,y). We see easily that for all z € X, [z — z] is the
constant path at z.

Lemma 3.4.1. geod(X) = geodo(X).

Proof. Suppose, for contradiction, that geod(X) # geodo(X). Choose any
z € X. Since 7 : geod(X) — X x X is a covering map, there is some
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a € geod(X)\geodo(X) with 7(a) = (z,z). Thus a # [z — z]. Without loss
of generality can suppose that ¢ «((0,1)). (Otherwise choose a smaller
segment of « and reparameterise.) For each ¢ € (0, 1), the path a meets the
path [z — «(t)] in «(t), at an angle different from 0 or w. Thus, as ¢ ranges
through [0, 1], the geodesics [z — «(t)] span a non-positively curved 1-gon,
which is impossible by Gauss-Bonnet (Section 3.1). D

In summary, we have shown:

Proposition 3.4.2. Any two points of X are joined by a unique geodesic
(defined on the domain [0, 1]). Moreover, this geodesic varies smoothly in its
endpoints.

Given z,y € X, write [z,y] C X for the image of [z — y]. Thus [z,2] =
{z} and [z,y] = [y, z].

For a fixed z € X, the function p defined by p(z) = length[z — 2] is
smooth on X\{z}. Moreover, any geodesic [z — y] is orthogonal to the level
sets of p, and so a standard argument of Riemannian geometry shows that:

Proposition 3.4.3.  For all z,y € X, the geodesic [t — y| is, up to
reparameterisation, the unique length-minimising rectifiable path from x to
y. (In particular, d(z,y) = length [z — y].)

Now, given z € X and y € X \{z}, we write ZJ = m%%(O), where
o = [z — y]. In other words, Z7 is the unit tangent vector at z along [z, y].
If z € X\{z}, write y2z = Z(Z7, T2) for the angle between Z7 and z3.

Given the existence and uniqueness of geodesics, the following comparison
theorems follow exactly as in the complete case. Let (E?, d’) be the euclidean
plane,

Proposition 3.4.4. (Angle Comparison Theorem of Aleksandrov). Sup-
pose T,y,z € X are distinct points. Choose =',y',z' € E?, so that d'(z',y') =
d(z,y), d'(y,2') = d(y,z) and d'(z',z') = d(z,z). Then zgz < z'§'2,

LAt

yzx <y'2'z and 22y < 2'T'y’.
We refer to z'y'z’ as a comparison triangle for zyz.

Proposition 3.4.5. (CAT(0) inequality). Suppose z,y,z € X are distinct
points. Suppose u € [z,y] and v € [z,z]. Choose a comparison triangle.
z'y'z" i B? for zyz. Let u' € [z',y'] and v' € [z',2'] be the points with
d'(z',v') = d(z,u) and d'(z',v") = d(z,v). Then d'(u',v") < d(u,v).

We thus say that (X,d) is a “CAT(0)-space”. More precisely, a CAT(0)-
space is a path-metric space in which every pair of points may be joined
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by a “geodesic”, in the sense of a length-minimising path, and where the
conclusion of Proposition 3.4.5 is satisfied where [z, y] may be interpreted as
any choice of geodesic from z to y. In fact, it follows, in retrospect, that in
a CAT(0)-space, there is a unique geodesic joining any pair of points, and
so [z,y] is uniquely defined. For further discussion of such spaces, see Ball-
mann’s article in Chapter 10 of [GH], or the book by Bridson and Haefliger
[BrH].

As a corollary of Proposition 3.4.5, we have the convexity of the distance
function:

Proposition 3.4.6. Suppose I,J C R are intervals, and that « : [ — X
and B : J — X are geodesics parameterised proportionately to arc-length.
Then the function [(t,u) — d(a(t), B(u))] : I x J — [0, 00) is convez.

3.5. The completion. Finally in this chapter, we describe the geometry
of the completion (X,d) of (X,d). We are again assuming that X satisfies
hypotheses (A) and (B).

Now, the metric completion of any CAT(0)-space is a CAT(0)-space, so
we see immediately that:

Proposition 3.5.1. (X,d) is a CAT(0)-space.

In particular, every pair of points are joined by a unique geodesic. Recall,
however, that the term “geodesic” is here being used in the metric space sense
of a constant-speed globally length-minimising path. We should therefore
check that this agrees with the notion of “geodesic” already defined in Section
3.2. As before, we write geod(X) for the space of such geodesics.

Note that it’s easy to see that a path o € geod(X) is globally length-
minimising, in other words, that length @ = d(z,y) where (z,y) = 7(a). To
do this, choose t € (0, %] Since geodesics in X are globally length-minimising
(Proposition 3.4.3), we have that length (a|(t,1—1)) = d(a(t), (1 —t)). The
observation follows by letting t — 0. Now, since (X,d) is CAT(0), it now
follows that if @, 8 € geod(X) with 7(c) = (), then a = 8. (This can also
be verified directly, by a similar limiting argument.) It remains to show that

such paths always exist:
Lemma 3.5.2. Any two points of X can be joined by a path in geod(X).

Proof. Suppose z,y € X. Since every constant path lies in geod(X), we can
suppose that z # y. By Lemma 3.2.1, both z and y are accessible by smooth
paths of finite length in X. From the geodesic convexity of X (Proposition
3.4.2) and Lemma 3.3.1, we see that z and y can be joined by a path in

geod(X). O
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In summary, we have shown:

Proposition 3.5.3. For all z,y € X, there is a unique a € geod(X)
with w(a) = (z,y). Moreover lengtha = d(z,y). In fact, o is the unique
constant-speed globally length-minimising path in X from x to y.

We can now use the term “geodesic” without ambiguity. As with X,
we write [z — y] for the unique path in geod(X) joining z to y. We write
[z,y] € X for the image of [z — y]. As before, [z,y] = [y,z] and [z,z] = {z}.
Note that for all 7,y € X, we have [z,y] = {z € X|d(z, 2)+d(z,y) = d(z,y)}.

Note that since (X,d) is CAT(0), it follows that the distance function
is convex (cf. Lemma 3.4.6). In particular, geodesics vary continuously on
their endpoints, and so:

Proposition 3.5.4. The map 7 : geod(X) — X x X is a homeomorphism.
We remark that if we fix one endpoint, then geodesics vary in a C! fashion:

Proposition 3.5.5. Givena € X, define f, : X x(0,1) — X by f.(z,t) =
[a — z](t). Then f, is C*.

Proof. Clearly, if @ € X, then f, is smooth. If a € X\ X, we choose a
sequence of points a,, € X with a,, — a, and check that the derivatives of
the functions f,, converge. This can be done by considering Jacobi fields
along [z,a,] (c.f. the case of horofunctions [Hel]). OJ

4. The compactification.

In this chapter, we assume that X satisfies axioms (A) and (B). We shall
describe the compactification X = X U X, where X is the “ideal sphere”.
Thus, X; may be thought of, set theoretically, as the union of X? = X\ X
and a set, X° of asymptote classes of geodesic rays. We shall show that X¢
is homeomorphic to a closed ball (Proposition 4.5.2.)
4.1. Geodesic rays. A geodesic ray based at z € X is a path a : [0, 00) —>
X such that a(0) = z, and o((0,00)) € X, and such that «|(0,00) is a
geodesic parameterised by arc length.

We know (Proposition 3.5.3) that geodesics are length-minimising in X.
In particular, o must be a proper map.

Suppose «, 3 are geodesic rays. By Lemma 3.4.6, the map

[t = d(a(t), B(1))]
is convex. Thus, if d(a(t), 5(t)) is bounded above, then
d(a(t), B(t)) < d(a(0),B(0)) for allt.
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Definition. We say that the rays « and § are asymptotic if d(«a(t), 8(t))
is bounded as t — o0.

Clearly this is an equivalence relation on the set of geodesic rays. Note
that:

Lemma 4.1.1. If o and 8 are asymptotic rays, then the map
[t = d(a(t), B(2))]
s monotonically non-increasing.
Corollary 4.1.2. Two asymptotic rays based at the same point are equal.

Proposition 4.1.3. Suppose that § is a geodesic ray, and z € X. Then
there is a (unique) geodesic ray based at x asymptotic to (.

Proof. For this, we need only the convexity of the distance function (Lemma
3.4.6), and the completeness of X.
For n € N, set I, = d(z, 8(n)). Let ay, : [0,1,] — X be the geodesic from
z to B(n) parameterised by arc-length. Note that n —[ly <[, < n+1l,. From
Lemma 3.4.6 applied to 8 and «,, we see that d(a(?), 5(t)) < lp provided
t <n—lp. Thus, if m > n > Iy, then d(a,(n —ly), an(n — 1)) < 2l,. Now,
by Lemma 3.4.6 applied to «, and o,,, we see that for all ¢ € [0,n — [o],
we have d(a,(t),an(t)) < %‘% Thus, for a fixed £, the sequence (a,(t))
is a Cauchy sequence, and so tends to a limit a(t) € X. Now each a, is
length-minimising, and so d(a(t), a(u)) = |t — u| for all ¢,u € [0,00). Thus
by Proposition 3.5.3, we see that a((0,00)) C X and (0, 00) is geodesic.
For all n > t+1y, we have d(8(t), a,(t)) < ly, and so d(a(t), 8(t)) < lp. Thus
]

« and § are asymptotic.

Now, let X{° be the set of asymptote classes of geodesic rays. We write
X9 for the set X\ X, and define the ideal sphere, X;, as a disjoint union
X; = X{U X5, We write X = X U X; for the compactification of X, and
¢t : X — X for the natural inclusion. We shall describe the topology on
these spaces in Section 4.3.

Suppose that £ € X = X U X? and that y € X§°. Lemma 4.1.3 tells us
that there is a unique geodesic ray § based at z and in the class y. We say
that 3 tends to the point y. Write [z,y] = 8([0,00)) U {y} C X, and refer
to [z,y] as the geodesic joining = to y. Given the existence and uniqueness
of geodesics in X, we have established that:

Lemma 4.1.4. Given (z,y) € Xc X Xc\(X7° x X{°), then there is a unique
geodesic [z,y] joining z to y.

We may extend the notations Zf and yZz to the case where © € X and
v,z € Xc\{z}.
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Note that from the proof of Proposition 4.1.3, we see that if z,z € X,
y € X7°, and y, € [z,y] N X is a sequence of points tending to y, then the
vectors Ty, tend to @ in the unit tangent space at x.

If we fix y € X, then the vector field [z — zj] : X — TX, is C",
where T'X is the total tangent bundle to X. This may be proven using
the convergence of Jacobi fields just as in the complete case. We may also
define a positive-time flow ¢ : X x [0,00) —> X along this field. Thus,
d(x,t) = PB(t), where (3 is the geodesic ray based at z tending to y. As in
the complete case, we have:

Proposition 4.1.5. The flow ¢ : X x [0,00) — X is C*.

4.2. Horofunctions. In this section, we describe the “horofunctions” (or
“Busemann functions”) about a point y € X7°. The results will be used
again in Chapter 6, though, for the moment, it is something of a digression.

Fix y € X{°. Suppose a € X. Let 3 be the geodesic ray based at a tending
to y. Given any z € X, the function [t — ¢ — d(x,3(t))] is monotonically
increasing in ¢t. Moreover it is bounded above (by d(z,a)). It thus tends
to a well-defined limit h,(z) = limy_,o(¢t — d(z, 5(¢))). We see easily that
|ho(z)—he(z')| < d(z,z') forall z, 2’ € X. Thus, h, : X — R is continuous.
Also, one can show that h, is C?. This follows as in the complete case (see
[Hel]). We refer to h, as a horofunction about y.

To see that h, is at least C* on X is elementary. For a fixed t, write f;(z) =
t —d(z,B(t)). Thus f: X — R is smooth on X, and its gradient, grad f;
at z equals 7y, where y;, = B(t). From the Angle Comparison Theorem
(Proposition 3.4.4) we can verify that 7y, tends to Zy as t — co. Moreover,
this convergence is uniform on compact subsets of X. Thus f is C*, and
grad f(z) = 7.

As a consequence, we may deduce that any two horofunctions about y
differ by a constant.

Lemma 4.2.1. Ifa,b,x € X, then hy(z) = hy(a) + ha.(z).

Proof. From the previous paragraph, we know that for all x € X, we have
grad(hy — hy)(z) = 0, and so hy — h, is constant on X. By continuity, it is
constant on all of X. Since h,(a) = 0, we must have hy(z) — h,(z) = hy(a)
as required.

We remark that we do not really need the differentiable structure on X in
order to deduce Lemma 4.2.1. In fact, it follows from the CAT(0) inequality.
The important observation is that if we have a “long” rectangle in a CAT(0)-
space, then the sum of the two diagonals is approximately equal to the sum
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of the two long edges. More specifically, suppose z,y, z,w € X, are any four
points, then |d(z,y) + d(z,w) — d(y, z) — d(z,w)| < £(d(z,2)* + d(y,w)?),
where R = min(d(z,y),d(z,w),d(y,2),d(z,w)). Here zz and yw are the
“short” sides. The exact form of the right-hand term of the inequality is
unimportant. We just need to note that if the rectangle is sufficiently long,
while the lengths of the short sides remain bounded, then the first term can
be made arbitrarily small. We leave the reader to work out the details of
this, and relate it to the definition of horofunctions.

Suppose that h is a horofunction about y. We have seen that |grad h| =1
everywhere, and so the level sets of h give us a codimension-1 foliation of X
by C? submanifolds. Given t € R, write S(t) = X Nh~!(t). We refer to S(t)
as a horosphere about y. Let B(t) = X\h™!([t,00)). Thus B(t) is a closed
convex subset of X with boundary S(¢). We call B(t) a horoball about ¢.

Given a horoball B about y, we may define the nearest point retraction p
of X onto B. Thus, for all z € X, p(z) is the nearest point on [z,y] N B to
z. We see that p(z) = z for all z € B, and p(X\B) = S = 0B. We have
observed that S is a C%-submanifold. We have

Lemma 4.2.2. The nearest point retraction p|(X\B) : X\B — S is C?.

Proof. Let h be the horofunction with h(S) = {0}. Apply Proposition 4.1.5,
noting that p(z) = ¢(z, —h(z)) for all z € X\ B. (]

4.3. The compactified topology. Choose any basepoint p € X, and let
T, (X) be the unit tangent space at p. Now each vector in 7, (X) determines
the germ of a geodesic emanating from p. We may continue this geodesic
until either we arrive at some point of X?, or until we form a geodesic ray
tending to some point of X{°. Lemma 4.1.4 thus gives an identification of
X; = X7 U Xp° with T} (X). Thus, X; is given the topology of an (n — 1)-
sphere. This topology turns out to be independent of the choice of basepoint
p € X. Moreover, it may be extended to give X the topology of a closed
n-ball. In this, and the next two sections we give an account of this.

The identification X = X U X9 C X gives us a metric d on X U X?. We
may extend this to a map d : X¢ x X — [0, 00] by setting d(z,z) = 0 and
d(z,y) = oo when £ € X{° and y € Xc\{z}. Given z € X U X}, and r > 0,
we write

N(z,r) ={y € X¢c |d(z,y) <r}.

If pe X, write

C(p,z,r) = {y € Xc | d(z,[p,y]) <7}
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In other words, y € C(p,z,r), if and only if [p,y] meets N(z,r). Clearly
N(z,r) C C(p,z,r). The following is a simple consequence of the CAT(0)
inequality.

Lemma 4.3.1. Suppose that p € X and y € X7°. Given z € [p,y]NX, and
r,r' > 0, then there is some w € [p,y] N X such that C(p,w,r') C C(p, z,71).

We may now define a topology, 7(Xc,p), on X¢, relative to the point
p € X. We describe neighbourhood bases for points y € X as follows. If
y € X, we take as neighbourhood base the collection {N(y,¢) |e > 0}. If
y € X9, we take as neighbourhood base {C(p,y,€) | e > 0}. If y € X°, we
take as neighbourhood base {C(p,z,¢€) |z € [p,y] N X,e > 0}. Note that, in
the last case, by Lemnma 4.3.1, we could equally well take as neighbourhood
base {C(p,z,r) |z € [p,y] N X} for any fixed r > 0. It is easily verified
that these sets form the basis for a topology 7(X¢,p) on Xc. Clearly, its
restriction to X agrees with the metric topology. However, its restriction to
X U X? = X is, in general, coarser than the metric topology. We aim to
show that 7(X¢,p) is independent of p € X. The following lemma will be
used in several places in the rest of this paper.

Lemma 4.3.2. Given a € X?, and h,n > 0, we can find r > 0 with
the following property. Suppose (y,z) € (Xo X Xo)\(X° x X7°) and z €
N(a,r)n X. If d(a,ly,2]) > h, then yZz < 1.

Proof. By hypothesis (B), we can find K, hq > 0 such that if d(z,a) < hq,
then x(z) < —1/K?*d(z,a). Suppose h,n > 0. Let r > 0, depending on h
and 7, be as determined below. We can assume that r < b’ = min(h, h).
Let R=h'—1.

Now let z,y, z be as in the statement of the lemma. For the moment, we
assume that y,z € X U X?. The general case will follow by continuity. We
want that yzz <.

Since d(a,[y,z]) > h, we have that = ¢ [y,z]. Let 6 = yiz. We can
suppose that § > 0. Now, z,y,z are the vertices of a ruled surface ob-
tained by joining z to each point w € [y,z] by a geodesic [z,w]. Thus
P = H{[z,w] | w € [y, 2]} is a non-positively curved 3-gon. In fact, if ¢ lies
in int P = P\JP, then the intrinsic curvature kp(q) is at most x(q). By
Gauss-Bonnet, we find that

- [ sa)do(a) < - [ rp(@du(a) <,

where dw is the area element of P.
Suppose t € (0,R), and w € [y, 2]\{y,2}. Let g(w,t) be the point of
[z,w] with d(z,q(w,t)) = t. (Figure 4a.) Now d(a,q(w,t)) < d(z,a) +
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d(z,q(w,t)) <7 +t. Thus —k(q(w,t)) > 1/K?d(a,q(w,t))? > 1/K*(r +t)°.
By the Angle Comparison Theorem (Proposition 3.4.4), we see that the path
traced out by g(w,t) as w moves on [y, z] has length at least #¢. Thus,

n2 - [ spdalo

P
R ot
> — ¢
—/o Kz(r+t)2d
0

= —(—log(r/K) + (r/h') — 1)

where f(s) = s —logs — 1. Now f(s) = oo as s — 0, and so if r/h’ is
sufficiently small, we have § < 7K?/f(r/h') < n as required.

To deal with the case where y € X2° and z € X U X7}, choose a sequence
of points y, € [y, 2] N X with y,, — y. As observed in Section 4.1, we have
zy,, — 71, and so the general case follows by continuity. 1

Proposition 4.3.3. The topology 7(Xc,p) is independent of p € X.

Proof. Suppose p,p’ € X. Certainly 7(X¢,p) and 7(X¢,p') agree on X. We
thus want to show that for all y € X;, the neighbourhood bases with respect
to p and p’, as described above, are equivalent.

Suppose, first, that y € X°. Let [ = d(p,p’) and suppose 7 > 0. Given
z € [p,y]N X, we want to find z’ € [p’,y] N X with C(p',z',r) C C(p,z,r).
By Lemma 4.3.1, we have z € [p,y] so that C(p,z,r +2l) C C(p,z,r). By
Lemma 4.1.1, we can find 2’ € [p',y] with d(z,2') < I. If w € C(p',2',r)
so that d(z', [p',w]) < r, then the CAT(0) inequality, applied to the trian-
gle wpyp', tells us that d(z', [p,w]) < d(z',[p',w]) + d(p,p’) < r+ 1. Thus
d(z,[p,w]) < (r+1)+d(z,z') <r+2l, and so w € C(p, z,7 + 2l). We have
shown that C(p',z',r") C C(p,z,r) as required.

Now suppose that y € X?. Given ¢ > 0, we want to find ¢ > 0 so
that C(p',y,€¢') C C(p,y,e). We can assume that ¢ < d(y,p'). Let hy =
d(y, [p,p']) and h = min(hg,€). Lemma 4.3.2 gives us some € > 0 such that
ifz € N(y,¢')NX and (a,b) € (Xo x Xo)\(X5° x X5°), then d(y, [a,b]) < h
or azb < 7 /3. Now suppose that z € C(p',y,€'), so that there some z €
[p',2] N N(y,€¢') N X. Since d(y,[p,p']) > h, we have pip’ < /3. Thus
piz > 7m—n/3 = 2n/3 and so d(y,[p,2]) < h <e. Thus z € C(p,y,e). We
have shown that C(p',y,€') C C(p,y,e€). U

We shall write 7(X¢) for the topology thus defined on X. The following
is easily verified.
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Proposition 4.3.4. The natural inclusion ¢ : X — X¢ is continuous.

Here, and in the rest of this paper, we adopt the convention that X has
the metric topology, whereas X U X? has the subspace topology induced
from 7(X¢).

It is not very hard to see that (X, 7(X¢)) is compact hausdorff. We shall
not give a direct proof here, since we show, in the next two sections, that it
is homeomorphic to a closed n-dimensional ball.

4.4. Starlike sets. Let E” be n-dimensional euclidean space, and let 0 € E*
be any point. We identify the unit tangent space 7 E* with the unit sphere
S7=1. We may identify E* with (S*~! x [0,00))/~, where (£,0) ~ (¢,0)
for all £,¢ € S™ !, otherwise equivalence classes are single points. We may
identify the compactified space E with (S~ x [0, 00])/~. We write (£,1)
for the ~-class of (¢,t). Thus, 0 = (£,0) for all £ € §™71.

Note that a subset 33 C [E" is open and starlike about 0 if and only if
it has the form {{£,t) |0 <t < f(§)}, where f : S" 1 — (0,00] is lower-
semicontinuous. We write

Bo={(&t) €EL|0<t < f(E)}.

Thus, X¢ is also starlike about 0, and a subset of the closure of ¥ in [Ep.
Write £; = Ec\E = {(£,t) € B3 |t = f(§)}. (Note that this notation is
consistent with that previously defined if ¥ = E* = X.) We put a topology
7(X¢c) on Lo as follows. We demand that the subspace topology on X
induced from 7(X) agrees with that induced from E". If (£,¢) € X, we
take as a base of neighbourhoods the collection {D(U, u)} where

D(U,u) = {(¢,v) € B¢ | ¢ € Uyv > u}

and U ranges over all neighbourhoods of ¢ in (, and u ranges over the
interval (0,¢). Thus, in general, the topology 7(Xc) on ¥¢ is coarser than
the subspace topology induced from (E%,7(E%)). (Note that 7(EZ) agrees
with our previous definition with ¥ = E* = X.)

Now, if a,b € (0,00] and h : [0,a] — [0,b] is a homeomorphism, with
h(0) = 0, then the map h = [(£,t) — (£, h(t))] gives a homeomorphism of the
ball N(0,a) onto N(0,b) (where N(0,00) = E%). Moreover, if 3 C N(0,a) C
E™ is open and starlike about 0, then so is ¥’ = h(). Also, Y = ﬁ()]c)‘,
and h|Z¢ : (Z¢,7(2¢)) — (24, 7(24)) is a homeomorphism.

Write B™ for the closed unit n-ball (as a manifold), and write int B® =
B"\9B™ for its interior.

Lemma 4.4.1. Suppose ¥ C E" is open and starlike. Then, the pair
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(3¢,%), with the topology given by 7(3c), is homeomorphic to the pair
(B",int B").

Proof. Let E. = E™ U {oo} be the one point compactification of E*. Let
By, = N(0,1) C E* C E, be the unit ball about 0. From the discussion
prior to the statement of the lemma, we see that we can assume that ¥ C B,.

Let g : E* — E \ {0} be the inversion given by g((¢,t)) = (£, 1/t) for
t > 0 and ¢g(0) = co. Restricted to By, the map g gives a homeomorphism of
By onto B, = E \int By. Let Q = g(X), and Q¢ = g(X¢). Let 952 be the
topological boundary of Q in E? , so that 92 C B, \{oc} and Q¢ = QU S
We define the map p : Qc\{x} — [0,00) by p(z) = deyc(x, 052), where d,.,.
is the euclidean distance.

Certainly, p is continuous on 2, and p(z) = 0 if and only if z € Qc\ Q.
Moreover, if (£,1), (£,u) € Q with ¢ < u, then p((£,t)) < p({&,u)). We now
define h : Qe — B2 by h((£, 1)) = (&,1 + p((&,t))) and h(ox) = co. Clearly,
h maps Q¢ bijectively onto B, and h|Q2 is a homeomorphism onto int B,.
It follows that j = g~'hg maps X bijectively onto By, and that j|¥ is a
homeomorphism onto int By,. Moreover, a simple exercise shows that j is, in
fact, a homeomorphism from (3¢, 7(X¢)) to Bo. O

With a bit more work, one can make a stronger statement, namely:

Lemma 4.4.2. Suppose that ¥ C E" is open and starlike. Then, there
is a homeomorphism of (£c,%) to (B™,int B™) whose restriction to ¥ is a
smooth diffeomorphism onto int B™.

Proof (Sketch). One way to do this is to approximate the map p, from the
proof of Lemma 4.4.1, by a smooth map, p', with dp’'/0t > 0 everywhere
on 2\ {x0}. Define 0 : B, \{ox} — (0,00) by p({§,0((£,1)))) =t. We
want to smooth out o on int By\{oo} to get a smooth map o' with do’/0t >
0. Given any positive integer n, define o, : S"™' — (0,00) by 0,(¢) =
o((¢£,1+ 1/n)). We approximate each o, by a smooth map o/, : S*™! —
(0,00) so that |0/ (&) — 0,(&)] < 1/2n(n + 1) for all &€ € S™'. In this way,
we arrange that o), (§) < 0,(¢) for all ¢ € S*~!. By interpolation, we get a
smooth function o' : B(0,2)\ By — (0,00) so that o'(({,1+ 1/n)) = o,(£)
and do'/dt > 0. We now extend to a smooth function o' : int B\ {0} —
(0,00) so that do' /0t > 0 everywhere, and o'((£,t)) = t for all sufficiently
large t. The identity p'((€,0'({(&,t)))) = t allows us to define a smooth
map p' : 2\ {0} — (0,00), with dp'/0t > 0. We extend p' to a map
Qc\{x} — [0,00) by setting p'(Q2:\2) = {0}. We now proceed as in
Lemma 4.4.1. It may be verified that the map j' : ¥ — B, thus defined
is a diffeomorphism on 3. O
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4.5. The logarithm map. In this section, we relate the discussion of star-
like sets to our compactified manifold X.

Choose any point p € X and then identify the unit tangent space T, (X)
with §”~' via an isometry ¢ : T, (X) — S™'. Recall the description of
EZ as a quotient of S™! x [0, 00], given in the previous section. We define
a map log : Xo — EZ as follows. Set log(p) = 0, and for z € X\ {p},
set log(z) = (¢(p),d(p,z)), were d(p,x) = oo for z € X°. By Lemma
4.1.4, we see that log is a bijection onto its image Y¢(X) = log(X¢) C EL.
Moreover log |X gives a diffeomorphism of X onto ¥(X) = log(X) C X.
This follows as in the complete case. Thus, > is open and starlike about 0.
Also, we have that, set theoretically, (£(X))c = Zc(X).

Lemma 4.5.1. The map log : (X, 7(Xe)) — (Zo(X), 7(3c(X))) is a
homeomorphism.

Proof. The fact that log is continuous is a simple consequence of the An-
gle Comparison Theorem (Proposition 3.4.4). We have also noted that
log | X is a diffeomorphism. It remains therefore to show that exp = log™" :
Yo(X) — X is continuous at all points of L (X)\E(X).

Suppose that y = exp({{,t)) € X?.  Given r € (0,¢), let
z = exp({&,t —r/2)). Thus, z € [p,y] with d(z,y) = /2. By the continuity
of exp | X, we can find U C S™! which is a neighbourhood of &, such that
if ¢ € U, then (¢,t —r/2) € ¥ and d(z,exp({¢,t —1/2))) < r/2. Tt follows
that d(y,exp((¢',t —r/2))) < r/2, and so exp({¢,t')) € C(p,y,r) whenever
t' >t—r/2 and (¢,t') € Lo(X). This shows that exp(D(U,i — r/2)) C
C(p,y,r), and so exp is continuous at (£,1).

The case where exp((¢,t)) € X7° is similar. tl

Putting Lemma 4.5.1 together with Lemma 4.4.2, we have:

Proposition 4.5.2. The pair (Xc, X), in the topology 7(X¢c), is home-
omorphic to the pair (B™,int B™) where B™ is the unit n-dimensional ball,
and int B™ is its interior. Moreover, we can arrange thal the homeomor-
phism restricted to X gives a smooth diffeomorphism onto int B™.

In particular, we see that X is compact metrisable.

5. Continuity properties.

As in the previous chapter, we are assuming that X satisfies axioms (A)
and (B). Our aim here is to investigate how geodesics move as we vary the
endpoints.



INCOMPLETE NON-POSITIVELY CURVED MANIFOLDS 27

5.1. Lower semicontinuity of the distance function. We extend the
metric d on X = X U X? to a map d : X¢ x X¢ — [0,00] by setting
d(z,z) = 0 and d(z,y) = oo if z € X° and y € X\ {z}. We claim that
this map is lower-semicontinuous on X¢c X X given the product topology
7(Xco) X 7(X¢).

Lemma 5.1.1. Suppose that z,y € X U X? and z # y. Given and h > 0,
there ezist neighbourhoods U of z and V of y in 7(X¢) such that ifu € U and
v eV, and (u,v) ¢ X x X3°, then d(z,[u,v]) < h and d(y, [u,v]) < h. In
fact, we can find ', v’ € [u,v] with d(z,u') < h, d(y,v') < h and u' € [u,v'].

Proof. We shall deal with the case where z and y both lie in X?. The
remaining cases are simpler. We can assume that A < i—d(:p, y). By Lemma
4.3.2, there is some ¢; > 0 such that if a € N(z,e;) N X and (2,w) €
(Xeo x Xe)\(X5° x X°), then either d(z,[z,w]) < h, or else zaw < 7/2.
There is a similar constant e, corresponding to b. Let € = min(e,, €5, h). Let
U=Cl(y,z,¢) and V = C(z,y,¢€). From the definition 7(X¢) = 7(X¢,z) =
7(Xc,y) we see that U,V are neighbourhoods of z,y respectively in 7(X¢).
Suppose that u € U and v € V, so that d(z,[u,y]) < € and d(y, [v,z]) <
€. Choose a € [u,y] N N(z,e) N X and b € [v,z] N N(z,e) N X. By the
Angle Comparison Theorem (Proposition 3.4.4), we see that abz < /3,
and so abv > 27/3 > n/2. Thus d(y,[a,v]) < h. So, again by the Angle
Comparison Theorem, we have vay < n/3 and so udv > 27/3 > n/2. Thus
d(z, [u,v]) < h. Similarly, d(y, [u,v]) < h.

Note that d(z,y) > d(u,z) + d(z,y) — 2¢. Thus if v',v" € [u,v] with
d(z,u') < h and d(y,v') < h then d(u,u’) > d(u,v') + d(z,y) — 2¢ — 2h >
d(u,v') since € < h and 4h < d(z,y). If u ¢ X7°, this shows that u’ € [u,v].
If u € X7°, choose ug € [u,u'] N[u,v'] N X, and apply the same argument
with ug replacing u. O

Lemma 5.1.2. Suppose z € X?, y € X° and z € [z,y]| N X. Given h > 0,
then there is some € > 0 and a neighbourhood V about y in 7(Xc) such that
if u € N(z,€) and v € V, then d(z,[u,v]) < h.

Proof. Take € = h/2. By the definition of 7(X¢), the set V = C(z, z,€) is a
neighbourhood of y. Suppose v € V and u € N(z,¢€). Then d(z,[z,v]) <k,
and so by CAT(0) applied to zuv, we find that d(z, [u,v]) < 2¢ < h. O

syl N X.
such

Lemma 5.1.3. Suppose z € X U XY and y € X{° and z € [z

Given any h > 0, there are neighbourhoods U of x and V of y in 7(X¢)
that if u € U and v € V and (u,v) ¢ X;° XX}”, then d(z,[u,v]) < h a
d(z,[u,v]) < h. Moreover, we can find u',v' € [u,v] with d(sc u')<ha
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d(z,v") < h and v’ € [u,v'].
Proof. As with Lemma 5.1.1. Use Lemma 5.1.2. O

Proposition 5.1.4. The map d : X¢ x Xo — [0, 00] is lower semicontin-
uous, where Xc x X¢ is given the product topology 7(Xc) x 7(X¢).

Proof. Suppose z,y € Xc. If x = y, then d(z,y) = 0 and there is nothing
to prove. If z € X U X? and y € X\ {z}, the result follows from Lemmas
5.1.1 and 5.1.3. The only remaining case is where z,y € X° and z # v,
so that d(z,y) = oco. Choose any p € X. Let § = zpy > 0. Given any
r > 0, let R = rcosec(6/4). Since 7(X¢c) = 7(X¢c,p), by applying the
Angle Comparison Theorem (Proposition 3.4.4), we can find neighbourhoods
U of z and V of y such that if w € U and v € V, then d(p,u) > R,
d(p,v) > R, zpv < 0/4 and ypv < /4. Thus upv > 6/2 and so, again by
angle comparison, d(u,v) > r. O
5.2. The Hausdorff topology. We have seen that X is homeomorphic to
a ball and hence metrisable. A metric on X induces a Hausdorfl distance
on the set, ¥(X¢), of all closed subsets of Xo and hence a topology on
%(Xc). Since X is compact, it’s not hard to see that the topology on on
%(X¢) is independent of the choice of metric on X-. We call this topology
the Hausdorff topology on € (Xc).

A more natural description of the Hausdorff topology is in terms of uni-
formities (see [K]). Here we shall deal only with bases of uniformities. Given
aset Y, write A = A(Y) CY x Y for the diagonal {(z,z) |z € Y}. Given a
subset W C Y xY, write W? = {(z,y) e Y xY|(3z € Y)((z,2) € W,(z,y) €
W)}. We say that a subset W C Y x Y is symmetric if (z,y) € W whenever
(y,z) € W. A collection # of symmetric subsets of Y x Y form a uniform
basis for Y if the following hold:

(1) ACWforallWew.

(2) For all Wi, W, € #, there is some W3 € # with W3 C W, N W,.

(3) For all W € #, there is some V € # with V2 C W.

Two such bases #, and #; are equivalent if for all W; € #; there is some
W, € #, with W, C Wy, and for all W, € #; there is some W] € #; with
W, C W,. Thus, two bases give rise to the same uniformity if and only if
they are equivalent. (For our purposes, we can define a uniformity as an
equivalence class of bases.)

Given a subset W C Y x Y and a subset A C Y, write WA = {z €
Y |3y €A ((z,y) € W)}. Thusif AC W, then A C WA.

A uniform basis # on Y induces a topology on Y, where a neighbourhood
of the point z € Y is given by #{z} = {W{z} | W € #}. This topology
depends only on the uniformity. It is hausdorff if and only if % = A.
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Note that a metric d on Y induces a uniformity with basis {{(z,y) €
Y xY |d(z,y) < €}|e > 0}. This uniformity, in turn, induces the metric
topology. If Y is compact, then this is the unique uniformity of ¥ inducing
the metric topology.

Suppose that # is a uniform basis on Y. Write €(Y") for the set of subsets
that are closed in the induced topology. Given W € ¥, write P(W)
{(A,B)e¢(Y)x¥(Y)|ACWB,BC WA}, and set P(#) = {P(W)|W €
# }. One checks that P(#) is a uniform basis on € (Y'). If (Y, #') is hausdorff
(respectively metrisable) then (¢(Y), P(#)) is hausdorff (metrisable). We
refer to the topology induced on ¥(Y') by P(#') as the Hausdorff topology.

Since X is compact metrisable, it admits a unique uniformity, and so
%(Xc) has a well-defined Hausdorff topology. In the next section shall show
that geodesics vary continuously in this topology. We spend the rest of this
section giving an explicit description of the uniformity on Xc.

Fix p € X, and suppose that A C XUX?. Given € > 0, define Q(p, 4,¢) C
Xo x Xc as follows. The pair (z,y) lies in Q(p, A, €) if either there is some
a € A with d(a,[p,z]) < € and d(a,[p,y]) < ¢, or else if z,y € X U X} and
d(z,y) < 2e.

Clearly Q(p, A, €) is symmetric and if B C A and § < ¢, then Q(p, B, ) C
Q(p, A,€).

Lemma 5.2.1. For all A C XU XY and ¢ > 0, we have Q(p, A, ¢)?
Qp, 4, 3¢).

Proof. Suppose (z,y), (y,2z) € Q(p, A,€). There are three cases.

(1) There are points a,b € A, ay € [p,z}, a1, € [p,y] and by € [p, z] with
d(a,a;) < e and d(b,b;) < € for 1 = 0,1. Without loss of generality, we
have d(p,b,) > d(p,a;). (Figure 5a).

z

p

Figure 5a.
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Applying CAT(0) to pbob,, we have d(a,,[p,2]) < 3e. Thus (z,z) €
Q(p, A, 3e).

(2) d(y,z) < 2¢and there is some a € A with d(a, [p, z]) < eand d(a, [p,y]) <
€. Applying CAT(0) to pyz, we find that d(a,[p, ]) 3¢, and so
(z,2) € Qp, A, ¢).

(3) If d(z,y) < 2¢ and d(y,2) < 2¢, then d(z,z) < 4e and so (z,2) €
Q(p, A, 2¢).

O

Given r > 0, write A(p,r) = X) U (X \int N(p, 7)), and set W(p,r,€) =
Q(p, A(p,r),€). Clearly A C W(p,r,e) for all » > 0 and € > 0. Let # =
¥, = {W(p,r,e)|r > 0,e > 0}. Applying Lemma 5.2.1, we see that # is a
uniform base on X.

Lemma 5.2.2. The uniform base ¥, induces the topology 7(Xc) on Xc.

Proof. We need to check that if z € X, then #{z} gives a neighbourhood
base for z in 7(X¢) = 7(X¢, p).

Case (1): z € X.

If e < d(X?,[z,p]) and r > d(z,p) + ¢, then W(p,r,e){z} = N(z,¢).

Case (2): z € X?).

Clearly C(p,z,€e) C W(p,r,€){z} for all r > 0 and ¢ > 0. Now, [p,z]N X =
{z}. Given any € € (0,d(p, z)), let y € [p, z] be the point with d(z,y) = €/3.
Let 6 = é(e) = 2d(X?, [p,y]) > 0, so § < ¢/6. Now, suppose r > d(p, ) + 6.
If z € W(p,r,§){z}, then either d(z,z) < 26 < ¢, and so z € C(p,z,¢€), or
else there is some a € A(p,r) with d(a, [p,z]) < d and d(a, [p, z]) < < €/3.
Since r > d(p, ) + 0, we must have a € X?, and so d(z,a) < 0+¢/3 < 26/3.
It follows that d(z, [p, z]) < 2¢/3+¢€/3 = ¢, and again we have z € C(p, z,¢€).
We have shown that W(p,r,d){z} C C(p,z,¢€).

Case (3): z € X}°.

Given r > 0, take y € [p,z] with d(p,y) = r. Then C(p,r,e){z} C
W (p,r,e){x} for all € > 0.

Conversely, suppose y € [p,z]. Let r = d(p,y), and let § = §(r) =
1d(X?,[p,y]) > 0. Suppose € € (0,4), and z € W(p,r,€){z}. Then, there is
some a € A(p,r) with d(a, [p,y]) < € < § and d(a,[p,2]) <e. Ifa € X}, then

d(a,[p,y]) > ¢ and so d( [z,9]) <e<2. Ifag¢ X?, then d(p,a) > r, and
so again, d(a,[z,y]) < 2¢. Applying CAT(0), we find that d(y, [p, z]) < 3¢
and so z € C(p,vy,3¢). Thus W(p,r,e){z} C C(p,y, 3e). 0

It follows that the uniform base #, defines the unique uniformity on X¢
inducing the topology 7(X¢). In particular, #, and #, are equivalent for all
p,g€ X.
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5.3. Continuity of geodesics. By Lemma 4.1.4, any pair of points (z,y) €
(X x Xe)\(X5° x X7°) may be joined by a unique geodesic [z, y].

Lemma 5.3.1. Each geodesic [z,y] is closed X¢.

Proof. We can assume z # y. Choose p € [z,y]\{z,y}. If z, € [z,y] is any
sequence, it is easily seen that some subsequence converges in 7(X¢,p) to a
limit in [z, y]. O

We give ¢(X¢) the Hausdorff topology as described in Section 5.2. We
give X¢ x X the product topology 7(X¢) x 7(X¢).

Proposition 5.3.2. The map [(z,y) — [z,y]] : (Xe X Xc)\(X° x X°) —
% (Xc) is continuous.

Proof. We distinguish six cases.

Case (1): z,y € X.

This follows from Proposition 3.4.2.

Case (2): z,y € X? and z # y.

Fix some p € [z,y] N X. Suppose r > 0 and ¢ > 0. Let U, V be the
neighbourhoods of z, y respectively, given by Lemma 5.1.1, so that if u € U
and v € V, then we can find v/, v’ € [u,v] with d(z,u') < €/2, d(y,v") < ¢/2
and u' € [u,v']. From the convexity of the distance function (Proposition
3.4.6), we have that [u',v'] C N([z,y],€¢/2) C W(p,r,€)[z,y] and [z,y] C
N([u',v'],e/2) C W(p,r,€)[u,v]. (Figure 5b.) Suppose z € [u,u']. Again, by
convexity, we have d(u',[p,z]) < €/2, and so d(z,[p,z]) < e. Thus z €
C(p,z,e) € Wi(p,r,e){z}. Therefore, [u,u'] € W(p,r,e){z}. Similarly,
[v,v'] C W(p,r,€e){y}. We have shown that

[u,0] € W(p, 7 €)[z,y]
and
[z,y] € W(p,r,€)[u,v].
In other words, [u,v] € P(W (p,r,€)){[z,y]}. Now, the sets

PW(p,r, e){[z,y]}

as € = 0 and r — oo form a neighbourhood base for [z,y] in the Hausdorff
topology on #(X¢). This deals with Case (2).

Case (3): z =y € X).

Choose any p € X, and suppose € > 0 and r > 0. By Lemma 4.3.2, there
is some dy > 0 such that if a,2z € X with d(z,a) < §p and zap > /3,
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then d(z,[p,2]) < e. Let § = min(dy,€/3). Suppose u,v € C(p,z,d), and
(u,v) ¢ X7° x X7°. We claim that [u,v] C C(p, z,€).

!

<

U z u' v

P Py ® Y
& "4

®

/

Figure 5b.

To see this, choose a € [p,u] and b € [p, v] with d(z,a) < ¢ and d(z,b) < 4,
and suppose z € [u,v]. (Figure 5c.) If d(a, z) < 26, then d(z,2) < §+26 <,
and so z € N(z,e) C C(p,z,€). Similarly if d(b,z) < 26. Thus, we can
suppose that d(a,z) > 26 and d(b, z) > 26, and so, by the Angle Comparison
Theorem, we have that a2b < n/3. Thus, without loss of generality, we can
suppose that uza > (7 — 7/3) = 7/3. Thus, again by angle comparison,
udz < ™ — /3 = 2r/3, and so zap > w/3. It follows that d(a,[p,z]) < e,
and so z € C(p,z,€). This proves the claim that [u,v] C C(p,z,€).

u v

p

Figure 5c.

Now, for all 7 > 0, we have C(p,z,¢) C W(p,r,e){z}. Since W(p,r,¢€) is
symmetric, we have z € W (p,r,€)[u,v], and so [u,v] € P(W(p,r,¢€)){{z}}.
As e — 0 and r — oo, the sets P(W(p,r,¢)){{z}} form a neighbourhood
base for {z} = [z, z] in the Hausdorff topology on ¥ (X¢).

Case (4): z € X and y € X?.
This is similar to Case (2).
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Case (5): z € X? and y € X{°.

Fix p € [z,y]\{z,y}, and suppose ¢ > 0 and r > 0. Choose z € [p,y] with
d(p,z) > r. By Lemma 5.1.3, we can find neighbourhoods U,V about z,y
respectively, such that if u € U, v € V and (u,v) ¢ X{° x X°, then there
exist u', v’ € [u,v] with d(z,u') < €/2, d(y,v') < €/2and v’ € [u,v']. Arguing
as in Case (2), we see that [u',v'] C N([z,y],€/2), [z,2] C N([u,v],¢/2),
[u,u'] C C(p,z,¢), [v,0'] C C(p,z,€) and [z,y] C C(p,v",€/2). Now z,z €
A(p,r) and so [u,v] € P(W(p,r,€)){[z,y]}.

Case (6): z € X and y € X{°.

This is similar to case (5). O

6. Visibility.

In this Chapter, we assume that X satisfies properties (A), (B) and (C),
where (C) is the statement:

(C) There exist p, € X, and Lo, Ry > 0 such that if z € X with d(po, z) >
Ry, then k(z) < —1/Lid(py,x)>.

It follows immediately that if we fix any L € (0, Ly), then for all p € X,
there is some R = R(p) such that if d(p, z) > R, then k(z) < —1/L?d(p, z).
We aim to show that, with these hypotheses, X is a visibility manifold, and
that geodesics vary continuously on X¢o x X¢.

6.1. Convergence of asymptotic geodesics. Suppose y € X¢°, and h :
X U X? — R is a horofunction about y. (Section 4.2.) Suppose by, b; €
X U X? with h(by) = h(b,). Let §; : [0,00) — X U X? be the geodesic ray
[6;,y]. Thus h(Bo(t)) = h(B,(¢)) = h(by) +t for all t € [O 00).

Lemma 6.1.1. d(5,(¢),5:(t)) = 0 as t = oo.

In fact, we show that d(5o(t), 5 (t)) < A(t + A)™* where p > 0 is fixed,
and A, A > 0 depend on by and b,.

Proof We can assume that by, b; € X Join by to b; by a smooth path
: [0, 1] — X. Let to = max{h(y(u)) |u € [0,1]}. Let B be the horoball
X N h~([te,0)), and let S be the bounding horosphere X N h~*(¢y). Let
p: X\int B — S be the nearest-point retraction. Now, the path h oy :
[0,1] — S joins B(to) to B(t1), and, by Lemma 4.2.2, is C2. Thus, without
loss of generality, we can assume that by,b; € S = h™(0), and that b, and
b, can be joined by a C? path v:[0,1] — S.
Now, for each u € [0,1], let 3, : [0,00) — X be the geodesic ray based
at v(u) tending to y. Define 3 : [0,00) X [0,1] — X by B(t,u) = [.(t). B
Lemma 4.1.5, 3 is C?. Note that h(8(t,u)) = t for all (¢,u) € [0,00) x [0, 1].
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Also g%(t,u) = grad S(h(¢,u)). Thus <‘;—f(t,u), %(t,u)> = 0 for all (¢,u). In
other words (3 is a normalised ruled map in the sense of Section 3.1 (except

that it is only C? and not smooth, though this is more than enough). For
a fixed u, the map [t — g—ﬁ—(t, u)] is a Jacobi field along §,. Thus the map
[t — J(t,u)] is convex, where J(t,u) = g%(t,u).. Given t € [0,00) write
Bt :]0,1] — X for the C? transversal path [u + 3(f,u)]. Thus length 3 =
fol J(t,u)du. Now, for all uy,u, € [0,1] the function d(B(t,u,), B(t, us))
is monotonically non-increasing in ¢. Thus, for any fixed subinterval I C
[0, 1], the rectifiable lengths of the paths §*|I are non-increasing in ¢t. Now,
length(84|I) = [, J(t,u)du. We deduce that for all u € [0,1] the map [t —
J(t,u)] is non-increasing.

Now choose p € X, and let R = R(p). Thus, if d(p,z) > R, then we
have w(z) < —1/L%d(p,z)?. Let A\ = max{d(p,v(u)) | u € [0,1]}. Thus
t— A <d(p,B(t,u)) <t+ A Without loss of generality, we can assume that
d(p, B(t,u)) > R for all (t,u), and so x(B(t,u)) < —1/L*(t + \)2.

From the formula in Section 4.2, we find that J(¢,u) < J(0,u) (1 + )™
where o = (v/1+4L?) — 1 > 0. Thus

1
A(Bo(2),51(6) < length 5 = [ J(t, u)du
0]
t —H
< (1 + X) lengthy = A(t + \)7H,
where A = Mlength~. In particular d(5,(t), 51(t)) = 0 as t — oo. ]

6.2. Bi-infinite geodesics. A bi-infinite geodesic is a geodesic §: R — X
parameterised by arc-length. We say that J joins x € X° to y € X¢°
if B(—-t) - z and B(t) — y as t = oo. Clearly the points z and y
are determined by . We refer to them as the “endpoints” of 3. Since
d(B(—t),B(t)) = 2|t|, the rays [t — B(—t)] and [t — [B(t)] for ¢ > 0 are
not asymptotic. Thus the endpoints of § must be distinct. Moreover, the
endpoints determine  up to reparameterisation:

Lemma 6.2.1. Suppose that the bi-infinite geodesics o, 3 : R — X have
the same endpoints. Then, there is some to € R such that B(t) = a(t + to).

Proof. Let y € X be the common endpoint so that « — y and 8 —
y as t — oco. Let h be a horofunction about y. There is some ¢, € R
such that h(a(t + t)) = h(B(t)) for all ¢t € R. By Lemma 6.1.1, we have
d(a(t + t),B(t)) = 0 as t — oo. Also d(a(t + to),5(t)) is bounded as
t — —oo. By Proposition 3.5.6, the map [t — d(a(t + to), 8(t))] is convex,
and thus identically zero. O
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We next want to establish the existence of a bi-infinite geodesic joining
any pair of distinct points of X°.

Lemma 6.2.2. Suppose p € X. Then, for all 8 > 0, there ezists r > 0
such that z,y € X U X, then either d(p, [z,y]) < or else zay < 0.

Proof. Let R = R(p) and L > 0 be the constants defined at the start of
this chapter. Let r = Rmax(1,e2"2*/?). Suppose, for contradiction, that
d(p,[z,y]) > r, and zpy > 6. We form a ruled surface T by joining p to
each point w € [z,y] with a geodesic [p, w] (c.f. Lemma 4.3.2). Thus T is a
non-positively curved 3-gon with vertices p, z and y. By Gauss-Bonnet, we
have — [, k(2)dw(2z) < 7 where dw is the area element of 7. As in Lemma
4.3.2, we obtain the contradiction:

T > ~/ k(2)dw(z) > bt

T

7 dt

0
= E—zlog(r/R) > 2m.

O

Proposition 6.2.3. Ifz,y € X{°, and = # y, then there is a bi-infinite
geodesic joining x to y.

Proof. Fix any p € X. Thus zpy > 0. Choose sequences z,, € [p,z] N X
and y, € [p,y] N X with z,, - = and y, — y. By Lemma 6.2.2, we can find
points 2, € [z,,y,] with d(p, 2,) bounded. Since (X, 7(Xc)) is compact
metrisable, we can assume that z, converges to a point z € Xc. By the
lower-semicontinuity of the distance function (Proposition 5.1.4), we see that
d(p,z) < oo and so z € X U X?. Thus, by Lemma 4.1.4, we can construct
the geodesics [z, z] and [z, y].

Now choose any a € [z,z]\{z,z} and b € [z,y]\{z,y}. We claim that
d(a, z) + d(z,b) = d(a,b). By Proposition 5.3.2, the geodesic [z,,z,] tends
to [z, z] in the Hausdorff topology. Since the metric topology on X agrees
with that induced by 7(X¢), we have, in particular, that d(a, [z,,z,]) — O.
Similarly d(b, [yn, z,]) = 0. Thus we can find a, € [z,,2,] and b, € [yn, 2,]
with d(a,a,) — 0 and d(b,b,) — 0. Now d(an,z2,) + d(2n,b,) = d(an,bn)
and so the claim follows. Thus, since [a, b} is the unique geodesic from a to
b, we have that z € [a,b]. It follows that z € X, and [z,2] U [z,y] gives a
bi-infinite geodesic joining z to y. a

If 2,y € X and z # y, we write [z,y] = {z,y} U image 8, where 3
is the unique (up to parameterisation) geodesic joining z to y. It is easily
seen that [z,y] is closed in (X, 7(X¢)). Note that [z,y] = [y, z]. We write

[z,z] = {z}.
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6.3. Continuity of geodesics.

Lemma 6.3.1. Suppose p € X, and k(p) < 0. Then for all € > 0, there
exists 6 > 0 such that if x,y € Xc\{p} with xpy > 7—9, then d(p, [z,y]) <.

Proof. By continuity of x, we have constants A > 0 and k£ > 0 such that
N(p,h) C X and s(z) < —k for all z € N(p,h). Given € € (0,h), let § =
min(n /2, kwh?/4). Suppose that z,y € X\{p} are distinct with d(p, [z, y]) >
e. Let 6 = zpy. We claim that § < 7 — 4. We can suppose that § > /2. For
the moment, assume that z,y € X U X?. We form a ruled surface by joining
each w € [z,y] to p by the geodesic [p,w] (c.f. Lemma 4.3.2). Integrating
the curvature, we find that

h Vs
ﬂ—oz/ k(§t>dt:k7rh2/42<5.
0

Thus 8 < w — § as required.

We can deal with the general case by taking the sequences z,,y, €
[z,y] N X with , — = and y, — vy, and noting that pz, — pZ and
Y, — P OJ

We give Xo X X the product topology, and give ¥(X¢) the Hausdorff
topology.

Proposition 6.3.2. The map [(z,y) = [z,y]] : Xc X Xoc — €(X¢) is
continuous.

Proof. Note that Lemmas 5.1.1 and 5.1.3 generalise easily to the case where
(u,v) € X7° x X7°, with essentially the same proofs. Thus the argument of
Proposition 5.3.2 works to show that the map [(z,y) — [z, y]] extended to all
of X¢ x X¢ is continuous at each point (z,y) € (Xo X X))\ (X5 x X7°). It
thus remains to show that it is continuous at each point (z,y) € X° x X7°.
There are two cases.

Case (1): = #v.

Fix some p € [z,y] N X with k(p) < 0. Suppose ¢ > 0 and r > 0. Let
§ > 0 be the constant given by Lemma 6.3.1, and set = min(e, r sin(6/4)).
Choose points a € [p,z] and b € [p,y], with d(p,a) = d(p,b) = r + 2.
Let U = C(p,a,n) and V = C(p,b,n). If u € U and v € V, then by the
Angle Comparison Theorem (Proposition 3.4.4), we find that zpu < §/2
and ypv < 6/2. Thus upv > m — § and so d(p,[u,v]) < e. Thus, there
is some ¢ € [u,v] with d(p,q) < e. If u € X, then [p,u] and [g,u] are
asymptotic, and so, since d(a, [p,u]) < n < €, we can find v’ € [g,u] with
d(a,u') < 2. Ifu € XUX?, we can apply The Angle Comparison Theorem to
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find such a u'. Similarly, we can find v’ € [¢,v] with d(b,v") < 2¢. Note that
d(p,u') > r and d(p,v') > r. By convexity of the distance function, we have
[u',v'] € N([a,b],2€¢) and [a,b] € N([u',v'],2€). Also [z,a] C C(p,u’,2€)
and [y,b] C C(p,v',2¢). If z € [u,u’], then by angle comparison, applied
to zpg, we see that d(u',[p,z]) < 2¢, and so d(a,[p,z]) < 4e. This shows
that [u,u'] € C(p,a,4e). Similarly, [v,v'] € C(p,b,4€). Since a,b,u',v' €
A(p,r), we have that [z,y] C W(p,r,4€)[u,v] and [u,v] C W (p,r, 4€)[u, v].
In other words, [u,v] € P(W(p,r,4¢€)){[z,y]}. Ase — 0andr — oo, the sets
P(W (p,r,4¢€)){[z,y]} form a neighbourhood base for [z,y] in the Hausdorff
topology on % (X¢).

Figure 6.

Case (2): z = y.

Choose any point p € X. Suppose p € X. Suppose ro > 0 and € > 0.
Let ¢ € [p,z] be the point with d(p,q) = ro. By the continuity of the
logarithm map (Section 4.5), there is some 6 > 0 such that if ¢ € X U X?
with d(p,q') = ry and gpq’ < 20, then ¢' € N(q,e). Thus if z € X with
d(p,z) > ry and zpz < 20, then z € C(p, q, €).

Given 6 > 0, and p € X, let » > 0 by the constant given by Lemma 6.2.2.
Choose any n > 0 and let R = max(ro + 47,7 + 57,7 cosec8). Let w € [p,y]
be the point with d(p, w) = r. Thus, by angle comparison, if u € C(p,w,n)
then ypu < 6.

Now suppose that u,v € C(p,w,n). Choose uy € [p,u] and vy € [p,v]
with d(w,ug) < n and d(w,ve) < 7. Suppose z € [u,v]\{u,v}. If u € X7,
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then [uo,u] and [z,u] are asymptotic, and so we can find u;, € [ug,u] and
up € [2z,u] with d(u;,u;) <7 (Lemma 6.1.1). If u € X9, take u; = uy = u.
Similarly, we find v, € [vp,v] and v, € [z,v] with d(v;,v2) < 7. (Figure 6.)
Thus

2d(p, z) > d(p,u1) + d(p,v;) — d(2,u;) — d(z,v1)
> d(p,uo) + d(p,vo) + (d(uo, 1) + d(vo,v1) — d(ug,v2)) — 27
> 2d(p, w) — 8n,

and so d(p, z) > d(p, w)—4n > max(ry,r+n). Since z is arbitrary, we see that
d(p, [u,v]) > r+n. Given this, we see in particular that d(p, [z,us]) >+
and so d(p, [z,u1]) > r. Thus zpu, = zpu < 0. Since also zpu < 6 we have
zpz < 26. Since d(p,z) > r, it follows that z € C(p, g, ¢€).

We have shown that if u,v € C(p,w,n), then [u,v] C C(p,q,¢). We
deduce that [u,v] € P(W(p,ro,€)){{z}}. As 1y — oo and ¢ — 0, these sets
form a neighbourhood base for {z} = [z,z]| in the Hausdorff topology on
€ (Xc)- a
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THE QUASI-LINEARITY PROBLEM FOR C*-ALGEBRAS

L.J. BUNCE AND J.D. MAITLAND WRIGHT

Let A be a C*-algebra with no quotient isomorphic to the
algebra of all two-by-two matrices. Let p be a quasi-linear
functional on A. Then y is linear if, and only if, the restriction
of i1 to the closed unit ball of 4 is uniformly weakly continuous.

Introduction.

Throughout this paper, A will be a C*-algebra and A will be the real Banach
space of self-adjoint elements of \A. The unit ball of A is A; and the unit
ball of A is A;. We do not assume the existence of a unit in .A.

Definition. A quasi-linear functional on A is a function u : A — R such
that, whenever B is an abelian subalgebra of A, the restriction of p to B is
linear. Furthermore p is required to be bounded on the closed unit ball of
A.

Given any quasi-linear functional 4 on A we may extend it to .A by defining

i(z +iy) = p(z) +ip(y)

whenever z € A and y € A. Then i will be linear on each maximal abelian

*-subalgebra of .A. We shall abuse our notation by writing ‘4’ instead of ‘fi’.
When A = M,(C), the C* -algebra of all two-by-two matrices over C,

there exist examples of quasi-linear functionals on A which are not linear.

Definition. A local quasi-linear functional on A is a function p: A - R
such that, for each z in A, u is linear on the smallest norm closed subalgebra
of A containing . Furthermore pu is required to be bounded on the closed
unit ball of A.

Clearly each quasi-linear functional on A is a local quasi-linear functional.
Surprisingly, the converse is false, even when A is abelian (see Aarnes [2]).
However when A has a rich supply of projections (e.g. when A is a von
Neumann algebra) each local quasi-linear functional is quasi-linear [3].

The solution of the Mackey-Gleason Problem shows that every quasi-linear
functional on a von Neumann algebra M, where M has no direct summand
of Type I,, is linear [4, 5, 6]. This was first established for positive quasi-
linear functionals by the conjunction of the work of Christensen [7] and
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Yeadon [11], and for o-finite factors by the work of Paschciewicz [10]. All
build on the fundamental theorem of Gleason [8].

Although quasi-linear functionals on general C* -algebras seem much
harder to tackle than the von Neumann algebra problem, we can apply the
von Neumann results to make progress. In particular, we prove:

Let A be a C*-algebra with no quotient isomorphic to My(C). Let p be
a (local) quasi-linear functional on A. Then p is linear if, and only if, the
restriction of p to Ai, is uniformly weakly continuous.

1. Preliminaries: Uniform Continuity.

Let X be a real or complex vector space. Let F be a locally convex topology
for X. Let V be a F -open neighbourhood of 0. We call V' symmetric if V
is convex and, whenever z € V then —z € V.

Let B be a subset of X. A scalar valued function on X, u, is said to
be uniformly continuous on B, with respect to the F -topology, if, given
any € > 0, there exists an open symmetric neighbourhood of 0,V such that
whenever z € B, y € Band z —y € V then

lu(z) — py)l <e

Lemma 1.1. Let X be a Banach space and let F be any locally convez
topology for X which is stronger than the weak topology. Let u be any bounded
linear functional on X. Then u is uniformly F-continuous on X.

Proof. Choose € > 0. Let

V={zeX:|uz)<e}
=p " A <€}

Then V is open in the weak topology of X. Hence V is a symmetric
F-open neighbourhood of o such that z — y € V implies

lu(z) — p)] = lu(z -yl <e

O

Lemma 1.2. Let X be a subspace of a Banach space Y. Let G be a locally
convez topology for Y which is weaker than the norm topology. Let F be the
relative topology induced on X by G. Let B be a subset of X and let C be
the closure of B in Y, with respect to the G -topology. Let yn : B — C be
uniformly continuous on B with respect to the F -topology. Then there exists
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a function it : C' — C which extends p and which is uniformly G-continuous.
Furthermore, if p is bounded on B then [ is bounded on C.

Proof. Since F is the relative topology induced by G, p is uniformly G-
continuous on B. Let K be the closure of u[B] in C. Then K is a complete
metric space. So, see [9, page 125], 1 has a unique extension to z: C — K
where 7z is uniformly G-continuous.

If 11 is bounded on B then K is bounded and so fz is bounded on C. Ol

Lemma 1.3. Let X be a Banach space. Let X, be the closed unit ball of X
and let X1* be closed unit ball of X**. Let u: X; — C be a bounded function
which is uniformly weakly continuous. Then p has a unique extension to
7 X{* — C where 1 is bounded and uniformly weak*-continuous.

Proof. Let G be the weak*-topology on X**. For each ¢ € X*
Xn{ze X :|p(z)| <1} ={ze X :|p(z)| <1}

So G induces the weak topology on X. So u is uniformly G-continuous on
X,. Since X, is dense in X;*, with respect to the G-topology, it follows from
Lemma 1.2 that 7 exists and has the required properties. O

2. Algebraic Preliminaries.

Lemma 2.1. Let B be a non-abelian C*-subalgebra of a von Neumann al-
gebra M, where M is of Type I,. Then B has a surjective homomorphism
onto Mz(C), the algebra of all two-by-two complex matrices.

Proof. We have M = M,(C)®C(S) where S is hyperstonian. For each s € S
there is a homomorphism 7g from M onto M, (C) defined by

D 2L G T11(8) Z12(s)

5 T21 T22 T1(8) Ta2(8)
Clearly, if mg[B] is abelian for every s then B is abelian. So, for some s,
7s[B] is a non-abelian*-subalgebra of M,(C) and so equals M, (C). 0

Lemma 2.2. Let w be a representation of a C*-algebra A on a Hilbert
space H. Let M = n[A]" where the von Neumann algebra M has a direct
summand of Type I,. Then A has a surjective homomorphism onto M, (C).

Proof. Let e be a central projection of M such that eM is of Type I,. Since
n[A] is dense in M in the strong operator topology, er[A] is dense in eM.
Since e M is not abelian neither is en[.A]. So, by the preceding lemma, em[A],
and hence A, has a surjective homomorphism onto M, (C). U
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3. Linearity.
We now come to our basic theorem.

Theorem 3.1. Let A be a C*-algebra which has no quotient isomorphic to
M,(C). Let 7 be a representation of A on a Hilbert space H. Let M be
the closure of A in the strong operator-topology of L(H). Let p be a local
quasi-linear functional on w[A], which is uniformly continuous on the closed
unit ball of w[A] with respect to the topology induced on w[A] by the strong
operator topology of L(H). Then p is linear.

Proof. We may suppose, by restricting to a closed subspace of H if necessary,
that n[A] has an upward directed net converging, in the strong operator
topology to the identity of H. Clearly 7[.A] has no quotient isomorphic to
M, (C) for, otherwise, M,(C) would be a quotient of A.

So, to simplify our notation we shall suppose that A = n[A] C L(H).

Let M be the double commutant of A in L(H). Let M; be the set of all
self-adjoint elements in the unit ball of M. Then, by the Kaplansky Density
Theorem, A; is dense in M; with respect to the strong operator-topology of
L(H).

Then, by Lemma, 1.2, there exists 7z : M; — C such that 7z is an extension
of i | A; and such that 7z is continuous with respect to the strong operator
topology. Since u[A;] is bounded so, also, is [M;].

We know that for each ¢ € A; and each t € R,

ta) = tp(a).
We extend the definition of & to the whole of M by defining

(z) = llzla (in)

[l

whenever £ € M with ||z|| > 1. It is then easy to verify that if (a,) is a
bounded net in A which converges to z in the strong operator topology of
L(H) then
p(ax) — a(x).
Also, whenever (z,)(n = 1,2..) is a bounded sequence in M, converging
to z in the strong operator topology, then

fi(zn) = B(x).

Let z be a fixed element of M and let (ay) be a bounded net in A which
converges to z in the strong operator topology. Then, for each positive whole
number n,a} — z™ in the strong operator topology. So u(a}) — G(z").
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Let ¢4, ¢2 be polynomials with real coefficients and zero constant term.
Then, since y is a local quasi-linear functional,

p{di(an)} + u{d2(ar)} = n{(¢1 + ¢2)(ar)} .

Now

#1(ar) = ¢1(x), g2(ar) — ¢a(x).

and

(¢1 + ¢2)(ar) = (é1 + ¢2) (@)

in the strong operator topology. So

E{p1(2)} + B {de(2)} = B {ds(2) + ¢2(2)} -

Let N(z) be the norm-closure of the set of all elements of the form ¢(z),
where ¢ is a polynomial with real coefficients and zero constant term. Then,
since each norm convergent sequence is bounded and strongly convergent, 7z
is linear on N (z).

Let py,ps,...p, be orthogonal projections in M.

Let

1 1 1

Then (z*)(k = 1,2,...) converges in norm to p;. So p; is in N(z). Then

{2z -2p,)*} (k=1,2,..)

converges in norm to p,. Similarly, p3, p4,...p, and 1 — p; — p; — ... — p, are
all in N(z).

Let v(p) = u(p) for each projection p in M. Then v is a bounded finitely
additive measure on the projections of M.

Since A has no quotient isomorphic to M,(C), it follows from Lemma 2.2
that M has no direct summand of Type I;. Hence, by Theorem A of [4] or
[6], v extends to a bounded linear functional on M, which we again denote
by v. From the argument of the preceding paragraph, &z and v coincide on
finite (real) linear combinations of orthogonal projections. Hence by norm-
continuity and spectral theory, (z) = v(z) for each z € M. Thus p is
linear. O

As an application of the above theorem, we shall see that when a quasi-
linear functional p has a ”control functional”, it is forced to be linear. We
need a definition.
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Definition. Let ¢ be a positive linear functional in .;l and let p be a quasi-
linear functional on A. Then pu is said to be uniformly absolutely continuous
with respect to ¢ if, given any ¢ > 0 there can be found § > 0 such that,
whenever b € A, and ¢ € A, and ¢((b— ¢)?) < 4, then |u(b) — pu(c)| < e.

Corollary 3.2. Let A be a C*-algebra which has no quotient isomorphic
to My(C). Let pu be a local quasi-linear functional on A which is uniformly
absolutly continuous with respect to ¢, where ¢ is a positive linear functional
in A*. Then p is linear.

Proof. Let (m, H) be the universal representation of A on its universal repre-
sentation space H. We identify A with its image under 7 and identify =[A]"
with A**.

Let & be a vector in H which induces ¢, that is,

¢(a) = (a&, &) for each a € A.

Choose € > 0. Then, by hypothesis, there exists 4 > 0 such that, whenever
be A, and ¢ € A; with
I(b—c)éll* <6

then
() — (o) < .

So 1 is uniformly continuous on A;, with respect to the strong operator
topology of L(H). Hence, by the preceding theorem p is linear. [

Theorem 3.3. Let A be a C*-algebra with no quotient isomorphic to M (C).
Let p be a (local) quasi-linear functional on A. Then p is a bounded linear
functional if, and only if, u is uniformly weakly continuous on the unit ball

of A.

Proof. By Lemma 1.1 each bounded linear functional on A is uniformly
weakly continuous. We now assume that p is uniformly weakly continuous
on A,. Let (w,H) be the universal representation of A. Let M = =n[A]".
Then A** can be identified with M and A** with M.

By Lemma 1.3 there exists a function 7 : M; — C which is uniformly
continuous with respect to the weak*-topology on M; and such that 1|4,
coincides with p|A4;.

The weak*-topology on M; coincides with the weak-operator topology of
L(H), restricted to M;. This is weaker than the strong operator-topology
restricted to M;. So 7 is uniformly continuous on M; with respect to the
strong operator topology of L(H). Thus p is uniformly continuous on A,
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with respect to the strong operator topology of L(H). Then, by Theorem
3.1, p is linear. O
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DISTORTION OF BOUNDARY SETS UNDER INNER
FUNCTIONS (II)

JOst L. FERNANDEZ, DOMINGO PESTANA AND Jost M. RODRIGUEZ

We present a study of the metric transformation properties
of inner functions of several complex variables. Along the
way we obtain fractional dimensional ergodic properties of
classical inner functions.

1. Introduction.

An inner function is a bounded holomorphic function from the unit ball B,, of
C" into the unit disk A of the complex plane such that the radial boundary
values have modulus 1 almost everywhere. If F is a non empty Borel subset
of OA, we denote by f~!(FE) the following subset of the unit sphere S,, of C*

fTUE) = {{ €S, lim f(ré) exist and belongs to E} .

The classical lemma of Lowner, see e.g. [R, p. 405], asserts that inner
functions f, with f(0) = 0, are measure preserving transformations when
viewed as mappings from S, to dA, i.e. if E is a Borel subset of 0A then
|f~*(E)| = |E|, where in each case | - | means the corresponding normalized
Lebesgue measure.

In this paper we extend this result to fractional dimensions as follows:

Theorem 1. If f is inner in the unit disk A, f(0) =0, and E is a Borel
subset of A, we have:

cap, (f'(E)) > cap,(E), 0<a<l.

Moreover, if E is any Borel subset of A with cap,(E) > 0, equality holds
if and only if either f is a rotation or cap,(F) = cap,(0A).

Moreover, it is well known, see [N], that if f is not a rotation then f is
ergodic, i.e., there are no nontrivial sets 4, with f~1(A) = A except for a set
of Lebesgue measure zero. This also has a fractional dimensional parallel.
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Corollary. With the hypotheses of Theorem 1, if f is not a rotation and if
the symmetric difference between E and f~(E) has zero a-capacity, then
either cap,(F) = 0 or cap,(E) = cap,(0A).

Theorem 2. If f is inner in the unit ball of C*, f(0) =0, and E is a Borel
subset of OA, we have:

CaPsn_aya ([T (E)) 2 K(n,a) " cap,(E),  0<a<l,

and

1

capyn s (/' (E)) (n>1).

S1+(27’l'—2)10gm,
0

Corollary. In particular, for any inner function f, we have that
Dim (f~'(E)) > 2n — 2 + Dim(E)
where Dim denotes Hausdorff dimension.

Here cap, and cap, denote, respectively, a-dimensional Riesz capacity
and logarithmic capacity. We refer to [C], [KS] and [L] for definitions and
basic background on capacity.

For background and some applications of these results we refer to [FP]
where it is shown that Theorem 1 holds with some constants depending on
o.

The outline of this paper is as follows: In Section 2 we obtain an integral
expression for the a-energy that is used in Section 3, where Theorems 1 and
2 are proved. Section 4 contains some further results for the case n = 1.
In Section 5, we prove an analogous distortion theorem, with Hausdorff
measures replacing capacities. Section 6 discusses an open question and
some partial results concerning distortion of subsets of the disc.

We would like to thank José Galé and Francisco Ruiz-Blasco for some
helpful conversations concerning the energy functional. Also, we would like
to thank David Hamilton for suggesting that the right constant in Theorem
1is 1 (see [H]), and the referee for some valuable comments.

2. An integral expression for the a-energy.

In this section we obtain an expression of the a-energy of a signed measure
p in Ey_; (the unit sphere of RY) as an L?-norm of its Poisson extension.
This approach is due to Beurling [B].
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If 41 is a signed measure on Xy_;, and 0 < o < N — 1, then the a-energy
I,(p) of p is defined as

L= [ @uo—u)du(z) dulw),

where )
log—, ifa=0,
Do(t) = 1 t
et f0<a<N-1.

Recall that if E is a closed subset of X x_;, then
(cap,(E))™" = inf{I,(x) : p a probability measure supported on E},

for0<a< N -1,

log = inf{ly(p) : p a probability measure supported on E},

capg (£)
and that the infimum is attained by a unique probability measure y, which
is called the equilibrium distribution of E.

If F is any Borel subset of X _;, then the a-capacity of E is defined as

cap, (E) = sup{cap,(K): K C E, K compact}.
We recall Choquet’s theorem that all Borel sets are capacitables, i.e.
cap, (F) = inf{cap,(O) : E C O, O open}.
As we shall remark later on, for a general Borel set E of ¥y _;, one has

1

cap (@) = inf{I,() : p a probability measure, p(E) =1},

and analogously for the logarithmic capacity.

We first need to obtain the expansion of the integral kernel ®, in terms
of the spherical harmonics. We refer to [SW, Chap. IV] for details about
spherical harmonics; we shall follow its notations.

Let H; be the real vector space of the spherical harmonics of degree k in
RN (N > 1). If a;, is the dimension of H;, we have

[SW, p. 145]

_9 —
ap=1, a; =N, ak:ﬁi_?_k___(N%»k 3).

k k-1
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If ©n_, denotes the unit sphere of RV the space L*(Xy_;,d€) can be de-
composed as

LA (S, dE) = & H,

where d¢ is the usual Lebesgue measure (not normalized).
If £,7 belongs to Ty_1, ZF(£) will denote the zonal harmonic of degree &
with pole 7, and if {Y}*,..., Y} } is any orthonormal basis of H;, we have

ZHE) = Y YEQYE () = 24 (). [SW, p. 143]

The zonal harmonics can be expressed in terms of the ultraspherical (or
Gegenbauer) polynomials P} which are defined by the formula

(1—2rt+72) " =Y P t)r*,
where |r| <1, [t| <1and A > 0.
We have [SW, p. 149], if N > 2,
Z3(€) = Conw PP (€ ).

It is easy to compute the constants Cy y. First, if wy_; denotes the Lebesgue
measure of Xy_1, then
2 a
k k
“Z,7 ||2 - : [SW, p. 144]

WN-1

while, on the other hand,

ay _ 02
= YN
WN_1 N1

1 2 . _
=C2y wN‘zf_l ‘Pﬁ”‘2)/2(t)| (1 - )V gt

PR )| d

Now, the polynomials P,SN_Z)/ ?(t) form an orthogonal basis of
£* ([-1,1], (1= )N972 )

[SW, p. 151], [AS, p. 774], and

[AS, p. 774]

“PI£N_2)/2“2 _ w24 ND(k + N — 2)
2 N -2

K2k + N —2)T (-2—)2
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where I'(-) denotes the Euler’s Gamma function, and, therefore

2
2 — N 2)/2 -2 N+2k—2)2F(N—2)
Ck’N WN-1WN_2 ”P ” 16 7N 2
Hence
N+2k-2_(N-2
Crw = 4mN/2 2 ’

and

N+2k-2_(N-2
Zk(f) :;rN/Z F( 5 )p(N 2/2(§ 7).

The case N = 2 is slightly different. In this case we can take P = Ty,
the Chebyshev’s polynomials defined in [—1, 1] by

Ty (cos ) = cos k8.

It is known that these polynomials form an orthogonal basis of
£ ([-1,1, (-7 dt) .
In this particular case, if £ = €¥,n = €'¥, then £ - n = cos(6 — 9), and
1 1
k
Z5(6) =+ cos k(9 — ) = ~Tu(cos(0 )

1
= P&, k=12,
11

0(¢\ — = _ = po(g.
Zn(&)_2ﬂ_ 27TP0(€ T,)
Therefore,
l, ifk>0,
Cr2=4T
—, ifk=0

We can now write down the expansion of the kernel ®,(|z—y|) in a Fourier
series of Gegenbauer’s polynomials. Fix, first, @, with0 < a < N —1. If we
denote by g(t) the function

ot) = (5—:1%)/ ,

then we can express the kernel @, in terms of g as

(| —nl) = (\/Iél"’ 2 - n+|nl2) =g(¢-m).



54 J.L. FERNANDEZ, D. PESTANA AND J.M. RODRIGUEZ

Now, develop g(t) as a Fourier series
- N— N-— 2 -
9(t) =Y gePN (), where g [PV = (g, PP
k=0

and conclude

1 (1€ ) = o6 7) = 30" 250
where g*Cy x = gi. Hereafter F will denote the usual hypergeometric func-
tion ,
2 (@) (b)) t™
Flabi ) = 3 e
where
(Wm=ufu+1)...(u+m—-1) = MT(—Z)T—)

The polynomials P(N 972 can be expressed in terms of F' [AS, p. 779].
N >2,

Pk(N—2)/2(t) _ (k +1]:7— 3> F(=k,k+N—-2;(N-1)/2;(1 —1)/2).

Then,
<9,P,§N‘2)/2>:<'“+N )/ F=k,k+ N —2(N —1)/2; (1 — 1)/2)
(2-20)7%2(1 — )N/ g

Therefore

(N-2)/2\ _ gN-2—« k+N -3 /1 —14+(N=1—-a)/2(1 _ \—1+(N—-1)/2
<g,Pk >_2 ( . s (1—s)

F(—=k,k+ N —2;(N —1)/2;s)ds.
Using the relationship

PNy = (PRSP, [SW, p. 149), [AS, p. 775)
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we have
(5,777
. 1
— gN-2-a (k—l—J’:’ 3) (_l)k/o sTIHIN=1=a)/2(] _ o)~ 1+(N-1)/2

-F(—k,k+ N —2;(N —1)/2;1—s)ds.
Term by term integration of the series defining F' gives
/01 s*71(1 - s)"'F(~k,c;b;1 — 5)ds = B(a,b)F(=k,c;a + b;1),
where B(-,-) is the Euler’s Beta function. Moreover, it is easy to see that

([AS, p. 556])

) _T(@+dl(a+b—c+k)
F(=k.ca+b1) = Fla+b+k)I'(a+b—-c)
I'(a +b) y T(l+c—a—0b)
F(a+b+k)(_)F(1+c—a—b—k)’

and so
1
(_1)k/ s M1 —s)"tF(=k,c;b;1 — s) ds
0

C(@)'()I(l+c—a—0b)
Fla+b+kIl(1+c—a—-b—k)

This gives
(0,77
N-1-a«a N -1 a
r =
_2N-2-a(k+N—3)F( )T () (++5)
- k a a ’
1= r(=
P(N 1 2+k) (2)
and
<g, pN= 2>
gk =

2
|22

N-1—-« N «
i P (3T (6 5)
p .
'3

VT I‘(N—l—%+k)
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Therefore,

F(————N—l_a)F(k+9—)
(N=1)/2 2 2

o o)’
P(N-1-Z4k)T(2

( 2+) (2)

if N > 2. On the other hand, if N = 2, the k-th Chebyshev’s polynomial is
Ty (t) = F(—k,k;1/2; (1 — t)/2), (see [AS, p. 779]), and

(2) g =gCry=2"""x

(g, P0) = / 2 —2)"2F(—k,k;1/2; (1 — t)/2)(1 — t*)"Y/2 dt.
Using the above computations when N = 2] we have that
l-«a «a
r (—2 > r (k + ‘i)
a a\
F<1—§+k>1‘<§)
Moreover it is easy to see, [AS, p. 774], that

s

—, ifk>0,
1Pz =492"

w, ifk=0,

(0. Pf)y =27

and also that Cy, = 2 P2 .
Then
kE _ <g’ PIE)
122l
and so (2) is also satisfied in this case (N = 2). Therefore we have proved
the following:

k2

Lemma 1. Forall NeEN, N>1and0<a <N —1,

o(1€ —n)) Zg’“Z’c

r(F=")r(k+5)
gk — 9N-1-a_(N-1)/2

P(N—l—gwc)r(%)

Now we can express the a-energy of a measure p in terms of its Poisson
extension P,.

where
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Lemma 2. If i is a signed measure supported on Y n_1, we have:

(i) If0<a < N —1, then

L(w) :C(N,a)/ol {/2 _ |Pu(r§)|2d§} pa1(1 _ p2yN-2-a gy

with
47TN/2

HOECS]
(ii) If m = p(XN—1), then

Iy(p) =wn_y /01 /EN‘l P,(r§) - ot
+5 [r(7)-Tw-1),

In particular, if N = 2,

=] ["[es

Proof. Let {uf}, k>0,1<j<ay, be the Fourier coefficientes of u, i.e.,

2
de (1 — )N =2
-

dr

r

’I‘B

2

pe D03 Y

k=0 j=1

Recall that P, is defined by
Pu(r§) = /E p(n,r&) du(n),

where p(n, 7€) is the classical (normalized) Poisson kernel

1 1—r2

WN-1 l77 ‘T§1N

p(n,r€) =

We have [SW, p. 145]

p(n,ré) = Zrka ZrkYk Yk(f

57
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Now, Plancherel’s theorem gives that

Pu(ré) = D_r*u Y (€).

L

Using again Plancherel’s theorem we obtain that
2
[ porde =Y ]
YN-1 kg
and so if we denote by A the right hand side in (i), we have that

2 1
=C(N,a) Z ’,ufl /0 pRhresl(] — p2yN=2=c gp
k.3

and, substituting r? = ¢, we get that
g ) g

C(N,a)zr(mg) T(N —1-a)

2
k.j _1.-
J <k+N 1 >

A=

s =S

Note that we have used the known duplication formula for the Gamma func-

tion in the last equality.
On the other hand, by (1),

(1€ —nl) ngZ’“ £) = ;g’“l’j’“(n)ﬁ’“(é),
©)J
and using Plancherel’s theorem we obtain that
S @alle = nD dut) = Sy,
() = 3o i =
»J

This finishes the proof of (i).

In order to prove (ii) observe that

~/EN_1

Integrating this equality we have that

L =cwe [ [

+m?U(a),

2

2
de + :/E P (r€)|? de .

WN-1

Pu(rf) -

WN-1

2
dé- T,avl(l o TQ)N—?—a d?"

Pu("f) -

WN-1
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where T(N/2)T(N — 1
U(O!) — ( / ) ( -+ a) ,
I'(N—-a)/2)T(N —1-a/2)
and hence
a2
a—0 6%
1 2 d
—wva [ [ P09 - | dg -
0 YN-1 Wn-1 r
On the other hand,
2 2 _
lim Ta(p) = m” U(<) = lim Lo(p) =m” —m? lim Ule) =1
a—0 o a—0 o a—0 o
= I(s) — m?U"(0),
and 1[I (N I’
U'0) = ; [F (5) —F(N—l)] .
This finishes the proof of Lemma 2. O

3. Distortion of a-capacity.
We need the following lemmas.

Lemma 3. Let p be a finite positive measure in OA, and let f be an inner
function. Then, there exists a unique positive measure U in S, such that
P,of =P and

U (f ' (support p)) = 5(S,) .
Moreover, if f(0) =0, then

L 5(s,) = L u(an).

Wan—1 2n

Proof. 1t is essentially the same proof as that of Lemma 1 of [FP], but see
Lemma 10 below for further details.

A different normalization is useful; choosing v = (27 /ws,,_, )V, one obtai

P, = 2n P,of and v(S,) = n(0A).

Wan—1

The following is well known
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Lemma 4. (Subordination principle). Let f : B, — A be a holomorphic
function such that f(0) =0, and let v: A —> R be a subharmonic function.
Then

[ e des 5 [ otre)as.

Waon—1 n

It will be relevant later on to recall the well known fact that, in the case
n = 1, equality in Lemma 4 holds for a given r, 0 < r < 1, if and only if
either v is harmonic in A, = {|z| < r} or f is a rotation. Note also that
there is no such equality statement when n > 1 since in higher dimensions
the extremal functions in Schwarz’s lemma are not so clearly determined
(see e.g. [R, p. 164)).

Lemma 5. Let i be a signed measure on 0A, f an inner function with
f(0) =0, and v a signed measure on S, such that

P, = (21 /wyn_1)Py 0 f.

Then

(i) Ifn=1and 0 <a <1, then

Io(v) < La(p).-
(i) Ifn>1and 0 < a < 1, then
Don21a(v) < K(n,a)la(p),

where
(n—1IT($)
Pn-1+%)"
If « =0 and m = p(0A) = v(S,), we have

K(n,a) =

Lna(v) < (2n = 2)Ip(p) +m?.

The measure v is obtained from Lemma 3 by splitting x4 into its positive
and negative parts. Note that for fixed «,

K(n,a)wnl*"‘/ZI‘(g—), as n — 00,

while for fixed n > 1

K(n,a)w%, as a—0.
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Let us observe also that K(n,«a) takes the value 1 for n = 1.

Proof. Since |Pu - %|2 and IPMI2 are subharmonic, we obtain by subordina-
tion, Lemma 4, that if n =1and a =0
27
d6 < /
0

27 2 2w
[-2fw-
0 0

and if n>1,0 < a <1, that

(3) /Sanu12d§=( . 1) / P (f |2d§<w2n 1/Ozﬂlpmaw.

In the first case, we obtain

2

™ de,

P —

P, - w5

Pu(f)

2

Io(v) < Io(p)

by integrating with respect to 27 dr/r and applying Lemma 2, part (ii).
In the second case, using Lemma 2, part (i), and Lemma 4 with v = | P, |?,
we have that

Fncaralt) = Clon2n=2+.0) [ { [ 1P0e)F depromaven 2

< C(2n,2n -2+ a)
- C(2,0)

2 L 2 12 dr
. P 10 da} a—1__ ="
Wan-1 /0 {./0 [Pulre )| " (1 —r2)e

= K(n,a)la(p),

C(2,a)

where
(n—1)IT (%)

K(TL,O() = m.

Finally, since v(S,) = m,

A

and so, Lemma 2 gives, if n > 1, that

2

2
& = [ IR de —

2n—1

P,(rf) —

Waon—1

2
d¢ r*»3dr.

IQn—Z (V) =

(n — 2) Wop—1
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By Lemmas 3 and 4, we get that

2 2

2w m
[ o) = =" de = [ | =R - &
Sn Won_1 Sn | Wan—1 Wan—1
2 \? m|?
- (=) [ |pueer -5 a
Wan—1 Sn 21
2w 2
L / Pure®y — | ap.
Wan—1 Jo 27
Therefore
47" boow m 4 m|*  dr
I e < m? / / P AN -
omo(V) <m’ + =21 )y wons o . (re’) o do .
4™ 1
2
- S
met (n—2)!w2n_1 O(H)
=m>+ (2n — 2) [y () .
The proof of Lemma 5 is finished. [l

Finally, we can prove

Theorem 1. If f is inner in the unit disk A, f(0) =0, and E is a Borel
subset of OA, we have:

cap, (f7'(E)) > cap,(E), 0<a<l.

Moreover, if E is any Borel subset of OA with cap,(F) > 0, equality holds
if and only if either f is a rotation or cap,(F) = cap,(9A).

Notice the following consequence concerning invariant sets. It is well
known that an inner function f with f(0) = 0, which is not a rotation,
is ergodic with respect to Lebesgue measure, see e.g. [P]. As a consequence
of the above, it is also ergodic with respect to a-capacity. More precisely,

Corollary. With the hypotheses of Theorem 1, if f is not a rotation and
if the symmetric difference between E and f~'(E) has zero a-capacity, then
either cap,(F) = 0 or cap,(FE) = cap,(0A).

In higher dimensions we have

Theorem 2. If f is inner in the unit ball of C*, f(0) =0, and E is a Borel
subset of 0A, we have:

CaDsn 940 (f"Y(E)) > K(n,a) " cap,(E), O<a<l,
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and

<14 (2n—2)log (n>1).

cap,, o (f71(E)) capy(E) ’

Proof of Theorems 1 and 2. To prove the inequalities in the theorems we
may assume that F is closed. Assume first that n =1, 0 < o < 1. Let us
denote by p, the a-equilibrium probability distribution of F, and let v be
the probability measure such that P, = P,, o f. By Lemma 5,

(4) L(v) < L(ne) = (cap,(E)) ™

But, from Lemma 3, v (f~'(F)) =1, and so

L) = //f—1<E)xf-1<E) (|7 — w|) dv(2) dv(w).

Now, let {K,} be an increasing sequence of compacts subsets in 0A, K,, C
fY(F), such that v(K,) /1. Then, for each n > 1,

L(v) = //f_l(E)xf_l(E) &, (17 — w|) dv(2) dv(w)

\ dv(z) dv(w)
>v(K,) //KnxKn Pu(lz — wl) v(K,) v(K,)

> v (K,)" (cap, (Kn)) ™
> v (K,)® (cap, (f71(E))) ",

and consequently

() Ia(v) 2 (cap, (f 7 (E)))

The inequality in Theorem 1 follows now from (4) and (5).
The cases n > 1 (Theorem 2) and n = 1, @ = 0 are completely analogous.

-1

Proof of the equality statement of Theorem 1. First we prove it assuming
that E is closed, to show the ideas that we will use to demonstrate the
general case.

Suppose that 0 < o < 1. We have seen that

1 1
cap. (f1(B) < L(v) < 1o (pe) = cap(E) -

Therefore, if E and f~!(F) have the same a-capacity, then

I, (v) = Lo (pe)



64 J.L. FERNANDEZ, D. PESTANA AND J.M. RODRIGUEZ

and this is possible only if for all r € (0,1),

/O " |P. (o) ap = / 1B () do.

This can occur only if either f is a rotation or | P, |? is harmonic. In the latter
case, we obtain that . is normalized Lebesgue measure, or equivalently that
cap,(E) = cap,(0A). Since E is closed, it follows that E = dA.

In order to prove the general case we need a characterization of the a-
capacity of E when E is not closed (see Lemma 6 below) We begin by
recalling some facts about convergence of measures.

We will say that a sequence of signed measures {o,,} with supports con-
tained in a compact set K converges w* to a signed measure o if

/h(a:) don(z) — [ h(z)do(z), for all he C(K).

n—00
Here, the w*-convergence refers to the duality between the space of signed
measures on K and the space C(K) of continuous functions with support
contained in K.

In this Section, we will denote by M, (K) (0 < a < 1) the vector space
of all signed measures whose support is contained in the set K and whose
a-energy is finite. M, (C) or My(A) is denoted simply by M,, and M7
denotes the corresponding cone of positive measures.

The positivity properties of I, [L, p. 79-80] allow us to define an inner
product in M, (for 0 < @ < 1) and e.g. in My({|z| = 1/2}) (for a = 0) as
follows

(0.7) = [[ @alla = yl) do@ar(v).
Observe that the associated norm verifies
lol? = I.(o) .

In the next lemma we collect some useful information concerning the above
inner product.

Lemma 6.
(i) If0<a<1, K is a compact subset of C, {0,} is a Cauchy sequence

(with respect to the inner product) in Mt (K) and o, o, then
lon, — ol — 0, as n— o0o.

(ii) If E is any Borel subset of K, then

cap.(B) =inf{I,(p): p a probability measure, p(E) =1},
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and there exists a probability measure y, supported on E such that

1

W = Ia(/J’e) .

In fact, if K, is an increasing sequence of compact subsets of E such that

cap, (K,) 7 cap,(E),

and if p, s the equilibrium distribution of K,,, then
pn=rpe  and  lun = pell — 0,

as 1 — 0.

These statements remain true in the case a =0, if K is a compact subset
of A.

Lemma, 6 is contained in [L, p. 82, 89, 145] if 0 < & < 1. The case « =0
is similar, though we need the restriction K C A so that || - || is a norm
(L, p. 80].

Now we are ready to finish the proof of Theorem 1. Let F be a Borel sub-
set of A such that

(6) cap, (f7(E)) = cap,(E) > 0.

We choose an increasing sequence of compact sets K, C E such that
cap,(K,)  cap,(E). Let pu, be the a-equilibrium measure of K, and
let 1. be the probability measure supported on E given by Lemma 6. We
have .

o= e and  To(pn) N Ta(pte)

as n — oo. In fact,
||/J'n—/1'e”_>0a as n — oo.

Let v, be the probability measure, with v, (f~'(K,)) = 1, such that P, =
P, o f (see Lemma 3). We can suppose after extracting a subsequence if
necessary, that v,, converges w* to a probability measure v on f~!(E). Since
the Poisson kernel is continuous in A we obtain, by using the w*-convergence,
that

P, —-P, and P, =P, as n — 0o,

pointwise. Therefore P, = P, o f, which in particular shows that v is a
probability measure supported on f~}(E).
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Claim. I,(v,) — I,(v) as n — co.
Since v, is a probability measure on f~'(E), Lemma 6 guarantees that

1
cap, (f~(E))
and so, by letting n — oo, and using that P, = P, o f (by Lemma 5) we
obtain that
L ) <L) = —

T IRTE Y v al\Me) = 7 -

cap, (FH(E) = =T cap, (B)
From (6), we deduce that 1,(v) = I,(u.). Finally, we can reason as in
the case of E being closed and conclude that either f is a rotation or . 1s
normalized Lebesque measure, i.e., cap,(F) = cap,(9A).

Proof of the Claim. Consider first the case 0 < a < 1. Since P, _,, =
P, ..o f, by Lemma 5 we obtain that

”L'P - Vn“2 = Ia(l/p —vy) < Ia(:“'p — fn) = Il“p - .unH2 p);jooo-
Therefore {v,} is a Cauchy sequence in the norm and so, by Lemma 6, we
have that

v —v||—0 and I,(v,) = I,(v)

as n — oo.
For A > 0, and A C C, we will denote by AA the set \A = {Az: z € A}
If E is a Borel subset of A, then ;F is a Borel subset of {|z| = 1/2}.
Also, if ¢ is a probability measure in A, we will denote by ¢* the probability
measure in {|z| = 1/2} defined by

1
(1) o(4) = o (5 A) ,
for A a Borel subset of 0A. It is clear that

(8) Iy(o*) = Iy(o) +log 2.

Now, in order to prove the case a = 0, let u} and v} be the measures
defined from p,, and v,, by (7). Then using again Lemma 5 and (8) we have
that

vy = vill? = Io(v; — vy) = Io(vp — vn) + log 2

— 0.

P,n—00

* <2
iu‘p—ll’n

< Io(pp — pn) +1og2 = ‘
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Therefore {v;} is a Cauchy sequence in the norm and again by Lemma 6,
we obtain that

vy —v*|| =0 and ILy(v;) = Ly(v")

as n — oo. It follows, from (8) that

Iy(vy,) = L(v), as n — oo.
il
4. Some further results on distortion of capacity in the case
n=1.
First we show that Theorem 1 is sharp. In what follows | - | will denote not

normalized Lebesgue measure in OA (i.e. |0A]| = 27).

Proposition 1. cap, (f~'(F)) can take any value between cap,(E) and
cap, (0A). More precisely, given 0 < s < t < cap,(0A) there exist a Borel
subset E of OA and an inner function f with f(0) = 0 such that cap,(E) = s
and cap, (f~}(E)) =1t.

In order to prove this, we need the following lemma whose proof will given
later.

Lemma 7. Let I be any closed interval in OA with |I| > 0, and let B be a
finite union of closed intervals in OA such that |B| = |I|. Then there ezists
an inner function f such that

F0)=0 and fNI)=B.
In fact, if 0 < |I| < 2x, then f is unique.

Remark. It is natural to wonder if this lemma holds in higher dimensions,
more precisely: Is it true that given an interval I in A and a Borel subset
B of S,, such that

Bl _ 11

Wan—1 2m

there is an inner function f : B, — A such that f~*(I)=B ?

It is not possible to construct such f by using the Ryll-Wojtaszczyk poly-
nomials (see [R1]), since in that case the following stronger result would be
true too:
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Given E, I subsets of A with |E| = |I| and N € N, there exists an inner
function f : A — A such that

E=fI), and  fU0)=0, ifj<N.

But it is easy to see, as a consequence of Lemma 8, that in general this is
not possible.

Proof of Proposition 1. Let I be a closed interval in 0A centered at 1 and
such that cap,(I) = s. Consider the function g(z) = z?. Then (see e.g.
[FP] or Proposition 3 below),

s = cap,(I) < cap, (¢7*(1)) < --- < cap, (g7 " (1)) . cap,(94).
Therefore, if t = cap, (¢7*(I)) for some k, we are done.

Note that g=*(I) consists of 2* closed intervals of length |I|/2* and cen-
tered at the points z;; = €2™i/2" (j =1,...,2*).

If cap, (g~ *~V(I)) < t < cap, (97*(I)) a simple continuity argument
shows that there exist a finite union B of 2% closed intervals in A of total
length |I| with cap,(B) = t.

Finally, applying Lemma 7 to the pair I/, B we obtain an inner function
f with f(0) =0 and f~'(I) = B. O

Proof of Lemma 7. Let u be the Poisson integral of the characteristic function
of B, and let % be its conjugate harmonic function chosen such that @(0) = 0.
Since u(0) = |B|/27 the holomorphic function F' = u + 4G transforms A into
the strip S = {w : 0 < Rew < 1}. Notice that F' has radial boundary values
except for a finite number of points, and F applies the interior of B into
{w: Rew =1} and A \ B into {w : Rew = 0}.

Now, let G be the Riemann mapping of S chosen such that

G(|B|/2r) = 0.

G transforms {w : Rew = 1} onto an interval J of JA. On the other
hand, the function h = G o F is clearly an inner function, A(0) = 0 and
h~'(I) = B. By composing h with an appropriate rotation we finish the
proof of the existence statement.

To show the uniqueness of f, it is sufficient to prove the following

Lemma 8. If A is any Borel subset of A, such that [, e **d0 # 0, and f,
g are inner functions with f(0) = g(0) = 0 such that

fiA)=g71(4),
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then f = g.
Here = denotes equality up to a set of zero Lebesque measure.

Proof. Let F: A — {w: 0 < Rew < 1} be the holomorphic function given

by
1 [ef+2
F(z) = — . .
(2) 27 /A el —z d0
F is univalent in a neighbourhood of 0, because
1 )
F(0) = —/ e"d # 0.
TJA

Now, observe that Re (F' o f) = Re (F o g) almost everywhere on 0A. Since
Re(F o f) and Re(F o g) are bounded harmonic functions it follows that
Fof=Fog+icin A, where c is a real constant. Since f(0) = g(0), we
deduce that F o f = F o g which proves the lemma because F' is univalent
in a neighbourhood of 0. O

Observe that, in particular, the condition [, e~*df # 0 is satisfied e.g. if
A is any interval in A with 0 < |A] < 2.

The condition [, e7*df # 0 is not only a technicality. If A is k-symmetrical
(i.e., there exists a subset Ay C A, with 4y C [0,27/k], such that A= A4, U
(Ao +27m/k) U (Ao +4n/k)U--- U (A + 2m(k — 1)/k)), and [, e~**¢df # 0,
then f = wg, where w is a k-th root of unity. To see this, one can use Lemma
8 with the functions h o f, h o g and the set h(A), where h(z) = z*.

Also, note that if A is the union of two intervals in A, then f = *g,
because [, e=*df = 0 implies that A4 is 2-symmetrical.

Notice that if the function ¢ in Lemma 8 were the identity, and 0 <
|A| < 27, then, by ergodicity, we would have that f is a rotation of rational
angle. This, together with the above remark, could suggest that perhaps the
following statement was true:

If A is any Borel subset of A, such that 0 < |A| < 2w, and f, g are inner
functions with f(0) = g(0) = 0 such that

fH(A)=g7'(4),

then f = A\g with || = 1.
But this is false as the next example shows: Let B be the following

Blaschke product
2z —1

2—z
By applying a theorem of Stephenson [S, Theorem 3] to the pair B, —B, one
obtains two inner functions f and g with f(0) = g(0) = 0, such that

Bof=-Bog.

B(z) =z
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But then (B(f))* = (B(g))?, and so, if we had f = Ag, we could conclude
that B(z) = —B(Az). But, since B'(0) # 0, we had A = —1, ie., B(z) =
—B(—z), a contradiction.

The following is well known, at least for o = 0, see for instance [A, p. 35-36]
where it is credited to Beurling.

Proposition 2. Let 0 < o < 1. If I is any interval in A, then I has
the minimum a-capacity between all the Borel subsets of OA with the same
Lebesgue measure than 1.

Proof. Let E be a Borel set such that |F| = |I|. A standard approximation
argument shows that for all € > 0 there exists a finite union B, of closed
intervals such that

[E| = 1Bel| <e  and | cap,(E) —cap,(B:)| <e.

Let I, be a closed interval with the same center than I and such that |I.| =
|B.|. By Lemma 7, we can find an inner function f. such that

f-(0)=0 and fFYI.)=8B. .
Therefore, by Theorem 1,
cap, (E) + € > cap,(B.) > cap,(I.),
but cap,(I.) = cap,(I) as ¢ = 0. Il

The following proposition is not unexpected since ergodic theory says that
f~*(E) is well spread on 0A. Hereafter f¥ = fo---of denotes the k-iterate

of f and f=F = (fF)~L.

Proposition 3. If f : A — A is inner but not a rotation, f(0) = 0,
0 < a <1 and E is a Borel subset of 0A with cap,(E) > 0, then

cap, (f*(E)) — cap,(9A) as k— 0.

The proof of this result is an easy consequence of the following lemma.

Lemma 9. With the hypotheses of Proposition 3, if u is any probability
measure on E with finite a-energy and if vy is the probability measure in
[ *(E) such that P, = P, o f*, then

|-

I,(v) — I, (———) as k — 00.
27
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With this, we have

1 |- . 1
cap, (fH(B)) = Tal) — L (%)= cap. (04)

giving us the conclusion of Proposition 3.

Proof of Lemma 9. We will prove it for 0 < a < 1; the case a = 0 being
similar.
By Lemma 2 (i), we have with an appropriate function g, that

I, (o) =/01 /027r|12,(7~e”9)|2 d go(r) dr

for any probability measure o on JA.
Using (3) we have for all € (0,1) that

/% |P,, (re®)|” df < /277 P, (re')” df.
0 0

Since p has finite a-energy, the right hand side in the last inequality, as
a function of r, belongs to L'(g,(r) dr). Therefore, by using the Lebesgue’s
dominated convergence theorem, we would be done if we show that

2m . 1
(9) / |P,, (7“6"9)|2 dg — — as k — oo,
0 2m

for each r with 0 < r < 1. But, by Schwarz’s lemma, and since f is not a
rotation, |f* (re"”)| — 0 as k — oo, uniformly on 6 for r fixed. Therefore,
for each r, B, (re?®) = P, (f* (re"’)) — 1/2m, as k — oo, uniformly on 6,
and this implies (9). |

Even in the case when cap,(E) = 0, the sets f~*(E) are well spread on
OA.

Proposition 4. If f : A — A is an inner function (but not a rotation)
with f(0) =0, E is any non empty Borel subset of A, and p is any probabil-
ity measure on E, then for some absolute constant C' and a positive constant
A that only depends on |f'(0)|, we have that

w(n - < gemne,

for each interval I C QA. In particular,

-]
I/k—-)27r
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in the usual weak-+ topology.
Here vy, is the probability measure concentrated in f~*(E) such that P,, =
P, o fk.

Proof. The proof is similar to that of Lemma 3 in [P], but using here the
fact that P,, = P, o f* instead of Lemma 1 in [P]. |

Proposition 5. If f : B, — A is inner, then f assumes in OB, all the
values in OA.

Proof. Let f : B, — A be an inner function. It is enough to prove that

{1} # @. But,

. 1+ f\ _ 1-|f)? :
(10) u.-Re(l_f)—ll_fI2>0, in B,.

Therefore, v is harmonic and positive in B, and so there exists a positive

measure in S, such that
1+ f
Re (1) =P

By (10) P, tends radially to 0 a.e. with respect to Lebesgue measure, since
f is inner and (by Privalov’s theorem, (see e.g., [R, Theorem 5.5.9])) f can
assume the value 1 at most in a set of zero Lebesgue measure. Then, the
Radon-Nikodym derivative of u with respect to Lebesgue measure is zero
a.e., and so p is a singular measure.

By Lemma 11 it follows that P, — +o0 in a set of full u-measure. But
this is the same to say that f(re) — 1 in that set. a

When the inner function f has order £ > 1 at 0, we can improve Theorem
1 in the case a=0.

Theorem 3. If f : A — A is inner,

fFO =f(0)=--=f*D0)=0, f®0O)£0, (k>1),
and E is a Borel subset of 0/, then
(11) cap, (f1(E)) > (capo(E))"" .

Moreover, if capy(E) > 0, equality holds if and only if either f(z) = \z¥,
with |A| = 1, or capy(E) = capy(0A).

Proof. For such a function f, Schwarz’s lemma says us that |f(z)| < |z]¥,
with equality only if f(z) = AzF with |A] = 1. With this in mind, the
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subordination principle says now (see e.g. [HH]) that if v is a subharmonic
function in A, then

/21r v (f (re®)) df < /21r v (rfe') df,

with equality for a given r only if v is harmonic in {|z| < r} or f is a rotation
of z*.

Now, in order to prove (11), we can assume that F is closed. If p. is the
equilibrium probability distribution of E and v is the probability measure
in f~'(E) such that P, = P, o f, then

12 : 1)? dr
_ 0yy _ -
W) =2 [ [P (7 (re) = 5| a0
1 p2n ) 1 2 d
< 27r/ / P, (rke®) — —| o=
0o Jo s r
Substituting 7* = ¢, we obtain that
1
Lv) = ¢ To(pe) -
This finishes the proof of (11). The equality statement can be proved in the
same way as that of Theorem 1. O

Remark. For other o’s (0 < a < 1) we can show

1 S Ca< 11 )
cap, (f~1(E))  cap,(0A) = k'~ \cap,(E)  capa(9A)

where C, is a constant depending only on a.
We expect C,, = 1, but we have not been able to show this.

5. Distortion of a-content.

The following is an extension of Lowner’s lemma.

Theorem 4. If f:B, — A is inner, f(0) =0 and E is a Borel subset of
OA, then, for 0 < a <1,

(i) Mon_z+a (f7(E)) Z Cna Mo(E)

(i) Mon-rsa (F(B)) 2 Cl o Ma(E).
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Here My and Mg denote, respectively, S-dimensional content with respect
to the euclidean metric and with respect to the metric in S,, given by

d(aa b) = |1 - <a'a b) |1/2:

where (a,b) = 3 a; b; is the inner product in C*. This metric is equivalent
to the Carnot-Carathéodory metric in the Heisenberg group model for S,,.
We refer to [R] for details about this metric.

Recall that in a general metric space (X, d) the a-content of a set E C X
is defined as

M,(FE) = inf{er‘ : EC UBd(mi,ri)} .
Observe that, as a consequence of Theorem 4, one obtains
Corollary. If f : B, — A is inner and E is a Borel subset of OA, then
Dim (f~'(E)) > 2n — 2 + Dim(E)

and
Dim (f'(E)) > 2n — 2 + 2Dim(E)

where Dim and Dim denote, respectively, Hausdorff dimension with respect
to the euclidean metric and the metric d.

In order to prove Theorem 4 we will prove a lemma about Poisson inte-
grals. We need to consider the classical Poisson kernel (not normalized)

Pe,s) =~ (em,, ccs,),

€ — z|*n
and the invariant Poisson kernel

_ -
Q(&z)_n—(z,f)l?” ( E]Bna£€Sn)'

Of course, they coincide if n = 1. In this section if v is a positive measure
in S,,, we will denote by P, the function

P = [ P(e2)dv(e)
and by @, the invariant Poisson extension of v

Qu(z) = /S Q(E, ) dv(€).



DISTORTION UNDER INNER FUNCTIONS 75

Lemma 10. Let u be a finite positive measure in OA, and let f : B, — A
be an inner function. Then, there exists a finite measure v > 0 in S, such
that P, o f = P,, and if v has singular part o and continuous part v, and
we denote by A the set

A={¢€S,: P,(rf) > +o0, asrT — 1}
and by B the set
B={¢€S,: 3limf(re) = f(€), [f(©)| =1 ond limP,(r§) >0},
then A has full c-measure, B has full y-measure and
AU B C f~!(support i)

and so
v (f~(supportu)) = [|v|.
The same is true if we replace P, by Q, (P,o f = Q. ) and A, B by the
following sets

A'={€eS,: Qu(rf) = +oo, asr — 1},
and
B'={¢€S,: INimf(re) = (&), /() =1 and limQ,(re) >0},

where o' and 7' denote, respectively, the singular and the continuous part of
!

V.
Proof. We will prove the lemma only for the measure v/, since the proof of
the result for v is similar and standard.

Let U : A — C be a holomorphic function such that ReU = P,. Then
U o f is also holomorphic and so Re(U o f) = P, o f is pluriharmonic, i.e.
harmonic and M-harmonic (see e.g. [R, Theorem 4.4.9]). Therefore there
exist finite positive measures v and v’ in S,, such that

Puof:Pva Pnof:Qu’-

Let us denote by E the support of u. If & € A', then |f(ré)| — 1 as
r — 1. The curve {f(rf) : 0 < r < 1} in A must end on a unique point
e = f(€) € A, since otherwise we would have P, = 400 on a set of positive
Lebesgue measure. Now, €'V € E, since otherwise P, vanishes continuously
at €. Therefore A’ C f~1(E). Similarly one sees that B’ C f~'(E).
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The set A’ has full o'-measure since by the inequality (14), that we will
prove later,

{ees Do) =0} ca,

where

! I LU OI(Bd(f,’I‘))
R T

and the set {{ : Do'(§) = oo} has full o’-measure (see Lemma 11 below).
Let us observe that ([R, p. 67))

| Ba(&,7)| ~ 1"

The set B’ has full v'-measure, since as r — 1

Q. (ré) — % a.e.

with respect to Lebesgue measure L (see, e.g., [R, Theorem 5.4.9]) and
{% > 0} has full v'-measure. U

Lemma 11. Suppose that i is a singular positive Borel measure (with respect
to Lebesque measure) in S,. Then

Du(z) = o0 a.e. W.

Proof. Let A be a Borel set such that |A| = 0, and p is concentrated on A.
Define for a > 0

Aa:{zEA: I_)u(x)<a}.

It is enough to prove that u(A,) = 0, and by regularity that p(K) = 0 for
all K compact subset of A,.

Fix € > 0. Since K C A, C A, |K| = 0 and so there exists an open set V
with K C V and |V| <€ (| - | denotes Lebesgue measure).

Now, for each z € K, we can find r, > 0 such that

[L(Bd(ﬂi,’/'z))

and By(z,r,/3) C V.
|Ba(z, 1) o 7219)

The family {By(z,r,/3) : z € K} covers K, hence we can extract a finite
subcollection ® that also covers K. Now, using a Vitaly-type lemma (see,
e.g., [R, Lemma 5.2.3]), we can find a disjoint subcollection I" of ® such that

K cC UBd(zz,'r’wi) .
r
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Note that as a consequence of Proposition 5.1.4 in [R] we have that

|Bd($aT2)|
@ = —_— 0.
<= 5P Bz, . /3)]

Therefore
w(K) <> pu(Balzi,rs,)) < @Y |Bal@i a,)|
T T

< @daZIBd(a:i,rmiB)l <B4alV| <O ac.
T

O

Proof of Theorem 4. We will prove only (ii), since (i) is obtained in a similar
way.

Assume, as we may, that E is a closed subset of A and M,(F) > 0.
Then, see e.g. [T, p. 64], there exists a positive mass distribution on E
of finite total mass, such that: (a) p(E) = M,(E), (b) u(l) < C,|I|* for
any open interval I, where C, is a constant independent of E. A standard
estimate shows that

Ca

A= €8

(12) P,(z) <

with C, a new constant. Let v’ > 0 be a measure in S,, such that P, o f =
Q.. Schwarz’s lemma (see e.g. [R, Theorem 8.1.2]) and (12) give the
corresponding inequality for v':
(13) Qu(z) < —Ce (zeB,)

ST @ =l .

We claim that for each z € B,

V(BAE QU= D) g
1=zl ’ n
where £ = z/||z|| and By(§, R) denotes the d-ball with center ¢ and radius

R.
Assuming (14) for the moment and using (13), we obtain that

(14) QV’(Z) Z Cn

(15) V'(Ba(€, R)) < Cpo R4 (£€8S,,R>0).

If we cover the set A' U B' (see Lemma 14) with d-balls of radii R;, we

see by (15) that
V(A'UB') < Cro Y RIS
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and so
V]l = V(AU B') < G Moo 1109 (A" U B)
< Chya Man—11a) (FT(E)) .
So, since f(0) =0,
Mo(E) = [lpll = IVl < Cjo Manitay (f7(E)) -

Therefore, in order to finish the proof, it remains only to prove (14).
Observe first that we can assume that £ = e¢; = (1,0,...,0) since d is
invariant under the unitary transformations of S,, for the inner product (-, -).
Now, if z = re, , write 6> = 2(1 —r). If n € By(e; ,d), then

[T—rm|<[L=m|+m|(1—r) <31 -r).
Hence, if n € By(ey ,9)

1—r2 )" S 9—n
’1“”71[2

Q(n%)z( A=

Since () is invariant under the action of the unitary group for the inner
product (-,-) in S,,, we obtain that if z = r£ and n € B,(¢,0), then

g-n
Q(n,z) > (l_——_r—)—'; .

Finally,

6. Distortion of subsets of the disc.

We have discussed how inner functions distort boundary sets. There are
some results on how they distort subsets of A. On the one hand Hamilton
[H] has shown that

Theorem H. For all Borel subsets E of A,

H, (f(E) 2 Ho(E), 0<a<l,
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where H, denotes a-Hausdorff measure.
One naturally expects the following to be true:
If f: A — A is inner, f(0) =0 and E is a Borel subset of A, then

cap, (f1(E)) > cap,(E).

This we can prove only if & = 0. The idea comes from [P1, p. 336].
Theorem 5. Let f : A — A be an inner function. If for some k > 1
JO) = f1(0) = =4O =0, fOO) #0,

then,
cap, (f ' (E)) > (cap,(E))"*,

for all Borel subsets of A. Moreover, this inequality is sharp.

Sketch of proof. By approximation, it is enough to prove it if £ is closed
and f is a finite Blaschke product. Let f be

d
k iz Z— 4
Z) =2z He .
1) - l1—a,z
j=1

Denote by gg, gr the Green’s functions of the unbounded connected com-
ponent of C\ E and C\ F (here F = f~'(FE)) with pole at co. Therefore,

+0 (|27,

z) —loglz| = lo
gr(2) — log|z| & cane(E)

1
z) —log|z| = lo +0 (|z|™),
ar(2) ~log] el =log "o+ O (121 )

as |z| = co. Moreover, since k > 1

: 1
gE(f(Z)) - k‘lOg'Zl + 1Og],_[ 'a’jl = lOg CapO(E) +0 (’Z]Al) ’

Jj=1

as |z| = oco. It is easy to see that

is harmonic in the unbounded connected component of C\ (F U (U?Zl {a;* }))
and it is bounded at the points @;' (here gp(z,a;') denotes the Green’s
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function of the unbounded connected component of C\ F' with pole at a;').
Therefore, the function

(16) G(z) = - gu(f(2)) - Ei: ( )

??‘lb—t

is harmonic and bounded in the unbounded connected component of C \ F.
Since G = 0 on the outer boundary of F, it follows that G = 0.
Now, by using the symmetry of Green’s function, we have that

QF( )_‘)QF(_l): as |z| = 00,

and so, from (16),

1 S
(17) logm logH|a]|—klog E:: ( ):0.

j=1

On the other hand, since F C A, the maximum principle says that

gr(z) > ga(z) = log|z], |z| > 1.

Hence, from (17), we obtain that

1 1
log logH la,| — klog o (F) > Zlog la;| ™,

cap, (E) i

and the inequality in the theorem follows.
Finally, to show that the inequality is sharp one simply has to consider
the function f(z) = 2*. ]
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IRREDUCIBLE NON-DENSE AY.MODULES

V.M. FUTORNY

We study the irreducible weight non-dense modules for
Affine Lie Algebra Agl) and classify all such modules having
at least one finite-dimensional weight subspace. We prove
that any irreducible non-zero level module with all finite-
dimensional weight subspaces is non-dense.

1. Introduction.

Let A = _; _3 and G = G(A) is the associated Kac-Moody algebra
over the complex numbers C with Cartan subalgebra H C G, 1-dimensional
center Cc C H and root system A.
A G-module V is called a weight if V = @ Vi, i ={v eV | hv = A(h)v
AEH*
for all h € H}. If V is an irreducible weight G-module then c acts on V as a

scalar. We will call this scalar the level of V| For a weight G-module V, set
PV)={Xxe H* |V, #0}.
Let Q = ZZ(p. It is clear that if a weight G-module V is irreducible

peA
then P(V) C A+ Q for some X\ € H*. An irreducible weight G-module V' is

called dense if P(V) = XA + @Q for some A € H*, and non-dense otherwise.

Irreducible dense modules whose weight spaces are all one-dimensional
were classified by S. Spirin [1] for the algebra A and by D. Britten, F.
Lemire, F. Zorzitto [2] in the general case. It follows from [2] that such mod-
ules exist only for algebras A%, C(). V. Chari and A. Pressley constructed
a family of irreducible integrable dense modules with all infinite-dimensional
weight spaces. These modules can be realized as tensor product of standard
highest weight modules with so-called loop modules [3].

In the present paper we study irreducible non-dense weight G-modules.
We use Kac [4] as a basic reference for notation, terminology and prelimi-
nary results. Our main result is the classification of all irreducible non-dense
G-modules having at least one finite-dimensional weight subspace. This in-
cludes, in particular, all irreducible highest weight modules. Moreover, we
show that this classification includes all irreducible modules of non-zero level
whose weight spaces are all finite- dimensional.

83



84 V.M. FUTORNY

The paper is organized as follows. In Section 3 we study generalized Verma
modules ME()\, ), ais a real root, A € H*, v € C, € € {+, —} which do not
necessarily have a highest weight (cf. [5]). By making use of the generalized
Casimir operator and generalized Shapovalov form we obtain the criteria
of irreducibility for the modules MZ (X, y) without highest weight (Theorem
3.11).

In Section 4 we classify all irreducible Z-graded modules for the Heisenberg
subalgebra G C G with at least one finite-dimensional graded component.
Irreducible G- modules with trivial action of ¢ were described earlier in [6)].
Let § € A such that ZJ—{0} is the set of all imaginary roots in A. Following

[6] we introduce in Section 5 the category O(a) of weight G-modules V
¢

such that P(V) C | J{\i —ka+nd|k,n € Z,k >0} where \; € H*, but
i=1

without any restriction on the action of the center (unlike in [6] where the
trivial action of the center is required). The irreducible objects in O(«) are
the unique quotients of G-modules M, (A, V), where A € H*, V is irreducible
Z-graded G-module. Modules M, (A, C), with A(c) = 0 were studied in [7-
9]. If A(c) # 0 and at least one graded component of V is finite-dimensional
then the module M, (), V) is irreducible [8, 9]. In Section 6 we classify all
irreducible non-dense G-modules with at least one finite-dimensional weight
subspace (Theorem 6.2). It turns out that these modules are the quotients
of the modules of type M¢(A,7) or M,(\, V). Moreover, any irreducible G-
module of non-zero level whose weight spaces are all finite- dimensional is
the quotient of Mg(), ) for some real root a, A € H*, vy € C, ¢ € {+,—}
(Theorem 6.3).

2. Preliminaries.

We have the root space decomposition for G : G = H® Zgw where dim

peA
G, = 1 for all ¢ € A. Denote by U(G) the universal enveloping algebra of G,
by W the Weyl group and by ( , ) the standard non-degenerate symmetric
bilinear form on G [4, Theorem 3.2]. Let A™ be the set of real roots in A
and A*™ be the set of imaginary roots in A. Fix o € A" and consider a
subalgebra G(a) C G generated by G, and G_,. Then G(a) ~ sl(2) and we
fix in G(a) a standard basis e, €_q, ha = [€q, €_o] Where [hq, 1] = £2€44.
We will use the following realization of G:

G=G(a)®C[t,t '] ® Ccd Cd

with [z®t"+ac+bd, y@t™+a,c+byd] = [z, y] "™ +bmy @t™ —binz @™+
N6n,—m(z,y)c, forall z, y € G(a), a,b,a;, b, € C. Then H = Ch,®Cc®Cd.



IRREDUCIBLE NON-DENSE MODULES 85

Denote by ¢ the element of H* defined by: 6(h,) = d(c) = 0 and §(d) =
Then A™ = Z6 — {0} and 7 = {e, 6 — a} is a basis of A. Let Ay, = A, (n)
be the set of all positive roots with respect to . The root system A can be
described in the following way: A = {+a+nd | n € Z}U{nd | n € Z — {0}}.
We have Gipins = G1a @ t", n € Z, G5 = Ch, @ t", n € Z — {0}. Set
Cotns = €u @t €_gins = €_o®t", N EZ, eps = hy @™, m € Z — {0}.
Then [ers, €ms] = 2k0k,—mC, [€rs, €xatns] = £2€1at(ntk)s) [Caths) E—atms] =
Ok,—m(Pa + kc) + (1 — 6, —m)e(rt+m)s for any k, m € Z.

For a Lie algebra A4, S(.A) will denote the corresponding symmetric alge-
bra. We will identify the algebra U(H) = S(H) with the ring of polynomials
C[H*] and denote by o the involutive antiautomorphism on U(G) such that

o(€a) = €, 0(€5-a) =€acs. Set Ny = > Gy No= > G,

PEAL pEAL
3. Generalized Verma modules.

The center of U(G()) is generated by the Casimir element z, = (h, +1)*+
4e_,e,. Denote

No:,_ = Z gtpa ./V:; = Z g—cpa

p€AL—{a} peA—{a}
T,=SH)®Clz,), E.=(H+G()dN, ce{+,—-}.

Let A € H*,v € C. Consider the 1-dimensional T,-module Cv, with the
action (h® 2")vy = h(A\)y™w, for any h € S(H), and construct an H + G(a)-
module

V(A7) =U(G(a) + H) (X) Cus.

T
It is clear that the module V()\,v) has a unique irreducible quotient V, ,.

Proposition 3.1.
(1) IfV is an irreducible weight H + G(a)-module then V ~ V, ., for some
A€EH* yeC.
(i) Vay Vi ifandonlyify =+, N =X+na,n € Z, v # (A hy)+2¢0+
1)? for all integers £,0 < £ < n if n > 0 or for all integers £,n < £ <0
if n <O0.

Proof. This is essentially the classification of irreducible weight s/(2)-modules.

O

Let A€ H*, vy € C, € € {+,—}. Consider V, , as E;-module with trivial
action of N¢ and construct the G-module

M:(X,7) G) & Van
U(ES)
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associated with a, A, ~,e.
The module M (A, y) is called a generalized Verma module. Notice that
V.4 does not have to be finite-dimensional.

Proposition 3.2.
(i) MZ(N\,7y) is a free o(UNZ))- module with all finite-dimensional weight
subspaces.
(ii) MZ(A, ) has a unique irreducible quotient, L:,(X, ).
Qi) ME(\,y) =~ ML (N,v') ifand only ife = €',y =7, X' = Ana,n €%
and v # (AMhy) + 20+ 1) for all ¢ € Z, 0 < ¢ <n ifn >0 or for all
teZ,n<l<0ifn<0.

Proof. Follows from the construction of G- module M:(A,~y) and Proposition

3.1. O

Let Ry = {(A(ho) +2¢+1)* | £ € Z}. Recall that V is called a highest
weight module with respect to A, and with highest weight A € H* if V =
U(G)v, v € Vy and Vyy, = 0 for all ¢ € A, (m). Proposition 3.2, (iii) implies
that M:(A,v) and L (A, ) are highest weight modules with respect to some
choice of basis of A and, therefore, are the quotients of Verma modules [4],
if and only if v € Ry. The theory of highest weight modules was developed
in [4, 10].

Corollary 3.3.

(1) Let V be an irreducible weight G-module, 0 # v € V5 and Ntv = 0.
Then V =~ Lt (XA, 7y) for some y € C.

(i) Let A & Rx. L5(\,y) ~ L5, (N,v') if and only if e = €', & = « or
o =—a,y=v, N = +na,n€Z and v # (Mha) +2¢+ 1) for all
LeZ,0<l<nifn>0o0rforallleZ, n<l<0ifn<0.

Proof. Since V is irreducible G- module, V' = U(G(«a))v is an irreducible
G(a)-module and V =~ o(U(NE))V'. Then V is a homomorphic image of
ME(N,7y) for some v € C and, thus, V =~ L¢(\,v) which proves (i). (ii)
follows from Proposition 3.2, (iii). d

From now on we will consider the modules M (X, v)(= M(A,v)). All the
results for the modules M (A,y) can be proved analogously. Set z = z,.
For A € H*, v € C and integer n > 0 we denote by z(n) the restriction of z
to the subspace M (X, ¥)x_n(s—a)-

Proposition 3.4. If v # (AMhy) + 20+ 1)* for all 0 < £ < 2n then
Specz(n) = {(2k £+ \/7)? |k € 2,0 < k < n}.

Proof. Denote V,, = M (A, ¥)x_n@s—a), » > 0. One can easily show that
Vo = easVn1+e eV 1 +e_n 562V g Let V,op = @V, (1), 7 € C,



IRREDUCIBLE NON-DENSE MODULES 87

where V, (1) = {veV,,|3IN:(z(n—1)—7)Yv=0}. Then the sub-
space €,—sVn-1(7) + e_sea Vi1 (7) + €_q 52V, _1(7) C V, is z(n)- invariant
and z(n) has on it the eigenvalues 7 and (2 4 /7)?, thanks to the condition
v # (Aha) + 2+ 1)?) 0 < £ < 2n, which implies that z(n) has eigenvalues
(2k+7)?, 0<k<n. O

Corollary 3.5. Ifyv & R, then e, and e_, act injectively on M (X, 7).

Proof. If v ¢ R then Specz(n) () Ry_ns = @ for all integer n > 0 by Propo-
sition 3.4 and, therefore, e, and e_, act injectively on M (7). |

Fix p € H* such that (p,a) =1, (p,d) = 2. Since M (], ) is a restricted
module, i.e. for every v € M(),7v), G,v = 0 for all but a finite number
of positive roots ¢, we have well-defined action of a generalized Casimir
operator € on M(A,vy) [4]:

Q= (n+2p,p)v+2 Y T ye,0, vE MY,

wEAL

where €_, € G_,, (_,,e,) =1, ¢ € A,. Set Q = 2Q + id.
Let s € W, so(u) = p — (g, @), p € H*.
Lemma 3.6. For a G-module M()\,~)

Q=[(A+2p+ sa(A+2p), A) +7]id.

Proof. Follows from [4, Th.2.6] and definition of €.

+ O

Lemma 3.7. Letn>0,8=0—a, 0#£v € M\, YV)a-ns, ¥ # (A(ha)
20+ 1)% for all0 < £ < 2n and NJv = 0. Then k*y = (n(A\c) + 2) — k?)
for some k€ Z, 0 <k <n.

~

Proof. 1t follows from Lemma 3.6 that z(n)v = v'v and
A=—nB8+20+5,(A—nB+2p),A\=nB)+v =A+2p+s.(A+2p), \) +7
which implies

v =y +4n(A(c) + 2).
But, v = (2k £ /7)* for some k € Z, 0 < k < n by Proposition 3.4.
Therefore, k*y = (n(A(c) + 2) — k?)? which completes the proof. U

Corollary 3.8. Let A € H*, vy € C — Ry. If k*y # (n(\(c) + 2) — k?)? for
alln,k €Z, n>0,0<k<n then G-module M(X,~) irreducible.

Proof. If the G-module M (),~) has a non-trivial submodule M, then M
contains a non-zero vector v of weight A — n(d — a) , n > 0, such that
Njv = 0. Now, the statement follows from Lemma 3.7. O
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Consider the following decomposition of U(G):
UG) = (NUG) +UG)N]) & Ty Cleslea ® ToCle_ye_y & Ty

Let j be the projection of U(G) to T,. Introduce the generalized Shapo-
valov form F, a symmetric bilinear form on 4 (G) with values in T,, as follows
(cf. (11]): F(z,y) = j(o(z)y), =,y € U(G). The algebra U(G) is Q-graded:
UG) = PU(G),. 1t is clear that F(U(G)n,, U(G)n,) = 0 if my # ms. Denote

ne

Q

UWN_)_y =UWN_-)NU(G)-, and let F, be a restriction of F to UN_)_,.

For A € H*, v € C, consider the linear map 6, , : T, — C defined by
Oxr(h ® z™) = h(\)y" for any h € S(H), n € Z,..

Set \p = A+ka,k€Z. Let uy=X—n(d —a) € P(M(A,7)), n € Z, and
v # (A(ha) + 25 + 1)? for all integer s, 0 < s < 2n. Then Ay, € P(M(), 7)),
M(X\,Y)x,, = Cv, and M(\, %), = UN_)_n(ars)Vn- Set F™ = Fr,is). We
define a a bilinear C-valued form F? on M(}, ), as follows:

Fg(ulvn, UgU,) = Oy, (F(")(ul, uz)) , Ur, Uy € UND) _p(ats)-

One can see that dim L(A,7), = rank F}.

Lemma 3.9. Let A € H*, v € C— Ry. The following conditions are
equivalent:
(i) M\, 7) is irreducible.
(i) FY_,(5_a) 18 non-degenerate for all integers n > 0.
(iii) O, (det F™) 5£ 0 for all integers n > 0.

Proof. Follows from the Corollary 3.5. O

Consider in T, the following polynomials: f,., = k*z — (m(c + 2) —
k*)?, gs = z — (ho + 25 + 1)%, s,m,k € Z, 0 < k < m. Lemma 3.7 implies
that if 65 ,(gs) # 0 for all s € Z, 0 < s < 2n and 0, o(fm k) # 0 for all
m,k €Z,0<m <n,0< k< m, then M(A\¥)r—ni—a) = LA, Y)r-n(6-a)
and 6,,, , (det F(™) # 0. We conclude that the polynomial det F(™ is not
identically equal to zero and has its zeros in the union of zeros of polynomials
ik, 0<m<n,0<k<m,g,,0< s <2n. Therefore, det F(™ is a product
of factors of type f, x and g;.

Lemma 3.10. Letn,m € Z,n>0,0<m <n. Then fni is a factor of
det F™ if and only if k is a divisor of m or k = 0.

Proof. Assume that & is a divisor of m or k = 0. Set r = 2n+2m+k. Consider
A € H* and v € C—Z such that ) .,(fm x) = 0r~(g-) = 0. For integer s > 0
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set vy, = A_y = A —sa. Then 0,, (fmx) = 0., ,(9r+s) = 0 and vs(h,) € Z,
which implies that 0,, . (g,) # 0 forall£ € Z, £ < r+s. Thus, the form F;) _,,
B =6—aisdefined for all s > 0,0 < i <nand M(v,,vy) ~ M(),),s>0by
Proposition 3.2, (iii), where M (),) is the Verma module with highest weight
Ar = A+ ra. Therefore, M(vs,7y),, ., = M(A)y,—ig, 0 < @ < n as Ty
modules. The operator z(m) has eigenvectors w}, w; € M(),),, _mg with
eigenvalues v© = (A(hy) +4(n+m+k)+1)? and v~ = (A(hy) +4(n+m)+1)?
respectively. Since 6,, (fn.x) =0, then

v =7+4mA(c) +2) € {v", 77}
and
(Vs +2p+ 50 (Vs +2p), v5) +7 = (Vs =mB+2p+sa(vs —mB+2p), vs —mB) +77.
Let w! € {w},w;} and z(m)w? = y*w?*. Then

Qu; = [(vs —mpB + 2p + sa(vs —~ mB + 2p),vs — mpB) + 7" |w]

L)

by Lemma 3.6. But, w} € M()\,) and
Quw? = (2(\, + 20, \,) + Dw?
by Corollary 2.6 in [4]. Hence
200 + 20, X)) + 1 = (s —mB+2p+ s4(vs —mB + 2p),vs —mpB) + 7"

and
A +20,0) = (A +2p = 7", A = 77)

where 7 = md — ka if v* =41 and 7* = md + ka if v* = ~. If k divides
m or k =0 then 7* is a quasiroot and D = Homg(M (A, — %), M (X)) # 0
(10, Prop. 4.1].

Let 0 # x € D. Then x(M(A, — 7)) N M(\,)y,—ng # 0 and therefore,
Ox,,_.,(det F(™) = 0 for any integer s > 0. It implies that if A € H*,
v € C~2Z and 0y ,(fmi) = 0 then 8, ., (det F™) = 0. Thus, f, is a factor
of det F(™. Conversely, suppose that f, ; is a factor of det F(™, k # 0 and
k is not a divisor of n. Let r = 4n+k. Consider a pair (\,v) € H* x (C—Z)
such that 0, ,(fnx) = 0x,(9-) = 0 but 0, ,(fp,) # 0 forall 0 < p < n,
0 < g < p (such X and + always exist). Then 0, ,(det F(™) = 0 and the
Verma module M ()\,) has an irreducible subquotient with highest weight
A, — 7%, where 7* is one of nd + ko, nd — ka. But, this contradicts the
Theorem 2 in [10]. Therefore, f,  can not be a factor of det F(™) if k £ 0
and k is not a divisor of n.
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Let now 0 < m < n, 0 < k < m, k is not a divisor of m and f,,; is a
factor of det . Consider a pair (),7) € H* x C such that 85 ,(fn ) =0,
Orr(fpq) #0forallpge Z, 0<p<n,0<gq<p, (pg) # (mk) and
0,,(g9s) # 0 for all s € Z. As it was shown above f,, ; is not a factor
of det F(™ which implies that 8,,,, ,(det F™) s 0. Now it follows from
Lemma 3.7 that M()\,7)a—ns = L(X\,Y)a_np and 0y, ,(det F™) # 0. But,
this contradicts the assumption that f,, ; is a factor of det F(™. The Lemma
is proved. O

For n € Z, n > 0 denote X,, = {0} U{ke Z, |2 € Z}.

Theorem 3.11. Let A € H*, v € C— Ry. G-module M (), ) is irreducible
if and only if K>y # (n(A(c) +2) — k*)? foralln€ Z, n >0, k€ X,,.

Proof. Follows from Lemmas 3.9 and 3.10. 1

4. Irreducible representations of the Heisenberg subalgebra.

Consider the Heisenberg subalgebra G = Cc @ Z Gro C G. Tt is a
k€Z—{0}

Z-graded algebra with degc = 0, degers = k. This gradation induces a

Z-gradation on the universal enveloping algebra U (G @L{

In this section we study the irreducible Z-graded G- modules. The central
element ¢ acts as a scalar on each such module. In general, we say that a
G-module V is a module of level a € C if ¢ acts on V as a multiplication by
a.

4.1. G-Modules of non-zero level. Let G, = EQM, G_ = nga- For
E>0 k<0

a € C* = C— {0}, let Cu, be the 1- dimensional G. @ Cc-module for which
G.v, =0, cv, = av,, € € {+,—}. Consider the G-module

M*(a) =U(G) ® Cu,

U(G.®Ce)

associated with a and €.
The module M¢(a) is a Z-graded: M*(a ZME (a); where

Me(a); = (o(U(G.)) NU) ® va.

Proposition 4.1.
(i) The G-module M¢(a) is irreducible.

(i1) M¢=(a) is a o(U(G.))-free module.
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(iii) dim M®(a); = P(|i|) where P(n) is a partition function.

Proof. (ii) and (iii) follow directly from the definition of M*(a). Since a # 0
one can easily show that for any non-zero u € o(U(G.)) there exists u' €
U(G.) such that 0 # u'uv, € M*(a), which implies (i) and completes the
proof. O

Lemma 4.2. IfV is a Z-graded G-module of level a € C* and dim V; < oo
for at least one © € Z then

Spec ese_s |y C {2ma | m € Z}.

Proof. Let v € V; be a non-zero eigenvector of ese_s; with eigenvalue b and
b # 2ma for all m € Z. Since a # 0, if e,5v = 0 then e_,5v # 0, n €
Z — {0}. Denote Y ={n € Z —{0,1} | ens5v # 0}. We may assume without
lost of generality that j = ¢ and | Y N Z, |= oco. Elements e; and e_; act
injectively on the subspace spanned by efv, e* v, k € Z. Then, for each
k€Y NZ,, ese_s(ersv) = bersv and 0 # e¥ zersv € V. Set wy = eF sexsv.
Then ese_swy = (b+ 2ka)wy, k € Y NZ,. This contradicts the assumption
that dim V; < co. Therefore, b = 2ma for some m € Z. O

For a Z-graded G-module V and j > 0 denote by VU the Z-graded G-
module with (VU); = V,_;, i € Z.

We describe now all irreducible Z-graded G-modules of non-zero level with
finite-dimensional components.

Proposition 4.3.

(i) Let V be an irreducible Z-graded G-module of level a € C* such that
dim V; < oo for at least one i € Z. Then VUl ~ M¢(a) for some
e€{+,~}, jEZ.

(i) Ext'((M*(a))V, M¥ (a)) =0 for any j € Z, ,¢' € {+,—}.

Proof. (i) By Lemma 4.2 Spec X |yC {2ma | m € Z} where X stands for
ese_s. Let V; # 0, n be an integer with maximal absolute value such that
2na € Spec X |y, and let 0 # v € V;, Xv = 2nav. Assume that n > 0.
Then ewsv = 0 for all & > 1. Indeed, if egsv # O for some k > 1 then
X(ersv) = ersXv = 2naegv and 2(n + k)a is an eigenvalue of X on
V; which contradicts the assumption. Therefore, e;sv = 0 for all £ > 1.
Consider the element © = e} 'v # 0. Then e_ses0 = x50 = 0, k > 1.
If es0 # 0 then v, = €§¥ # 0, exsv, = 0 and, hence e_gsv, # 0 for all
p > 0, k > 1. This would imply that dim V; = co. Therefore, e;o = 0 and
V =U(G)o ~ M*(a) up to a shifting of gradation. If n < 0 then, clearly,
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V >~ M~ (a) up to a shifting of gradation. Suppose that V; = 0 but, for
example, V,_;, # 0. Then esv = 0 for any non-zero v € V,_; for all k > 0
and thus V = U(G)v ~ M™*(a) up to a shifting of gradation. This completes
the proof of (i).

(ii) Follows from the proof of (i) and Proposition 4.1, (ii). 0l

Lemma 4.4. Fvery finitely-generated Z-graded G-module V of level a € C*
such that dim V, < oo for at least one i € Z has a finite length.

Proof. If V; = 0 then statement follows from Proposition 4.3. Let V; # 0, n be
an integer with maximal absolute value such that 2na € Spec ese_s |y, and
v be a corresponding eigenvector. It follows from the proof of Proposition
4.3, (i) that V' = U(G)v ~ M*(a) up to a shifting of gradation. Consider a
G-module V = V/V'. Then dim V; < dim V, and we can complete the proof
by induction on dim V;. ]

Now we are in the position to establish the completely reducibility for
for finitely-generated G-modules of non-zero level with finite-dimensional
components.

Proposition 4.5. Fvery finitely-generated Z-graded G-module V' of a non-
zero level such that dim V, < oo for at least one i € Z is completely reducible.

Proof. Follows from Lemma 4.4 and Proposition 4.3. [l

4.2. G-modules of level zero. The irreducible G-modules of level zero are
classified by V. Chari [6]. We recall this classification.

Let G = U(G)/U(G)c and let g : U(G) — G be the canonical homomor-
phism. For r > 0 consider a Z-graded ring L, = C[t",t7"], degt = 1 and
denote by P, the set of graded ring epimorphisms A : G — L, with A(1) = 1.
Let Ly = C and Ay : G — C is a trivial homomorphism such that Ag(1) = 1,
Ao(glers)) =0 for all k € Z — {0}. Set Py = {Ao}.

Given A € P,., r > 0 define a G-module structure on L, by:

ek5trs = A(g(ek(;))t”, keZ— {O}, ct™ = 0,3 € 7.
Denote this G-module by L, 4.

Proposition 4.6.
(i) LetV be an irreducibe Z-graded G-module of level zero. ThenV =~ L, 5
for some r >0, A € P, up to a shifting of gradation.
(i) Lyp =~ Ly if and only if r = ' and there exists b € C* such that
Ag(exs)) = b"A'(g(exs)), k € Z — {0}
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Proof. (i) is essentially Lemma 3.6 in [6]; (ii) follows from [6, Prop. 3.8].
U

Remark 4.7. All the results of Section 4, except Proposition 4.1 (iii), are
hold for the Heisenberg subalgebra of an arbitrary Affine Lie Algebra.

5. The category O(a).

Let a € 7. Following [6] we define category O(a) to be the category of
weight G-modules M satisfying the condition that there exist finitely many

elements Ay, ..., A, € H* such that P(M) C UD()‘i) where
=1

D) ={\+ka+nd|kneZ, k<0}.

Notice that the trivial action of ¢, as in [6], is no longer required. It is clear
that O(«a) is closed under the operations of taking submodules, quotients

and finite direct sums.
Denote B, = Y Goyns- Then G = B_, & (H + G) @ B..

nez
Let V be an irreducible Z-graded G-module of level a € C and let A € H*,

A(c) = a. Then we can define a B = (H + G) ® B,-module structure on V'
by setting: hv; = (A +id)(h)v;, Bov; =0 forallh € H,v; € V,, i € Z.
Consider the G-module

M, (A V)=UG) RV
U(B)

associated with o, A\, V.

Proposition 5.1.

(i) The G-module My(\, V) is S(B_,)- free.

(i) M,(A, V) has a unique irreducible quotient Lo (A, V).

(iii) P(M,(\,V))=(DA)—={ +nd|neZ})uP(V)C D).

(iv) Mu(A\V) = M, (N, V") if and only if &' € {a+nd | n € Z} and there
exists 1 € Z such that A = N + i and VI ~ V' as graded G-modules.

Proof. Follows from the construction of G- module M, (A, V). 0

Now we describe the classes of isomorphisms of irreducible modules in

O(w).

Proposition 5.2. 3
(i) LetV be an irreducible object in O(«a). Then there ezist A € H* and
an irreducible G- module V' such that V ~ L,(\, V).
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(i1) La(A, V) = L,(N, V") if and only if there exists 1 € Z such that A =
X +46 and VI ~ V' as graded G-modules.

Proof. One can see that V contains a non-zero element v € V, such that
Bov = 0. Then V = U(G)v is an irreducible Z-graded G- module and
V ~ U(B_,)V. This implies that V is a homomorphic image of M,(\,V)
and, therefore, is isomorphic to L, (A, V'), which proves (i). Part (ii) follows
from Proposition 5.1, (iv). O

Lemma 5.3. [f0 < dim L, (), V), < oo for some p € H* then dim V; < oo
for alli € 2.

Proof. If Mc) = 0 then VUl ~ L _, for somer >0, A € P,, j € Z by
Proposition 4.6 and, hence dim V; <1 for all ¢ € Z. Let A(c) = a € C* and
VUl ~ M#(a), forany j € Z, ¢ € {+, —}. By Proposition 4.3, (i), dimV; = oo
foralli. fa € Q4 (a & Q4 respectwely) then A(h,)—na & Z, for all integer
n > ng (n < ng respectively) and for some ng € Z. Thus, €, n5€_qins
acts injectively on L,(A, V) for all n > ny (n < ng respectively) which
implies that dim L, (A, V), = co. But, this contradicts the assumption. We
conclude that VU ~ M¢(a) for some j € Z, ¢ € {+,—} and dim V; < oo for
all i € Z. t

Theorem 5.4. Let V € O(a) be an irreducible.
(i) [6] If V is of level zero then V ~ Ly (), L, 5) for some A € H*, \(c) = 0,
r>0, A€ P,.
(ii) If V is of level a € C* and dim f/,, < oo for at least one p € P(V)
then V ~ L, (A, M*(a)) for some A € H*, A(c) = a, € € {+,—}.

Proof. (i) follows from Propositions 5.2 and 4.6, while (ii) follows from
Lemma 5.3, Propositions 5.2 and 4.3. [

In some cases we can describe the structure of modules L, (A, V)

Let A(c) = 0, 7 =0, A = Ay, Lop, =~ C. Set]\;.f()\): (A, C
Notice that M()\) ~ S(B_,) as vector spaces and, therefore, P(M()))
{A—na+ké|kneZ n>0}U{\} and

)-

dim M () _pagrs = 00,1 > 1,dim M(A), = dim M(\)x_asks = 1,k € Z.

Proposition 5.5.
(i) Lo(X, C) =~ M(X) if and only if A(hy) # 0.
(i1) If AM(ho) = 0 then L, (A, C) is a trivial one-dimensional module.

Proof. Proposition follows from [7, Proposition 6.2] and is also proved in

8]. O
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Let AM(c) =a € C*. Set M*(\,a) = M,(\, M®(a)). We have
PM:(Na)={A—ka+nd|kneZ k>0 U{A—end|neZ,}
and
dim M°(A,a)x—katns = 0, k > 0,n € Z,dim M*(\,a)y_cns = P(n),n € Z,.
Proposition 5.6. [8, 9] L,(A\,M®(a)) ~ M¢(}, a).

Recall, that g—module V is called integrable if e, and €4(5-a) ACH locally
nilpotently on V. All irreducible integrable G- modules in O(«) of level zero
were classified in [6]. In fact, they are the only integrable modules in O(«).

Corollary 5.7. IfV is irreducible integrable G-module in O(a) then V is
of level zero.

Proof. Suppose V is of level a # 0. Since V is integrable, it follows from
Proposition 5.6 that V # L,(\,M¢(a)), e € {+,—}. Then V ~ L,()\,V)
and for any k£ € Z, there exist ¢ > k, j < —k such that V; # 0, V; # 0.
Now the same arguments as in the proof of Lemma 5.3 show that e_, and
€5—o are not locally nilpotent on such module and, therefore, V has a zero
level. ]

Remark. (i) The structure of modules L, (A, L, ), 7 > 0 is unclear is
general. Some examples were considered in [1, 12].

(i1) Most of the results of Section 5 can be generalized for an arbitrary Affine
Lie Algebra [6, 7, 12].

6. Non-dense G-modules.

Definition. An irreducible weight G-module V is called dense if P(V) =
A+ @ for some A € H* and non-dense otherwise.

In this section we classify all irreducible non-dense G- modules with at
least one finite-dimensional weight subspace. Our main result is the following
Theorem.

Theorem 6.2. IfV is an irreducible non-dense G-module with at least one
finite-dimensional weight subspace then V belongs to one of the following
disjoint classes:

(i) highest weight modules with respect to some choice of ;

(i) Le(\,5y),a€ A", Ne H*,y€ C—-Ry,e € {+,—};
(i) La(A,Lyp), @ € A", A€ H* A(¢) =0,7>0,A € P,.
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(iv) La(A,M¢(a)),a€ A", A€ H*, a € C*, X(c) =a,c € {+,-}.

Moreover, we can describe the irreducible G-modules of non-zero level
with finite-dimensional weight subspaces.

Theorem 6.3. Let V be an irreducible G-module of level a # 0 with all
finite-dimensional weight subspaces. Then V ~ Lt /(A,7) for some a € A",
A€ H*, M(c)=a,7€C,e€{+,-}.

Remark 6.4. Theorems 6.2, 6.3 imply that in order to complete the clas-
sification of all weight irreducible G-modules one has to study the following
classes:
(1) Modules of type L,(A, V) where V is a graded irreducible G-module
of non-zero level with all infinite- dimensional components.
(i) Dense G-modules of zero level.

(iti) Dense G-modules of non-zero level with an infinite-dimensional weight
subspace.
These classification problems are still open.

The proof of Theorem 6.2 is based on some preliminary results. We start
with the following Definition.

Definition 6.5. A subset P C A is called closed if 8,,0; € P, i + B, € A
imply 3 +8; € P. A closed subset P C A is called a partition if PN—P = §,
PU-P=A.

Lemma 6.6. Let P be a partition, P 3§, P = PNA™, B € A™.
(i) If|Pen{B+ké|keZ,}|[<ooor|Pen{—L+kéd|keZ}|< oo
then P = {¢p +nd | n € Z} for some ¢ € A™.
(i) If| Pen{B+ké|keZ} |=| PeN{-B+kd|kecZ,} |= oo then
P = A, (%) for some basis T of A.

Proof. Recall that A = {3+ ké |k € Z} U{nd|n € Z — {0}}. It follows
from [7] that there exist w € W and ' € A" such that

wP={f'+ké|keZ}U{ké|k>0}
or
wP={f'+nd,-B +ké|n>0,k>0U{ké|k>0}=A(n")
where 7' = {#',6 — 3'}. Then

P={w'B +ké|keZ}U{ks|k>0}
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or P = A (w™'w'). This implies the statement of Lemma. O

Definition 6.7. A non-zero element v of a G-module V is called admissible
if V5o = 0 or Bv =0, for some p € A™, ¢ € {+,~}.

Lemma 6.8. If the G-module V contains a non-zero vector v € Vy such
that e,v = 0 and A+ kd ¢ P(V) for some ¢ € A", k € Z — {0} then V
contains an admissible vector.

Proof. We will assume that k£ > 0. The case k£ < 0 can be considered analo-
gously. We prove the Lemma by the induction on k. Let £ = 1. Then we have
ep+ms¥ = €50 = 0 for allm > 0. Ife,_;5v = 0 for all 4 > 0 then B,v = 0 and
v is admissible. Let e,_,sv # 0 for some n > 0 and e,_;sv =0, 0 <@ < n.
Set 7 = €y_nsv # 0. Then e,_;50 = 50 = €_,4(nt1)67 = 0, 4 < n and, thus,
ey =0forany ) € P = {p—id,—p+ (n+j+1)§,(j +1)d | i < n,j > 0}.
One can see that P U {—p + nd} is a partition and P = A, (7) — {¢'} for
some ¢' € A™, & = {¢',d — ¢'}, by Lemma 6.6. Hence, N34 = 0 which
proves the Lemma for k = 1.

Assume now that the Lemma is proved for all 0 < k' < k and consider
two cases:

(i) There exists n € Z, 0 < n < k such that e, 5v =0forall0 < i <n
but e,4nsv # 0. Then e,y 57 = €_pt(k—n)s? = 0,0 < i < n where ¥ = €,1nsv
and e_,q(k—n)s¥ € Vaqrs = 0. f k—n=1ork—-n>1and e_,450 =0
then Myv = 0 and o is admissible. Let k —n > 1 and v' = e_ 440 # 0.
Then v' € Vy, eyt =0, N + (k—n—1)§ & P(V) where X' = A+ (n + 1)4,
¢ = —p+ (k—n)d and V has an admissible element by the induction
hypotheses.

(ii) Let e,4s5v = 0 for all 0 < i < k. Since exsv = 0 we have e,y ;50 = 0
for all 4 > 0. If 9,, = ensv # 0 for some 0 < m < k then ¥,, € V),
XN =X+mé, ey, =0, N+ (k—m)d € P(V) and we can apply induction.
Assume that 9, = 0 for all 0 < m < k. Then we have e, ;5v = ensv = 0,
1 >0,0<m<k Ife,_js5v =0 foral j >0 then Bjv = 0 and v
is admissible. Otherwise, let n be a minimal positive integer such that
v = €p—ns¥ # 0. Then €y 15‘5 = 6_‘p+(n+k)5’5 = eyt = 0,1 >0, 2 <
n. Assume that e_,i(ny1)60 = 0. We have eyv = 0 for any v € P =
{p—36,~p+(n+m)d,md|j<n,m>0} The set PU{—p+né} is a
partition, | PN {<p+26 |i>0} |=| PN {—p+id|i>0} |= oo and,
therefore, P = A, (%) — {¢'} for some ¢’ € A™, 7 = {¢',d — ¢'} by Lemma
6.6. We conclude that N 0 = 0 and 7 is admlss1ble Finally, suppose that
V' = e_pt(nt1)s¥ # 0. Then v' €V, e,v' =0, N+ (k—1)6 € P(V) where X
stands for A + 4 and, thus V has an admissible element by the assumption
of induction. This completes the proof of Lemma. O
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Proposition 6.9. Let V be an irreducible non-dense G-module. Then V
contains an admissible element.

Proof. Let A € P(V) and A\ + ¢ ¢ P(V) for some ¢ € A. We can assume
that ¢ € A™. Indeed, let ¢ = 4. If e,v = e5_,v = 0 for some 0 # v € Vj,
a € A™ then V is a highest weight module with respect to {¢,d — a} and
v is admissible. If, for example, e,v # 0 then ' = A+ a € P(V) and
XN+ (6—a) € P(V). Hence, we can assume that A\+¢ € P(V), ¢ € A", Let
0#wv eV, Ifv'=e, nsv #0 for some n € Z — {0} then e,v' =0, v' € V3,
A=X+po—nd A+nd¢ P(V) and Proposition follows from Lemma 6.8. If
ey—ns¥ = 0 for all n € Z then B,v = 0 and v is admissible. O

(}orollary 6.10.~ If V is an irreducible non-dense G-module then either
V ~Le(Ay) orV ~ L,(\, V) forsomea € A", A€ H*,ye€ C,e € {+,—}
and irreducible G- module V.

Proof. Follows from Proposition 6.9, Corollary 3.3 (i) and Proposition 5.2.
O

Now Theorem 6.2 follows from Corollary 6.6 and Theorem 5.4.

Proof of Theorem 6.3. Let u € P(V). Consider the G-submodule V =
U (G)f/u C V. Then it follows from Proposition 4.5 that V is completely
reducible and moreover each irreducible component is isomorphic to M¢(a),
e € {+,—} up to a shifting of gradation by Proposition 4.3, (i). Denote by
V+ the sum of all irreducible components of V isomorphic to M*(a) and
assume that V+ # 0. Let 0 # v € VTNV, x € P(V) and VNV, = 0. We
will show that for any a € A" there exists m, € Z, such that e, ,sv = 0 for
all m > m,. Indeed, let vy = e,v # 0. Consider the G-module U (G)v, which
is again completely reducible by Proposition 4.5. If exsv % 0 for all £ > 0
then v, = eXvy # 0 for all k > 0. But, for big enough &, v, will belong to the
direct sum of irreducible components of U(G)v, each of which is isomorphic
to M~ (a) up to a shifting of gradation. This contradicts Proposition 4.1,
(i), since ejvy = 28 %€, (k42)50 = 2€25v;. Thus, there exists m, > 0 such
that e, . sv = 0 and, therefore, e,y m5v = 0 for any m > m,.

Suppose that x +d € P(V). Since V is irreducible there exists 0 #
u € U(G) such that 0 # uv € V,,s. It follows from the discussion above
that e,suv = 0 for big enough n € Z,. The G-submodule V' = U(G)uv
is completely reducible by Proposition 4.5 and since V* N VXH = 0, any
irreducible component L C V' such that L N VXH # 0 is isomorphic to
M~ (a) up to a shifting of gradation. Hence, e,;0 # 0 for any non-zero
# € V' N V,4s by Proposition 4.1, (ii) and ensuv # 0 in particular. This
contradiction implies that xy + 6 ¢ P(V) and therefore V is a non-dense
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G-module. Applying Theorem 6.2 we conclude that V ~ LZ(\,) for some
a € A", A € H*, XNc) = a, v € C, ¢ € {+,~} which completes the

proof.

O
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M-HYPERBOLIC REAL SUBSETS OF COMPLEX SPACES

GIULIANA GIGANTE, GIUSEPPE TOMASSINI AND SERGIO VENTURINI

The aim of this paper is to make a first attempt to study
real analytic subsets of complex manifolds (or more generally
of complex analytic spaces) from the viewpoint of the theory
of metric spaces.

1. Introduction.

Our starting point was inspired by the definition of the so-called Kobayashi
pseudodistance on complex manifolds We recall briefly that such a pseudo-
distance is defined on any complex analytic space M using only the space
of all holomorphic maps sending the open unit disk A in C in the space
M. Moreover the complex space M is said to be “hyperbolic” if such a
pseudodistance actually is a real distance, namely it assigns non vanishing
values to pair of distinct points of M. In our situation, we introduce a sim-
ilar pseudodistance dy ), on any subset of V' of a complex analytic space
M using the space of all holomorphic maps from A to M sending the open
interval I =] —1,1[ in V, and we introduce the concept of M-hyperbolicity
(cf. Section 2).

We are primarily interested in the case when M is a smooth complex
manifold and V is a (closed) real analytic smooth submanifold of M, but
the definitions work in this more general context as well.

Any holomorphic map between complex manifolds is distance decreas-
ing when the manifolds are endowed with the Kobayashi distances. Our
pseudodistances also fulfill this fundamental property. A unexpected phe-
nomenon is that there are some classes of non holomorphic mappings which
enjoy this property. A description of such mappings is given in the Section
3 of the paper. As an application, some hyperbolicity criteria are given, and
some Liouville type theorems are proved.

We also extend the construction of the Kobayashi-Royden pseudometric
when V is a smooth real analytic submanifold of a complex manifold M
(Section 4) and we establish some results on the behaviour of a complex
Lie group G acting holomorphically on M and leaving V invariant (Section
5). Moreover we define and study the “geodesics” for such a metric Some
examples are given (Section 6).

101
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2. Main definitions.

Let us fix some notations. We denote by I the open real interval | — 1,1],
and by D the open unit disk in C. The Poincaré hyperbolic distance on D
will be denoted by p.

We denote by D(R), 0 < R < +00, the set of complex number z such
that |z] < R, and also put I(R) = D(R)NR.

Let M be a complex analytic (reduced) complex space and let V be a
subset of M. By an M-analytic arc in V, or simply an analytic arc in V|
we mean a holomorphic map f : D — M such that f(I) C V. Given two
points p and ¢ in V, an analytic chain v in V joining p and q is given by the
following data:

(i) points ag,...,a; in I;
(i) M-analytic arcs fi,..., fr in V such that f;(ag) = p, fr(ax) = q and
fila;) = fipalay) forj=1,... k-1
The length of the analytic chain «y is by definition the number

k—1

p(y) = Z p(aj, aji1)-

=0

We denote by C, ,(V, M) the set af all the M-analytic chains in V' joining
p and q.

Using the analytic arcs so defined we introduce a pseudodistance on V by
the formula

dv,m(p,q) = inf{p(y) | v € Cpq(V, M)},

where by definition the second member in the definition is +oo if the set
Cp,¢(V, M) is empty.

Clearly the function dy (p, ) so defined is a pseudodistance that vanishes
when p = g, it is symmetric in p and ¢, and satisfies the triangle inequality.

We say that V is hyperbolic with respect to M, or simply M-hyperbolic
if dv ar(p, q) > 0 whenever p # g.

On the other hand we say that V is M-hyperbolically flat, or simply
M-flat, if the pseudodistance dy, s vanishes identically.

In this paper we are interest in the case when V is a real analytic subset
(even a real analytic submanifold) of M. Nevertheless the definition makes
sense with no additional structure on V.

We begin by noting some elementary properties:

(i) IfV = M, then dy u is the usual Kobayashi pseudodistance on M;

(i) f M = D and V = I, then the Schwarz Lemma implies that the
pseudodistance dy 5 is the restriction to I of the Poincaré distance on
D;
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(iii) If (Vi, M,) and (V,, M,) are pairs of complex spaces as above and
f My — M, is a holomorphic map sending V; in V,, then for every p
and ¢ in V)
du, v, (f(P), F(9) < datyva (P 9);

(iv) If6:V xV — [0,+00] is a pseudodistance such that
5(f(8), F(¥) < p(2,5)

for all M-analytic arcs f in V then 6 < dy p.

(v) If M = C and V = R then dy s vanishes identically, that is, R is
C-flat; indeed, given y € R, let f be the analytic arc z — nyz, n € N;
then f(0) =0, f(}/n) = v and hence

dv,m(0,y) < p(0, ).

Taking the limit for n — +o00 we obtain dy (0,y) = 0.

3. Hyperbolicity and “good” mappings.

We say that an arbitrary map F : M; — M, between complex spaces is good,
if, for every holomorphic map f : D(R) — M, there exists a holomorphic
map f : D(R) — M, such that f(t) = F(f(t)) for every t € I(R).

The proofs of the following two Propositions are straightforward.

Proposition 3.1. Let M; and M, be complez spaces, V| and V, be subsets
of My and M, respectively, and let F : M; — M, be a good map satisfying
F(Vi) C V. Then, for every pair of points p and q in Vi,

de,Mz(F(p)7F(Q)) < thMl (p7 Q)
Proposition 3.2. Let M,, M,, Vi, V, and F as in the previous Proposition.

i} If V5 is My-hyperbolic and Fy, is injective, then Vi is M;-hyperbolic.
va
(i1) If V1 is M,-flat and F(V}) = Va, then V5 is M,-flat.

Every holomorphic map is clearly good. However there also are not holo-
morphic good maps:

Proposition 3.3. The map F : C* — C*™ defined by
z={(21y-..,20) = F(2) = (21,21, .- , Zn, Zn)
s good.

Proof. Let f : D(R) — C™ be a holomorphic map. Define f*: D(R) — C*
by the formula B
[7(z) = f(z)), z€ D(R).
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Clearly f* is holomorphic and the map f : D(R) — C™ given by

f(2) = (f1(2), f1(2), - 5 ful2), f2(2)),

where f, and f are the i-th component respectively of f and f*, satisfies

(3

f(t) = F(f(t)) for every t € I(R). |
Since compositions of good maps are good we immediatly obtain

Proposition 3.4. Let H : C*» — M be a holomorphic (or simply a good)
map. Then the maps F,G : C* — M defined by

F(zyye.. y2n) = H(z1, 21, -y Zny Zn)s
G(zy + Y1, & +iyn) = H(@1, Y15+ s Tny Yn),
are good.
For the projective space we have:
Proposition 3.5. The map F : CP* — CP¥, v = (n + 1)*> — 1, defined by
(3.1) wi = 2%, 6,j=0,...,n
s good.

Proof. The assertion follows from the Propositions 3.3 and 3.4, and the fact
that for every k there is a one to one correspondence between holomorphic
maps f : D — CP* and holomorphic maps g = (go, ... ,gx) : D(R) — C+!
satisfying g; # 0 for some 7 = 0,... , k. Il

In order to find hyperbolic spaces the following (almost trivial) remark is
useful.

Proposition 3.6. Let M be a complex space and let V be a subset of M.
If N s a closed complex subspace of M containing V, then

dv,m = dyN-
In particular, if N is hyperbolic (as complez space), then V is M -hyperbolic.

Proof. 1t suffices to show that if f : D — M is a holomorphic arc in V,
then f(D) C N, that is f~'(N) = D. But this is obvious, since f~'(N) is a
closed complex subspace of D containing I, and any such a subspace must
coincide with D. Il

We now give some example of flat spaces.
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Proposition 3.7. Any interval of the real line is flat.

Proof. It suffices to prove the assertion for the interval J = [0, 1]. Indeed, the
map z — exp(—z?) shows that d;¢c(1,t) = 0 for every ¢ €]0,1]. Analogously,
the map z — 1 — exp(—2?) yields d;¢(¢,0) = O for every ¢t € [0,1[. Finally,
one has d‘]’c(l,O) < d_]’(:(]., 1/2) + dJ,C(1/2, 0) =0. O

As consequence of this Proposition we obtain the following Liouville type
Theorem.

Theorem 3.1. Let V be a subset of a complex space M. If V is M-
hyperbolic then every holomorphic map f : C — M sending some non-trivial
real interval J C R in V is a constant map.

Proof. Since V is M-hyperbolic and J is C-flat the map f must be constant
on J and hence it is constant on all C. Ol

Other examples of flat space are given in the following three Propositions.

Proposition 3.8. Any connected subset of a non-singular real conic in
C = R? is flat.

Proof. Since real affine self map of C are good, any conic is isometric either
to the unit circle 22 + y? = 1, or to the equilateral hyperbola zy = 1, or
to the parabola y = 2. Any connected subset of such a conic is the image
of an interval of some real line in C under the maps z — cos(z) + isin(z),
z + exp(z) + iexp(—=z), and z > z + i2? respectively. d

Proposition 3.9. The boundary S of the unit ball in C* (with respect to
the standard euclidean norm) is flat.

Proof. Given two arbitrary distinct points p and ¢ in S, the complex line L
joining p and ¢ intersect S along a circumference, that is, a conic in L, and
hence, by the previous Proposition, one has

ds,c» (p,q) < dsnr,(p,q) =0,
and the assertion follows. Il
Proposition 3.10. FEvery real ellipsoid in C* is flat.

Proof. Indeed the unit ball of C* can be mapped onto any real ellipsoid
under a suitable real linear map of C*, and any such map is good. O

And now here are some examples of hyperbolic sets. The following Propo-
sition is immediate consequence of Propositions 3.4 and 3.6.
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Proposition 3.11. Let V C C* = R*" be a subset defined by k equations

(32) fi(xhyl?"’ 7$nayn) :07 1= la )ka

where x; and y, are the standard real coordinates in C*, and f,,..., fr are
real analytic functions defined by real power series converging over all R*".
Let Vi be the subset of C*" defined by the same set of equations 3.2, where
now x; and y; represent the complex coordinates of C*™. Under these hy-
potheses, if Vi is hyperbolic (as complex space) then V is C"-hyperbolic.

Example. Let z = z + iy be the standard coordinate in C. Let V C C the
graph of the real function y = log(1 + z?). Then V is C-hyperbolic. Indeed
according to the previous Proposition it suffices to prove that the complex
curve

Ve = {(z,w) € C | exp(w) =1+ 2%}

is hyperbolic. Clearly V¢ is regular everywhere, that is it is a closed Riemann
surface in C?. Let denote by g : Ve — C the restriction to V¢ of the projection
map (z,w) — z. The map g is a non constant holomorphic map on V¢. Since
the exponential function never vanishes, then the map g necessarily omits
the values ¢ and —i, the zeroes of the function 1 + 22. The little Picard
Theorem therefore implies that the universal covering of V¢ can not be the
complex plane, and hence V¢ is covered by the unit disc D, that is, V¢ must
be hyperbolic, as asserted.
The following assertion gives a criterion for CP'-hyperbolicity.

Proposition 3.12. Let V ¢ C C CP' be a subset defined by an equation
(3.3) flz,y) =0, z=z+1yeC,

where f(z,y) is a polynomial in the variables = and y of degree d. Let V be
the (topological) closure of V in CP'. Let V¢ be the complex curve in C* of
equation 3.3, where now x and y are considered as complezx coordinates in
C?, and finally let Vi be the closure of Vi in CP?. If Vi is hyperbolic then
V (and hence V also) is CP! -hyperbolic.

Proof. Let z, and z, be homogeneous coordinates in CP? | that is, z = z+iy =
z1/ 2.

Let ¢ € C[X,, X1, X5] be the homogeneous polynomial defined by the
equation

1 1
9(Xo, X1, X)) = X f (—‘(Xl + X,),

(X, - X)) ).
2X, 2iX0( ! 2))
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Choosing X, X1, X, and X; as homogeneous coordinates in CP?, let W be
the quasiprojective algebraic subset of CP* defined by

9(X07X1,X2) =0
X0X3 - Xle =0 )
Xo#0

and let W be the closure in CP? of W.
Consider now the map F : CP! — CP? defined by

Xo = 2pZp
X1 = 2021
Xy = 2021
X3 =212

Such a map is injective, and Proposition 3.5 says that the map F' so defined
is a good map. By construction one clearly has F(V) C W and hence
F(V) Cc W. By Proposition 3.2, in order to check the CPP!-hyperbolicity of
V, it suffices to prove that the curve W is hyperbolic.

It is easy to show that W and V¢ are isomorphic (as affine algebraic va-
rieties), and therefore W and V¢ are birationally equivalent as projective
algebraic curves. Since hyperbolicity is preserved under birational isomor-
phisms between (compact algebraic) curves, it follows from our hypotheses
that W is hyperbolic, as asserted. O

For algebraic varieties of higher dimension hyperbolicity is no longer a bi-
rational invariant. So the previous argument does not apply to higher dimen-
sional projective spaces. Nevertheless the following Liouville type Theorem
for meromorphic mappings holds:

Proposition 3.13. Let V C C" be a subset defined by k equations as in the
Proposition 3.11. Let V¢ be defined as in Proposition 3.11, and let Vi be the
closure in CP*™ of Ve. Let fy,...,f, : C — C be meromorphic functions.
Assume that

(i) there exists a non-degenerate interval J C R such that every f; has no

poles on J and (fi(t),..., fu(t)) €V for every t € J;
(ii) the complex space Vi is hyperbolic.
Then every f; is a constant function.

Proof. Let P be the set of all the poles of the functions f;. The set P is
discrete and closed in C. Tt is easy to check that, for every 1 = 1,... ,n, the
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function f}(z) = f(Z)) is an entire meromorphic function, and the mapping
F:C\ P — C* defined by

F(2) = (300) + @), 5 (1) - G
1 o1 .
3Unl2) + 1302, 5 n2) = £2(2)))

is a holomorphic map sending the real interval J in V. Since V¢ is closed
in CP?", it follows that F(C\ P) C V¢. Moreover, by hypothesis, V¢ is a
compact hyperbolic complex space. Thus the map F extends throughout all
C (cf. Corollary 3.2. of Chapter VI of [4]). Again by the hyperbolicity of
Ve, the map F must be constant, and this yields our assertion. O

The following Proposition follows immediatly from [8, Theorem 3].

Proposition 3.14. Let M be a complexr manifold and let V be a subset of
M. Assume that there exists a bounded plurisubharmonic function u: M —
R of class C?. If u 1s strictly plurisubharmonic at every point of V, then V
2s M -hyperbolic.

4. Real analytic submanifolds.

In this section we assume that M is a (connected) complex manifold and
V C M is a (connected) closed real analytic submanifold of M.

Proposition 4.1. Let po € V C M be a point and let (U,z) be a local
real coordinate system on V around py. Then there exists a neighbourhood
U' c U of py and a positive finite constant C' such that for every p and q in
V one has

dv,m(p,q) < Clz(p) — z(q)] -

In particular the function dy a is continuous in V X V.

Proof. Let m be the real dimension of V. Thus the map z is a real analytic
diffeomorphism of U onto z(U) C R™. Put zy = z(py). Since the map
27! : z(U) — V is real analytic, there exists a neighbourhood U’ C U of pj
and a small ball B C C™ centered at =, and a holomorphic map F': B -+ M
such that z(U') cc B, F(BNR™) c U C V, and F(z(p)) = p for every
p € U'. It follows that if p and ¢ are arbitrarily chosen points of U’ then

(41)  dvum(p,q) = dvu (F(z(p), F(z(q))) < dporm,5(z(p),z(q))-
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Since z(U') CC B it easy to prove, using images under complex affine map-
pings of the unit disc D, that there exists a constant C such that for every
pair of points y' and y" in z(U') one has

(4.2) dprrm,(y,y") < Cly' — ¥
Combining 4.1 and 4.2 our assertion follows. O
The following assertion is an immediate consequence of this proposition.

Proposition 4.2. IfV is M-hyperbolic then the distance dy pr induces the
topology of V.

Proof. As dy ) is continuous we only have to prove that for every p, € V
the open balls B(r) = {p € V | dv m(p,q) < r} form a fundamental system
of neighbourhoods of py.

Let U be an arbitrary neighbourhood of p,. We need to prove that there
exists a ball B(e) contained in U for some € > 0. Pick a connected neig-
bourhood U’ of z, contained in U with compact boundary S = U’. Every
analytic chain in V connecting p, and an arbitrary point ¢ in V \ U’ must
intersect the boundary S of U' and therefore one has

. S > inf _
o dvaa(po,p) 2 inf dv.ae(po,p) 2 inf dy e (po,p) =€ >0,
where the last inequality follows from the M-hyperbolicity of V', the conti-
nuity of dy, 5 and the compactess of S. But this implies that B(e) C U’ C U,
as asserted. O

We now introduce a pseudometric on V' C M which generalizes the con-
truction of the Kobayashi-Royden pseudometric on complex manifolds, and
then we will prove that its integrated form is the pseudodistance dy p.

Let us fix some notation. For every p € V we identify the real tangent
space of M at p with the holomorphic tangent space of M at p, so that
the (real) tangent space T,V of V at p will be identified with a subspace of
the holomorphic tangent space TfM of M at p. For later use we denote by
CT,V the smallest complex vector subpace of Ty M containing T,V .

If f: D— M is a holomorphic map sending I in V', forevery t € I C D
we then denote by f'(t) either the image of the (real) tangent vector 9/3t
under the differential of fj; at ¢, or the image of the holomorphic tangent
vector 9/3z under the (holomorphic) differential of f at t.

With this notation, for every p € V and every ¢ € T,V we define
[Fv.m](p, &) as the infimum of the positive real numbers a > 0 for which
there exists an M-analytic arc f in V such that f(0) = p and f'(0) = a™'¢.
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It is easy to check that all properties (¢),... ,(v) of the Section 2 stated
for the pseudodistance dy, ), with the necessary modifications hold for the
pseudometric [Fy p]. Moreover one sees that this pseudometric decreases
under differentiable good mappings, and that the analogous estimate to that
in Proposition 4.1 can also be given for this pseudodistance.

Up to now very little can be said about the regularity of [Fy 5/]. Denoting
the (real) tangent bundle of V by TV with its usual topological structure,
the best result we can prove is the following:

Proposition 4.3. The pseudometric [Fy ] : TV — [0,4+00[ is a Borel
function.

Proof. Denote [Fy 5] simply by F. We will prove our assertion finding a de-
creasing sequence of lower semicontinuous pseudometrics F,, : TV — [0, +00]
such that for every p € V and £ € T,V one has

(4.3) F(p,€) = inf Fu(p, £).

Fix a complete hermitian metric A on M and denote by d its associated
distance. For every n € N let denote by A,, the class of all analytic arcs f
in V satisfying d(f(2), f(w)) < n|z — w| for every z and w in D. Let F,, be
the pseudometric defined as the pseudometric F' but using analytic arcs in
A, instead of all analytic arcs in V. As consequence of the Ascoli Theorem,
by the completeness of the metric h and the closure of M, it follows that
if f, is an arbitrary sequence of analytic arcs in A, such that the sequence
f.,(0) converges to some point p € V, then a subsequence of f, converges
uniformly on all compact subsets of D to an analytic arc f € A,, such that
f(0) = p. Moreover the derivatives at 0 of such a subsequence converge to
f'(0). It is then an easy matter to derive the lower semicontinuity of the
pseudometric F, from this fact.

Let now p € V and £ € T,V be given. Let f be an analytic arc in V
such that f(0) = p and f'(0) = a™'¢. For every ¢ > 0 small put f.(2) =
fl(1 —€)z), z € D. Then f. — f uniformely on compact subsets of D,
and each f, belongs to A,, for some n = n(¢). All this clearly implies the
formula 4.3. The proof is so completed. 1

If v : [0,1] = V is an absolutely continuous curve, the length of v (with
respect to the pseudometric [Fy, j]) is the number

[ B ), ).

The integrated form dy,u(p, q) of the pseudometric [Fy, 5] is the infimum
of the lengths of the absolutely continuous curves v : [0,1] — V such that

7(0) = p and (1) = q.
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Proposition 4.4. The pseudodistance dy s and the integrated form of the
pseudometric [Fy y] coincide.

Proof. 1t is a direct consequence of the Theorem 2.1 of [9]. O

5. Group actions.

In this section M will stand for a complex manifold, V for a closed real
analytic submanifold of M, and G for a complex Lie group of holomorphic
transformation of M. We denote by G(V') the subgroup of G of the trans-
formations which leave the submanifold V invariant. Being V closed in M,
then G(V) is a closed subgroup of G, and therefore is a (real) Lie group. We
also denote by g and g(V') the Lie algebras respectively of G and of G(V),
and by J the complex structure of g.

Theorem 5.1. If G(V) acts transitively on V, then V is M-flat.

Proof. Let p € V. Then there is a neighbourhood U of p in V such that
every ¢ € V belongs to a real one parameter subgroup t — exp(tX), for some
X € g(V), which extends holomorphically to a entire holomorphic map by
C >3z f(z) = exp(zX). Clearly f(R) C V, and therefore dy (p,q) = 0.
The triangle inequality then implies that dy » vanishes everywhere, that is
V is M-flat. 0

Theorem 5.2. If G(V) acts effectively on V and V' is M-hyperbolic then
G(V) is discrete.

Proof. 1t suffices to prove that g = 0. Pick X € g. Consider the real
one-parameter subgroups

t — exp(tX), t+— exp(tJX).

We have [X, JX] = 0 and consequentely these two one-parameter subgroups
generate a complex one-parameter subgroup H of G. Thus, taking C, the
universal covering of H, we obtain a holomorphic action Cx M — M which
extends the real action on V given by (¢,p) — exp(tX)p. Then, from the
Theorem 3.1 it follows that exp(tX)p = p for every t € R, p € V and this
implies X = 0, because G(V) by hypothesis acts effectively on V. ]

Corollary 5.1. If V is M-hyperbolic and dimg G(V) > 0, then G acts-
trivially on V. In particular, if there is a point po € V such that CT},V =
Tpo M, then G acts trivially on M.

Corollary 5.2. Let M be compact, V be M-hyperbolic and suppose that
there is a point po such that CT,,,V = T,,M. Denote with Aut(M) the group
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of all the holomorphic automorphisms of M. Then the set
{oc € Aut(M) | o(V) C V}
s a discrete subgroup of Aut(M).

Proof. Indeed Aut(M) is a complex Lie group wich acts on M effectively.
g

Example. Let M = C?; then C* = C\ {0} acts on C* by
(z,w) = Az, w + (A2 — 1)2%).

Let

V={t#t)|teR}, V' ={(t+it2it") |t € R}.
Then G(V) = G(V') = R* = R\{0} acts effectively on V and V' respectively.
Observe that V and V' in this example are flat.

6. Geodesics.

Let M be complex space and V be a subset of M. We say that an analytic
arc f : A — M such that f(I) C V is a M-geodesic if it is a local isometry
with respect to the distances d; o and dy p, that is, for every ¢, € I there
exists a open interval J C I containing ¢, such that

dvu (f(2), £(s)) = dralt, s)

for every t and s in J. With abuse of language we also call M-geodesic in V
a one dimensional real submanifold of M contained in V which is the image
of the interval I under a M-geodesic f : A -+ M in V.

Remark. If M is a hyperbolic Riemann surface and V = M then the
distance dy s is the distance associated to a Hermitian metric hys, and a
M -geodesic in V is a holomorphic map f : A — M such that f|; is a geodesic
with respect to the metric hyy.

The following Proposition on geodesics on Riemann surfaces is useful for
finding geodesics.

Proposition 6.1. Let M be an hyperbolic irreducible complez curve, that
is an irreducible complez space of (complex) dimension 1, and let M, be the
set of reqular points of M. Let ¢ : M — M be an antiholomorphic map and
let X be the set of the fized points of p. Then each connected component of
X contained in M, is (the image of) a geodesic of M.

Proof. Let X, be a connected component of X contained in M, and let
zo € Xg. Let m: M — M be the normalization of M and let £, € M be the
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unique point such that m(Z,) = zo. Let f: A — M be a universal covering
of M such that f(0) = Z, and let o : A — A be the unique continuous map
such that 0(0) =0 and 7o foo = pomwo f. Then X, is the image under
mo f of the set Z of the fixed point set of . But ¢ is an antiholomorphic
automorphism of A such that ¢(0) = 0 and hence there exists § € R such
that

o(z) =e"z

Thus the set Z is the intersection of A and a straight (real) line through
the origin, and therefore it is a geodesic in A (for the Poincaré metric of
A). Since both the covering map f and the restriction of m to 7#=!(M,) are
(local) isometries for the Kobayashi distance, the set X, also is a geodesic
in M, as asserted. O

Example. Let X C C be the image of the periodic map f : R — C?

defined by
it e
fH) = (6 > (it — 2)(2eit — 1)) '

Then X is a C? geodesic. Indeed let M = C\ {0, 12,2} and let F : M — C?
be the map defined by

F(z) = ( 2(z - 2)1<2z - 1)> '

Then F is a holomorphic embedding of M into C* and X is the image under
F of S C¢ M, the unit circle in C. Hence it suffices to prove that S is
a geodesic in M (for the Kobayashi metric). But this follows immediatly
from the previous proposition, observing that S is the fixed point set of the
antiholomorphic automorphism ¢ : M — M defined by

Proposition 6.2. Let V C C* = R?® be a subset defined by k real equa-
tions as in Proposition 3.11. Assume furthermore that V is a real smooth
submanifold of (real) dimension one. If V is C*-hyperbolic then each con-
nected component of V is a C"-geodesic.

Proof. Let F: C* — C*™ be defined by

Z = (1'1 +Zy1a ,xn+7fyn) = (mlayla"' 7$n7yn)'
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Let Ve C C?" be defined as in the Proposition 3.11. Let L : C** — C" be
the holomorphic map defined by

($1,y1,--- >-’Bn>yn) — ($1 +7;yl)--- y Ln +'Lyn)

Obviously L(F(z)) = z for every z € C*. Thus, given z,w € V, one has

(6.1)  dyen(2,w) > dp)en (F(2), F(w))
2 dprvy) o (L(F(2), L(F (w))) = dv,er (2, w).

It follows that the map L : F(V) — V is an isometry with respect to the
distances dp(v) 2~ and dyc, and hence in order to prove our assertion it
suffices to prove that each connected component of F(V) is a C*"-geodesic.

Let F(V,) be a connected component of F(V), where V; is a connected
component of V', and let W be the smallest complex analytic subspace of
C?" containing F(V;). Since W is closed in C*" then, by Proposition 3.6,
one has

Aty o (F(2), F(w)) = iy w(F (), F(w)).

Since V' is C*-hyperbolic, by 6.1 it follows that W is not flat for the Kobayashi
metric, and hence, since W is a complex one dimensional curve, it is hyper-
bolic.

Let ¢ : C>* — C?" the map defined by

($17y17"' 7'Tn7yn) — (',ilalgla"' 7jnagn)'

Since V¢ is defined by real equations, the space W is invariant under .
Clearly the restriction of the map ¢ to W is an antiholomorphic automor-
phism of W. We end the proof observing that F(V;) is a connected compo-
nent of the fixed point set in W of the map ¢ and hence the Proposition 6.1
applies. L__l
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VALUES OF BERNOULLI POLYNOMIALS
ANDREW GRANVILLE! AND ZHI-WEI SUN?

Dedicated to Emma Lehmer

Let B,(t) be the nth Bernoulli polynomial. We show that
Bp_i(a/q) — Bp—1 = q(Up — 1)/2p (mod p), where U, is a certain
linear recurrence of order [¢/2] which depends only on a,q and
the least positive residue of p (mod ¢). This can be re-written
as a sum of linear recurrence sequences of order < ¢(gq)/2,
and so we can recover the classical results where ¢(q) <2 (for
instance, B,_1(1/6)—Bp_1 = (37 -3)/2p+(2°—2)/p (mod p)). Our
results provide the first advance on the question of evaluating
these polynomials when ¢(q) > 2, a problem posed by Emma
Lehmer in 1938.

Introduction.
It has long been known that the nth Bernoulli polynomial B, (t) , where
B.t) =Y. (") Bt
=0 \J
and By, the kth Bernoulli number, defined by the power series

k
z z
ez—I:ZBkﬁ’

k>0

take ‘special’ values at certain rational numbers with small denominators:

(1) B,(1)=B,(0) =B,, forn#1
B, (%) — (2"~ 1)B,;

IThe first author is an Alfred P. Sloan Research Fellow and a Presidential Faculty
Fellow. Also supported, in part, by the National Science Foundation.

2The second author was supported by the National Natural Science Foundation of the
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and for all even n > 2,
1 2
@ a(5)=5(5)
5. (1) =5, (2) =L oo 2ym,
B, (%) =B, (%) :% ('™ = 37" — 27" + 1)B,,.

It is not known if B,(a/q) has as simple a ‘closed form’ for any other
rational a/q with 1 < a < ¢—1 and (a,q) = 1, though this has long been
considered an interesting question.

Following work of Friedmann and Tamarkin [FT], Emma Lehmer [Lh,
1938] considered Bernoulli numbers and polynomials modulo primes and
prime powers, and showed amongst other things that (1) and (2) imply

== (3" - 1)B,,

1 20 -2
By (’) =By E—p— (mod p)

2
1 2 1(3? -3

By (g) — By =By <§> — By 55( - ) (mod p)
1 3 3 (20 —2

Bp—l (Z) - Bp—l = Bp~1 <'4_> - Bp~l Ei(p%) (mOd p)
1 5 137 —3) 20 —2

The “Fermat quotients”, (22 —2)/p and (3 —3)/p play a central role in the
study of the first case of Fermat’s Last Theorem (see Ribenboim’s elegant
account [Ri]), and this connection with Bernoulli polynomials has recently
been explored in much greater depth by Skula [SK] (see also [Gr]).

However, until now, no progress has been made in extending the table of
intriguing congruences given in (3). This is the intention here. (It should be
mentioned that recent papers of H. C. Williams [W1, W2], of G. Andrews
[An] as well as of the second author and his twin brother Zhi-Hong Sun
[SS], each come close to doing this.)

Before stating our main result, which is of a somewhat technical nature,
let’s discuss the next class of examples after (3). The two important things
to note about (3) are that,

(i): We've evaluated B,_;(%) — B,—1 (mod p) where ¢(q) = 1 or 2 (¢ is
Euler’s totient function);

(ii): Each of the terms of the right hand side, like 27, 37, are numbers taken
from a first-order linear recurrence sequence (Un.; = 2u, and U,y = 3u,
respectively).
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This is the viewpoint we need to generalize. We shall show, for ¢ > 2, that
By-1(2) — By-1 (mod p) is congruent to a sum of multiples of terms, each of
which are numbers taken from a kth-order linear recurrence sequence with

k< ¢(q)/2.

Thus the next class of examples are those ¢ for which ¢(q) = 4, namely
q = 5,8,10,12. We shall show that, for 1 < a < ¢ — 1 with (a,q) = 1 (there
being four such integers a), we have, when prime p does not divide g,

(4)

Byt (5) = By EZ {(% %. Py ® 5,,_;_ 1} (mod p)

B, (g) —Bp = {2 (%) % Gpzy +4 (—2%_—1)} (mod p)

s (1) =50 = (3) Py § 7+ 25 (o
s (1) -8 =8 (3F) o 2250 S5

where (—) is the Jacobi symbol, and we define the following second-order
linear recurrence sequences:

Fo=0,F,=1, and F, ;o =F, 1+ F, for alln>0
GO = 0, Gl = 1, and Gn+2 = 2Gn+1 + Gn for alln > 0
HO = O, Hl — 1, and Hn+2 e 4Hn+1 - Hn for alln Z 0.

({F.} is, of course, the Fibonacci sequence.)

In general we fix residue classes a and b (mod g), with (ab,q) = 1. Then,
for each divisor d of g, there exists a recurrence sequence u,, = u,(d, a,b) of
order D = ¢(d)/2, with characteristic polynomial

D-1
H (X _ 9 4 2imi/d +e-2i7rj/d) — xD _ Z f XD
Gy

so that
Untp = folngp_1 + filnyp2+ -+ fo1un
for all n > 0. The values of ug,--- ,up_; depend on a and b (mod d) and

are somewhat complicated to describe — see Section 2 for precise details.
Our main result is that, for any (a,q) =1,1<a <g,

(5) By (5) B =Y % {uy(d:a,b) — ($(d) — p(d))} (mod p)

dlq



120 ANDREW GRANVILLE AND ZHI-WEI SUN

where b is the least positive residue of p (mod ¢) (and p is the Mobius
function), provided prime p does not divide g. Each term in the sum is a
p-unit.

Our formula involves such an awkward sum of recurrence sequences though
each appears “naturally” in

(6)
Db <;q;) (Bp—l <9j> —Bp—l) 5511; {up(g;0,0) — (¢(q) — n(q))} (mod p)

dlq

where a4 is the least positive residue of @ mod d. Indeed this is the formula
we shall prove and then (5) is deduced by summing (6) over divisors of g.

We are unable to answer the question as to whether it is possible to give
such a congruence for Bp_l(%) — B,_, involving only lower order recurrence
sequences. Indeed this seems difficult, unless one can give a complete char-
acterization of all linear recurrence sequences (X,),>o for which X, = 0 mod
p? for all but finitely many primes p. However we do not even know how to
decide this for X,, = 2™ — 2.

However, it is easily shown that any sum of recurrence sequences can be
written as one recurrence sequence, though of higher order. Thus (5) can be
rewritten

(7) By (5) - By =4 {Uy(ia,h) ~ 1} (mod p)

where, now, U, has characteristic polynomial

H (X _ 94 e2imi/a +6—2i7rj/q) ‘

1<j<q/2

Again it is complicated to compute the values of U, for small n.

It is tempting to provide one “concrete” example for arbitrarily large g.
We will now completely describe U,(g; a,b) in the case that a = +b (mod q)
(that is a = +p (mod g)) and q is odd:

Theorem. If q is an odd integer > 3 and 1 < a < q with (a,q) =1, then
a _4q
(8) Byt (2) = Bra =L {3, - 1) (mod )

whenever p = ta (mod q) where {Z,}n>0 15 the g—gith order recurrence se-

gquence given by
1 (2n q—1
w=s (), 0<n<tTs
’ 2<n> ="="7
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and for D =%1 we have

oo dpr o fpoa g do
n+D _(D — 1)! n+D—1 (D — 2)! Tn+D-2 0! Zn
where ( .
D — j)! . 4
— —1)/ D-—Z]—k‘
Ji 2 (D =27 — k) (=1)"2

0<5<[3(D~k)]

Since this is the simplest general case, we hope the reader understands
why we suppress so many details in this introduction!

Finally we give the first example with ¢(q) = 6, namely ¢ = 7: Here we
have that, for 1 < a < 6, and any odd prime p # 7,

Byei (5) = Bros =5, (U(Tiab) =1} (mod p)

where b = 1,2 or 3 with b = +p (mod 7), and U, satisfies the recurrence
relation
Un+3 = 7Un+2 - ].4Un+1 + 7Un

The values of U, Us,, U; are given in the table below:

ta | £b | U, | Uy | Us
2 1 1 2 5
3 2 2 7 26
1 3 2 6 19
3 1 1 2 6
1 2 3 11 41
2 3 2 5 13
a a 1 3 10

Analogous results can be given for generalized Bernoulli numbers (for
Dirichlet characters) since they may be expressed in terms of values of
Bernoulli polynomials. It is perhaps more obvious that there should be
simple expressions for these since they can be described in terms of p-adic
L-functions which, in turn, can be written in a number of elegant ways. The
case of quadratic characters has been examined in [KS] and [W2], and here
we give a somewhat different proof of a result proved there:

Suppose that ¢ is a prime = 1 (mod 4). Let h, and €, be the class number
and fundamental unit, respectively, of the real quadratic field Q(,/g). It is

well-known that agp—(%)) = U + p,/qV for some integers U and V, where
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(%) is the Legendre symbol. Thus the generalized Bernoulli polynomial

0 8,00 5 (§) {5 () -2} =2 () b o)

The organization of the paper is as follows: In the next section we shall
develop basic identities and results about Bernoulli polynomials that we
shall require in our proofs. In Section 2 we shall see how the values of
Bernoulli polynomials can be expressed in terms of certain functions of roots
of unity. This leads to the proof of a number of the cases mentioned in
the introduction; though, because of the computations needed, we give the
complete proof of the Theorem in Section 4, and the complete proof of (4)
in Section 5. In Section 3 we develop the analogous formulae for those
generalized Bernoulli numbers with quadratic characters, which leads to (9)
above.

We thank Emma Lehmer, Hugh Williams and the anonymous referee for many
useful comments.

1. The (regular) theory of Bernoulli polynomials.

The nth Bernoulli number B,, is defined by the power series

T "
1.1 = B, —.
(1.1) e* —1 Z:O n!

The nth Bernoulli polynomial B, (t) is defined by the power series

xetz "
1.2 =Y B,(t) =

so that B, (0) = B, and
" (n
139 B.(1) = ( ,>Bjtn~J.
=0 \J
Perhaps the most important property of Bernoulli polynomials is that
(1.4) Bn(t+1) — Bn(t) =nt™*  for alln>1

as is easily deduced from (1.2). From (1.4) we notice that B, (1) = B,(0) =
B, for all n # 1, and that it is “easy” to deduce the value of B,(t) for any
real number ¢, once we understand the value of B, (¢) for ¢ in the interval
[0,1).
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It is thus of interest to determine B, (t) for ‘special’ values of ¢ in [0, 1),
for instance those rational ¢ with small denominator. We already have

B,(0) = B,(1) =B, for n#1,

and from the identity

2xe” T 2z
e —1 ~ er—1 e2—1

we easily deduce that

B, (1> = (2'""* -1)B,,

2

and thus we have proved (1). We next observe that

from the identity
re(l—t)z (_.,E)et(#z)

et —1  e-®) -1

3

so we study only t € (0, 1).
The next important observation is due to Lerch [Lr]: By taking the iden-
tity

quaz N qxe(a—kl)z ql.e(a+2)::: qxe(a—i—q—l)z— qajeaz
e —1 e’ —1 e —1 e —1 e —1
we obtain
(1.6)
1 2 -1
q q q q

and, in particular if a = 0,

1 2 -1

In order to remove those B,(j/q) in which 7/q is not in lowest terms we may

use the standard Mobius inversion formula, as follows: Take Y p(d)(1.7),/4
dlq
for ¢ > 3, so that

09 5 5.(1)- (md) (g)“") 5.

dlq
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Using (1.5) we have, for all ¢ > 3 and n even,

(19) > B (2) =30 L= B

1<5<q/2 plq
(2.9)=1

Taking ¢ = 3,4 and 6 we deduce (2).

The seven values 1, 1, 2, 2, 2 & 2 are the only rationals with small de-
nominators for which such “straightforward” values of B,,(t) are known, with
0 < t < 1. It has, however, been recently observed [AM] that B,(t) — B,
shares one surprising property with polynomials which have integer coefhi-
cients: namely that ¢"(B,(a/q) — B,) is an integer whenever a and ¢ are
non-zero integers.

One of the most important, and elegant, applications of these valuations
is to the study of Bernoulli polynomials modulo p for p prime. The Von

Staudt-Clausen theorem asserts that
pBy = ~1 (mod p)
whenever 2k is divisible by p — 1. In 1850 Eisenstein observed the following
(easily proved) congruences:
(@b)p71 =1 aP'—1 b 11
= +

= (mod p)
p p p

and 1~(p-1) v
a —a_  (¢"—a) (mod p).
p p
Thus we deduce (3) from (2) with n = p — 1. Such congruences fit elegantly
into the general overview of the first case of Fermat’s Last Theorem (see
Chapter 8 of [Ri]).

Actually, by the same method, we can transform (1.9) to read, for any

even n > 2,
2 (n(2) ) 2549 () )

1<j<q/2
(7,9)=1

—

Taking n = p — 1 we thus obtain

2, (B0 (5) = Bor) =3 Suta {(a/dy — (a/d)}

dlq p

(j,9)=1

_¢lg) | a'~ -1
== ’ + ”Zq Pl = 1) (mod p)

I prime
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However such a formula allows us to evaluate B,,(a/q) only for particular
values of a coprime to g, provided ¢(¢q) < 2. It is the main purpose of this
paper to determine the value of

a

B, <5> — B, ; (mod p).

2. Working with roots of unity.

Key Proposition. If 1 < a < q and odd prime p does not divide q then

(2.1)
b (£) 5o (52 (C7) s

S\ 24977 p

v#1

Proof. If v = 1 then

since

We also have

,.Ya_2+,y—~a—m
P =24 yP

by substituting z = v? and m = a/p mod ¢ into the identity

" —-2+z™™

2.2
(2.2) PR S

=m+ zm:(m —i)(z" +z7).

Therefore the righthand side of (2.1) is

= 1 1

1
=—qg{m -+ ) (m—1) — = — (mod p)
0;17 J ; o;p tp +.7 0|<j<p w—) ’
qls qlip+j qlip—3



126 ANDREW GRANVILLE AND ZHI-WEI SUN

using the fact, for v = 1, that Z;’;; 1/ = 0 (mod p). Now, since ip <
ip+j<(i+1)pand (i —1)p <ip— j < ip, we replace ¢/(ip £+ j) by 1/k so
that the above is

1 i 1 1
=-— Z Z Z —1) i Z % (mod p)
0<k<Z i=1 2 k< (14+1) 2 L=de cpciz
1
= - Z % (mod p)
0<k< P
=(p-1 > Kk (modp).
OSk< ==
But this equals the coefficient of 2P~ /(p — 1)! in
(mp—a)/q (mp—atq)/ez _ |
e
x Z b =1
pard e’ —1

which is B,_, (%‘1) — B,_; by (1.2). However the Von Staudt-Clausen

Theorem tells us that p divides the denominator of B,, if and only if p — 1
divides n; and so, by (1.3), the denominators of the coefficients of B,_;(t) —
B,_, are not divisible by p. Therefore

mp—a+ —a+
By (Lq—*g) —By1 =By ( p q> — By (mod p)

a
= Bp—l (E) - BP“l (mOd p)7

by (1.5), and the Proposition follows. [l
Corollary 1. If1 < a < q—1 and odd prime p does not divide q then

a

(2.3) B, (5) - B,
(e (=227 1) (o).

q=1 ’yp—’Yp

v#1

Proof. 1t is evident that

(1-7)P=1-9"=2"""(1-9") (mod p).
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Therefore

0= {(1 =) =27 (1 =y")}*/(27)" (mod p?)

—1\ P P —p

Thus
A=)+ A=) =24+ +77"
p
-1\P P -p
(1-=) -(-7) e ( P +H7r
+ 1—
P p 2

fli

) (mod p).

Now, adding each term to its conjugate in (2.1) we get the following congru-
ence modulo p:

B, <3> ~ B,
q
1 a -a 1 1— 1ty ! op—1 _ 1
=52 (-5 {; (ETI"— ___)) ‘1) \ —r}

Since the two terms in the final brackets are both units mod p we may
multiply the first by 2?7 =1 (mod p) to get

i ((2—7~7‘1)” _217—1) " (2”’1 - 1)
P\2—9P—qF p

119 (%’%W;ZP _1> (mod p).

l

The result follows: O

The next result follows immediately by applying Mobius inversion to (2.3)
and associating the v and y~! terms.

Corollary 2. Ifq>3,1<a <q and odd prime p does not divide q then

oo (e (2)

d|g
q/2

Z (2 — (W + w™))

7=1
(3.9)=1

((2 —w! —w7)P

9 — qIP — q—Iip

-1 (mod p)

N =
"3
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where w = e*™/? and a, is the least positive residue of a (mod d).
Next note that if (a,q) = 1 then

q/2

Yo 2—wt—w ) = ¢(q) — Zw— q) — u(q).

= =1
(7,9)=1 (r,9)=1

Thus if we define

l]/? . s
2 —wt —w"
g = 3 (o

=1
(2,9)=1

> (2 - wj - ,w—j)n7
where a,b are taken (mod q), then by Corollary 2,

S (5) 5 () =35 tlsap modo) 60 —n(@)} (o)

Now u,, so defined is a recurrence sequence with characteristic polynomial

a/2
F,(X) := H (X —2+w +w™).
=t

Note that

q/2
F-xa-x) =] (- ) (X - )X = w)

j=1
(3.9)

— (_X~1)¢>(q)/2¢q(X)

where ¢,(X) is the gth cyclotomic polynomial.
D=1
If F(X)=XP - ¥ f,X* where D = ¢(q)/2, then
=0

UnyD = fp1Untp-1 + fp-2Untp—z + -+ + fou, for alln >0.

We get the same recurrence relation for all u,, with a given g, but the starting
values, ug, Uy, -+ ,uUp_1, are different.
Let’s define

q

Valgih) = Y w2 - w —w)"
(J{q__)]=l
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This satisfies the same recurrence relation. Moreover since for m = a/b
(mod ¢) we have

w* —24wie C ;
wh — 2+ wb Z (m— |k w’*,

k=—m
thus
1 m
un(g;bm modq,b) =5 3 (m— |k |)Va(g; bk modg);
k=-m
so we may find the starting values, ug,- - ,up_, given those of Vg, - ,Vp_;.

Now, for 0 < n < ¢(q)/2 = D, we have

q

q
Volg; k) = Z w*(2 —w! — w " = Z ("1)nwj(bk~n)(1 —w’)*"

(7,9)=1 (G.q)=1
2n q
2n n+m j(bk+m—n)
-ZQJ“” >
m=0 =1

(2.9)=1

(), 2, ()

d|gq,d|m+bk—n

= %# (g) d il: (3:) (=1,

m=n—bk mod d

I
1M

since

> w=Tatl= 3 u(l)r

d| 1
(1.9)=1 q1qu rita)

taking r = ¢/d. This is computable (though not too beautiful!).

3. Generalized Bernoulli numbers.
For any even character y (mod ¢) define
g—1 a
Byiy = Z x(a) (Bpﬂl (5) - BP—1> .
a=0
Assume that g is prime, so that from Corollary 2 we have for w = €7/,

4po_1:X

[a

Q
LS

(2 —w! —wI)?P

,*1 (aﬁox(a)@ —w - w'”)) ( Ry a— —1) (mod p?) .

J

1
il
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However
q-1 2%(j) qz—:l (b)uw®  f ncipal
3 x(a)(2 — wi* —win) = { XV Z XTI 0T X HOR-PTREIpA
= 2q for x principal.

If x is principal we thus obtain from (1.7),,

-1

2q Z (( : _1> =4pBy_1x = 4po—1(q1_(p_1) - q)
j=1

2 — WP — q—PJ

= 4(¢” — ¢) (mod p?),

using the Von Staudt-Clausen theorem. On the other hand if x is even and
non-principal then, for g(x) = 3, <;<, x(b)w®, we have

4pB —-1,x = —QQ(X) ZY(J) 2 — wPi — q—Pi

S0 (222 ) (g

=0

<

As an example we’ll consider ¥, the real non-principal character (mod g);

that is x(a) = (%), the Legendre symbol. We will need ¢ to be 1 (mod 4)
to ensure that x is an even character. Then

1

2 (5) {2 (3) -2} = 2 =559 ((5)) =

£ (2) (L2 ) i)

2

where Xy

We will examine ¥, using p-adic logarithms (see Chapter 5 of [Wa] for
definitions): Since

(2 - wl —wI)P _ (2 - wd — w—j)p )
2 — ij - w—Pj _1 = Ing 2 — ij —_ w‘Pj ) (mOd p ) !
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we deduce that

- log, ("ﬁ(z R <%><p—<%>>> (mod )

=2 log, (ﬁu _ wi)<s><p~<f>>> (mod ),

=1
since ¢ = 1 (mod 4). Now, as Dirichlet discovered (see Ex. 4.6. of [Wal]),

g1 :
H (1- wz‘)(;) = Eih(ﬁ)

i=1

where €., h(,/q) are the fundamental unit and class number of Q(,/gq), re-
spectively. Thus

% () (o (5) -5}

E——l- ((—)) h (\/q) log, (az(p-(g))) (mod p).

p q
So, as g, = u + v,/q where u? — v?’q = —1, then

eh =u” +0"\/q Eu+v(%>\/§ (mod p)

so that EZ_(E) = (%) (mod p) and thus Ei(p—(%)) =1 (mod p). Suppose that
o(p—(2
aq(p @) _ 1+pu +pv'y/g (mod p?).
Then

—(2 —(2
1= et @g2e) o (1+pu')* — (pv'/q)> =1+ 2puv’  (mod p?),

so that p divides u'. So if

€, — &g (p—(2))
=1 b =1 +’U:I}2(p_(§))\/§ (mod p2).

q

T, =
2'0\/6

then 53
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Therefore logp(eg(p-(g))) = vTap-(2))y/4 (mod p?), and since g ((5)) =/q
(which was proved first by Gauss), we have

(3.1) 2 (8) {Boms (5) = Bt | ==L bWy 1)) (amod
this is ezluivalent to (9).

4. Proof of the Theorem.

Take p = +a (mod ¢) in Corollary 1 to get
a 1 _ _
B, (2) -5 :‘;E S A@-v—y P -@=7-77")} (modp).
»-yq::l

= ¢. Thus, for z, :i S (2= =", we

yi=1

1 — n n
on=g- ) (=7 B~ )?
q .
1 2% (2n 1
— 1 n+m m-—n
i3 (el s
m= Y

If w = €%/ then the characteristic polynomial for z,, is
(g—-1)/2 _ '

H (X —-2+w +w™).

j=1
The anonymous referee noted that this polynomial seems to be closely related
to the Chebyshev polynomial of the first kind; and we should be able to
determine its coefficients directly from known results. Although we agree
with this opinion we have been unable to do so. To compute the coefficients
we thus proceed as follows: First note that

> (-1 (m]_ j) (X +X71)"
= (-1 (m.‘j) ) (m Z 29)xm 242

J i>0

e () (7))
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taking ¢ + 7 = k. The inner sum

& .
k — :
i=0 \J k
k .
=" coeff of T7 in (1 — T)* * coeff of T™ %~/ in (1 — T') %!
7=0

1 ifk<m

= coeff of T % in (1 -T)""' = _
0 otherwise.

Thus

e i Y

§>0 r=—m

1=m (mod 2)
So define
. g:_l_ —_ q—1 .
(4.1) Fy(y) = Z(—l)]( 2 ]>(2—y)7”2]
>0 J

i>0

Then F,(y) is a polynomial in y of degree 1;—1 For any k, 1 <k 5%‘1,

Fyly) = 7 (=) where
k=0 "
$(551—k) -1
e (q—' '—.7)! -l o, k
fr = T R (—1)y727= —%7F,
T2 (-2 k)

Actually F,(X) = Roa (X) where R,(X) satisfies the recurrence

133
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5. Proof of (4).

A Lucas sequence {z,},>¢ is defined by o =0, z; =1 and z,, = bz, _; —
cr,_o for all n > 2, for some integers b and c. As is well-known, if we let
D = b* —4c then the roots of the characteristic polynomial t* — bt +c of {z,}
are a, 8 = (b++vD)/2; and z,, = (& — ")/ (ac — B). Let y, = (@™ + 8") be
the ‘companion sequence’, which satisfies the same recurrence relation; and
we have o, " = (y, + 2,V D)/2.

We shall be considering these recurrence sequences modulo powers of any
prime p that does not divide 2cD: Now, since p divides (f) except when
j =0 or p, we have

b+ vD\" _p+Dr VYD _bx(3)VD
= L (mod p)
2 2r 2
Thus
—(2 D
bxvD\ _ (b (AVD\ (b vD\ " _
= P = cz(1-(F)
5 = 5 5 =c »’  (mod p)
Therefore z, (o) =0 (mod p) and
D D D Y _(py — Dm _(D y2_ D
P = al’-(;)ﬂp‘(;‘) _ P ) : (%) = pip) (mod P2)-

Therefore Yp(2) = 2c3(1=(3)) (Cp—;—”“—l) (mod p?). In fact ¢ = %1 in every
case below so that

(5.1)
(2 () 1ip\/~( _(2)) (mod p?) if ¢ = 1;
)j:p\/_— (2p T, (2 )) (mod p?) ifc=—1.
When ¢(q) = 4, we let ¢t be the unique integer in the range 1 < t < ¢/2
that is coprime to q. Fix a primitive gth root w of 1, and let a; = 2—w’ —w™.
By Corollary 2

Z”( ) (%) = {aa o+ Zp: af — (a, +aat)} (mod p)

dlq 21)

(5.2) =i {Clq <aaa1 (%) + aataf_(%)> — B} (mod p)

where B = a7 + a;, C = o, and C' = C if (%) = —1, with ¢’ =
otherwise.
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The cases ¢ =5and ¢ = 10: Wheng=5wehavet =2, (z—a;)(z—ay) =
z? — 5z + 5, so that B = C = 5 and we may take a; = /5 (\/E_)—i— (%)) for

1<j<4 Leta=(1++/5)/2and = (1 - +5)/2. By substituting into
(5.2) and then using (5.1) (with b =1, ¢ = —1 so that z, = F,) we get

A (2) -5
3 {5 (54 () (8- () 9) )
% {5@:)/2 ((g) +p§%Fp—<§> (%)) - 1}
(D) (2) o)

giving the first congruence in (4), since

57 = (g) (1+ —;— (57~ — 1)) (mod p?).

It would be possible to obtain the congruence for ¢ = 10 in a similar way.
However, by taking ¢ = 2 and @ = 1/5 and @ = 3/5 in (1.6) we get the

identities
1 1 3
Bes(15) = 27781 (5) - 21 3)

3 _ 3 4
B (55) =278 (5) = B2 (5):

By substituting in the first congruence in (4), and by using the Von Staudt-
Clausen theorem, we get the third congruence in (4).

The case ¢ = 8: Now t =3, (z — ay)(z — a3) = 22 — 4z + 2, so that
B =4, C = 2 and we may take a; = \/i(\/f—{— (%)) for any odd j. Let

a = (14 v/2) and B = (1 — v/2). By substituting into (5.2) and then using
(5.1) (with b = 2, ¢ = —1 so that z, = G,), we see that the right side of
(5.2) is

I (5 Q)+ (- ()7 0) -
2o () orio-n (3) -

2”_1—1> 8 1
+2(—> ~G,_(sy (mod
( P ) pCr® (med?)

Il
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since 275 = ( ) (I+ £ (2771 — 1)) (mod p®). Adding this to the third con-

8
P

gruence in (3) gives the second congruence in (4).

The case ¢ = 12: Now t =5, (z — oy){z — a3) = z° — 4z + 1, so that
b=DB =4, c=C =1 and we may take o; =2 + <%>\/§forj: 1,5,7,11;
and let & = oy, = ay. Therefore, by using (5.1), the right side of (5.2) is

(o (2) ) o (395

12\ 1
(Z) Z—)Hp‘(l}’g) (modp)

The final congruence of (4) follows by adding the last two congruences of (3)
and subtracting the first.

[AM]

[An]

(FT]

[Gr]
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THE UNIQUENESS OF COMPACT CORES FOR
3-MANIFOLDS

LUKE HARRIS AND PETER SCOTT

A compact core for a 3-manifold M is a compact sub-manifold
N of M whose inclusion in M induces an isomorphism of
fundamental groups. A uniqueness result for compact cores
of orientable 3-manifolds is known. The authors show that
compact cores are not unique in any reasonable sense for
non-orientable 3-manifolds, but they prove a finiteness result
about the number of possible cores.

If M is a non-compact 3-manifold with finitely generated fundamental
group, then Scott showed in [Scl] that there is a compact sub-manifold N
of M with the natural map m,(N) — m; (M) an isomorphism. See [R-S]
for a simpler proof. We call such a sub-manifold a core or compact core for
M. In [McC-Mi-Sw|, McCullough, Miller and Swarup showed that if N;
and N, are irreducible compact cores of a P?-irreducible 3-manifold M, then
N; and N, are homeomorphic. In this paper, we seek to generalize this to
the case when M and its compact cores have no irreducibility restrictions.
Of course, we cannot any longer expect to prove that two cores of M are
homeomorphic, because the Poincaré conjecture is not resolved. Thus one
core for M might be the connected sum of another core with a homotopy
sphere. Also we can obtain new cores by removing a 3-ball from a core or by
replacing a connected summand of a core which is a 2-sphere bundle over the
circle by a disc bundle over the circle . However, we give an example showing
that even if one works modulo the equivalence relation on cores generated
by the above operations then uniqueness does not hold. We also show that
there are only finitely many different cores in a given 3-manifold up to the
equivalence relation of almost homeomorphism which we define in §1. We
end by using this finiteness result to prove a natural finiteness result for the
boundary of a 3-manifold which has finitely generated fundamental group.
The result is the following.

Theorem 3.2. Let M be a 3-manifold with finitely generated fundamental

group. Then

(i) There are only finitely many boundary components F of M with
Im (7, (F) = m(M)) not trivial or infinite cyclic,

139
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(ii) There are only finitely many boundary components F of M with
Im (7, (F) — 7 (M)) infinite cyclic and with essential core a Mobius
band,

(iii) Of those components of the boundary F; with Im(m(F;) — m (M))
infinite cyclic and with essential core an annulus, there are only finitely
many conjugacy classes in m (M) of Im(m, (F;) — 7 (M)).

In a separate paper [H-S], we use Theorem 3.2 to extend earlier results of
Brin, Johannson and Scott [BJS] on compact totally peripheral 3-manifolds
to the non-compact case.

The work in this paper is part of the Liverpool Ph.D. thesis of Luke Harris
completed under the supervision of Peter Scott in 1988. Since then Harris
obtained a job not in the academic world and has never had time to prepare
this for publication. Finally, Scott agreed to prepare this for publication, to
avoid the complete disappearance of his work.

81. Preliminaries and the example.

Definition. Let M and N be compact 3-manifolds. Then M and N are
almost homeomorphic if they are homeomorphic up to connected sum with
compact simply connected manifolds (3-balls and fake 3-spheres) and up to
replacing P? x I's with fake P? x I’s.

We start with our example to show non-uniqueness for cores. Let M be
a 3-manifold with ﬁmtely generated fundamental group, and with core NV in

M Suppose that M — N has at least two components R; and R, and let
F, and F, be the components of N which lie in R; and R,. Let X denote
the solid torus. Note that similar examples can be constructed if X is any
compact manifold with at least one boundary component not the 2-sphere.
We can form the connected sum M#X in several ways, depending on the
choice of 3-balls in M and in X. However, M#X is independent of this
choice.

If we form M#X by selecting a 3-ball in M which lies in the region R,
then a natural selection of core N, for M#X is N with a 1-handle attached
to F;. If we select the 3-ball in R,, then the core N, could be N with a
1-handle attached to F,. We could also select the 3-ball to lie in N, in which
case the natural core Ny would be N#X. Note that this is homeomorphic
to N with the interior of a trivial solid torus removed, where trivial means
that the solid torus lies in a 3-ball in N and is unknotted there. Also note
that N, and N, are each a boundary connected sum of N and X.

So long as F; and F;, are not homeomorphic, and not 2-spheres, these three
cores are non-homeomorphic in a fairly non-trivial way. They have different
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boundary, for example, and the difference in boundary is not caused just
by adding or removing 2-sphere components. Thus they are not almost
homeomorphic. Further, so long as F; and F; have genus at least two, these
cores cannot be equivalent under the coarser equivalence relation obtained
from the operation of replacing a summand which is a sphere bundle over
the circle by a solid torus. However, they do have certain similarities. All
contain pieces homeomorphic with X and N, at least up to connected sum
with 3-balls, and these pieces are connected by 1-handles and S? x I’s.

We cannot avoid this problem even if we insist that one of the cores be
embedded in the other, since in the example given it is possible to embed
either of N; and N, inside N,. To see how to embed N; in Ny, for example,
consider a simple closed curve o on F; which bounds a disc D in F; containing
the endpoints of the 1-handle of N;. We can also find a disc £ in R; with
boundary «, such that £ U D defines a 2-sphere in R; which is parallel to
the boundary of the 3-ball we removed from R; to form M#X. Then N,
together with a regular neighbourhood of E is homeomorphic to N minus a
trivial solid torus and hence homeomorphic to Nj.

It is clear that this example is not a special case, and that any connected
sum between two 3-manifolds with cores having non-spherical boundary may
have a number of non-homeomorphic cores, constructed similarly to Ny, N;
and N, above.

Now we will need a few definitions. The first four are after Scott in [Sc2].

Definition. A sub-manifold X of a 3-manifold M is incompressible if 0X
is incompressible in M.

Remark. Then the natural map n;(X) — m; (M) is injective.
Definition. A 3-manifold N is weakly irreducible if the manifold N ob-
tained from N by attaching a 3-ball to every boundary 2-sphere of N is
irreducible.

Definition. A chunk in a 3-manifold is a sub-manifold X of M which is
connected, compact, incompressible and weakly irreducible.

Remark. With this definition, a (punctured) 2-sphere bundle over the
circle is not a chunk.

Definition. Let M be a 3-manifold, with fundamental group G = 7, (M),
and let H be a finitely generated indecomposable subgroup of G. Then a
chunk in M for H is a chunk X in M such that 7;(X) contains a conjugate.
(in G) of H.

Observe that if N is a compact core of a 3-manifold M, then we can
decompose N into chunks by cutting along a maximal family of 2-spheres
embedded in N and then cutting along compressing discs for the boundaries
of the resulting pieces. Thus N can be viewed as a collection of chunks
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embedded in M joined together by 1-handles and S? x I’s.

Clearly if 7, (M) = F, * Gy * Gy * ... * G5 where F, is free and the G, are
indecomposable and not infinite cyclic, then there must be exactly s chunks
X; for a core N that have non trivial fundamental group, with 7 (X;) = G;
up to conjugacy after reordering. Thus the non trivial chunks for any two
cores are in 1-1 correspondence. The main result of this section is that these
chunks are almost homeomorphic.

Theorem 1.1. Let X' and X be chunks in a 3-manifold M with finitely
generated fundamental group, and suppose that 7 (X') and m(X) are both
conjugate to H, an indecomposable factor not Z in a free product decompo-
sition of m(M). Then X' and X are almost homeomorphic.

Remark. Such chunks cannot contain fake 3-balls, but may contain fake
P? x I’s.
As a first step, we prove the following special case of Theorem 1.1.

Lemma 1.2. The result of Theorem 1.1 holds if either X and X' are disjoint
or if one lies in the interior of the other.

Proof. First consider the case when X lies in the interior of X'. We know that
71 (X) and 7m;(X') are both conjugate to H, and that 7 (X) is a subgroup
of m;(X'). But H = m;(X) is an indecomposable factor of 7, (M), and so no
conjugate of H can be properly contained in H. Thus we deduce that the
inclusion of X in X' induces an isomorphism of fundamental groups.

Consider a component R of X'—X. Clearly RNX = F, a single boundary
component of X. But we must also have m (R) = m;(F) by van Kampen’s
theorem, since m; (X') = m;(X). Then the h-cobordism theorem tells us that
R must be homeomorphic to F x I connected sum with 3-balls unless F' = P2,
in which case R might be a fake P? x I connected sum with 3-balls. (Note
that in fact we cannot have fake 3-balls in R, since non-simply connected

chunks do not contain fake 3-balls.) This is true for all components of X'—X,
and so we conclude that X' is almost homeomorphic to X.

Next consider the case when X and X' are disjoint. Take the cover My
of M with fundamental group H. Then X and X' lift into My. Thus H
is the fundamental group of a graph of groups with 7;(X) and m(X') as
vertex groups. As each of these vertex groups equals H, it follows that there
is a path between these vertices with all edge and vertex groups equal to
H. In particular, for X and X' there are boundary components F and F'
respectively with m; (F) — m(X) and 7, (F') — 7, (X') being isomorphisms.
We apply the h-cobordism theorem to see that both X and X' are almost
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homeomorphic to products F' x I = F' x I. Thus X and X' must be almost
homeomorphic. This completes the proof of Lemma 1.2. O

Proof of Theorem 1.1. We may suppose that OM is empty, by pushing X
and X' away from OM and then deleting M. Then we can find a compact
sub-manifold K with X and X' embedded in the interior of K. The proof
proceeds by altering K in a fairly canonical way until we find a chunk C
derived from K with X embedded in C;. Lemma 1.2 then shows that X
and C; must be almost homeomorphic. We may also alter K in a slightly
different way to obtain a chunk C] containing X', and so this chunk must
be almost homeomorphic to X’. But because we obtained the chunks in
each case in a fairly standard way, we will be able to show that they must
themselves be almost homeomorphic, which will complete the proof.

So for the moment, we will consider X only. Consider a family of 2-
spheres ¥ embedded in K corresponding to a prime decomposition of K.
Note that the pieces obtained by splitting along any such family are unique
up to homeomorphism and connected sum with 3-balls. In particular, the
pieces are unique up to almost homeomorphism. We will alter ¥ so that
it does not intersect X, but so that it remains a representation of a prime
decomposition of K.

Y. intersects 3X in a collection of embedded circles. dX is incompressible,
so we can choose an innermost circle C of XN 0X bounding a disk F in X,
with ENY =0F =C.

Now we cut and paste ¥ along C' using E, and push the new ¥ away from
0X on both sides. After deleting any redundant 2-spheres, X still represents
a decomposition of K into primes. We repeat until ¥ N 90X is empty.

Some components of ¥ may lie inside X. We delete these components from
Y and replace them with the spherical boundary components of X, and then
again delete any redundant 2-spheres. Since X is weakly irreducible, any 2-
sphere embedded in X other than a boundary sphere must be redundant,
and thus X still represents a decomposition of K into primes. So we may
cut K along this new X, and X will be contained in one of the pieces.

We now wish to compress the boundary of the pieces, whose union we will
continue to call K. We do this by sequentially finding compressing discs for

0K, lying in either K or M — K. If a disc D lies outside K, then we add a
regular neighborhood of the disc to K. If the disc is contained in K, then we
cut along it. Note that, so long as the boundaries of the discs and the order
they are dealt with is the same, any sequence of compressing discs yields
pieces unique up to homeomorphism and connected sum with 3-balls. This
is because the components of K are weakly irreducible, and any two discs
with the same boundary embedded in an irreducible 3-manifold are isotopic.
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Consider a disc D lying in K. Then D intersects 0X in a collection of
embedded circles. dX is incompressible, so we can find an innermost circle
C bounding a disc £ in 0X with DNE =0FE =C.

We cut and paste D along C using F, and discard the 2-sphere component
of the result. Then we push D away from 8X ,thus reducing the intersection
number of D with X. We can repeat until DNOX = @) and thus DNX =0
since 0D C K — X. Note that this does not disturb 9D, so D is still a
compressing disc for 0K contained in K.

So after compressing the boundary of all the components, we have derived
from the original K a collection of chunks, one of which contains X. Call
this chunk C;. Lemma 1.2 shows that X and C, are almost homeomorphic.

If there is another chunk C, derived from K which also has fundamental
group conjugate to H, then Lemma 1.2 again shows that it is also almost
homeomorphic to X.

Now all the above construction can be done to find a number of chunks C
for K corresponding to X'. As we have already pointed out, we must get the
same chunks up to homeomorphism and connected sum with 3-balls as we
did with the first construction. Thus C] is almost homeomorphic to C} for
some j. It follows that X is almost homeomorphic to X', which completes
the proof of Theorem 1.1. O

§2. There are only finitely many compact cores for 3-manifold.

In §1, we gave an example which rules out the possibility of a uniqueness
result such as that to be found in the paper [McC-Mi-Sw] of McCullough,
Miller and Swarup. In this section we show that, up to almost homeomor-
phism, there are only finitely many cores for any 3-manifold M.

Theorem 2.1. Let M be a 3-manifold with finitely generated fundamental
group. Then, up to almost homeomorphism, there are only finitely many
different cores for M.

Proof. The proof uses the result of the previous section on uniqueness of
non-simply connected chunks in a 3-manifold. Since all cores have a decom-
position into essentially the same chunks, then these same chunks can be
used as the building blocks to construct any core for M. We can then show
that there are, up to almost homeomorphism, only finitely many ways to put
these chunks together to give a compact 3-manifold with fundamental group
equal to 7 (M). Of course, if chunks were unique up to homeomorphism,
it would be trivial that there could only be a finite number of cores up to
homeomorphism.



CORES FOR 3-MANIFOLDS 145

So first consider the decomposition of a compact core N into chunks, by
splitting along 2-spheres and discs. Then N is the union of these chunks
together with 1-handles and S? x I's. If M has fundamental group m (M) =
G = F, G, * Gy *--- * G, where F, is free of rank r and the G, are
indecomposable not infinite cyclic, then we can decompose N into exactly
s chunks C; that are not simply connected, and such that = (C;) = G;
up to conjugacy in G. We apply the result of §1 to see that, up to almost
homeomorphism, all cores for M have exactly the same non simply connected
chunks. It will be useful to choose our splitting family of spheres and discs
to be minimal in the sense that no proper subfamily splits NV in this way.

Using the decomposition mentioned in the introduction, we first cut se-
quentially along 2-spheres {S;}, and then along discs {Dy}. We can easily
arrange that all the discs and spheres can be embedded in NV, and are disjoint
from one another. Thus the order in which we cut along the spheres and
discs is irrelevant. Since the construction of a core from the chunks is essen-
tially the reverse operation to that of cutting along the spheres and discs,
we will find it useful to choose a particular order in which to decompose N.

We now wish to organize the decomposition into four steps. In step one,
we cut along non-separating 2-spheres. In step two, we cut along discs
which correspond to 1-handles attached to spherical boundary components
of chunks. In step three, we cut along separating 2-spheres, and finally in
step four we split along the remaining discs. We will comment on each stage
of the decomposition.

Step 1: Cutting along the non-separating 2-spheres.

Let S be such a non-separating 2-sphere. Then we can find a regular
neighborhood § x I for S. Since S is non-separating, we cam find an arc
A in the complement of S x I joining S x 0 to S x 1. S x I together with
a regular neighborhood of A defines a punctured 2-sphere bundle over the
circle. Thus every non-separating sphere in the family S; corresponds to a
2-sphere bundle over the circle in a prime decomposition of N.

Step 2 : Cutting along discs corresponding to 1-handles attached to spherical
boundary components of chunks.

This step is much simpler that it sounds. Let D be a disc in the family
{Dy}. We can cut along all the other spheres and discs in the decomposition
leaving D until last. Then D corresponds to a 1-handle with ends attached
to discs in the boundary of the chunks. Since D is a compressing disc, if
one end of the 1-handle is attached to a spherical boundary component S
of a chunk, it must be that the other end is also attached to S, since S is
separating and the family of discs {Dj} is minimal. Any other disc has a
corresponding 1-handle with both ends attached to non-spherical boundary
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components of chunks.

We can cut along all the discs which correspond to 1-handles with both
ends in S, and so we see that N can be thought of as a simpler manifold
with boundary including S, with one or more 1-handles attached to S.

Step 3 : Cutting along the separating 2-spheres.

This needs little attention for the moment. Note that cutting along such
a 2-sphere corresponds to decomposing as a connected sum (up to adding or
removing 3-balls, anyway).

Step 4 : Cutting along the remaining discs.

As we noted in step 2, all such discs must correspond to 1-handles with
both ends in non-spherical boundary components of chunks. Of course in
particular this means that these 1-handles are not attached to simply con-
nected chunks.

We are now ready to reverse the decomposition process. Let K denote the
disjoint union of the non simply connected chunks C;. Then any core, up to
almost homeomorphism, is obtained from K by adding 1-handles, $* x I’s
and also simply connected compact manifolds. Eventually we construct a
compact 3-manifold from K by reversing steps one to four of the decompo-
sition process.

We consider the steps of the decomposition individually, and in reverse or-
der. To start with, K is uniquely determined up to almost homeomorphism.
At each stage, we must ensure that there are only finitely many possibilities
for K, up to almost homeomorphism.

Step 4:

To reverse this, we add 1-handles to K. Let H be such a 1-handle. Each
end of H is connected to a non spherical boundary component of a non
simply connected chunk. Thus we do not need to consider simply connected
chunks at this stage.

There are only s non-simply connected chunks in K, and each chunk has
only finitely many boundary components, and so there are only finitely many
ways to attach each end of H, and hence there are only finitely many ways of
attaching H to K, since the ends of H and the orientation of H are the only
factors in determining the homeomorphism class of the result. Note that
we have used the fact that H must be connected to non-spherical boundary
components of chunks, and thus it is irrelevant that K is defined only up to
almost homeomorphism.

Step 3:

In this step, we add S? x I’s to K, but since one end of an S? x I can be
attached to a simply connected chunk, we must also add these. Remember
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that all the S? x I’s in this stage connect different components of K, and
the end result of this is connected.

Consider an S? x I with either (or both) ends attached to a simply con-
nected chunk. Then it corresponds to forming a connected sum, with one of
the summands being a simply connected compact 3-manifold. Thus, up to
almost homeomorphism, we have done nothing.

Now we consider S? x I’s which connect non simply connected chunks.
Adding such an §? x I corresponds to forming a connected sum, since each
end of the S? x [ is connected to a different component of K. If K has n non
simply connected components, then we must add n — 1 S? x I’s in this step,
and however we do this, the result is unique up to almost homeomorphism.
In particular, it is irrelevant which 2-sphere boundary components of K we
choose to attach an S? x I to, and also it is irrelevant which components of
K the S? x I is attached to, since the end result of step 3 is a connected
manifold.

Step 2:

In this step, we attach 1-handles which have both ends in the same spher-
ical boundary component of a chunk. Note that if we wish to add one such
1-handle, we have a choice of 2-sphere boundary components on which to
attach it, but, assuming orientability, any choice gives the same result up to
homeomorphism. If we are adding many 1-handles, we do not care which
2-spheres we attach them to, but only which 1-handles we allow to share the
same boundary 2-spheres, which is a combinatorial question.

If we allow non-oriented 1-handles, there are more possibilities, but there
are still only finitely many different ways of adding the 1-handles to K, up
to almost homeomorphism of the resulting manifold.

Step 1:

As we noted earlier, this is equivalent to forming a connected sum with 2-
sphere bundles over the circle, up to almost homeomorphism. Each 2-sphere
bundle could be orientable or non-orientable.

We have m (M) = G = F, * G, x Gy * - - - * G5. Thus there are (r +s—1)
1-handles, non-trivial §* x I's and 2-sphere bundles over the circle to be
added to the chunks C, to get a compact connected manifold with funda-
mental group G. Hence each of the steps one to four must terminate in
fewer than r + s — 1 steps, since the 1-handles, S? x I’s and S*-bundles
added in these steps are precisely those needed to get a compact manifold
with fundamental group G.

So after r + s — 1 stages, and with a finite number of possibilities at each
stage, we have a compact manifold with fundamental group G. Thus there
are, up to almost homeomorphism, only finitely many compact 3-manifolds
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that can be formed from the C; with fundamental group G, and so M can
have only finitely many different cores up to almost homeomorphism. This
completes the proof of Theorem 2.1. O

§3. Applications of uniqueness of cores.

In this section we use Theorem 2.1 together with results of McCullough
[McC] on compact cores to deduce information about the boundary of a
3-manifold M with finitely generated fundamental group.

The first result is an obvious deduction from Theorem 2.1.

Corollary 3.1. Let M be a 3-manifold with finitely generated group, and let
X, be an infinite sequence of cores of M. Then there is a subsequence X; of
X, such that all members of the sequence X; are almost homeomorphic.

Before we get to the main result of this section, we need a definition. Let
M be a 3-manifold with finitely generated fundamental group G. Let F be
a component of M, and let H = Im(m,(F) — m,(M)) be the image of the
fundamental group of F' under the natural induced map into G. Then H is
finitely generated, by the result of Jaco in [Ja]. Now we can take a compact
regular neighborhood of based loops in F' representing the generators of H,
and add compressing discs in F to get a compact subsurface C of F' with
Im(m,(c) - 7 (M)) = H, and C incompressible in F'. Then:

Definition. With M, F and C as above, we call C an essential core for F.

Remark. C need not be incompressible in M. Also, if Im(7; (F) — m(M))
is infinite cyclic, we can choose a simple closed curve on F' to represent a
generator, and thus we may choose the essential core in this case to be an
annulus or a Mobius band. We assume in what follows that we always choose
such an essential core when possible.

We can now state the main result of this section. McCullough gives a
result equivalent to part (i) and (ii) of this theorem in the case when OM is
incompressible as a corollary to his main theorem in [McC]. See also [R-S].

Theorem 3.2. Let M be a 3-manifold with finitely generated group. Then:

(i) There are only finitely many boundary components F of M with
Im(m, (F) = 7, (M)) not trivial or infinite cyclic,

(i) There are only finitely many boundary components F of M with
Im(my (F) — m (M)) infinite cyclic and with essential core a Mobius
band,

(iii)  Of those components of the boundary F; with Im(m (F;) — m(M))
infinite cyclic and with essential core an annulus, there are only finitely
many conjugacy classes in w1 (M) of Im(m (F;) — 7 (M)).
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Proof. Let the boundary components of M be F;. Then we can find essential
cores C; for the F;, with the C; being annuli or M6bius bands when possible.
We are only interested in those F; with non-trivial image in 7, (M), so we
will assume that none of the C, are discs. Now the theorem of McCullough
[McC] tells us that given a (possibly disconnected) compact subsurface C'
of the boundary of a manifold M, we can find a compact core X for M with
X NOM = C. Thus a manifold M, we can find a sequence of cores X; for
M with X, naM = |) C,.
=1

By taking a subse]quence if necessary, we can assume that this sequence
is stable, i.e. that all the X; are almost homeomorphic. Let dX; denote
the union of all the non-spherical boundary components of X;. Then dX;
is homeomorphic to a fixed closed surface dX, for all ;. Now for any union
of non-trivial essential cores of boundary components of M, we can find an
embedding of these essential cores in dX;, for some ¢, and hence an embed-
ding in dX. Since dX has only finitely many components, we immediately
see that there can only be a finite number of closed surfaces embedded in
dX. So we are only concerned with subsurfaces of dX which are not closed.
Also we can assume that the subsurfaces are injective in d X, by adding discs
lying in dX to them. Thus none of the subsurfaces is a disc, and none of the
components of the complement of the subsurfaces is a disc.

Assume for the moment that dX is connected. Consider its Euler charac-
teristic x(dX). Any collection of embedded disjoint subsurfaces
{C;: it < m} of dX splits dX into a collection of subsurfaces {C; : ¢ < n}
where {C; : m + 1 < i < n} are the components of the complement of
{C; : i <m}. Then x(dX) = ¥, x(C;). None of the C; are discs (or
are closed), so x(C,) < 0 Vi. Also, any C; which are not Mdbius bands or
annuli have negative Euler characteristic, and so dX can contain at most
[x(dX)| such surfaces. Of course, when dX is not connected this holds for
any component of dX. This proves the first part of the theorem.

Similarly dX can contain only a finite number of Mébius bands, this time
limited by the rank of H,(dX,Z,), and so also there are only a finite number
of boundary components of M with essential core a Mobius band. This
completes part two of the theorem.

Consider now essential cores which are annuli. There is no bound on
the number of these that can be embedded in a surface dX. However, we
can embed only finitely many non-parallel such annuli. Parallel annuli have
fundamental groups which are conjugate in m (M), so this completes the
third part of the theorem. O
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ESTIMATION OF THE NUMBER OF PERIODIC ORBITS

BoJu JiaNG

The main theme of this paper is to estimate, for self-maps
f X — X of compact polyhedra, the asymptotic Nielsen
number N~ (f) which is defined to be the growth rate of the
sequence {N(f™)} of the Nielsen numbers of the iterates of f.
The asymptotic Nielsen number provides a homotopy invari-
ant lower bound to the topological entropy h(f). To intro-
duce our main tool, the Lefschetz zeta function, we develop
the Nielsen theory of periodic orbits. Compared to the ex-
isting Nielsen theory of periodic points, it features the map-
ping torus approach, thus brings deeper geometric insight and
simpler algebraic formulation. The important cases of home-
omorphisms of surfaces and punctured surfaces are analysed.
Examples show that the computation involved is straightfor-
ward and feasible. Applications to dynamics, including im-
provements of several results in the recent literature, demon-
strate the usefulness of the asymptotic Nielsen number.

Introduction.

Motivated by dynamical problems, Nielsen theory of fixed points of self-maps
f X —= X of compact polyhedra was generalized to study periodic points,
i.e. solutions to f™(z) = z, where f™ is the n-th iterate. See e.g. [J1, §II1.4].
As the Nielsen number N(f) is a homotopy invariant lower bound to the
number of fixed points of f, the Nielsen number N(f") is certainly a lower
bound to the number of n-points (i.e. fixed points of the n-th iterate) for
any map g homotopic to f.

However, generally speaking, the Nielsen numbers are notoriously difficult
to compute. We will demonstrate that the asymptotic growth rate of the
sequence {N(f™)} (when n — oc), which we denote by N~ (f), is a more
computationally accessible invariant than the sequence itself, yet one that is
still useful for dynamics. Although the exact evaluation of N~ (f) would be
desirable, its estimation is a more realistic goal and, as we shall show, one
that is sufficient for many applications.

For an asymptotic study, the first challenge is to develop a unified algebraic
formulation for the Nielsen theory of all iterates of f so that we can easily
relate the fixed point class data of various f*. This is why we propose the
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Nielsen theory for periodic orbits. The key idea is to work on the mapping
torus Ty of f and to count periodic orbits rather than periodic points, then
Nielsen equivalent f-orbits on X correspond to freely homotopic closed orbit
curves on Tj. (This observation of [J2] can actually be traced back to the
pioneering work of Fuller [Fu] in a different context.) The fixed point data of
f™ are organized into the generalized Lefschetz number L_.(f™), a homotopy
invariant living in the free abelian group generated by the set of conjugacy
classes in I' = m, (T}).

For the sake of practical computation, we assume that a matrix represen-
tation p of I' is given. The traces of the p-images of the generalized Lef-
schetz numbers constitute a sequence of complex numbers. The Lefschetz
zeta function (; is a generating function for this sequence which turns out
to be a rational function easily computable for cellular maps. Our Lefschetz
zeta function is the same as that of Fried [F4] using matrix representations
of m(T}), rather than the earlier version in [F'1] using abelian representa-
tions, so that non-abelian information can be better retained. This makes a
difference in applications, as shown in §4.3.

Now every zero or pole of (; supplies a convenient lower bound for the
asymptotic Lefschetz number L™ (f) of f, defined to be the growth rate
of the sequence {||L.(f™)||} of norms of the generalized Lefschetz numbers.
On the other hand, the asymptotic Lefschetz number is identified with the
asymptotic Nielsen number for some important classes of maps.

The sketch above, of the approach to the estimation of N~ (f) that we
will present in this paper, is given a more detailed exposition in [J3].

The structure of the paper is as follows. §1 establishes the basic Nielsen
theory of periodic orbits and introduces the Nielsen numbers, the Lefschetz
numbers and the Lefschetz zeta function. §2 defines the asymptotic invari-
ants, discusses the conditions for their equality and their relation to the
topological entropy, and provides methods for their estimation. §3 analyses
the case of homeomorphisms of compact aspherical surfaces and proposes a
theory for homeomorphisms of punctured surfaces which often arise in re-
cent 2-dimensional dynamical systems theory. The examples in §4 serve to
illustrate our theory. Some open problems are given in §5.

1. Nielsen theory for periodic orbits.

We first give a brief account of the invariants of Nielsen fixed point theory in
§1.1. To simplify the algebra involved, we shall work with the natural semi-
flow on the mapping torus described in §1.2. The notion of periodic orbit
classes is introduced in §1.3. The Lefschetz numbers and Nielsen numbers
are then defined in §1.4, and their invariance shown in §1.5. When a matrix
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representation of the fundamental group of the mapping torus is given, we
introduce in §1.6 the associated Lefschetz zeta function. Since this will be
our main tool for asymptotic estimates, an analysis of our requirement on
the representation is given in §1.7. Finally, in §1.8 we introduce the relative
invariants.

1.1. Nielsen theory for fixed points. The basis of Nielsen fixed point
theory is the notion of a fixed point class.

Let X be a compact connected polyhedron, f : X — X be a map. The
fixed point set Fix f := {z € X | z = f(z)} splits into a disjoint union of
fized point classes. Two fixed points are in the same class if and only if they
can be joined by a path which is homotopic (relative to end-points) to its
own f-image. Each fixed point class F is an isolated subset of Fix f hence
its index ind(F, f) € Z is defined. A fixed point class with non-zero index
is called essential. The number of essential fixed point classes is called the
Nielsen number N(f) of f. It is a homotopy invariant of f, so that every
map homotopic to f must have at least N(f) fixed points. (Cf. [J1, p.19].)

Pick a base point v € X and a path w from v to f(v). Let G := 7 (X, v)
and let f, : G — G be the composition

m(X,v) B m (X, f(v)) % ™ (X, v).

Two elements g,9' € G are said to be f_-conjugate if there is an h € G
such that ¢’ = f_(h)gh™'. (There are two definitions of f,-conjugacy in the
literature, related by an inversion. The one we use here is the original one
of [R] and [We] which turns out to be more convenient than the other one
used in [J1, p. 26].) Thus G splits into f,-conjugacy classes. Let Gy denote
the set of f_-conjugacy classes, and ZG; denote the abelian group freely
generated by Gy. We use the bracket notation a — [a] for both projections
G — Gy and ZG — ZGy, where ZG is the integral group ring of G.

For every z € Fix f, its G-coordinate cd,(z, f) € G is defined as follows:
Pick a path ¢ from v to z. The f_-conjugacy class in G of the loop w(foc)c™,
which is evidently independent of the choice of ¢, is called the G-coordinate
of z. (This also differs from the definition in [J1, p. 26] by an inversion.)
Two fixed points are in the same fixed point class if and only if they have
the same G-coordinates. The G-coordinate cd, (F, f) of a fixed point class
F is then defined to be the common G-coordinate of its members.

The generalized Lefschetz number is defined ([R], [We], cf. [FH]) as

(1.1) Le(f) =) ind(F,f) cd,(F,f) €ZGy,

the summation being over all (essential) fixed point classes F of f. When
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all fixed points of f are isolated, we also have

(1.1") L.(f)= ) ind(z,f) cd,(z,f) €ZGy.

z€Fix f

The Nielsen number N(f) is the number of non-zero terms in L_(f), and
the indices of the essential fixed point classes appear as the coefficients in
L.(f).

The invariant L (f) used to be called the Reidemeister trace because it
can be computed as an alternating sum of traces on the chain level ([R],
Wel).

Let p: X,0 — X,v be the universal covering. The deck transformation
group is identified with G. Let f : X — X be the lift of f such that the
reference path w lifts to a path from o to f(9). Then for every g € G we
have fog = f.(g)o f (cf. [J1, pp. 24-25)).

Assume that X is a finite cell complex and f: X — X is a cellular map.
Pick a cellular decomposition {e]} of X, the base point v being a 0-cell. Tt
lifts to a G-invariant cellular structure on the universal covering X. Choose
an arbitrary lift é;i for each e;l. They constitute a free ZG-basis for the

cellular chain complex of X. The lift f~ of f is also a cellular map. In every
dimension d, the cellular chain map f gives rise to a ZG-matrix F; with
respect to the above basis, i.e. Fy = (ay) if f(ef) = 3, a7, a,; € ZG.

Then we have the Reidemeister trace formula

(1.2) Lo(f) =Y (-D)*[wF] ezG,

d

Remark. The base point v and the path w serve as a reference frame for
the G-coordinate. (When v is a fixed point and w is the constant path, the
G-coordinate of v is [1] € ZGy.) A change of the reference path w would
affect the homomorphism f,, hence also the f_.-conjugacy relation in G and
the set Gy where the G-coordinates live. This develops into a considerable
mess when we apply the above theory to all the iterates f™ of f, as we
are then forced to deal with infinitely many different sets G's» at the same
time. In order to simplify the algebra, we propose the following alternative
approach to the coordinates of fixed points.

1.2. The mapping torus. The mapping torus Ty of f : X — X is the
space obtained from X x R, by identifying (z,s + 1) with (f(z),s) for all
z € X, s € R, where R, stands for the real interval [0,00). On T} there is
a natural semi-flow (“sliding along the rays”)

o : Ty xRy — Ty, oi(x,s) = (z,s +t) forall £ > 0.
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A point z € X and a positive number 7 > 0 determine the time-T orbit
curve Py = {@i(x)}o<e<r in Ty. We may identify X with the cross-
section X x 0 C Ty, then the map f : X — X is just the return map of the
semi-flow .

Take the base point v of X as the base point of Ty. Let I' := m; (T}, v). By
the van Kampen Theorem, I is obtained from G by adding a new generator
z represented by the loop ¢(,1yw™", and adding the relations z7'gz = f_(g)
for all g € G:

(1.3) I'=(G,z|gz=2zf_,(g) forallg € G).

Remark. Note that the homomorphism G — I' induced by the inclusion
X C Ty is not necessarily injective. Its kernel equals Up,soker(fT), the
union of the kernels of all iterates of f, : G — G. This fact can be proved
by a topological argument similar to that of [J2, §3].

Notation. Let I'. denote the set of conjugacy classes in I'. Theoretically,
it is better to regard I'. as the set of free homotopy classes of closed curves
in Ty, so that it is independent of the base point. Let ZI' be the integral
group ring of I'; and let ZI', be the free abelian group with basis I'.. We use
the bracket notation a — [o] for both projections I' = I', and ZI"' — ZT',.

1.3. Periodic orbit classes. We intend to study the periodic points of f,
i.e. the fixed points of the iterates of f.

We shall call PP f := {(z,n) € X xN |z = f*(z) } the periodic point set
of f, where N denotes the set of natural numbers. A fixed point z of f" is
called an n-point of f, and its f-orbit {z, f(x),..., " *(z)} an n-orbit of f.
The latter is called a primary n-orbit if it consists of n distinct points, i.e.
if n is the least period of the periodic point z.

A fixed point class F" of f* will be called an n-point class of f. Re-
call from [J1, Proposition II1.3.3] that f(F™) is also an n-point class, and
ind(f(F™), f*) = ind(F", f*). Thus f acts as an index-preserving permu-
tation among its n-point classes. We define an n-orbit class of f to be the
union of an orbit of this action. In other words, two points z,z' € Fix f"
are said to be in the same n-orbit class of f if and only if some f*(z) and
some fI(z') are in the same n-point class of f. The set Fix f™ splits into a
disjoint union of n-orbit classes.

On the mapping torus Ty, observe that (z,n) € PP f if and only if
the time-n orbit curve ¢, ) is a closed curve. The free homotopy class
of the closed curve @, ) will be called the I'-coordinate of (z,n), written
cd(z,n) = [p(,m)] € T

It follows from [J2, §3] that periodic points (z,n), (z',n’) € PP f have
the same T'-coordinate if and only if n = n’ and z,z’ belong to the same
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n-orbit class of f. Thus we can equivalently define z,2' € Fix f™ to be in
the same n-orbit class if and only if they have the same ['-coordinate, and
define the ['-coordinate of an n-orbit class O™ as the common I'-coordinate
of its members, written cd.(O").

Remark. The notion of I'-coordinate has great algebraic advantage over
that of G-coordinate (cf. Remark in §1.1). Ordinary conjugacy classes have
replaced the awkward skew-conjugacy classes. The I'-coordinates cd.(O")
are independent of the choice of the base point, and for any n they all live
in the same set I',.

An important notion in the Nielsen theory for periodic orbits is that of
reducibility. Suppose m is a factor of n and m < n. When the n-orbit
class O™ contains an m-orbit class O™ then cd.(O") is the (n/m)-th power
of ¢d,.(O™), because for z € O™ the closed curve @, , is the closed curve
©(z,m) traced n /m times. This motivates the definition that the n-orbit class
O™ is reducible to period m if ¢cd.(O™) has an (n/m)-th root, and that O™ is
irreducible if cd, (O™) is primary in the sense that it has no nontrivial root.

This notion of reducibility is consistent with that introduced in [J1]. An
n-orbit class O™ is reducible to period m if and only if every n-point class
F™ C O" is reducible to period m in the sense of [J1, Definition 111.4.2].

1.4. Lefschetz numbers and n-orbit Nielsen numbers. Every n-orbit
class O™ is an isolated subset of Fix f". Its indez is ind(O™, f™), the index
of O™ with respect to f™. An n-orbit class O™ is called essential if its index
is non-zero.

For each natural number n, we define the (generalized) Lefschetz number
(with respect to I')

(1.4) L.(f*) =) ind(O" f*) - cd,(O") € ZT,,
On

the summation being over all n-orbit classes O™ of f. When every fixed
point of f" is isolated, we also have

(1.4) L.(f") = Z ind(z, f") - [pe,m)] € ZT
(z,n)EPP f

Let N.(f") be the number of non-zero terms in L. (f™). It is the number
of essential n-orbit classes, and will be called the Nielsen number of n-orbits.
Clearly it is a lower bound for the number of n-orbits of f.

Let NI.(f™) be the number of non-zero primary terms in L.(f™). It is
the number of irreducible essential n-orbit classes, and will be called the
Nielsen number of irreducible n-orbits. It is a lower bound for the number
of primary n-orbits.
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The indices of the essential n-orbit classes appear as the coefficients in
L_(f™). Another numerical invariant derived from L_(f") is its norm. We
give a general definition here:

Notation. For any set S let ZS denote the free abelian group with the
specified basis S. The norm in ZS is defined by

Z kisl

(1.5)

= Z |k;| € Z when the s;’s in S are all different.

The norm [[L.(f™)|| is the sum of absolute values of the indices of all the
(essential) n-orbit classes. It equals {|L,(f™)l, the sum of absolute values
of the indices of all the (essential) n-point classes, because any two n-point
classes contained in the same n-orbit class must have the same index. Hence

Lo (F) = N(f™) 2 NL(F7).
Corresponding to the trace formula (1.2), we have the following trace
formula:

Theorem 1.1. Let F; be the ZG-matrices defined before (1.2). Then

(1.6) Lo(f") = (-1 [x(zF0)"] e zr,

d
where zFy is regarded as a ZI'-matriz.

Proof. Applying the theory of §1.1 to the iterates f” of f, n > 1, we get
(1.7) L, (f") =) ind(F", f*) - cd, (F", f") € ZGyn,
F'n

the summation being over all fixed point classes F™ of f™. (The reference
path for f™ is taken to be the path w™ = w(fow)--- (f*~! ow) from v to

frw).)

By definition, for (z,n) € PP f and for any path ¢ in X from v to z, the
I'-coordinate of (z,n) is the conjugacy class in T' of the loop cpnc™ ~
Pl (FF 0 )e™ ~ 2™ (f2 0 c)e L. So

(1.8) cd.(z,n) = 2" cd, (z, fT).
Now from (1.4) and (1.7) we see

(1.9) L.(f") = 2"Le (f7)-
On the other hand, the trace formula (1.2) gives

(1.10) Lo(f") =Y (-0 [« B”] €26y,
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where ﬁ’;") is the matrix of f™. Since fog = f,(g)o f for all g € G, we have
(1.11) f’d”)=f2_1ﬁ’d-f§'2ﬁ‘d---fcl7“d-ﬁ’d.

Hence by (1.9-11) we obtain
Le(f7) = 21 [tr(z"F{™)]
Z ) [tr(zF0)] e Zr..
d O

Remark. Occasionally in applications we may use a homomorphism from I
to a more convenient group IV, which determines an obvious homomorphism
Zr, — ZI,. Let L_(f") be the image of L.(f"). Let N_(f") be the
number of non-zero terms in L_ (f"), and let NI, (f") be the number of
non-zero primary terms. Then N, (f") etc. are lower bounds for N, (f")
etc. respectively. This technique is similar to that for fixed points developed
in [J1, §II1.2].

1.5. Invariance properties. The following basic invariance properties are
similar (with similar proofs) to that for fixed points (cf. [J1, §81.4-5]).

Homotopy invariance. Suppose f ~ f' : X — X wia a homotopy
{fi:}o<t<1. The homotopy gives rise to a homotopy equivalence Ty, v ~ Ty, v
in a standard way. If we identify I' = m(Ty,v) with I' = m(T},v) via
this homotopy equivalence, then L.(f'™) = L.(f") for all n, hence also
N.(f"™) = N.(f") and NI.(f'™) = NI.(f").

Commutativity. Suppose f: X =Y andg:Y — X. Then T,o; and Ty,
are homotopy equivalent in a standard way. If we identify I' = m(Tyos) with
I = m1(T}oy) in this way, then L.((go f)*) = L.((f o g)") for all n, hence
also N ((g o f)") = N.((f o 9)") and NI.((go f)") = NI.((f o 9)").
Homotopy type invariance. Suppose h : X — X' is a homotopy equiv-
alence. Suppose f : X — X and f' : X' — X' are maps such that the
diagram

x L5 x

| [

x Lo x

commutes up to homotopy. Then Ty is homotopy equivalent to Ty, and when
I = 7 (Ty) is suitably identified with T = m,(T}), we have L (f'™) = L.(f™)
for all n, hence also N.(f'™) = N.(f™) and NI.(f'"™) = NI.(f").
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1.6. Twisted Lefschetz numbers and Lefschetz zeta function. Let R
be a commutative ring with unity. Let GL;(R) be the group of invertible
[ x [ matrices in R, and M,,;(R) be the algebra of [ x [ matrices in R.
Suppose a representation p : I' = GL;(R) is given. It extends to a repre-
sentation p : ZI' — M, (R). We define the p-twisted Lefschetz number

(1.12) L(f") = tr (Lo (f")” = Y_ind(0", f") - tr (cd(O"))” € R
o

for every n € N, the summation being over all n-orbit classes O™ of f. It
is well defined because matrices in a conjugacy class have the same trace.
When all fixed points of f™ are isolated, we have

(1.12') L(fM) =Y ind(z, ") tr(pem)’ €R

(z,n)EPP f

It has the trace formula
L(f7) = (1) (o))"
(1.13) = Z “tr ((2Fa)" ) €R

where for a ZT'-matrix A, its p-image A means the block matrix obtained
from A by replacing each element a,; with the [ X [ R-matrix afj.

We now define the (p-twisted) Lefschetz zeta function of f to be the formal
power series

(1.14) () = exp LM

It has constant term 1, so it is in the multiplicative subgroup 1 + tR[[t]] of
the formal power series ring R|[[t]].

Clearly (,(f) enjoys the same invariance properties as that of L .(f"). As
to its computation, we obtain from (1.13) the following determinant formula:

Theorem 1.2. (,(f) is a rational function in R.

1)+t

(1.15) Hdet( —4(zFy))' € R(1),

where I stands for suitable identity matrices.

Proof.

fy=expd (143 b ((zﬁd)P) -
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~ (—1)4+?
= 1;[ det (1 - t(de)”) .

O

By (1.12), (1.14) and the homotopy invariance, we have the

Twisted version of the Lefschetz fixed point theorem. Let f : X — X
be a map and p : 7 (T;) — GL;(R) be a representation. If f is homotopic
to a fized point free map g, then L,(f) =0. If f is homotopic to a periodic
point free map g, then (,(f) = 1.

Remark 1. When R = Q and p: I' —» GL;(Q) = Q is trivial (sending
everything to 1), then L,(f) € Z is the ordinary Lefschetz number L(f),
and (,(f) is the classical Lefschetz zeta function ((f) :=exp >, L(f™)t"/n
introduced by Weil (cf. [Bt]).

Remark 2. Our Lefschetz zeta function is essentially the same as the
twisted Lefschetz function of David Fried. He first introduced it in [F1]
using f-invariant abelianizations of 7;(X), and showed in [F2] that it is a
certain Reidemeister torsion of the mapping torus Ty. Then in the paper [F4]
he adopted the Reidemeister torsion approach, with respect to a flat vector
bundle (which is equivalent to a matrix representation of the fundamental

group).

Example. (Recipe for surfaces with boundary).

Let X be a surface with boundary, and f : X — X be a map. Suppose
{ai,--- ,a,} is a free basis for G = m;(X). Then X has the homotopy type
of a bouquet X' of r circles which can be decomposed into one 0-cell and r
1-cells corresponding to the a;’s, and f has the homotopy type of a cellular
map f': X' — X'. By the homotopy type invariance of the invariants, we
can replace f with f' in computations. The homomorphism f, : G = G
induced by f and f’ is determined by the images a! := f (a;), i =1,--- ,r.
By (1.3), the fundamental group I' = m;(T}) has a presentation

(116) F:<a17"'aarazya'zz:zalia7::]-7"'>T>-
As pointed out in [FH], the matrices of the lifted chain map f' are
(1.17) Fy = (1),
~ dal
F,=D:= :
' <3%’> ’

where D is the Jacobian matrix in Fox calculus (see [Bi, §3.1] for an intro-
duction). Then, by (1.6), in ZT', we have

[ Oa;
(1.18) L(N=1-Y 5],

i=1
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(1.19) Lo (f") = [z"] = [tr(zD)"].

When a representation p : I' — GL;(R) is given, by (1.13) and (1.15) we
have

(1.20) L,(f) =trz’ —tr(2D)? € R,
(1.21) G(f) = deéit( _(tﬁgp) € R(2).

1.7. A closer look at the representation p. A practical difficulty in the
use of L,(f") and (,(f) is to find a useful p which was assumed to be a
group homomorphism I' = GL;(R). Can we weaken the assumption on p?

Observe from (1.8) that the I'-coordinate of an n-orbit class can be writ-
ten as z"g for some g € G, whereas a general element of I has the form
2*¥g2~! with g € G and k,I > 0. The definition (1.12) only requires that
tr(cd,.(O™))” € R be well defined, so p need to behave well only on a subset
of I', not on the whole I'. This motivates the following approach.

Definition. Let I'; be the monoid defined by the presentation (1.3)
(1.22) I'y := Monoid (G, z | gz = zf,(g) for allg € G).

In other words, as a set,

(1.23) r,={z"g|n>0,9eG}.

The letter 2 is regarded as a symbol so that I', is in one-one correspondence
with Z, x G, where Z, is the monoid of non-negative integers. And the
multiplication in I'; is defined by

(1.24) (z"a)(z™b) := 2™ (£, (a)b).

The obvious projection n : I'y — I', 2"g — 2"g is a monoid homomorphism
which will often be omitted in notations. Beware that n is not necessarily
monomorphic.

Lemma 1.3. Suppose z"a,z"b € 'y project to conjugate elements in T,
where n > 0. Then there ezist 0 < r < n and h € G such that in I, we have

(1.25) 2"b=h"'z"""az"h.
Proof. Suppose 2"b = v~ *z"a~y for some y € I'. This 7 can be written in the

form v = z*cz~! with ¢ € G and k,1 > 0. So in I" we have

z”fé (b) = 2"(z7'b2') = 27 (2"b) 2 = 27 (v 2"ay) 2t
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= (c'z7%)z"a(2%c) = (c'2") (2 %az*)e = 2" () fE (a)e,

hence f.(b) = f2(c™')f¥(a)c.
By the Remark in §1.2, we can find some m > 0 such that

™) = e A a) M e) e G

Increasing m if necessary, we may assume [ +m = pm and k+m = gm +r,
where p,g>0and 0 <r < n.

Let h = fr(a™")f7t"(a™)- - flm 0™ (a™") 7 () fP~ D" () - - f2(b)b €
G. Then we have

f2(h) s <)
= [F207) - T2 £ (@) - £277(0)] - £1(a)
[z l)f"‘”( 1) fETI @ F ) SO (B) - £2(B)D]
ol O R A i e VA OT M O e OB MO
= 27 SO FETON®) - ()b = b.
Thus, in I' | we get

b= {2 () f(@h = B2 (@)
=h"1z"_’z’f2(a)h h™'z""Taz"h,

as required. O

Theorem 1.4. Suppose a monoid representation p : I'y — My (R) is
gwen. In other words, suppose we have a group representation p : G —
GL(R) and a matriz z¢ € M (R) satisfying the condition

(1.26) 9’2" = 2*(f:(9))*  foranyg € G.

Extend p to a ring homomorphism p : ZI'y — M;y;(R). Then the theory of
§1.6 works.

Proof. The basis of §1.6 is the definition (1.12) of L,(f™). So it suffices to
show that for any z"a, 2"b € ', that are conjugate in I', we have tr(z"a)” =

tr(z"b)”.

Let r and h be as in Lemma 1.3, and write a?,b*,h” as A, B, H respec-
tively. Then

tr(z"b)” = tr(h~'2" "az"h)? = tr(H ' Z""AZ"H)
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=tr(Z"TAZ") = tr(Z"A) = tr(2"a)”.
O

Remark. If 2” is invertible, p will give a group representation I' — GL;(R).
The point of the theorem is that we do not require z” to be an invertible
matrix.

Example. (Free abelian group).

Suppose G is a (multiplicative) free abelian group with basis {91, -+ ,9,},
and the homomorphism f_, : G — G is given by the r x r integral matrix
A = (ay;) such that f;(g:) = g1"' -~ gr.

Every element g = g;"* --- g2~ € G corresponds to an integer row-vector
v(g) := (v1,--- ,v,). Clearly v(f,(g)) = v(g) - A for any g € G.

Then the assignments

(1.27) g’ = ((1) U(Ig)) , ZP = <(1) 31)

define a monoid representation p : 'y = M(41)x(r+1)(Z). The verification
of the condition (1.26) is trivial.

1.8. Relative invariants mod a subpolyhedron. Let X be a compact
connected polyhedron as before, and A be a subpolyhedron. Let f: X, A —
X, A be a self-map of the pair.

A fixed point z of f is related to A if there is a path ¢ such that ¢ ~ foc:
1,0,1 - X, z, A, where ~ means homotopic. A fixed point class F of f will
be called a fized point class on X \ A if it is not related to A. The number
of essential fixed point classes of f on X \ A is called the Nielsen number of
the complement, denoted N(f; X \ A). It is a lower bound for the number
of fixed points of f on X \ A, and it is invariant under homotopy of maps
X,A - X,A ([Z], cf. [S, §2.3]). Obviously N(f; X \ A) < N(f).

Under the mapping torus point of view, a fixed point z of f is related to
A if and only if the corresponding closed orbit curve ¢, ;) in T} is freely
homotopic to a closed curve in Tyj4, the mapping torus of the restriction
flA : A — A naturally regarded as a subspace of T}.

The Nielsen theory of periodic orbits for X developed above has a natural
relative version for X \ A. A free homotopy class of closed curves in T}
(i.e. an element of T',) will be called related to A if it contains a closed
curve in Tyj4 C Ty. An n-orbit class of f on X \ A is defined to be an
n-orbit class of f whose coordinate is not related to A. The Nielsen number
of the complement N.(f"; X \ A) is the number of essential n-orbit classes
of f on X \ A. The Lefschetz number of the complement L.(f™; X \ A) €
ZT. is obtained from L_(f") by deleting the terms related to A. Clearly

L (£ XN A< L (F)-
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2. Asymptotic Nielsen numbers and topological entropy.

The asymptotic behavior of the number of periodic orbits is more important
than that number for a specific period n. The former is also often easier to
estimate. In §2.1 several asymptotic invariants are defined as growth rates of
the Nielsen numbers and Lefschetz numbers. Sufficient conditions for these
invariants to be equal are given in §2.2. In §2.3 we propose our method of
lower estimation for the asymptotic absolute Lefschetz number via twisted
Lefschetz zeta functions. §2.4 provides a method of upper estimation. §2.5
is devoted to the relation between the asymptotic Nielsen number and the
topological entropy. The final section §2.6 is an aside discussing the growth
rates of some Nielsen type numbers.

2.1. Asymptotic invariants. The growth rate of a sequence {a,} of com-
plex numbers is defined by

(2.1) Growth,_,a, := max {1, lim sup [anll/"}

n—o0

which could be infinity. Note that Growtha, > 1 even if all a,, = 0. When
Growtha, > 1, we say that the sequence grows ezponentially.

We define the asymptotic Nielsen number of f to be the growth rate of
the Nielsen numbers

(2.2) N7 (f) := Growth, oo N(f") = Growth,_,oN.(f™),

where the second equality is due to the obvious inequality N, (f™) < N(f") <
n-N.(f™). And we define the asymptotic irreducible Nielsen number of f to
be the growth rate of the irreducible Nielsen numbers

(2.3) NI (f) := Growth, o NI.(f").

We also define the asymptotic absolute Lefschetz number

oo

(2.4) L (f) := Growth, oo [| L (f™)]I -

All these asymptotic numbers enjoy the invariance properties of §1.5.
The following proposition ensures that these asymptotic invariants are
finite positive numbers.

Proposition 2.1.

oo

(2.5) NIT(f) SNT(f) SL7(f) < oo

Proof. The first two inequalities are from the obvious fact

NI(f") < No(f*) < L (F)IF
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The last one is by Proposition 2.6 below. U

Remark. These asymptotic invariants have obvious generalizations to the
relative setting of §1.8.

2.2. Conditions for the equalities NI~ (f) = N~ (f) = L™ (f). To com-
pare NI” (f) with N”(f), we need the following definition.

Definition. An n-orbit class O™ and all n-point classes contained in it will
be called essentially irreducible if it is essential and it does not contain any
essential m-orbit class for any m < n.

Clearly every irreducible essential n-orbit class is essentially irreducible,
but not vice versa.

Theorem 2.2. A sufficient condition for the equality NI~ (f) = N™ (f) is
that f has the following Property of Essential Irreducibility:

The number E, of essentially irreducible n-point

(EI) classes that are reducible is uniformly bounded in n.

Proof. The case N~ (f) = 1 is trivial. We assume N~ (f) =1+a > 1. Let
E be a bound for E

Let S, := m<n N.(f™). Then by [FLP, p. 185, Lemma 1],
Growth, 0,5, = N (f) = 1 +a, hence S, < (1 + 2a)" for sufficiently
large n.

We have

m|n
m<n

w1~ 5558)

Pick a subsequence {n;} such that lim; ., N.(f%)"/™ = N~ (f), so that
N.(f%) > (1 + 2a)™ for sufficiently large j. Then S, ,2/N.(f™) < (1 +
%a)_”i/ % so the quantity in the big parentheses approaches 1 when j — oo.
Hence the conclusion. O

Theorem 2.3. A sufficient condition for the equality N~ (f) = L™ (f) is
that f has the following Property of Bounded Indez:

The maximum absolute value B,, of the indices
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