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A CLASS OF INCOMPLETE NON-POSITIVELY CURVED
MANIFOLDS

B.H. BOWDITCH

In this paper, we describe a class of simply connected non-
positively curved riemannian manifolds which satisfy some
curvature constraints. Such manifolds have many of the prop-
erties of (complete) Hadamard manifolds, such as geodesic
convexity and the existence of an ideal boundary.

1. Introduction.

The geometry of Hadamard (complete, simply-connected, non-positively
curved riemannian) manifolds has been intensively studied for some time. A
general account of the basic theory can be found in [BaGS]. However, there
are interesting examples of non-positively curved manifolds which fail to be
complete, while retaining many of the geometric properties of Hadamard
manifolds. The best known is the Weil-Peterssen metric on Teichmuller
space. This is negatively curved [Ah, Tro] and incomplete [Wl], yet it ad-
mits an exhaustion by compact convex sets, and is thus geodesically convex
[W2]. We describe some further examples in Chapter 2. Also, incomplete
non-positively curved metrics have been used to construct interesting exam-
ples of complete non-positively curved manifolds by modifying the metric in
a neighbourhood of the ends (see for example [AbS]).

These examples suggest that certain incomplete metrics may be of some
interest in their own right. In this paper we restrict attention to metrics sat-
isfying certain curvature constraints, and show that they behave, in many
respects, like complete manifolds. We shall assume in particular that the
curvature "blows up" along any path of finite length that leaves every com-
pact set.

Let us first summarise a few properties of (complete) Hadamard manifolds.
Firstly, the exponential map based at any point gives a diffeomorphism of
W1 onto X. Moreover, there is a natural compactification, Xc, of X into a
topological ball, formed by adjoining the ideal sphere, Xj — XC\X. A point
of Xj may be thought of as an equivalence class of geodesic rays, where two
rays are equivalent if they remain a bounded distance apart.

If, in addition, we assume that X has strictly negative curvature bounded
away from 0, then it follows that X is a "visibility manifold", i.e. any two
points of Xj may be joined by a bi-infinite geodesic [EO].
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If we go further, and impose another curvature bound away from — oo (so
that X has "pinched curvature"), then much more can be said about the
geometry of X. For example, we have Anderson's result [An] that if Q C Xc

is any closed subset, and hull(Q) C Xc is the closed convex hull of Q, then
Xj Π hull(Q) = Xi Π Q. For further results about convex sets, see [Bo].

To generalise to incomplete (i.e. not necessarily complete) manifolds, let
us assume that:

(A) X is a Riemannian manifold such that

(Al) X has non-positive curvature, and

(A2) X is simply connected.
We write d for the path-metric on X, and write (X, d) for the metric comple-
tion of (X, d). Given ϊ G l , write κ(x) for the maximal sectional curvature
of any tangent 2-plane at X.

Suppose we assume, in addition to (A), that:

(B) For all a E X\X, there is some K > 0 and a neighbourhood U of α in
X such that for all x E X Π 17, we have κ(x) < ~l/K2d(xJa)2;
then, we claim that:
(1) X is geodesically convex. In fact, any two points x,y E X may be

joined by a geodesic segment [x, y] C X U {x, y}. Moreover, [x, y] is, up
to reparameterisation, uniquely length-minimising among all rectifiable
paths in X.

(2) The completion X is a CAT(O) space (as explained in Section 3.5).

(3) There is a natural compactification Xc of X so that Xc is homeomor-

phic to a closed ball, with X as its interior.

(4) There is a natural continuous injection L : X —> Xc from X in the

metric topology to Xc in its topology as a ball.

(5) Suppose (x,y) E (Xc x Xc)\(Xf x Xf°) w h e r e XT = XcV(X)
Then, x and y may be joined by a unique geodesic [x, y] C. X U {rr, y},
(where [x,x] = {^}) Moreover, [x,y] is closed in Xc>

(6) The map [(ar,y) κ> [x,y]] : ( X c x ^c)\(X/°° x X/°°) —»• ^ ( ^ c ) is
continuous, where ^(X^) is the set of all closed subsets of Xc in the
Hausdorff topology (Section 5.2).

Suppose, in addition to (A) and (B), that X satisfies:

(C) There exist p0 E X and Lo, RQ > 0, such that if x E X with
iϊ 0, then κ{x) < —l/Lld(x,po)2; then it follows also that:
(5;) If (x, y) E Xc x Xc, then # and y may be joined by a unique geodesic

[x,y]CXu{x,y}.

(6') The map [(x,y) »->- [rc,j/]] : Xc x Xc —>• ̂ (Xc) ι s continuous.
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More precise statements of these results will be given later. They will
all be proven in this paper: (1) Proposition 3.5.3. (2) Proposition 3.5.1,
(3) Proposition 4.5.2, (4) Proposition 4.3.4, (5) Lemma 4.1.4, Lemma 5.3.1,
(6) Proposition 5.3.4, (5') Lemma 6.2.1, Proposition 6.2.3, (6') Proposition
6.3.2.

If one adds additional hypotheses, such as pointwise pinching of curva-
ture, then we have variations of Anderson's construction which enable us to
construct convex sets in X. Thus, for example, with appropriate hypotheses,
we can deduce that X has an exhaustion by compact convex sets. There is
also the possibility of generalising some of the results of [Bo] to such spaces,
though we shall not get involved with that here. Indeed we suspect that this
programme could be carried further, and that, for example, many analytic
results could be carried over to such spaces.

Note that in the complete case, pinched negative curvature is the same as
pointwise negative curvature together with bounded geometry. "Bounded
geometry" means that, for any fixed r > 0, the set of metric balls {N(x,r) \
x (Ξ X} (defined up to isometry) all lie in a compact set in the C2-topology.
There is an analogous statement in the incomplete case. In this case, if
X is negatively curved, properties (B) and (C) and pointwise pinching of
curvature are all implied by a single hypothesis of "bounded geometry up
to scale". To explain what we mean, let B be the closed unit ball in Rn,
with a standard orthonormal frame, Fo, at the origin, o. Let y be the space
of smooth Riemannian metrics on JB, with strictly negative curvature and
with smooth boundary, dB, such that the frame Fo is orthonormal in each
metric, and such that dB is always the unit sphere about o. We give the
space y the C2 topology. Suppose that X satisfies (A). Suppose that x £ X,
and λ > 0 is such that the ball N(x, λ) is compact. Given any orthonormal
frame, F, at #, let e : B —> N(x, λ) be the composition of a dilation by
a factor of λ on W1 with the exponential map sending Fo to F. Thus, e is
a diffeomorphism, so we can pull back the metric on X to get a metric on
B. This gives us a point of y. We shall say that X has bounded geometry
up to scale if there is a compact subset, S C y , such that for all x G X,
we can choose λ(x) > 0 such that N(x,λ(x)) is compact, and such that for
some frame at #, the the point of y constructed as above always lies in
S. (Note that we are free to choose λ(x) as small as we like. However, the
sectional curvatures at the origin of metrics in S are all bounded away from
0. Thus, if X(x) is small, the scaling factor forces the curvature at x to be
large. Similarly, if the curvature at x is small, then there must be a large
compact metric ball centred on x.) We leave as an exercise the fact that this
property implies properties (B) and (C).

As remarked earlier, one motive for studying incomplete manifold might
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be to gain some further insight into the geometry of the Weil-Peterssen met-
ric on the Teichmuller spaces. Wolpert [W2] shows that this is geodesically
convex. As an example, he considers the case of once-punctured tori. In this
case, the moduli space is a 2-dimensional Riemannian orbifold with two cone
singularities (orbifold points), and a cusp singularity (with the cusp point re-
moved), of the type obtained by spinning the graph of f(x) = x3, x > 0 about
the x-axis. It follows that the universal cover (i.e. Teichmuller space) in this
case satisfies axioms (A) and (B) (see Chapter 2). For higher-dimensional
spaces, the situation becomes more complicated. The asymptotics of the
curvature tensor have been studied by Trapani [Tra]. It appears that in
general property (B) fails. However, one might still hope for some modifi-
cation of the hypothesis (B), for example, to take account to the directions
of the tangent 2-planes along which the curvature blows up, sufficient to
recover an ideal sphere analogous to Thurston's compactification.

In general, incomplete simply connected manifolds of negative curvature
seem to have received little attention. Without some strong constraints on
the curvature, they can behave in ways quite unlike Hadamard manifolds.
For example, Hass [Ha] gives an example of a negatively curved metric on a
3-ball which contains a closed geodesic in its interior. This phenomenon is
not possible in dimension 2, nor with constant curvature in any dimension.
It might be interesting to explore further conditions under which this sort
of behaviour would be prohibited.

2. Examples.

In this chapter we give some examples of the kind of incomplete manifolds
we are considering. These particular examples have been chosen principally
to illustrate the assertions made in the introduction. We begin with some
manifolds satisfying properties (A) and (B).

Suppose —oc < a < b < oo, and that / : (α, b) —> (0, oo) is a smooth
function. Let t be an arc-length parameter along the graph of /, graph(/) C
(α, 6) x (0, oo). Given t £ graph(/) write p(t) G i U {oo} for the length
of the tangent at this point to the intercept with the x-axis. (Figure 2.)
We take the sign of p(t) to be the same as that of df/dt. We may form
a surface of revolution, S, by spinning graph(/) about the x-axis. Now, S
has two orthogonal foliations: one by generators of S which are intrinsically
geodesic, and the other by circles of curvature c(ί) = l/p(ί) We see that S
has Gaussian curvature equal to

dt p2 \dt J f dt2'

Thus, for S to non-positively curved, we need that / be convex. Such a
surface, 5, has two topological ends corresponding to the ends of the interval
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(α, b). We see that the end corresponding to a will be complete if and only
if a — —oo, or else a > — oo and f(x) —> oo as x —>> α. We call such an end
a tube. If we have a > -oo and /(x) -> 0 and ^{x) -> 0 as a; -» α, then we
call the end a cusp. If 5 satisfies property (B), we see that it is necessary
(but not sufficient) that either both the ends of S be tubes, or that one end
be a tube, and the other be a cusp.

Figure 2.

As an explicit example, consider the graph of f(x) = x@ for some β > 1,

defined on the interval (0,oo). We have ~ y ^ y 0 ( ^ ) = ~β(β - l)x~2 Now

x/t —> 1 as t —> 0, and so the curvature of S blows up like —1/t2 as we

approach the cusp point at 0. We see that S satisfies (Al) and (B), and so

its universal cover, X — S satisfies (A) and (B). The metric completion X of

X is obtained by adding a single point, p, at the origin 0. Thus, under the

natural inclusion i : X —> Xc, the point p maps to an ideal point t(p) G Xj.

The remaining ideal points can be thought of as the endpoints of the geodes^

generators of X, as t -> oo. Thus, the set Xf of these remaining ideal points

has naturally the topology of an open interval. This is compactified into the

circle, X/, by adding the point i(p).

Suppose, more generally, that / : (0, 6) —> (0, oo) is convex, and that

f{x) -+ 0 and £ ( z ) -> 0 as x -» 0. Then μ = l i m ^ ^ ft(t) G (0,1] is well

defined. (Thus μ — 1 if b < oo.) Let S be the surface of revolution, and

X — S the universal cover. We may coordinatise X using a radial coordinate

θ eR and an arc length coordinate t G (0, oo). In this way, 5 is the quotient

of X by the map [(£, θ) f-> (£, θ + 2π)]. As before, Xc is formed by adjoining

the arc {(oo, ί ) | ^ G K } , and then taking the one-point compactification with

the point 0 at the origin. Let lθ be the geodesic generator {(t,θ)\t G (0, oo)}

of X. The total Gauss curvature of the sector of X lying between lθl and

lθ2 may be calculated as C(θ0) — -/o°°(^o/) \jl£) dt — —μθ0 where θ0 —

θ2 — 0i- Applying Gauss-Bonnet, we find that the ideal points (oo,0i) and

(oo, 02) can be joined by a bi-infinite geodesic in X if and only if C(θ0) < —π
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i.e. if and only if θ0 > π/μ. Now, μ < 1, and so X cannot have the visibility

property. Note that % -> 1 as t -> oo, and so k(t) = ± ( ^ - l) = o(l/t2).

Thus Property (C) fails in this case.
By giving similar consideration to the case where both ends of S are tubes,

we see that no surface constructed in this way can satisfy all of properties
(A), (B) and (C).

The surfaces of revolution just described are a special case of the following
more general construction.

Suppose M is a Riemannian manifold, and that / C R is an open interval.
Let / : / —> (0, oo) be a smooth function. We define a Riemannian metric
on X = M x / by setting

ds2 = dt2 +

where t is arc length in 7, g^ is the Riemannian metric on M with respect
to the local coordinate system {xι)i, and ds is infinitesimal distance in X.

We remark that this is an example of a still more general construction
of "warped products" described in the paper of Bishop and O'Neill [BiO].
In a warped product, the interval / may be replaced by any non-positively
curved manifold. In the paper cited, there is a complete characterisation of
when a warped product is non-positively curved.

In our special case, we can derive the relevant inequalities fairly simply as
follows. Note that X has two orthogonal foliations, one by geodesies of the
form {x} x / for x G M, and the other by codimension-1 submanifolds of
the form Mt = M x {£} for t G /. Each Mt is totally umbilic, with principal
curvatures equal to c(t) = jh\^{t)- In the intrinsic metric, Mt is isometric
to M with the metric scaled by a factor of f(t).

Write A = d/dt for the vector field on X orthogonal to the Mt. Now
suppose that Π is a tangent 2-plane at (#,£) G M x / = X. If Π is orthog-
onal to A(x, £), then Π corresponds to a tangent 2-plane, Π M at x in M.
Write SM (ΠM) for the sectional curvature of M in ΐlM Thus, the sectional
curvature, in Π, of the intrinsic metric of Mt is SM(RM)/ f(t)2!. Applying
Gauss's Theorema Egregium [S], we see that the sectional curvature,
of X in Π is given by

-c^(s M <Π M , -(§) ' ) .

On the other hand, suppose that Π is a tangent 2-plane at (x,t) containing
the vector A(x, t). In this case the sectional curvature, 5(11), of X in Π is

-c
dt c ~ fdt'
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Now, if Y and Z are, locally, any two vector fields everywhere orthogo-

nal to A, then a simple calculation shows that R(A, Y, Y, Z) = 0, where

R is the Riemann curvature tensor. This symmetry implies that each sec-

tional curvature of X at (x^t) lies between — j^ί and J^SMO^M) — c2 =

'S'M(ΠM) — [%j ) for some tangent 2-plane Π M at x in M. In par-

ticular, for X to be non-positively curved, it is sufficient that M be non-

positively curved, and that / be convex. (For more detailed computations

of this nature, see [BiO].)
Examples of this construction are the surfaces of revolution described

above. In this case, we have M — R and / is thought of as a function of
arc-length, t, along graph(/) = /. In such a case, we must always have
4L < i
dt ^ ± -

With this last constraint removed, we can construct examples satisfying
(A), (B) and (C). For example, with M = / = R, and f(t) = e*, we obtain
the hyperbolic plane foliated by horospheres.

For another example, set M — R, / = (0, oo) and f(t) = Ψ with β >
1. Now, the curvature k(t) equals - j ^ ί = -β(β - l)/t2. This case is
qualitatively similar to the surface of revolution of [x ι-»> x&] described above,
except that now, X satisfies (C), and has the visibility property.

As a third example, set Af = R, J = (0,1) and f(t) = t2/(l - t)2. We
see that jfc(ί) = - ± § = -2(2t + l)/t 2(l - tf. Thus -k{t) grows like 1/t2

as t -> 0 and like 1/(1 - t)2 as t -> 1. It follows that X satisfies (A) and
(B). Since it is bounded (has finite diameter), it trivially satisfies (C). Both
the completion, X, and the compactification, Xc , of X may be identified
set-theoretically as (R x [0,1])/-, where (x,0) - (y,0) for all x,y G R.
However, the topologies are different. Thus Xc may be thought of as the
one point compactification of X x (0,1] by adding the point 0 = {(#,0)}/~,
whereas X is noncompact—a base of neighbourhoods of 0 being given by
{(Rx [0, e))/~ I e > 0}. Note that the natural map X —> Xc is a continuous
bijection.

One can construct higher dimensional examples, for example by taking M
to be euclidean n-space En, or hyperbolic n-space W1. Note that M = En,
/ = R and f(t) = eι gives us Mn + 1. So does M = HΓ1, / = R and f(t) =
cosh t.

There are many variations on this theme one can explore. One can also go
on to construct further examples by gluing together examples of this type.
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3. Geodesic convexity.

In this chapter, we aim at establishing properties (1) and (2) for manifolds
satisfying (A) and (B). The following notation is used throughout.

Suppose X is a Riemannian manifold. We write TXX for the tangent space
to X at x, and TX for the total space of the tangent bundle. Given ξ,ζ G
TXX, we write (£, ζ) and \ξ\ = \/(ξ,ξ) respectively for the Riemannian inner
product and norm on TXX. If ξ,ζ φ 0, set Z(ξ,ζ) = cos~1(<^7 C>/Î MCi) G
[0, π] for the angle between ξ and ζ. We write d for the induced path-metric
onX.

We shall use the term "geodesic" in the Riemannian sense of a curve whose
first derivative is parallel. Thus, in terms of the metric d1 a geodesic can
be characterised as a constant-speed path, for which all sufficiently small
subpaths are length-minimising.

3.1. Ruled maps. In this section we take X to be a Riemannian manifold
of non-positive curvature (Al). For x G I , we write κ(x) G [—oo,0] to be
the maximal sectional curvature at x.

Suppose that / = [t0, ίi] C M is a closed interval and J C M. is any interval.
We write int / and int J respectively for the interiors of / and J. Given a
smooth map β : I x J —> X, we shall denote by βu and βι the maps

and

βb = [u^ β(t,u)} :J—+X

where t e I and u e J. Thus βu(t) = βt{u) = β(t,u). We refer to paths

of the form βu and βι respectively as longitudes and transversals. We write

dβ/dt and dβ/du respectively for β*(d/dt) and β,(d/du). We say that β is a

ruled map if for all u G /, βu is a geodesic. Thus §f (£, u)\ = (length βu)/\tι —

<o|
Suppose that for u G J, the geodesic βu is non-constant. We see that the

map \t H* | f (^^) is the first variation of a geodesic along βu. Thus, the

component of | f (t,u) parallel to ^(t,u) is linear in t. Moreover, since X is
non-positively curved, the Riemannian norm of the component orthogonal
to ϋ(£, u) is convex (see the discussion of normalised ruled maps below). It

follows that the map \t H-> | f (t,u) is convex. This is also readily verified

in the case where βu is constant. Integrating, we find that the map [t ι->~

length^] : J —> [0, oo) is convex. In particular:

Lemma 3.1.1. For all t G [to^iL w e have

length βt < max(length βto, length βtχ).
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We shall say that a ruled map β : / x J —> X is non-degenerate if βu

is non-constant for all u G J. In such a case, we say that (t, u) E I x J is
a singular point if /? fails to be an immersion at that point, i.e. if §f (ί, u)
is some multiple of ^(t,u). We say that β is non-singular if there are no
singular points in int I x J. In such a case, the pull back of the Riemannian
metric to int I x'mtJ is also a Riemannian metric of non-positive curvature.
In fact, the curvature at (£, u) is at most κ(β(t, u)). This is Synge's Inequality
(see [S]). In the particular context of ruled maps, it is discussed in a paper
of Aleksandrov [Alek].

By a ruled surface, we shall mean the image, P = β(I x J) C I , of a
ruled map β : I x J —> X, where J is compact, and such that β is non-
singular and injective on int/ x int J. We shall refer to the sets β(I x {u})
for u G J as generating geodesies. We write κP(x) for the intrinsic curvature
of P at x. Thus κP(x) < κ(x) < 0. Of particular interest is the case where
the boundary, cλP, of P is a piecewise geodesic path. This motivates the
following definition.

Definition. By a (non-positively curved) n-gon we mean a surface P,
which is topologically a closed disc with boundary dP, together with a set
V C dP of n points, and a metric, p on P such that p restricted to the
interior intP = P\dP is a non-positively curved Riemannian metric, and
such that each component of dP\V is geodesic.

We shall refer to the points of V as vertices and the components of dP\V
as edges. At each vertex v G V, the adjacent edges meet at some well-defined
angle θ(v) > 0. Since the metric is not assumed to be Riemannian at the
point v itself, it may be possible to have θ(v) = 0 (if the curvature grows
sufficiently fast as we approach υ). In such a case, we refer to v as a cusp.
In all cases we consider, P will be convex, i.e. θ < π for all υ G V. Now, the
Gauss-Bonnet formula tells us that

θ{v) = (n - 2)π + / κP{x)dω{x),
JP

where κp(x) is the curvature at x G P, and dω is the area element. Note
that we must always have n > 3.

By talking about ruled surfaces, we avoid having to worry about the
technical complication of dealing with singular points; although intuitively
we would expect such points to work in our favour since they concentrate
negative curvature. The fact that singular points do not cause any real
problems has been made precise by Aleksandrov [Alek].

Another another type of restriction we shall want to place on ruled maps
is the following.
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We say that a non-degenerate ruled map β : I x J —> X is normalised if:
(Rl) for all u E J, the longitude βu = [t »-» β(t,u)] is a geodesic param-

eterised with respect to arc-length (i.e. ^(t,u) — 1 for all (t,u));

and

(R2) for all (t, u) E / x J, we have

Thus, for a fixed u, the map 11-» |^(ί, tm is a Jacobi field along the

longitude βu. We write J(t) — |^(ί, n) . From the Jacobi field equation [S],

we know that, except where it vanishes, J(t) is smooth in t, and that

ή2 T

— (t)>-κ(β(t,u))J(t).

Suppose that λ : / —y [0, oo) satisfies X(t) < —κ(β(t,u)) for all t E / =
[to,ti]. The following is a simple consequence of the above differential in-
equality.

Proposition 3.1.2. Suppose f : I —> [0, oo) is smooth and satisfies
ξί( t ) = λ(ί)/(t) for all t E J. If f(t0) - J(t0) and ft(t0) < ft (ί0)
/(<) < J(<) /or α// ί E /.

Corollary 3.1.3. Suppose f : / —> [0,oo) is smooth and satisfies ^(t) —
λ(t)f(t) for all t E /. If f(t0) = J(t0) and f(tx) = J(tλ), then f(t) < J(t)
for all tel.

Of particular interest will be the case where λ has the form

\(t) = l/K2(t + h)2

for t > 0, and K,h > 0 fixed. The solutions of ^(t) = \(t)f(t) have the
form (ί + h)ι+μ and (t + h)~μ where μ = (>/l+4iί 2 ) - 1 > 0. In particular,
if /(0) = 1 and f (0) = 0 we have the solution

We shall refer to this later (Lemmas 3.4.1 and 6.1.1).
For the proof Lemma 3.4.1, we will need to describe a process of "normal-

ising" ruled maps.
Suppose that a : I x J —> X is a non-degenerate ruled map, where now

/ = [t>0, Vι\. We are looking for a subset S C IRx J and a map p : I x J —> S
with the following properties:

(Nl) p is a smooth diffeomorphism of / x J onto S.
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(N2) For all u G J, the set S Π (R x {u}) is a closed interval of the form

(N3) For all u G J, the map p\(I x {u}) sends / x {u} linearly onto
[qo(u),qi(u)] x {u}.

(N4) The map β = a o p~ι : S —> X is a normalised ruled map (i.e. it
satisfies properties (Rl) and (R2) above.)

We see that S has the form S — {(t,u) G R x J | qo(u) <t< <Zi(̂ )}, where
qo,qi ' J —> R are smooth maps.

As before, we define longitudes, αu, βui and transversals α v, /?*, by αv(?x) =
αM(υ) = α(v,n) and ^(w) = βu(t) = β(t,u). For i = 0,1, set 7̂  = α^ :
J —> X, and σ̂  = [u >-> {qi(u),u)] : J —>• 5. Thus, 7< — βoσi. We see that

Φ w x dqi( xdβ( f ,, dβf , , x

and so

Note that ^{σ^u)) is the unit tangent vector ^(w) = {^f) ^(^uu) t o

the geodesic αu, where Z(ιz) = lengthαM = length^.
Now, suppose that we are given α, and want to construct S and p, and

hence /?. We can obtain the functions q^ up to an additive constant, by
integrating the quantity ( ^ Ή i & f a ) ) . Note that -^(q^u)-qQ(u)) = £(ίi),
and so we can arrange that qι(u) — qo{u) = Z(n) for all u (Ξ J. This, then,
defines the set 5 C R x J, and hence determines the map p : I x J —» 5.
One verifies that the map β = α o p" 1 satisfies properties (Rl) and (R2) as
required.

3.2. The space of geodesies. For the moment, we can take X to be any
Riemannian manifold. Let (X,d) be the metric completion of (X,d). Since
(X, d) is a path-metric space it follows that (X^d) is a path-metric space.
We claim that every point of X\X is accessible by a smooth path of finite
length:

Lemma 3.2.1. Suppose y G X\X; then there is a smooth path β : [0,1] —>
X so that β(0) = y, j9((0,1]) C X and lengthβ < oo.

Proof. Certainly, y is accessible by a rectifiable path of finite length in X,
and we may use local convexity to approximate it by a smooth path. D

Now, write path(X) for the set of all paths from [0,1] to X. Given α, β G
path(X), write

dsupfaβ) = m<ιx{d{a(t),β{t)) \t G [0,1]}.
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Thus dsup is a metric on path(X). We see easily that:

Proposition 3.2.2. (path(X),ύίstφ) is a complete metric space.

We write path(X) C path(X) for the subspace of paths lying entirely in
X.

We define the endpoint map

π : path(X) —>X xX

by π(β) = (/?(0),/3(l)). Clearly π is continuous.
Let geod(X) C path(X) be the subspace of those β G path(X) such that

either β is constant, or else /3((0,1)) C X and /3|(0,1) is a constant-speed
geodesic. Let

geod(X) - geod(X) Π path(X) = geod(X) Π ττ~ι{X x X).

Now, let us suppose that X is non-positively curved (Al). In this case,
the map π : geod(X) —> X x X is a local homeomorphism:

Lemma 3.2.3. Suppose b G geod(X). Let π(/3) = (x,y). Then, there are
neighbourhoods U of x and V of y in X, and a neighbourhood W of β in
geod(X) such that π\W : W —> U x V is a homeomorphism.

Proof. This follows, exactly as in the complete case, using the Jacobi field
equation, and the implicit function theorem. D

We see that, if X has dimension n, then geod(X) is a 2n-dimensional
manifold, and inherits a smooth structure from X x X.

Suppose that 7 : J —y geod(X) is a smooth path. By definition, the
paths 7i = [u M- j(u)(i)] : J —> X for i — 0,1 are smooth. We write
7 : [0,1] x J —> X for the map given by j(t, u) = j(u)(t).

Lemma 3.2.4. The map 7 is smooth.

Proof. From the implicit function theorem, exactly as in the complete case.
D

Thus, 7 is a ruled map. Note that j t — 7* according to our previous
notation. Applying Lemma 3.1.1, we see that 7 is a rectifiable path in̂
(path(X),<iSUp). In fact, if J' C J is any subinterval, then

length(7|J/) < max(length(70|J'),length(7l|J')) .

Since (path(X),o?swp) is complete, we have the following:
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Lemma 3.2.5. Suppose 7 : (0,1] —> geod(X) is smooth, and lengthη { <
00 for i = 0,1. Then, 7 extends (uniquely) to a map 7 : [0,1] —> path(X).

Suppose, in such a case, it happens that 7(0)((0,1)) C X, so that 7(0)|(0,1)
must be geodesic. Thus, by definition, 7(0) G geod(X). Our aim in the next
section is to show that this is always the case if X satisfies axiom (B), and
7(0) is non-constant.

3.3. The path-lifting property. Suppose that X is non-positively curved

(Al) and satisfies:

(B) For all a G X\X, there is some K > 0 and a neighbourhood U of a in
X such that for all x G X Π U we have κ(x) < — l/K2d(x, a)2.

We aim to show that π : geod(X) —> X x X is a covering map. A similar
idea can be found in [AlexB]. This result will be based on the following
path-lifting property.

Lemma 3.3.1. Suppose 7 : [0,1] —> path(X) with τ((0,l]) C geod(X),
and 7|(0,1] smooth. For i = 0,1, write 7; for the path [u f—>> j(u)(i)] :
[0,1] —> X. Suppose that for i = 0,1, we have length 7̂  < 00. Then

7 ( 0 ) e g e o d ( X ) .

Proof By definition, any constant path lies in geod(X), so we can suppose
that 7(0) is non-constant. As remarked at the end of the last section, it
suffices to show that 7(0)((0,1)) C X. Without loss of generality, we can
suppose that η(u) is non-constant for all u G [0,1]. Define a : [0,1]2 —> X
by a(v,u) — j(ύ)(υ). Thus, a : [0,1] x (0,1] is a non-degenerate ruled
map. Now, the normalising procedure of Section 3.1 gives us a map p :
[0,1] x (0,1] —> Rx (0,1] so that β — aop"1 : SO —> X is a normalised ruled
map, where SO = p([0,1] x (0,1]) = {(t,u) G R x (0,1] | qo(u) < t < qλ(u)}.
We have 7,|(0,1] = β o σ{ where σ^u) = (qi(u),u). Thus, for all u G (0,1],

dji dqi dβ dβ ( ..

and so
dqτ
— (1

We see that /0 ^(u) du < length7^ < 00, and so qi(u) tends to a limit,

9i(0), as u tends to 0. Also, since l(u) — lengtha u — q±(u) — qo(u) for

all u G (0,1], and since a0 = 7(0) is non-constant, we see that qo(0) <

9i(0). Let S = {(t,u) E K x [0,1] I qo(ύ) < t < qι(u)}. We may extend

p to a homeomorphism p : [0,1]2 —> S mapping [0,1] x {0} linearly to

[9o(O),gi(O)] x {0}. Thus, β extends to a map β = a o p~ι : S —> X. As
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before, we define longitudes, βu, and transversals, βt, by βu(t) — /?*(?/) —
β(t,u). We want to show that βo((qo,qι)) = τ(0)((0,1)) C X.

Suppose, for contradiction, that there is some t E (#o?<Zi) with 0(£, 0) E
X\X. For notational convenience, we shall assume that t = 0, i.e. that
0(0,0) eX\X. Let α = 0(0,0).

Let [/ be the neighbourhood of a in X given by the hypothesis (B) above.
We can find t0 > 0 and u0 > 0 such that [—ί0, #o]x [0? ̂ o] Q S and 0([—to? *o] x

[0,UQ])QU.

Now, for all (t, u) E 5, we have that

< max
i=0,l du

< max
i=0,l du

The first inequality follows from Corollary 3.1.3 (with A Ξ O ) and the second

comes from the formula for ^(u) given above. In particular, we see that

for all t E [-ίo,£o],

ru

JO
du < max l e n g t h ^ |[0,

i=O,l
< cx>.

Given u E [0,w0], set

ru

h(u) - /
Jo §!<*•> dw.

Thus, h(u) = length(0°|[O,u]) > d(α,0(O,u)). Since the longitude βu is a
geodesic parameterised by arc-length, we have, for all t E [—to,to]

d(β(0,u),β(t,u)) =

and so

d(a,β(t,u)) < \t\ + h(u).

Thus, by hypothesis (B), we have

κ(β(t:u))<-l/K2(\t\+h(u))2.

Fix, for the moment, some u E (0,uo] For t E [—to,ti] set J(t) —

£(t,u) . If J(0) 7̂  0, then J is differentiate at 0. Suppose ^ ( 0 ) > 0,

Then, applying Proposition 3.1.2 on the interval [0,t0] and using the for-

mula given after the Proposition, we find that

J(to) >
2/i

to

h(u)
J(0).



INCOMPLETE NON-POSITIVELY CURVED MANIFOLDS 15

If, on the other hand, ^(0) < 0, then, by symmetry, we get the same lower
bound for J(—10). Thus, in all cases, we get that

J(0).

Thus,

OO
Jo du °' Jo

2μ + lJ0 V h(u)
n ίu° ί in

2μ + 1 70 V M w )

l + μ

— (u)du
du

du

du

μ

2μ
= OO.

Tjί

This contradicts the existence of a e τ(0)((0,1))Π(Z\X). Thus τ(0)((0,1)) C
X, and so 7(0) G geod(X) as required. D

Corollary 3.3.2. The map π : geod(X) —> X x X is a covering map.

Proof. By Lemma 3.2.3, we know that π is a local homeomorphism. Lemmas
3.2.5 and 3.3.1 together tell us that π has the path-lifting property for smooth
paths. The result follows by standard arguments. D

3.4. Properties of geodesies. In this section we shall add the assumption
(A2) that X is simply connected, i.e., altogether we are assuming that X
satisfies hypotheses (A) and (B).

Now, X x X is simply connected, and so by Corollary 3.3.2, we see that
each component of geod(X) maps homeomorphically to X x X under π.
Choose any point x0 £ X, and let geod0(X) be the component of geod(X)
containing the constant path at x0. Let π0 be the restriction of π to geod0(X)
so that π 0 : geod0(X) —> X x X is a homeomorphism. Given x,y G X,
write [x -> y] = πQ1(x1y). We see easily that for all x G X, [x -> x] is the
constant path at x.

Lemma 3.4.1. geod(X) = geod0(X).

Proof. Suppose, for contradiction, that geod(X) Φ geod0(X). Choose any
x G X. Since π : geod(X) —> X x X is a covering map, there is some
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a G geod(X)\geod0(X) with π(α) = (x,x). Thus a ^ [x -^ x]. Without loss
of generality can suppose that x fi α((0,1)). (Otherwise choose a smaller
segment of a and reparameterise.) For each ί E (0,1), the path a meets the
path [x —>• a(t)'\ in α(ί), at an angle different from 0 or π. Thus, as t ranges
through [0,1], the geodesies [x —> a(t)} span a non-positively curved 1-gon,
which is impossible by Gauss-Bonnet (Section 3.1). D

In summary, we have shown:

Proposition 3.4.2. Any two points of X are joined by a unique geodesic
(defined on the domain [0,1]). Moreover, this geodesic varies smoothly in its
endpoints.

Given x,y G X, write [x,y] C X for the image of [x —>> y]. Thus [x,x] —
{x} and [z,y] = [y,x\.

For a fixed x G X: the function p defined by p(z) — length [x —» z] is
smooth on X\{x}. Moreover, any geodesic [x —> y] is orthogonal to the level
sets of p, and so a standard argument of Riemannian geometry shows that:

Proposition 3.4.3. For all x,y G X, the geodesic [x -» y] is, up to
reparameterisation, the unique length-minimising rectifiable path from x to
y. (In particular, d(x,y) — length[x —> y}.)

Now, given x G X and y G X\{x}, we write xtj — d} ) ^ ( 0 ) ? where

a — [x —> y]. In other words, x^ is the unit tangent vector at # along [rc,y].

If 2τ G X\{a;}, write yέ2r = Z(xy,xz) for the angle between xy and xz.

Given the existence and uniqueness of geodesies, the following comparison
theorems follow exactly as in the complete case. Let (E2, d!) be the euclidean
plane,

Proposition 3.4.4. (Angle Comparison Theorem of Aleksandrov). Sup-
pose x,y,z G X are distinct points. Choose x',y;, z Έ E 2 , so that d'(x',y') =
d(x,y), d'(y',z') = d(y,z) and d'(z',x') — d(z,x). Then xyz < x'y'z1,
yzx < y'z'x1 and zxy < z'x'y1.

We refer to x'y'z1 as a comparison triangle for xyz.

P r o p o s i t i o n 3 . 4 . 5 . (CAT(O) i n e q u a l i t y ) . Suppose x,y,z G X are distinct
points. Suppose u G [x,y] and υ G [x,z\. Choose a comparison triangle
x'y'z' in E2 for xyz. Let v! G [x'^y'] and v' G [x',z'\ be the points with
d'(x',u')=d(x,u) and d'(x',υ!) =d(x,υ). Then d'(u'\v') < d{u,v).

We thus say that (X,d) is a αCAT(0)-space". More precisely, a CAT(O)-
space is a path-metric space in which every pair of points may be joined
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by a "geodesic", in the sense of a length-minimising path, and where the
conclusion of Proposition 3.4.5 is satisfied where [x,y] may be interpreted as
any choice of geodesic from x to y. In fact, it follows, in retrospect, that in
a CAT(O)-space, there is a unique geodesic joining any pair of points, and
so [x,y] is uniquely defined. For further discussion of such spaces, see Ball-
mann's article in Chapter 10 of [GH], or the book by Bridson and Haefliger
[BrH],

As a corollary of Proposition 3.4.5, we have the convexity of the distance
function:

Proposition 3.4.6. Suppose /, J C R are intervals, and that a : / —> X
and β : J —> X are geodesies parameterised proportionately to arc-length.
Then the function [(t,u) ι-> d{a(t),β(u))] : I x J —> [0, oo) is convex.

3.5. The completion. Finally in this chapter, we describe the geometry
of the completion (X,d) of (X,d). We are again assuming that X satisfies
hypotheses (A) and (B).

Now, the metric completion of any CAT(0)-space is a CAT(0)-space, so

we see immediately that:

Proposition 3.5.1. (X,d) is a CAT(0)-space.

In particular, every pair of points are joined by a unique geodesic. Recall,
however, that the term "geodesic" is here being used in the metric space sense
of a constant-speed globally length-minimising path. We should therefore
check that this agrees with the notion of "geodesic" already defined in Section
3.2. As before, we write geod(X) for the space of such geodesies.

Note that it's easy to see that a path a G geod(X) is globally length-
minimising, in other words, that lengthα = d(x,y) where (#,y) = π(α). To
do this, choose t G (0, | ] . Since geodesies in X are globally length-minimising
(Proposition 3.4.3), we have that length (α|(t, 1-i)) = rf(α(ί),α(l-ί)). The
observation follows by letting t -> 0. Now, since (X,d) is CAT(O), it now
follows that if α,/3 G geod(X) with π(α) = π(/3), then a — β. (This can also
be verified directly, by a similar limiting argument.) It remains to show that
such paths always exist:

Lemma 3.5.2. Any two points of X can be joined by a path in geod(X).

Proof. Suppose x,y G X. Since every constant path lies in geod(X), we can
suppose that x φ y. By Lemma 3.2.1, both x and y are accessible by smooth
paths of finite length in X. From the geodesic convexity of X (Proposition
3.4.2) and Lemma 3.3.1, we see that x and y can be joined by a path in

geod(X). D
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In summary, we have shown:

P r o p o s i t i o n 3.5.3. For all x,y G X , there is a unique a G geod(X)

with τr(α) = (x,y) Moreover length a — d(x,y). In fact, a is the unique
constant-speed globally length-minimising path in X from x to y.

We can now use the term "geodesic" without ambiguity. As with X,
we write [x -» y] for the unique path in geod(X) joining x to y. We write
[#? y] Q X f° r the image of [x —>> y]. As before, [x, y] = [y, x] and [x, x] = {x}.
Note that for all x, y G X, we have [x, ?/] = {z G X|d(x, z)+d(z, y) — d(x, y)}.

Note that since (X,d) is CAT(O), it follows that the distance function
is convex (cf. Lemma 3.4.6). In particular, geodesies vary continuously on
their endpoints, and so:

Proposition 3.5.4. The map π : geod(X) —> XxX is a homeomorphism.

We remark that if we fix one endpoint, then geodesies vary in a C1 fashion:

Proposition 3.5.5. Given a G X, define fa : X x (0,1) —> X by /α(x, t) —

[a -+x](t). Then fa is C1.

Proof. Clearly, if a G X, then fa is smooth. If a G X \ X , we choose a
sequence of points an G X with an —» α, and check that the derivatives of
the functions fan converge. This can be done by considering Jacobi fields
along [x, αn] (c.f. the case of horofunctions [Hel]). D

4. T h e compactification.

In this chapter, we assume that X satisfies axioms (A) and (B). We shall
describe the compactification Xc — X UX/, where Xj is the "ideal sphere".
Thus, Xj may be thought of, set theoretically, as the union of X° = X\X
and a set, X^° of asymptote classes of geodesic rays. We shall show that Xc

is homeomorphic to a closed ball (Proposition 4.5.2.)

4.1. Geodesic rays. A geodesic ray based at x G X is a path α : [0, oo) —>
X such that α(0) = x, and α((0, oo)) C X, and such that α|(0, oo) is a
geodesic parameterised by arc length.

We know (Proposition 3.5.3) that geodesies are length-minimising in X.
In particular, a must be a proper map.

Suppose α,/3 are geodesic rays. By Lemma 3.4.6, the map

is convex. Thus, if d(a(t),β(t)) is bounded above, then

d(a{t), β(t)) < d(a(0),β(0)) for all t.
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Definition. We say that the rays a and β are asymptotic if d(a(t),β(t))
is bounded as t —> oo.

Clearly this is an equivalence relation on the set of geodesic rays. Note
that:

Lemma 4.1.1. If a and β are asymptotic rays, then the map

is monotonically non-increasing.

Corollary 4.1.2. Two asymptotic rays based at the same point are equal.

Proposition 4.1.3. Suppose that β is a geodesic ray, and x G X. Then
there is a (unique) geodesic ray based at x asymptotic to β.

Proof. For this, we need only the convexity of the distance function (Lemma
3.4.6), and the completeness of X.

For n G N, set ln = d(x,β(n)). Let an : [0,/n] —> X be the geodesic from
x to β(n) parameterised by arc-length. Note that n —10 < ln < n +10. From
Lemma 3.4.6 applied to β and αn, we see that d(a(t),β(t)) < l0 provided
t <n — l0. Thus, if m > n > ί0, then d(an(n — lo),a.m{n — l0)) < 2Z0 Now,
by Lemma 3.4.6 applied to an and α m , we see that for all ί E [ 0 , n - Zo]>
we have d(an(t),am(t)) < -^f-- Thus, for a fixed ί, the sequence (an(t))
is a Cauchy sequence, and so tends to a limit a(t) G X. Now each an is
length-minimising, and so d(a(t)1a(u)) = \t — u\ for all ί , u E [0,oo). Thus
by Proposition 3.5.3, we see that α((0,oo)) C X and α|(0,oo) is geodesic.
For all n > t + l0, we have d{β{t),an{t)) < /0, and so d{a{t),β{t)) < l0. Thus
a and β are asymptotic. D

Now, let Xf° be the set of asymptote classes of geodesic rays. We write
Xj for the set X\X, and define the ideal sphere, Xj, as a disjoint union
Xι = X°! U Xf°. We write I α = I U l / for the compactification of X, and
L : X —> Xc for the natural inclusion. We shall describe the topology on
these spaces in Section 4.3.

Suppose that x e X = X U X*} and that y G Xf°. Lemma 4.1.3 tells us
that there is a unique geodesic ray β based at x and in the class y. We say
that β tends to the point y. Write [x,y] = /?([0,oo)) U {y} C Xc, and refer
to [x, y] as the geodesic joining x to y. Given the existence and uniqueness
of geodesies in X, we have established that:

Lemma 4.1.4. Given (x, y) G Xc x Xc\(Xf° x Xf°)> then there is a unique
geodesic [x,y] joining x to y.

We may extend the notations xtj and yxz to the case where x G X and
y,zeXc\{x}.
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Note that from the proof of Proposition 4.1.3, we see that if z,x E X,
y E Xf°> and yn E [z,y] Π X is a sequence of points tending to y, then the
vectors xyl tend to 5^ in the unit tangent space at x.

If we fix y E Xf°, then the vector field [x ^ xfj] : X —> TX, is C 1 ,
where TX is the total tangent bundle to X. This may be proven using
the convergence of Jacobi fields just as in the complete case. We may also
define a positive-time flow φ : X x [0, oo) —> X along this field. Thus,
φ(x,t) = β(t), where β is the geodesic ray based at x tending to y. As in
the complete case, we have:

Propos i t ion 4.1.5. The flow φ : X x [0, oo) —> X is C2.

4.2. Horofunctions. In this section, we describe the "horofunctions" (or
"Busemann functions") about a point y E Xf0. The results will be used
again in Chapter 6, though, for the moment, it is something of a digression.

Fix y E Xf°. Suppose a E X. Let β be the geodesic ray based at a tending
to y. Given any x E X, the function [t *-> t — d(x,β(t))] is monotonically
increasing in t. Moreover it is bounded above (by d(x,a)). It thus tends
to a well-defined limit ha(x) = limί_>oo(^ — d(x:β(t))). We see easily that
\ha(x)—ha(x')\ < d(x,x') for all x, a;' E X. Thus, ha : X —> E is continuous.
Also, one can show that ha is C2. This follows as in the complete case (see
[Hel]). We refer to ha as a horofunction about y.

To see that ha is at least Cι on X is elementary. For a fixed t, write /*(#) =
t — d{x,β(t)). Thus / : X —> R is smooth on X, and its gradient, grad/ t

at x equals x$t where yt = β(t). From the Angle Comparison Theorem
(Proposition 3.4.4) we can verify that x$t tends to xy as t —> oo. Moreover,
this convergence is uniform on compact subsets of X. Thus / is C 1 , and
grad/(x) = XΊ).

As a consequence, we may deduce that any two horofunctions about y
differ by a constant.

L e m m a 4.2.1. If a,b,x E X, then hb(x) — hb(a) + ha(x).

Proof. From the previous paragraph, we know that for all x E X, we have
grad(/z6 — ha)(x) = 0, and so hb — ha is constant on X. By continuity, it is
constant on all of X. Since ha(a) = 0, we must have hb(x) — ha(x) — hb(a)
as required. D

We remark that we do not really need the differentiable structure on X in
order to deduce Lemma 4.2.1. In fact, it follows from the CAT(0) inequality.
The important observation is that if we have a "long" rectangle in a CAT(0)-
space, then the sum of the two diagonals is approximately equal to the sum
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of t h e two long edges. M o r e specifically, s u p p o s e x, y,z,w E X , a r e a n y four
points, then \d(x,y) +d(z,w) —d(y,z) — d(x,w)\ < ^(d(x^z)2 + d(y,w)2),
where R — mm(d(x,y),d(z,w),d(y,z),d(x,w)). Here xz and yw are the
"short" sides. The exact form of the right-hand term of the inequality is
unimportant. We just need to note that if the rectangle is sufficiently long,
while the lengths of the short sides remain bounded, then the first term can
be made arbitrarily small. We leave the reader to work out the details of
this, and relate it to the definition of horofunctions.

Suppose that h is a horofunction about y. We have seen that |grad/ι| = 1
everywhere, and so the level sets of h give us a codimension-1 foliation of X
by C2 submanifolds. Given t e i , write S(t) — Xfλh~ι(t). We refer to S(t)
as a horosphere about y. Let B(t) = X\/ι-1([ί, oo)). Thus B(t) is a closed
convex subset of X with boundary S(t). We call B(t) a horoball about t.

Given a horoball B about y, we may define the nearest point retraction p
of X onto B. Thus, for all x E X, ρ(x) is the nearest point on [x, y] Π B to
x. We see that p(x) = x for all x e B, and ρ(X\B) = S = OB. We have
observed that S is a C2-submanifold. We have

Lemma 4.2.2. The nearest point retraction p\(X\B) : X\B —> S is C2.

Proof. Let h be the horofunction with h(S) = {0}. Apply Proposition 4.1.5,
noting that ρ(x) — φ{x, —h(x)) for all x E X\B. D

4.3. The compactified topology. Choose any basepoint p E X, and let
Tp(X) be the unit tangent space at p. Now each vector in T*(X) determines
the germ of a geodesic emanating from p. We may continue this geodesic
until either we arrive at some point of X°, or until we form a geodesic ray
tending to some point of Xf. Lemma 4.1.4 thus gives an identification of
Xj = X°j U Xy° with T^X). Thus, Xr is given the topology of an (n - 1)-
sphere. This topology turns out to be independent of the choice of basepoint
p E X. Moreover, it may be extended to give Xc the topology of a closed
n-ball. In this, and the next two sections we give an account of this.

The identification X = X U X? C Xc gives us a metric d o n l U l f . We
may extend this to a map d : Xc x Xc —> [0, oo] by setting d(x, x) — 0 and
d(χ, y) = oo when x E Xf° and y E Xc\{x} Given x E X U X°, and r > 0,
we write

N(x,r) = {yeXc\d(x,y)<r}.

If p £ X, write

C(p, x, r) = {yeXc\ d{x, [p, y]) < r}.
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In other words, y G C(p,x,r), if and only if [p, y] meets N(x,r). Clearly
N(x,r) C C(p, x,r). The following is a simple consequence of the CAT(O)
inequality.

L e m m a 4.3.1. Suppose thatp G X and y G Xf°. Given z G [p,y]ΠX, and
r,r' > 07 then there is some w G \p,y]Γ\X such that C(p,w,rf) C C(p, z,r) .

We may now define a topology, τ(Xc?_p)5 on Xc> relative to the point
p £ X. We describe neighbourhood bases for points y G Xc as follows. If
y G X, we take as neighbourhood base the collection {7V(y, e) \ e > 0}. If
y G X°, we take as neighbourhood base {C(p, y,e) | e > 0}. If y G Xf°, we
take as neighbourhood base {C(p, £, e) | x G [p, y] Π X, e > 0}. Note that, in
the last case, by Lemma 4.3.1, we could equally well take as neighbourhood
base {C(p, x,r) | x G [p, y] Π X} for any fixed r > 0. It is easily verified
that these sets form the basis for a topology τ(Xc,p) on Xc Clearly, its
restriction to X agrees with the metric topology. However, its restriction to
X U Xj = X is, in general, coarser than the metric topology. We aim to
show that τ(Xc,p) is independent of p G X. The following lemma will be
used in several places in the rest of this paper.

L e m m a 4.3.2. Given a G Xj, and h,η > 0 ; we can find r > 0 with
the following property. Suppose (y,z) G (Xc x Xc)\(Xf° x ^i°) an^ x ^
iV(α, r) Π X. If rf(α, [y, z]) > /ι? ^Λen y£2r < η.

Proof. By hypothesis (B), we can find i f ,h 0 > 0 such that if d(x,a) < /ι0,
then κ(a ) < —l/K2d(x,a). Suppose hyη > 0. Let r > 0, depending on h
and 77, be as determined below. We can assume that r < h' — min(/ι,/ιo)
Let R = ti -r.

Now let £, y, z be as in the statement of the lemma. For the moment, we
assume that y, z G X U X£. The general case will follow by continuity. We
want that yxz < η.

Since cf(α, [y,z]) > h, we have that x £ [y,z\. Let θ — yxz. We can
suppose that θ > 0. Now, x,y,z are the vertices of a ruled surface ob-
tained by joining x to each point w G [y, z] by a geodesic [#, w]. Thus
P ~ |J{[#, w] I w ^ [Ϊ/J^]} i s a non-positively curved 3-gon. In fact, if q lies
in i n t P = P\dP, then the intrinsic curvature Kp(q) is at most κ(q). By
Gauss-Bonnet, we find that

- / φ)dω(q) < - / κP(q)dω(q) < π,

where dω is the area element of P.
Suppose t G (0, ϋ ) , and w G [y,z] \ {y,z}. Let q(w,t) be the point of

[x,iϋ] with d(x,q(w,t)) — t. (Figure 4a.) Now d(a,q(w,t)) < d(x,a) +
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d(x,q(w,t)) <r + t. Thus -κ(q(w,t)) > l/K2d(a,q(w,t))2 > l/K2{r + t)2.
By the Angle Comparison Theorem (Proposition 3.4.4), we see that the path
traced out by q(w, t) as w moves on [y, z] has length at least θt. Thus,

π > - / κ(p)dω(q)
Jp

Γo K2(r

where f(s) — s — log s — 1. Now f(s) -> oo as s -> 0, and so if r/h! is
sufficiently small, we have θ < πK2/'f(r/h!) < η as required.

To deal with the case where y G Xj° and z E X U X°, choose a sequence
of points yn G [y, 2 J Π J with yn —>• y. As observed in Section 4.1, we have
xytt -» ί^, and so the general case follows by continuity. D

Proposition 4.3.3. The topology τ(Xc,p) is independent of p E X.

Proof. Suppose p,p' G X. Certainly τ(Xc,p) and τ{XC')p
l) agree on X. We

thus want to show that for all y G X/, the neighbourhood bases with respect
to p and p', as described above, are equivalent.

Suppose, first, that y G Xj°. Let / = d(p,pf) and suppose r > 0. Given
x G [p, y] Π X, we want to find x' G [p;,y] Π X with C(p',x',r) C C(p,x,r).
By Lemma 4.3.1, we have 2 G [p,y] so that C(p,z,r + 21) C C(p,x,r). By
Lemma 4.1.1, we can find rr' G [p7,y] with d(z^x') < I. lΐ w E C(pr,x',r)
so that d(^ ;, \p',w]) < r, then the CAT(O) inequality, applied to the trian-
gle wpp'', tells us that d(x', [p,iϋ]) < d(rr7, [p',tu]) + d(p,pf) < r + I. Thus
rf(2r, [p, ty]) < (r + /) + d(z, x1) < r + 2/, and so w G C(p, 2r, r 4- 2/). We have
shown that C(p\x',r') C C(p,x,r) as required.

Now suppose that y E Xj. Given 6 > 0, we want to find e; > 0 so
that (7(y,y, 6r) C C(p, y, e). We can assume that e < d(y,p'). Let /ι0 =
<i(y, [p,jp']) and /z = min(/ιo,e). Lemma 4.3.2 gives us some e' > 0 such that
if x G 7V(y, e ' ) Π J and (α, 6) G ( X c x Xc)\ft°° x ^ Γ ) . t h e n d(v, [a, b]) < h

or axb < π/3. Now suppose that 2 G C(p',y,e'), so that there some x G
[p;,z] Π N(y,ef) Π X. Since d(y, [p,p;]) > /*, we have p i p ' < π/3. Thus
pίjz > π - π/3 = 2π/3 and so d(y, [p, 2:]) < h < e. Thus Ĵ  G (7(p, y, e). We
have shown that C(p', y, e;) C C(p, y, e). D

We shall write r(Xc) for the topology thus defined on Xc. The following

is easily verified.
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Propos i t ion 4.3.4. The natural inclusion L : X —> Xc is continuous.

Here, and in the rest of this paper, we adopt the convention that X has
the metric topology, whereas X U Xj has the subspace topology induced
from r(Xc)'

It is not very hard to see that (Xc, τ(Xc)) ι s compact hausdorff. We shall
not give a direct proof here, since we show, in the next two sections, that it
is homeomorphic to a closed n-dimensional ball.

4.4. Starlike sets. Let En be n-dimensional euclidean space, and let 0 G En

be any point. We identify the unit tangent space TjE71 with the unit sphere
Sn-χ. We may identify En with (Sfn~1 x [0,oo))/~~, where (f,0) ~ (C,0)
for all ξ,ζ G 5 n ~ 1 , otherwise equivalence classes are single points. We may
identify the compactified space Eg with (S'n~1 x [0, oo])/~. We write (ξ,t)
for the —class of (ξ, t). Thus, 0 = (ξ, 0) for all ξ G Sn~ι.

Note that a subset Σ C En is open and starlike about 0 if and only if
it has the form {(f,ί) | 0 < t < f(ξ)}, where / : S71'1 —> (0,oc] is lower-
semicontinuous. We write

Thus, Σc is also starlike about 0, and a subset of the closure of Σ in Eg.
Write Σ 7 = Σ C \ Σ = {(£,*) G Eg | * = /(£)}• (Note that this notation is
consistent with that previously defined if Σ = En — X ) We put a topology
τ{Σc) on Σc as follows. We demand that the subspace topology on Σ
induced from τ(Σc) agrees with that induced from E n . If (ξ,£) G Σj , we
take as a base of neighbourhoods the collection {D(U,u)} where

D(U, u) = {(ζ,v)eΈc\ζ€U,υ>u}

and U ranges over all neighbourhoods of ζ in ζ, and u ranges over the
interval (0, £). Thus, in general, the topology r(Έc) on Σ,c is coarser than
the subspace topology induced from (Eg,τ(E£)). (Note that τ(E£) agrees
with our previous definition with Σ = En = X.)

Now, if α,6 G (0, oo] and h : [0, α] —> [0,6] is a homeomorphism, with
h(0) = 0, then the map h — [(£, t) κ> (ξ, h(t))] gives a homeomorphism of the
ball JV(O, a) onto JV(O, b) (where JV(O, oo) = Eg). Moreover, if Σ C JV(Q, a) C
En is open and starlike about 0, then so is Σ ; = h(Σ). Also, Σ'c = h(Σc\,
and h\Σc : ( Σ c , τ ( Σ c ) ) —)> (ΣJ7,r(ΣJ7)) is a homeomorphism.

Write Bn for the closed unit n-ball (as a manifold), and write int l? n —
Bn\dBn for its interior.

Lemma 4.4.1. Suppose Σ C En is open and starlike. Then, the pair



INCOMPLETE NON-POSITIVELY CURVED MANIFOLDS 25

(Σc,Σ)7 with the topology given by τ(Σc), is homeomorphic to the pair
(Bn,'mtBn).

Proof. Let E^ = En U {00} be the one point compactiίication of E n . Let
Bo = JV(O,1) C En C E^, be the unit ball about 0. From the discussion
prior to the statement of the lemma, we see that we can assume that Σ C Bo.

Let g : En —> E^ \{0} be the inversion given by g((ξ,t)) = (ξ, 1/t) for
t > 0 and g(0) — 00. Restricted to J30, the map g gives a homeomorphism of
Bo onto Boo = E ^ \ i n t β o Let Ω = g(Σ), and Ω c = ρ ( Σ c ) . Let <9Ω be the
topological boundary of Ω in E^, so that <9Ω C i?oo\{og} and Ω c — Ω U <9Ω.
We define the map p : Ωc\{oo} —> [0, 00) by p(x) = deuc(x, <9Ω), where deuc

is the euclidean distance.
Certainly, p is continuous on Ω, and p(x) = 0 if and only if x G Ω C \Ω.

Moreover, if (ξ,ί), (ξ,^) G Ω with t < u, then p((ξ,t)) < p((ξ,u)). We now
define h : Ω c —^ Eg by /ι((ξ, ί » = (ξ, 1 + p((ξ, ί>)> and h{oo) = oc. Clearly,
h maps Ω c bijectively onto B^, and /i|Ω is a homeomorphism onto int^Boo.
It follows that j = g"λhg maps Σc bijectively onto ΰ 0 , and that j\Έ is a
homeomorphism onto int JB0 Moreover, a simple exercise shows that j is, in
fact, a homeomorphism from (ΣC:τ(Σc)) to Bo. D

With a bit more work, one can make a stronger statement, namely:

Lemma 4.4.2. Suppose that Σ C En is open and starlike. Then, there
is a homeomorphism of (Σ^,Σ) to (Bn,'mtBn) whose restriction to Σ is a
smooth diffeomorphism onto int.5n.

Proof (Sketch). One way to do this is to approximate the map p, from the
proof of Lemma 4.4.1, by a smooth map, p1, with dp'/dt > 0 everywhere
on Ω\{oo}. Define σ : B^oo} —> (0,oo) by p«ξ,σ«ξ,t)))) = t. We
want to smooth out σ on int i?o\{oc} to get a smooth map σ' with dσ'/dt >
0. Given any positive integer n, define σn : S™"1 —> (0,oo) by σn(ξ) =
σ((ξ, 1 + l/n)). We approximate each σn by a smooth map σ'n : S^"1 —>
(0,oo) so that \σ'n{ξ) - σn{ξ)\ < l/2n(n + 1) for all ξ G Sn~ι. In this way,
we arrange that σ'n+1(ξ) < σn(ξ) for all ξ E 5'n~1. By interpolation, we get a
smooth function σ' : B(0,2)\B0 —> (0, oo) so that σ'{(ξ, 1 + 1/n)) = σ;(ξ)
and dσ'/dt > 0. We now extend to a smooth function σ' : int i?oo\{ίX)} —>
(0, oo) so that dσ'/dt > 0 everywhere, and σ;((ξ,t)) = £ for all sufficiently
large t. The identity pf((ξ,σ'((ξ,t)))) — t allows us to define a smooth
map p' : Ω\{oo} —> (0, oo), with dp'/dt > 0. We extend p' to a map
Ωc\{oc} —> [0, oc) by setting p'(Ωc\Ω) = {0}. We now proceed as in
Lemma 4.4.1. It may be verified that the map j ' : Σc —> Bo thus defined
is a diffeomorphism on Σ. D
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4.5. The logarithm map. In this section, we relate the discussion of star-
like sets to our compactified manifold XQ.

Choose any point p E X and then identify the unit tangent space T^{X)
with Sn~1 via an isometry φ : T^(X) —> S71'1. Recall the description of
Eg as a quotient of Sn~1 x [0, oo], given in the previous section. We define
a map log : Xc —> E£ as follows. Set log(p) = 0, and for x E Xc\{p},
set log(rr) = (φ(px),d(p,x)), were d(p,x) = oo for x G Xf°. By Lemma
4.1.4, we see that log is a bijection onto its image Σ>C(X) = log(Xc) Q Eg.
Moreover log|X gives a diffeomorphism of X onto Σ(X) = log(X) C X.
This follows as in the complete case. Thus, Σ is open and starlike about 0.
Also, we have that, set theoretically, (Σ(X))C — ΣC(X)

Lemma 4.5.1. The map log : (Xc,τ(Xc)) —> (Σα(X), τ(Σ c(X))) is a
homeomorphism.

Proof. The fact that log is continuous is a simple consequence of the An-
gle Comparison Theorem (Proposition 3.4.4). We have also noted that
log \X is a diffeomorphism. It remains therefore to show that exp = log"1 :
ΣC{X) —> Xc is continuous at all points of ΣC{X)\Σ{X).

Suppose that y = exp((f,ί)) G Xj. Given r G (0,ί), let
x — exp({ξ,t - r/2)). Thus, x G [p, j/] with d(x,y) = r/2. By the continuity
of exp |X, we can find U C 5'n"~1 which is a neighbourhood of £, such that
iϊξ' G U, then (ξ,t-r/2) G Σ and d(z,exp((ξ,ί - r/2))) < r/2. It follows
that d(y,exp((ξ/,t -r/2))) < r/2, and so exp((ξ',tr)) E C(p,y,r) whenever
V > t - r/2 and (£',£') E ΣC{X). This shows that exp(JD(C7,t - r/2)) C
C(p, ?/, r), and so exp is continuous at (ξ,£).

The case where exp((ξ,ί)) E Xp° is similar. D

Putting Lemma 4.5.1 together with Lemma 4.4.2, we have:

Proposition 4.5.2. The pair (XC,X), in the topology τ(Xc), is home-
omorphic to the pair (£?n, int £?n) where Bn is the unit n-dimensional ball,
and inti?n is its interior. Moreover, we can arrange that the homeomor-
phism restricted to X gives a smooth diffeomorphism onto inti?n.

In particular, we see that XQ is compact metrisable.

5. Continuity properties.

As in the previous chapter, we are assuming that X satisfies axioms (A)
and (B). Our aim here is to investigate how geodesies move as we vary the
endpoints.
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5.1. Lower semicontinuity of the distance function. We extend the
metric d on X = X U X® to a map d : Xc x Xc —>• [0, oo] by setting
d(x,x) = 0 and d(x,y) = oo if a; G X/° and y G Xc\{#} We claim that
this map is lower-semicontinuous on Xc x Xc given the product topology
τ(X c ) x τ(X c ).

Lemma 5.1.1. Suppose that #,y G X U X° and x φy. Given and h > 0,
there exist neighbourhoods U ofx and Vofy in r(Xc) such that ifuEU and
v G V, and (u,υ) £ Xf° x Xf°, then d(x, [u,υ]) < h and d(y, [u,υ]) < h. In
fact, we can find u',v' G [u,υ] with d(x,u') < h, d(y,vf) < h and u' G [u,υ'].

Proof. We shall deal with the case where x and y both lie in X®. The
remaining cases are simpler. We can assume that h < \d(x,y). By Lemma
4.3.2, there is some eλ > 0 such that if a G N(x,βι) Π X and (z,w) G
(Xc x Xc)\(Xf x XF), then either d(x,[z,w]) < Λ, or else zάw < τr/2.
There is a similar constant e2 corresponding to b. Let e = min(el7 β2, Λ). Let
[/ = C(y,x,e) and V = C(rr,?/, e). Prom the definition r(Xc) = ^(^c?^) =
τ(Xc>> y) we see that C7, V are neighbourhoods of #, y respectively in r(X(7).
Suppose that u e U and υ G V, so that d(rc, [u,y]) < e and d(y, [υ,x]) <
e. Choose α G [u,y] Π N(x,e) Π X and 6 G [υ,a;] Π N(x,e) Π X. By the
Angle Comparison Theorem (Proposition 3.4.4), we see that abx < τr/3,
and so abυ > 2τr/3 > π/2. Thus d(y, [α,v]) < Λ So, again by the Angle
Comparison Theorem, we have vάy < π/3 and so uav > 2π/3 > π/2. Thus
cf(α;, [w,υ]) < h. Similarly, d(y, [ιt,υ]) < h.

Note that d(x,y) > d(u,x) + d(x,y) — 2e. Thus if w',^ G [u,v] with
φ ; , ^ ) < /ι and d(y,v') < h then d(u,uf) > d(u,υf) + d(α:,y) - 2e - 2h >
o?(n, v') since e < h and 4/i < d(rc, y). If n ^ -X"/°, this shows that u' G [ι/, υ'].
If u G X/°, choose u0 G [τx,u;] Π [u,υ;] Π X, and apply the same argument
with u0 replacing u. D

Lemma 5.1.2. Suppose x G X?, y G Xf° and z G [α, y] Π X. Gẑ  en /i > 0,
then there is some e > 0 and a neighbourhood V about y in τ(Xc) such that
if u G iV(x, e) and υ eV, then d(z, [it, t;]) < Λ.

Proo/. Take e = /ι/2. By the definition of τ(Xc), the set F = C(x, z, e) is a
neighbourhood of y. Suppose v G V and w G N(x,e). Then d(z, [α;, i?]) < e,
and so by CAT(O) applied to xuυ, we find that d(z, [u, v]) <2e<h. Π̂

Lemma 5.1.3. Suppose x G X U Xj and y G X/° and s G [a;,y] Π X.
Given any h > 07 £Λere are neighbourhoods U of x and V of y in r(Xc) such
that ifueU and υ G V and (w,^) ^ Xj° x Xf°, then d(x, [u,υ]) < h and
d(z, [u,v]) < h. Moreover, we can find u',v' G [u,v] with d(x,u') < h and
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d(z,υ') < h and u' G [u,v'\.

Proof. As with Lemma 5.1.1. Use Lemma 5.1.2. •

Proposition 5.1.4. The map d : Xc x Xc —* [0> °°] is lower semicontin-
uous, where Xc x Xc is given the product topology τ{Xc) x τ(Xc)

Proof. Suppose x,y G Xc If £ = y, then d(x,y) — 0 and there is nothing
to prove. If x G X U X° and y G Xc\{x}, the result follows from Lemmas
5.1.1 and 5.1.3. The only remaining case is where x,y G Xf> and x φ y,
so that d(x,y) = oo. Choose any p G X. Let θ = xpy > 0. Given any
r > 0, let R — rcosec(#/4). Since r(Xc) = τ(Xc,p), by applying the
Angle Comparison Theorem (Proposition 3.4.4), we can find neighbourhoods
U of x and V of y such that if u G f7 and i> G V, then d(p,u) > i?,
d(p, ̂ ) > R, zβv < θ/4 and ypυ < Θ/A. Thus î p^ > θ/2 and so, again by
angle comparison, d{u,v) >r. D

5.2. The Hausdorff topology. We have seen that Xc is homeomorphic to
a ball and hence metrisable. A metric on Xc induces a Hausdorff distance
on the set, ^(Xc), of all closed subsets of Xc and hence a topology on

- Since Xc is compact, it's not hard to see that the topology on on
is independent of the choice of metric on Xc We call this topology

the Hausdorff topology on tf(Xc).
A more natural description of the Hausdorff topology is in terms of uni-

formities (see [K]). Here we shall deal only with bases of uniformities. Given
a set y , write Δ = Δ(Y) C Y x Y for the diagonal {(#, x) \ x G Y}. Given a
subset W C 7 x 7 , write W2 = {{x,y) G Y xY \(3z G Y){(x,z) eW,{z,y) G
W)}. We say that a subset W C Y x Y is symmetric if (#, y) G M̂  whenever
(y, x) G W. A collection Ψ of symmetric subsets of Y x Y form a uniform
basis for Y if the following hold:
(1) Δ C W for all W G Ψ.

(2) For all Wu W2 G ̂ , there is some W3 G >T with W3 C Wλ Π VΓ2

(3) For all W G ̂ , there is some V eW with V2 QW.
Two such bases #i and W2 are equivalent if for all W^ G #1 there is some
W2 G Ψ2 with VF2 C PFi, and for all W2 G Ψ2 there is some W/ G # i with
Ŵ ί Q W '̂ Thus, two bases give rise to the same uniformity if and only if
they are equivalent. (For our purposes, we can define a uniformity as an
equivalence class of bases.)

Given a subset W C Y x Y and a subset A C Y, write WA = {x G

Y I (3y G A)((a:,j/) G W)}. Thus if Δ C W, then A C WA.

A uniform basis ^ on Y induces a topology on Y, where a neighbourhood
of the point x G Y is given by ^{ r} = {W{rz;} | W G W}. This topology
depends only on the uniformity. It is hausdorff if and only if f] Ψ — Δ.
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Note that a metric d on Y induces a uniformity with basis {{(x,y) G
Y x Y I d(x,y) < e} \ e > 0}. This uniformity, in turn, induces the metric
topology. If Y is compact, then this is the unique uniformity of Y inducing
the metric topology.

Suppose that Ψ is a uniform basis on Y. Write ^(Y) for the set of subsets
that are closed in the induced topology. Given W G ^ , write P(W) =
{(A,B) G V(Y)xΨ(Y)\A C l f β , ΰ C WA}, and set P ( ^ ) - {P(W0|W G
Ψ). One checks that P(Ψ) is a uniform basis on &{Y). If (Y, ^ ) is hausdorff
(respectively metrisable) then (if(Y),P(>^)) is hausdorίf (metrisable). We
refer to the topology induced on &(Y) by P(W) as the Hausdorff topology.

Since Xc is compact metrisable, it admits a unique uniformity, and so
ff(Xc) has a well-defined Hausdorff topology. In the next section shall show
that geodesies vary continuously in this topology. We spend the rest of this
section giving an explicit description of the uniformity on XQ>

Fix p G l , and suppose that A C XUXj. Given e > 0, define Ω(p, A, e) C
Xc x ^ c &s follows. The pair (x,y) lies in Ω(p, A, e) if either there is some
o G i with d(α, [p, x]) < e and rf(α, [p, y}) < e, or else if x, y G X U Xj and
d(x,I/) <2e.

Clearly Ω(p, A, e) is symmetric and if 5 C A and 5 < e, then Ω(p, B, δ) C

Lemma 5.2.1. For oW A C X U X^ and e > 0, we have Ω(p, A,e)2 C

Proo/. Suppose (x,y), (y,^) G Ω(p, -A,c). There are three cases.
(1) There are points α, b G A, a0 G [p, x], α l 5 6χ G [p, y] and ί)0 G [p, z] with

d(α, αi) < e and d(6,6^) < e for i = 0,1. Without loss of generality, we
have d(p,δi) > d(p,αi). (Figure 5a).

rz;
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Applying CAT(O) to pbobu we have d(au\p,z\) < 3e. Thus (x,z) E

(2) d(y, z) < 2e and there is some a E A with d(a1 [p, a;]) < e and d(α, [p, y])
e. Applying CAT(O) to pyz, we find that d(a,\p,z]) < 3e, and so
(x,z) G%4,e).

(3) If d(x,y) < 2e and d(y,z) < 2e, then d(x,z) < 4e and so (#,2) E
Ω(p,A,2e).

D

Given r > 0, write τ4(p,r) = X^ U (X\int JV(p,r)), and set W(p,r,e) =
Ω(p,A(p,r),e). Clearly Δ C ^ ( ^ ^ e ) for all r > 0 and e > 0. Let ^ =
Ψv = {VF(p,r, e) I r > 0, e > 0}. Applying Lemma 5.2.1, we see that Ψ is a
uniform base on X c .

Lemma 5.2.2. The uniform base Ψv induces the topology r(Xc) on Xc

Proof. We need to check that if x E Xc> then Ψ{x\ gives a neighbourhood
base for x in τ(X c) = τ(Xc,p).
Case (1): J E I

If 6 < d(X?,[£,p]) and r > d(x,p) + 6, then W(p,r,e){a;} = N(x,e).

Case (2): a; E X7°.

Clearly C(p,x, e) C W(p,r, e){x} for all r > 0 and e > 0. Now, [p , i ]n l f =
{x}. Given any e E (0, d(p, a;)), let y E [p, x] be the point with d(a;, y) = e/3.
Let ί = ί(e) = |oί(Xy, [p, y]) > 0, so δ < e/6. Now, suppose r > rf(p, a;) + 5.
If 2 E VF(p,r, ί){x}, then either cί(z,a;) < 2ί < e, and so z E C(p, a;,e), or
else there is some a E τ4(p, r) with d(α, [p,#]) < ί and d(α, [p, 2:]) < ί < e/3.
Since r > d(p, x) + 5, we must have a E X/, and so d(x, a) < δ + e/3 < 25/3.
It follows that d(x, [p, ̂ ]) < 2e/3 + e/3 = e, and again we have z E C(p, x, e).
We have shown that W(p,r,δ){x} C C(p,a;,e).

Case (3): x E X7°°-
Given r > 0, take y E [p,a;] with d(p,y) = r. Then (7(p,r, e){rz:} C
W{p,r,e){x} for all e > 0.

Conversely, suppose y E [p, ̂ ] Let r = c?(p,y), and let 5 = ί(r) =
|d(Xj, \p,y\) > 0. Suppose e E (0,5), and z E W(p,r, e){x}. Then, there is
some a E A(p, r) with d(α, [p, y]) < e < 5 and d(α, [p, z]) < e. If α E X/, then
d(a, [p,y]) > 5 and so d(α, [x,y]) < e < 2e. If α £ Xj, then d(p,a) > r, and
so again, d(α, [x,y]) < 2e. Applying CAT(0), we find that c?(y, \p,z\) < 3e
and so z E C(p, y, 3e). Thus W(p, r, e){rr} C C(p, y, 3e). D

It follows that the uniform base Ψv defines the unique uniformity on Xc

inducing the topology τ(Xc) In particular, Wp and Wq are equivalent for all
p,qEX.
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5.3. Continuity of geodesies. By Lemma 4.1.4, any pair of points (x,y) G
(Xc x Xc)\{Xj° x Xj°) may be joined by a unique geodesic [x,y].

Lemma 5.3.1. Each geodesic [x,y] is closed Xc-

Proof. We can assume x φ y. Choose p G [x,y]\{x,y}. If zn G [x,y] is any
sequence, it is easily seen that some subsequence converges in r(Xc,p) to a
limit in [x,y]. D

We give tf(Xc) the Hausdorff topology as described in Section 5.2. We
give Xc x Xc the product topology r(Xc) x τ(Xc)

Proposition 5.3.2. The map [(x, y) *-> [x, y]] : (Xc x Xc)\(Xf° x Xf) —>
is continuous.

Proof. We distinguish six cases.

Case (1): x,y G X.

This follows from Proposition 3.4.2.

Case (2): x, y G Xj and x φ y.

Fix some p G [x,y] Π X. Suppose r > 0 and e > 0. Let [/, V be the
neighbourhoods of x, y respectively, given by Lemma 5.1.1, so that if u G U
and υGV, then we can find u\v' G [M,v] with d(x,u') < e/2, d(y,v{) < e/2
and ?/ G [IA, i;']. From the convexity of the distance function (Proposition
3.4.6), we have that [u',υf] C 7V([x,y],e/2) C VF(p,r, e)[x,y] and [a;,y] C
iV([?i',?;/],6/2) C W(p,r,e)[u,υ]. (Figure 5b.) Supposes G [u,u']. Again, by
convexity, we have d(u\ [p, z]) < e/2, and so rf(a;, [p, 2r]) < e. Thus ^ G
C(p,x,e) C W(p,r, e){x}. Therefore, [u,u'] C ^(p,r , e){x}. Similarly,
[v,v'\ C W(p, r, e){y}. We have shown that

[ί/,υ] C W{p,r,e)[x,y]

and

[x,y] C

In other words, [ϊi,v] G P(W(p,r, e)){[x,y]}. Now, the sets

P{W{p,r,e)){[x,y}}

as e —> 0 and r -» CXD form a neighbourhood base for [x,y] in the Hausdorίf
topology on tf(Xc). This deals with Case (2).
Case (3): x = y G X?.

Choose any p G X, and suppose e > 0 and r > 0. By Lemma 4.3.2, there
is some δ0 > 0 such that if α, z G Xc with d(rr, a) < δ0 and ^άp > π/3,
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then d(x, [p, z\) < e. Let δ = min(50,e/3). Suppose u,v
(u,v) (£ X?° x Xf°. We claim that [u,v] C C(p,x,e).

C(p,#,<5), and

x p y

Figure 5b.

To see this, choose oG[p,w] and b G \p:v] with d(a;, α) < δ and d(x, fe) < ί,
and suppose z G [u, i/]. (Figure 5c.) If d(a,z) < 2ί, then d(x,2r) < (5 + 25 < e,
and so 2: E N(x,e) C C(p, x, e). Similarly if d(b,z) < 2δ. Thus, we can
suppose that d(a: z) > 2δ and d(b, z) > 2δ, and so, by the Angle Comparison
Theorem, we have that azb < π/3. Thus, without loss of generality, we can
suppose that uza > | ( π — π/3) = π/3. Thus, again by angle comparison,
uάz < π — π/3 = 2π/3, and so zap > π/3. It follows that d(α, \p,z]) < e,
and so z E C(p, x, e). This proves the claim that [n, v] C C(p, x, e).

Figure 5c.

Now, for all r > 0, we have C(p,x,e) C VΓ(p, r,

symmetric, we have x G W(p,r,e)[u,υ], and so [w

As e -» 0 and r ->• 00, the sets P(W(p, r, e)){{x

base for {x} = [x,x] in the Hausdorff topology on

Case (4): x G X and y G X?.

This is similar to Case (2).

{x}. Since W(p, r, e) is

] G P(W(p,r,e)){{x}}.
form a neighbourhood
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Case (5): x E l J a n d j / E Xf°.

Fix p G [z,y]\{£,y}, and suppose e > 0 and r > 0. Choose z G [p,y] with
d(p, <z) > r. By Lemma 5.1.3, we can find neighbourhoods [/, V about x,y
respectively, such that if u G U, v G F and (w, v) ^ X/° x X/°, then there
exist u',v' G [ίi,?;] with </(#,?/) < e/2, d(y,vf) < e/2 and w' G [ii,v']. Arguing
as in Case (2), we see that [u1>'] C JV([α;,y],e/2), [x,z] C JV([u,υ],e/2),
[11,14'] C C(p, rr,e), [v,v'\ C C{p,z,e) and [z,y] C C(p,v',e/2). Now x,^ G
A(p,r) and so [ϋ,t;] G P(W(p,r,e)){[x,y]}.

Case (6): rr G X and j/ G X/°.

This is similar to case (5). D

6. Visibility.

In this Chapter, we assume that X satisfies properties (A), (B) and (C),
where (C) is the statement:

(C) There exist p0 G X, and Lo,Ro > 0 such that if x G X with d(po,x) >
Ro, then φ) < -1/L2

od{po,x)2.

It follows immediately that if we fix any L G (0, Lo)5 then for all p G X,
there is some R = R(p) such that if d(p, x) > i?, then φ) < —1/L2d(p,x).
We aim to show that, with these hypotheses, X is a visibility manifold, and
that geodesies vary continuously on Xc x Xc-

6.1. Convergence of asymptotic geodesies. Suppose y G Xj°, and h :
X U Xj —> R is a horofunction about y. (Section 4.2.) Suppose 60>&i £
X U X°j with /ι(60) = /ι(6i). Let # : [0, oo) —• X U X? be the geodesic ray
[bi,y]. Thus h(βo{t)) = h(βι{t)) = /i(60) +^ for all ί G [0,oo).

Lemma 6.1.1. d(βo(t),βx(t)) -> 0 as t -> oo.

In fact, we show that d(βo(t),β1(t)) < A(t + λ)~μ where μ > 0 is fixed,
and A, λ > 0 depend on 60 ^nd 6χ.

Proo/. We can assume that bo,bι G X. Join b0 to 6X by a smooth path
7 : [0,1] —> X. Let t0 = max{Λ(7(u)) | u G [0,1]}. Let B be the horoball
X Π /^([ίojOo)), and let 5 be the bounding horosphere X Π h~ι(t0). Let
p : X\int B —> S be the nearest-point retraction. Now, the path h o 7 :
[0,1] —> S joins β(t0) to jS(*i), and, by Lemma 4.2.2, is C2. Thus, without
loss of generality, we can assume that bo^bx e S = h~x(0), and that b0 and
&! can be joined by a C2 path 7 : [0,1] —> S.

Now, for each u G [0,1], let βu : [0,oo) —> X be the geodesic ray based
at j(u) tending to y. Define β : [0,00) x [0,1] —> X by /?(*, ti) = ̂ ( t ) . By
Lemma 4.1.5, /? is C2. Note that h(β(t,u)) = t for all (t,tx) G [0,oo) x [0,1].
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Alsofe(ί,u)=grad/3(Λ(ί,ti)). Thus (f(t,tz), ff(*,ti)) = 0 for all (t,u). In
other words β is a normalised ruled map in the sense of Section 3.1 (except
that it is only C2 and not smooth, though this is more than enough). For
a fixed u, the map \t ι—> §f (£,u)\ is a Jacobi field along βu. Thus the map

[t *-» J(t,u)] is convex, where J(t,u) — |^(t,u) . Given t G [0, oc) write
βt : [0,1] —> X for the C2 transversal path [u \-> β(t,uj\. Thus length/?* =
/0 J(t,u)du. Now, for all ih,^2 G [0,1] the function d(β(t,Uι),β(t,u2))
is monotonically non-increasing in £. Thus, for any fixed subinterval / C
[0,1], the rectifiable lengths of the paths βι\I are non-increasing in t. Now,
length^ IJ) = Jj J(t,u)du. We deduce that for all u G [0,1] the map [t H+
J(t, u)] is non-increasing.

Now choose p e X, and let R — R(p). Thus, if d(p,x) > R, then we
have κ(x) < -l/L2d{p,x)2. Let λ = max{c?(j9,7(?/)) | u G [0,1]}. Thus
t — λ < d(p, /?(£, u)) < t + λ. Without loss of generality, we can assume that
d(p,β(t,u)) >R for all (t,u), and so «(/3(i,w)) < -l/L 2 ( ί + λ)2.

From the formula in Section 4.2, we find that J(t,u) < J(0,u) (1 + | ) ~ μ

where μ = (Λ/1 + 4L2) - 1 > 0. Thus

< length^ = / J(t,ti)Ai

+ jj length7 - A(t + A)"",

where 4̂ = λμlength7 In particular d(βo(t),βι(t)) -> 0 as t -» oo. D

6.2. Bi-infinite geodesies. A bi-infinite geodesic is a geodesic /3 : R —>- X
parameterised by arc-length. We say that β joins x G Xf° to y £ X™
if /3(—t) -> a; and /3(t) -> y as ί -> oo. Clearly the points x and y
are determined by β. We refer to them as the "endpoints" of β. Since
d(β(-t),β(t)) = 2|t|, the rays [t ^ /?(-t)] and [t ι-> /3(t)] for t > 0 are
not asymptotic. Thus the endpoints of β must be distinct. Moreover, the
endpoints determine β up to reparameterisation:

Lemma 6.2.1. Suppose that the bi-infinite geodesies α, β : K —» X have
the same endpoints. Then, there is some t 0 G K suc/i that β(t) = a(t +1 0 ) .

Proof. Let y G Xf° be the common endpoint so that a -+ y and /3 -»
y as ί —> oo. Let /ι be a horofunction about y. There is some t0 G M
such that Λ(α(ί + ί0)) = ^(/?(^)) for all < G R By Lemma 6.1.1, we have
d(a(t + to),β(t)) -> 0 as t -> oo. Also d(a(t + tQ),β(t)) is bounded as
t -> —oo. By Proposition 3.5.6, the map [t t-ϊ d(a(t + t0),/3(t))] is convex,
and thus identically zero. D
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We next want to establish the existence of a bi-infinite geodesic joining
any pair of distinct points of Xj°.

Lemma 6.2.2. Suppose p E X. Then, for all θ > 0, there exists r > 0
such that x,y E X UXj°, then either d(p, [x,y]) <r or else xάy < θ.

Proof. Let R = R(p) and L > 0 be the constants defined at the start of
this chapter. Let r = i?max(l,e2πί/2/l?). Suppose, for contradiction, that
cf(p, [x,y]) > r, and xpy > θ. We form a ruled surface T by joining p to
each point w E [x,y] with a geodesic \p,w] (c.f. Lemma 4.3.2). Thus T is a
non-positively curved 3-gon with vertices p, x and y. By Gauss-Bonnet, we
have — Jτ κ(z)dω(z) < π where dω is the area element of T. As in Lemma
4.3.2, we obtain the contradiction:

,>-jτΦ)du{z)>jR—dt

D

Proposition 6.2.3. // x,y E Xj°, and x Φ y, then there is a bi-infinite
geodesic joining x to y.

Proof. Fix any p E X. Thus xpy > 0. Choose sequences xn E [p, x] Π X
and yn E [p, y] Π X with xn —> x and yn —>> y. By Lemma 6.2.2, we can find
points zn E [xniVn] with d(p,zn) bounded. Since (Xc,τ(Xc)) is compact
metrisable, we can assume that zn converges to a point z E Xc By the
lower-semicontinuity of the distance function (Proposition 5.1.4), we see that
d{p,z) < oo and so z € X U Xj. Thus, by Lemma 4.1.4, we can construct
the geodesies [z,x] and [z, y].

Now choose any α E [z, x] \ {z, x) and b E [^,y]\{^,y} We claim that
d(a,z) + d(z,b) = d(α,6). By Proposition 5.3.2, the geodesic [zn,xn] tends
to [z, a:] in the Hausdorίf topology. Since the metric topology on X agrees
with that induced by τ(Xc), we have, in particular, that d(α, [^n^n]) ~̂  0.
Similarly d(b, [yn,zn]) -> 0. Thus we can find an E [xn^n]

 a n d bn E [yn,zn]
with d(a,an) -+ 0 and d(b,bn) -¥ 0. Now cί(αn,zn) + oί(2:n,6n) = d(αn,6n)
and so the claim follows. Thus, since [α, b] is the unique geodesic from a to
h, we have that z E [α,ί>] It follows that z E X, and [ar,z] U [z, y] gives a
bi-infinite geodesic joining x to y. D

If x,y E X/° and x φ y, we write [x,y] — {x,y} U imaged, where β
is the unique (up to parameterisation) geodesic joining x to y. It is easily
seen that [x,y] is closed in (Xc,τ(Xc)) Note that [x,y] = [y,#]. We write
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6.3. Continuity of geodesies.

L e m m a 6.3.1. Suppose p G X, and κ(p) < 0. Then for all e > 0, there

exists δ > 0 such that if x,y G Xc\{p} with xpy > π — δ, then d(p, [x,y]) < e.

Proof. By continuity of K, we have constants h > 0 and k > 0 such that
N[p,h) C X and κ(z) < -Jfc for all z G N(p,h). Given 6 G (0,/i), let 5 =
min(π/2, kπh2 /4). Suppose that x,y £ Xc\{p} are distinct with d(p, [#, y]) >
e. Let θ = a py. We claim that θ < π — δ. We can suppose that # > π/2. For
the moment, assume that rr, y G X U X/. We form a ruled surface by joining
each w G [x,y] to p by the geodesic \p,w] (c.f. Lemma 4.3.2). Integrating
the curvature, we find that

π - θ > ί k ί^t) dt = kπh2/4 > δ.

Thus θ < π — δ as required.
We can deal with the general case by taking the sequences xniyn G

[x,y] Π X with £ n —>> x and yn -> y, and noting that px n -> p2 and

pyΐi-^vύ- Π

We give X^ x Xc the product topology, and give ^(Xc) the Hausdorff
topology.

Proposition 6.3.2. The map [(x,y) ^ [x,y]] : Xc x ^ c —^ ^ ( ^ α ) is
continuous.

Proof. Note that Lemmas 5.1.1 and 5.1.3 generalise easily to the case where
(u,υ) G Xj° x X/°, with essentially the same proofs. Thus the argument of
Proposition 5.3.2 works to show that the map [(rr, y) ^ [#, y]] extended to all
of X c x X c is continuous at each point (#, y) G (Xc x Xc)\(^/° x -^Γ) I*
thus remains to show that it is continuous at each point (x,y) G Xf° x X/°.
There are two cases.

Case (1): x φ y.

Fix some p G [x,y] Π X with /ς(p) < 0. Suppose e > 0 and r > 0. Let
δ > 0 be the constant given by Lemma 6.3.1, and set η = min(e,rsin(5/4)).
Choose points a G \p,x] and b G \p,y], with d(p,a) — d(p,b) — r + 2e.
Let [/ = C{p,a,η) and V = C{p,b,η). If u e U and υ G V, then by the
Angle Comparison Theorem (Proposition 3.4.4), we find that xpu < δ/2
and ypυ < δ/2. Thus upv > π — δ and so d(p,[u,υ\) < e. Thus, there
is some q G [u,υ] with d(p,q) < e. If u G X/°, then [p, u] and [g, ΪX] are
asymptotic, and so, since d(α, [p, u]) < 77 < e, we can find w; G [#,u] with
<i(β? ̂ 0 ^ 2e. If u G XUX°, we can apply The Angle Comparison Theorem to
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find such a uf. Similarly, we can find υ' G [g, v] with d(b, υ') < 2e. Note that
d(p, υ!) >r and d(p, v') >r. By convexity of the distance function, we have
[u',υ'] C N{[a,b],2e) and [α,6] C ΛΓ([τi',ι/],2e), Also [x,a] C C(p,u',2e)
and [y, 6] C C(p,ΐ/,2e). If z G [ΊΛ, ix'], then by angle comparison, applied
to zpg, we see that d(u',\p,z]) < 2e, and so d(a,\p, z]) < 4e. This shows
that [u,uf] C C(p,α,4e). Similarly, [υ,υ;] C C(p, 6,4e). Since a,b,u',v' G
A(p, r), we have that [x,y] C W (̂p, r,4e)[iA, υ] and [u, υ] C W(p, r, 4e)[ί/, υ].
In other words, [u, v] G P(W(p, r, 4e)){[x, y]}. As e -> 0 and r -> oo, the sets
P(W(p,r, 4e)){[a;,y]} form a neighbourhood base for [x,y] in the Hausdorίf
topology on

Figure 6.

Case (2): x = y.

Choose any point p E X. Suppose p E X. Suppose r 0 > 0 and e > 0.
Let q G [p, x] be the point with d(p,q) = r0. By the continuity of the
logarithm map (Section 4.5), there is some 0 > 0 such that if q' G X U Xj
with d(p,q') = r 0 and gpg7 < 20, then g; G N(q,e). Thus if z G Xc with
cί(p5 ^) ^ "̂o a n d xpz < 20, then z G C(p, g, e).

Given 0 > 0, and p G X, let r > 0 by the constant given by Lemma 6.2.2.
Choose any η > 0 and let i? = max(r0 + 4ry, r + 5ry, 77 cosec 0). Let w G [p, y]
be the point with d(p, w) = r. Thus, by angle comparison, if u G C(p, iϋ, η)
then y m < 0.

Now suppose that u:υ G C(p,w,η). Choose n 0 G [p, u] and υ0 G [p,υ]
with d(w,Uo) < η and d(w,v0) < η. Suppose z G [u,υ]\{u,v}. If u E X/ °
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then [uo,u] and [z,u] are asymptotic, and so we can find uλ G [uo,u] and

u2 E [zju] with d(uι,u2) < η (Lemma 6.1.1). If u E X°n take ux = u2 — u.

Similarly, we find υλ E [vo,v] and v2 E [z,υ] with (/(^i,^) < ?̂ (Figure 6.)

Thus

λ) - d(z, ux) - d(z, vx)

>d(p,uo)+d(p,υo) + (d(uo,u1)+d(vo,υ1) -d(u2,v2)) - 2η

>2d{p,w)-8η,

and so d(p, z) > d(p, tϋ)—iη > max(r0, r+η). Since z is arbitrary, we see that

cf(p, [u, v]) > r + 77. Given this, we see in particular that d(p, [z, u2]) > r + η

and so cί(p, [^,^i]) > r. Thus zpiix = zpu < θ. Since also xpu < θ we have

#P^ < 2Θ. Since d(p,z) > r, it follows that z E C(p, g,e).

We have shown that if u,?; E C(p,w,η), then [?i,i;] C C(p,q,e). We

deduce that [n,υ] E ^(VF^rche^llα;}}. As r 0 -> 00 and e -> 0, these sets

form a neighbourhood base for {x} = [a;, #] in the Hausdorff topology on

. •
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THE QUASI-LINEARITY PROBLEM FOR C*-ALGEBRAS

L.J. BUNCE AND J.D. MAITLAND WRIGHT

Let A be a C*-algebra with no quotient isomorphic to the
algebra of all two-by-two matrices. Let μ be a quasi-linear
functional on A. Then μ is linear if, and only if, the restriction
of μ to the closed unit ball of A is uniformly weakly continuous.

Introduction.

Throughout this paper, A will be a C*-algebra and A will be the real Banach
space of self-adjoint elements of A. The unit ball of A is A\ and the unit
ball of 4̂ is 4̂χ. We do not assume the existence of a unit in A.

Definition. A quasi-linear functional on A is a function μ : A -» R such
that, whenever B is an abelian subalgebra of A, the restriction of μ to B is
linear. Furthermore μ is required to be bounded on the closed unit ball of
A.

Given any quasi-linear functional / ioniwe may extend it to A by defining

μ(x + iy) = μ{x) +iμ{y)

whenever x e A and y £ A. Then μ will be linear on each maximal abelian
*-subalgebra of A. We shall abuse our notation by writing 'μ' instead of cμ\

When A = M2(C), the C* -algebra of all two-by-two matrices over C,
there exist examples of quasi-linear functionals on A which are not linear.

Definition. A local quasi-linear functional on A is a function μ : A —> R
such that, for each x in A, μ is linear on the smallest norm closed subalgebra
of A containing x. Furthermore μ is required to be bounded on the closed
unit ball of A.

Clearly each quasi-linear functional on A is a local quasi-linear functional.
Surprisingly, the converse is false, even when A is abelian (see Aarnes [2]).
However when A has a rich supply of projections (e.g. when A is a von
Neumann algebra) each local quasi-linear functional is quasi-linear [3].

The solution of the Mackey-Gleason Problem shows that every quasi-linear
functional on a von Neumann algebra Λί, where M has no direct summand
of Type J2, is linear [4, 5, 6]. This was first established for positive quasi-
linear functionals by the conjunction of the work of Christensen [7] and
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Yeadon [11], and for σ-finite factors by the work of Paschciewicz [10]. All
build on the fundamental theorem of Gleason [8].

Although quasi-linear functional on general C* -algebras seem much
harder to tackle than the von Neumann algebra problem, we can apply the
von Neumann results to make progress. In particular, we prove:

Let Λ be a C*-algebra with no quotient ίsomorphίc to M2(C). Let μ be
a (local) quasi-linear functional on A. Then μ is linear if, and only if, the
restriction of μ to A\, is uniformly weakly continuous.

1. Preliminaries: Uniform Continuity.

Let X be a real or complex vector space. Let T be a locally convex topology
for X. Let V be a T -open neighbourhood of 0. We call V symmetric if V
is convex and, whenever x EV then — x G V.

Let B be a subset of X. A scalar valued function on X, μ, is said to
be uniformly continuous on 5 , with respect to the T -topology, if, given
any e > 0, there exists an open symmetric neighbourhood of 0, V, such that
whenever x £ B, y (Ξ B and x — y EV then

\μ(x)-μ{y)\ < e.

Lemma 1.1. Let X be a Banach space and let T be any locally convex
topology for X which is stronger than the weak topology. Let μ be any bounded
linear functional on X. Then μ is uniformly T-continuous on X.

Proof. Choose e > 0. Let

V = {xEX:\μ(x)\<e}

= μ-1{λ:\\\<e}.

Then V is open in the weak topology of X. Hence V is a symmetric

^-open neighbourhood of o such that x — y G V implies

\μ(x)-μ(y)\ - \μ(x - y)\ < e.

D

Lemma 1.2. Let X be a subspace of a Banach space Y. Let Q be a locally
convex topology for Y which is weaker than the norm topology. Let T be the
relative topology induced on X by Q. Let B be a subset of X and let C be
the closure of B in Y, with respect to the Q -topology. Let μ : B —> C be
uniformly continuous on B with respect to the T -topology. Then there exists
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a function ~μ : C —> C which extends μ and which is uniformly Q-continuous.

Furthermore, if μ is bounded on B then ~μ is bounded on C.

Proof. Since T is the relative topology induced by Q, μ is uniformly Q-
continuous on B. Let K be the closure of μ[B] in C. Then K is a complete
metric space. So, see [9, page 125], μ has a unique extension to ~μ : C —» K
where β is uniformly (/-continuous.

If// is bounded on B then K is bounded and so ~μ is bounded on C. D

L e m m a 1.3. Let X be a Banach space. Let X\ be the closed unit ball of X
and let Xx** be closed unit ball of X**. Let μ : Xι —> C be a bounded function
which is uniformly weakly continuous. Then μ has a unique extension to
~μ: XI* —> C where ~μ is bounded and uniformly weak*-continuous.

Proof. Let Q be the weak*-topology on X**. For each φ e X*

XΠ{xe X * * : \φ(x)\ <l} = {xeX : \φ(x)\ < 1 } .

So Q induces the weak topology on X. So μ is uniformly ^-continuous on

Xλ. Since X t is dense in Xf*, with respect to the (/-topology, it follows from

Lemma 1.2 that ~μ exists and has the required properties. D

2. Algebraic Preliminaries.

L e m m a 2.1. Let B be a non-abelian C*-subalgebra of a von Neumann al-
gebra Λ4, where Λ4 is of Type I2 Then B has a surjective homomorphism
onto M2(C)7 the algebra of all two-by-two complex matrices.

Proof. We have M = M2(C)0C(S) where S is hyperstonian. For each s e S
there is a homomorphism πs from Λ4 onto M2(C) defined by

Clearly, if πs[B] is abelian for every s then B is abelian. So, for some 5,

7rs[B] is a non-abelian*-subalgebra of M2(C) and so equals M2(C). D

Lemma 2.2. Let π be a representation of a C*-algebra Λ on a Hilbert
space H. Let Λ4 = Trjyt]" where the von Neumann algebra Λ4 has a direct
summand of Type I2. Then Λ has a surjective homomorphism onto M2(C).

Proof. Let e be a central projection of Λ4 such that eΛ4 is of Type I2. Since
π[y4] is dense in Λ4 in the strong operator topology, eπ[A] is dense in eλd.
Since eΛ4 is not abelian neither is eπ[^4]. So, by the preceding lemma, eπpl],
and hence A, has a surjective homomorphism onto M2(C). D
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3. Linearity.

We now come to our basic theorem.

Theorem 3.1. Let Λ be a C*-algebra which has no quotient isomorphic to
M2(C). Let π be a representation of Λ on a Hubert space H. Let Λ4 be
the closure of A in the strong operator-topology of L(H). Let μ be a local
quasi-linear functional on π[A\, which is uniformly continuous on the closed
unit ball of π[A] with respect to the topology induced on π[A] by the strong
operator topology of L(H). Then μ is linear.

Proof. We may suppose, by restricting to a closed subspace of H if necessary,
that π[A] has an upward directed net converging, in the strong operator
topology to the identity of H. Clearly π[A] has no quotient isomorphic to
M2(C) for, otherwise, M2(C) would be a quotient of A.

So, to simplify our notation we shall suppose that A = π[A] C L(iT).
Let Λ4 be the double commutant of A in h(H). Let Mλ be the set of all

self-adjoint elements in the unit ball of M. Then, by the Kaplansky Density
Theorem, Ax is dense in Mi with respect to the strong operator-topology of
h(H).

Then, by Lemma 1.2, there exists μ : Mi -» C such that μ is an extension
of μ I A\ and such that μ is continuous with respect to the strong operator
topology. Since μ{Aχ} is bounded so, also, is μ[Mχ].

We know that for each α E i i and each t £ R,

μ(ta) = tμ(a).

We extend the definition of μ to the whole of M by defining

μ(x) = \\x\\μ (jĵ ji *

whenever x E M with ||α;|| > 1. It is then easy to verify that if (αλ) is a
bounded net in A which converges to x in the strong operator topology of
h(H) then

μ(αλ) -*μ(x).

Also, whenever (xn)(n — 1,2..) is a bounded sequence in M, converging
to x in the strong operator topology, then

μ(xn) ->/j(z).

Let x be a fixed element of M and let (αλ) be a bounded net in A which
converges to x in the strong operator topology. Then, for each positive whole
number n,a™ —> xn in the strong operator topology. So μ(άχ) —> ~μ(xn).
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Let 0i,02 be polynomials with real coefficients and zero constant term.
Then, since μ is a local quasi-linear functional,

μ {ΦΛax)} + μ {<f>2(ax)} = μ

Now

Φi(a\) -> <l>i(x

and

in the strong operator topology. So

μ{Φi(x)} +μ{φ2{x)} = μ{0iW + 02(z)} •

Let iV(α ) be the norm-closure of the set of all elements of the form φ(x),
where φ is a polynomial with real coefficients and zero constant term. Then,
since each norm convergent sequence is bounded and strongly convergent, μ
is linear on N(x).

Let Pi,P2? •••Pn be orthogonal projections in M.
Let

1 1 1 r i Ί

x = P i + 2^2 + - + 2^Γ^n + ^ {1 " P i - P 2 - - " P n }

Then (xk)(k — 1,2,...) converges in norm to pi. So pλ is in ΛΓ(x). Then

converges in norm to p2. Similarly, p $,p±, ...pn and 1 — p\ — p2 — ••• — Pn
all in N(x).

Let ι/(p) = ~β(p) for each projection p in M. Then z/ is a bounded finitely
additive measure on the projections of M.

Since Λ has no quotient isomorphic to M2(C), it follows from Lemma 2.2
that M has no direct summand of Type J 2. Hence, by Theorem A of [4] or
[6], v extends to a bounded linear functional on Λί, which we again denote
by v. Prom the argument of the preceding paragraph, ~μ and v coincide on
finite (real) linear combinations of orthogonal projections. Hence by norm-
continuity and spectral theory, ~μ{x) — v{x) for each x G M. Thus μ is
linear. D

As an application of the above theorem, we shall see that when a quasi-
linear functional μ has a "control functional", it is forced to be linear. We
need a definition.
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Definition. Let φ be a positive linear functional in A and let μ be a quasi-
linear functional on A. Then μ is said to be uniformly absolutely continuous
with respect to φ if, given any e > 0 there can be found δ > 0 such that,
whenever b £ Aλ and c £ Aλ and φ((b — c)2) < 5, then \μ(b) — μ(c)\ < e.

Corollary 3.2. Let Λ be a C*-algebra which has no quotient isomorphic
to M2(C). Let μ be a local quasi-linear functional on A which is uniformly
absolutly continuous with respect to φ, where φ is a positive linear functional
in A*. Then μ is linear.

Proof. Let (π, H) be the universal representation of A on its universal repre-
sentation space H. We identify A with its image under π and identify π[*A]"
withal**.

Let ξ be a vector in H which induces 0, that is,

φ(a) = (αξ, £)for each a E A.

Choose e > 0. Then, by hypothesis, there exists δ > 0 such that, whenever
b E Aι and c e Aλ with

then

So μ is uniformly continuous on Ai, with respect to the strong operator
topology of L(i/). Hence, by the preceding theorem μ is linear. D

Theorem 3.3. Let A be a C*-algebra with no quotient isomorphic to M2(C).
Let μ be a (local) quasi-linear functional on A. Then μ is a bounded linear
functional if and only if μ is uniformly weakly continuous on the unit ball
of A.

Proof. By Lemma 1.1 each bounded linear functional on A is uniformly
weakly continuous. We now assume that μ is uniformly weakly continuous
on A\. Let (τr,iϊ) be the universal representation of A. Let M = π[Λ]n.
Then Λ** can be identified with M and A** with M.

By Lemma 1.3 there exists a function ~μ : M\ —> C which is uniformly
continuous with respect to the weak*-topology on Mλ and such that ~β\Aι
coincides with μ\Aλ.

The weak*-topology on Mx coincides with the weak-operator topology of
L(iJ), restricted to Mλ. This is weaker than the strong operator-topology
restricted to Mλ. So ~μ is uniformly continuous on Mγ with respect to the
strong operator topology of L(ff). Thus μ is uniformly continuous on A1
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with respect to the strong operator topology of h{H). Then, by Theorem
3.1, μ is linear. •
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DISTORTION OF BOUNDARY SETS UNDER INNER
FUNCTIONS (II)

JOSE L. FERNANDEZ, DOMINGO PESTANA AND JOSE M. RODRIGUEZ

We present a study of the metric transformation properties
of inner functions of several complex variables. Along the
way we obtain fractional dimensional ergodic properties of
classical inner functions.

1. Introduction.

An inner function is a bounded holomorphic function from the unit ball Bn of
Cn into the unit disk Δ of the complex plane such that the radial boundary
values have modulus 1 almost everywhere. If E is a non empty Borel subset
of <9Δ, we denote by f~1(E) the following subset of the unit sphere Sn of Cn

f~ι{E) = jξ e § n : lim/(r£) exist and belongs to

The classical lemma of Lόwner, see e.g. [R, p. 405], asserts that inner
functions /, with /(0) = 0, are measure preserving transformations when
viewed as mappings from § n to 9Δ, i.e. if E is a Borel subset of dA then
I/"1 (£7)| = |£?|, where in each case | | means the corresponding normalized
Lebesgue measure.

In this paper we extend this result to fractional dimensions as follows:

T h e o r e m 1. If f is inner in the unit disk A, /(0) = 07 and E is a Borel
subset of 9 Δ ; we have:

ca.pa{Γι{E))>capa(E), 0 < α < l .

Moreover, if E is any Borel subset of dA with capα (E) > 0, equality holds^
if and only if either f is a rotation or capα(i?) = capα(SΔ).

Moreover, it is well known, see [N], that if / is not a rotation then / is
ergodic, i.e., there are no nontrivial sets A, with f~1(A) = A except for a set
of Lebesgue measure zero. This also has a fractional dimensional parallel.
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Corollary. With the hypotheses of Theorem 1, if f is not a rotation and if
the symmetric difference between E and f~λ(E) has zero a-capacity, then
either capα(£?) — 0 or capα(£ l) = capα(<9Δ).

Theorem 2. /// is inner in the unit ball ofCn, /(0) = 0; and E is a Borel
subset of ΘA, we have:

K{n,a)-1 capα(£?), 0 < a < 1,

and

1 + ( 2 n - 2 ) l o g i

Corollary. In particular, for any inner function f, we have that

Dim {f-^E)) >2n-2 + Όim(E),

where Dim denotes Hausdorff dimension.

Here capα and cap0 denote, respectively, α-dimensional Riesz capacity
and logarithmic capacity. We refer to [C], [KS] and [L] for definitions and
basic background on capacity.

For background and some applications of these results we refer to [FP]
where it is shown that Theorem 1 holds with some constants depending on
α.

The outline of this paper is as follows: In Section 2 we obtain an integral
expression for the α-energy that is used in Section 3, where Theorems 1 and
2 are proved. Section 4 contains some further results for the case n = 1.
In Section 5, we prove an analogous distortion theorem, with Hausdorff
measures replacing capacities. Section 6 discusses an open question and
some partial results concerning distortion of subsets of the disc.

We would like to thank Jose Gale and Francisco Ruίz-Blasco for some
helpful conversations concerning the energy functional. Also, we would like
to thank David Hamilton for suggesting that the right constant in Theorem
1 is 1 (see [H]), and the referee for some valuable comments.

2. An integral expression for the α-energy.

In this section we obtain an expression of the α-energy of a signed measure
μ in Σyv-i (the unit sphere of RN) as an L2-norm of its Poisson extension.
This approach is due to Beurling [B].
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If μ is a signed measure on ΣN_U and 0 < a < N — 1, then the α-energy
(/i) of μ is defined as

(x)dμ(y),

where
/ 1

if a = 0,
if 0 <a<N - 1 .

>t<*

Recall that if E is a closed subset of ΣTV-I, then

(capα(^))~1 = inf{/α(μ) : μ a probability measure supported on E} ,

for 0 < a < N - 1,

log —— = inf{/0(μ) : μ a probability measure supported on E} ,
capo(E)

and that the infimum is attained by a unique probability measure μe which
is called the equilibrium distribution of E.

If E is any Borel subset of Σ^-i, then the α-capacity of E is defined as

capa(E) = sup{capα(if) : K C E, K compact} .

We recall Choquet's theorem that all Borel sets are capacitables, i.e.

capα(£) = inf{capα(0) : E C 0, 0 open} .

As we shall remark later on, for a general Borel set E of Σ^Γ-I, one has

—- = inf{/α(μ) : μ a probability measure, μ(E) = 1} ,

and analogously for the logarithmic capacity.
We first need to obtain the expansion of the integral kernel Φα in terms

of the spherical harmonics. We refer to [SW, Chap. IV] for details about
spherical harmonics; we shall follow its notations.

Let Ήk be the real vector space of the spherical harmonics of degree k in
RN (N > 1). If ak is the dimension of Hk, we have

TV + 2k - 2 (N + k - 3\ r c w ΛAViΛ

α 0 = 1, αi = ΛΓ, ak = . [SW, p. 145]
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If Σ V- L denotes the unit sphere of WN, the space L2(ΈN-ι^dξ) can be de-
composed as

= θ :
fc=O

where dξ is the usual Lebesgue measure (not normalized).
If ξ, η belongs to ΣJV-I, Z*(ξ) will denote the zonal harmonic of degree k

with pole 77, and if {Yf,..., Y^ } is any orthonormal basis of Ή^, we have

[SW, p. 143]
τ n = l

The zonal harmonics can be expressed in terms of the ultraspherical (or
Gegenbauer) polynomials P£ which are defined by the formula

where \r\ < 1, |ί| < 1 and λ > 0.
We have [SW, p. 149], if N > 2,

k=0

-2)/2
(ξ

It is easy to compute the constants Ck^- First, i
measure of ΣJV-I, then

Q>h

/_! denotes the Lebesgue

[SW, p. 144]

while, on the other hand,

CJτv-1

,(7V-3)/2 dt.

Now, the polynomials P^ 2^ (t) form an orthogonal basis of

L 2 ( [- l , l ] , (1 - t2γN-3"2 dt)

[SW, p. 151], [AS, p. 774], and

ιi2 ίN - o x 2 '

k\ {2k + N - 2)Γ

[AS, p. 774]
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where Γ( ) denotes the Euler's Gamma function, and, therefore

2 ak ||p(*-3)/2||-2 (N + 2k-2)2 (N-2\2

CkN ~ ¥k h ~ 16 " L

Hence
N + 2k-2 /N-2

C Γ ^

and
N 2k-2 (N - 2\ (N-2)/2

Γ {) P

The case JV = 2 is slightly different. In this case we can take P% = Tkj

the Chebyshev's polynomials defined in [—1,1] by

Tk(cosθ) = coskθ.

It is known that these polynomials form an orthogonal basis of

L 2 ( [- l , l ] , (1 - t 2 Γ 1 / 2 dί) .

In this particular case, if ξ = eiβ, η = e*ψ, then ξ η = cos(# — φ), and

Z*(0 = - cos k(θ -φ) = -Tk(cos(θ -
7Γ 7Γ

Therefore,

{- , if k > 0,

We can now write down the expansion of the kernel Φa(\x—y\) in a Fourier
series of Gegenbauer's polynomials. Fix, first, ce, with 0 < a < N — 1. If we
denote by g(t) the function

2

then we can express the kernel Φa in terms of g as

η)
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Now, develop g(t) as a Fourier series

/,\ V^ r>(W-2)/2/.\ i II -n(N-2)/2\\ I Γi(N-2)/2\
q(t) = > Qk*k (t) •> w h e r e qk Lrv: = {Q^l )

k=0

and conclude

(1) Φa(\ξ-η\) =
k=0

where gkCk.N — 9k- Hereafter F will denote the usual hypergeometric func-

tion

m=o v cV rn.

where

(u)m = u(u + I)... (« + m - I) =

The polynomials Pfc ~2'/2

 c a n ^g expressed in terms of F [AS, p. 779].

If N > 2,

p("-2)/ 2 ( ΐ ) = A + N - 3\ F ( _ f c > k + N _ 2 . {N _ l ) / 2 . ( l _ ί ) / 2 )

Then,

( i V 2 ) / 2 ) ( " + ^ " 3 ) / - 2; (N - l)/2; (I - *)/2)

Therefore

Jo

F(-k, k + JV - 2; (TV - l)/2; 5)

Using the relationship
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we have

• F(-k, k + N - 2; (N - l)/2; 1 - s) ds .

Term by term integration of the series defining F gives

ί1

/ 5 0" 1 (1 - sY^Fi-k, c; 6; 1 - s) ds = S(α, δ)F(-Jfc, c; a + 6; 1),

where £?(•,•) is the Euler's Beta function. Moreover, it is easy to see that

([AS, p. 556])

Γ(β + 6)Γ(α + b - c + k)
F(-k,c;a + b;l) =

Γ(o + b + k)Γ(a + b-c)

T(a + b) k T(l+c-a-b)

Γ(α + b + k)v ' Γ(l + c - a - b - k) '

and so

(-1)* / β—^l-s^Fί-fe.c fe l - β ) ^
Jo

Γ(α)Γ(6)Γ(l + c - o - 6 )
Γ(o + 6 + *)Γ(1 + c - o - 6 - J b ) '

This gives

and

= Δ
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Therefore,

]

(2) 9 — 9kCk N ~2 aπ

if N > 2. On the other hand, if TV — 2, the k-th Chebyshev's polynomial is
Tk(t) = F(-k, fc; 1/2; (1 - t)/2), (see [AS, p. 779]), and

(p, po) = / (2 - 2t)~^2F(-k, k; 1/2; (1 - ί)/2)(l - t 2 ) " 1 / 2 rfί .

Using the above computations when N — 2, we have that

k)-z π

Γ ( 1 - I + * ) Γ ( Ϊ
Moreover it is easy to see, [AS, p. 774], that

π ,

and also that C ^ = 2 IIP^
Then

and so (2) is also satisfied in this case (N = 2). Therefore we have proved
the following:

Lemma 1. For all N eN, N > 1 and 0 < a < N - 1,

A;=0

where

gk =

Now we can express the α-energy of a measure μ in terms of its Poisson

extension Pμ.
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L e m m a 2. If μ is a signed measure supported on Σ ^ - i , we have:

(i) 7/0 < a < N - 1, then

, α) Γ j / \Pμ(rξ)\2 dξ " dr

with

5 Γ

(ii) 7/m = μ(ΣΛτ_i)7 then

I0(μ) =ωN_ι / /
Jo JΈN-I

m
2 Hr

dξ(l-r2)N~2 —

In particular, if N = 2,

I0(μ) =2* f [
Jo Jo

2π

Proo/. Let | μ * | , A; > 0, 1 < j < ak, be the Fourier coefficientes of μ, i.e.,

Recall that Pμ is defined by

β(rξ)= ί P(η,rξ)dμ(η),

where p(η, rξ) is the classical (normalized) Poisson kernel

1 1 - r 2

p(η,rξ) =

We have [SW, p. 145]

k=0
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Now, PlanchereΓs theorem gives that

Using again PlanchereΓs theorem we obtain that

L
and so if we denote by Λ the right hand side in (i), we have that

Λ = C(N, a) Y 1/4 2 C r2k+*-1 (1 - r

2 ) N - 2 ~ a dr,
hi °̂

and, substituting r2 = t, we get that

A =
a/ a

Γ ( k + N - 1 - -

Note that we have used the known duplication formula for the Gamma func-
tion in the last equality.

On the other hand, by (1),

k=0

and using PlanchereΓs theorem we obtain that

Φa{\ξ-η\)dμ(η) =

fc w? = Λ .

This finishes the proof of (i).

In order to prove (ii) observe that

2

JΣjV-i

m -= ί
-l iΣiv-i

Integrating this equality we have that

Ia(μ)=C(N,a) f
Jo

+ m2 U(a),

m ot-lfΛ ^2\N-2-adξra-ι{l-r2) dr
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where
U(a)= T(N/2)Γ(N-l-a)

Γ ((N - α)/2) T(N - 1 - a/2) '

and hence

= ωN J
1 ί

Jθ JΈN-1

On the other hand,

a(μ)-m2U{a) _ „ Ia(μ) ~'

m
2

dξ(l-r2)N-2y.

o;—>O Q/ a—>0 Cί a—ϊO Qί

= I0(μ) - m2U'(0),

and
1 IT' fN\ Γ 1

U (0) " 2 I f \2J ~ T (7V " 1 ) J '
This finishes the proof of Lemma 2. D

3. Distortion of α-capacity.

We need the following lemmas.

L e m m a 3. Let μ be a finite positive measure in dA, and let f be an inner
function. Then, there exists a unique positive measure v in § n such that
Pμo f = P~ and

v (/""^(support μ)) = v{E>n).

Moreover, if /(0) = 0, then

Proof. It is essentially the same proof as that of Lemma 1 of [FP], but see
Lemma 10 below for further details.

A different normalization is useful; choosing v — (2π/ω2n-ι)ΐ'i one obtai

Pv = -^-Pμof and i/(Sn)

The following is well known
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Lemma 4. (Subordination principle). Let f : Bn —> A be a holomorphic
function such that /(0) = 0, and let υ : Δ —> R be a subharmonic function.
Then

— ί v(f(rξ))dξ<±- ί \(re*θ)dθ.
n - l J§n ^ Jθ

It will be relevant later on to recall the well known fact that, in the case
n — 1, equality in Lemma 4 holds for a given r, 0 < r < 1, if and only if
either v is harmonic in Δ r = {\z\ < r} or / is a rotation. Note also that
there is no such equality statement when n > 1 since in higher dimensions
the extremal functions in Schwarz's lemma are not so clearly determined
(see e.g. [R, p. 164]).

Lemma 5. Let μ be a signed measure on 9Δ ; / an inner function with
/(0) = 0, and v a signed measure on Sn such that

Then

(i) If n — \ and 0 < a < 1, then

(ii) If n > 1 and 0 < a < 1, £Λen

J2n-2+a(^) < K(n,a)Ia(μ)

where

*(n'a) = FF=Ίτf}
If a — 0 and m — μ(dA) = i/(Sn), ^e /ιaυe

The measure v is obtained from Lemma 3 by splitting μ into its positive
and negative parts. Note that for fixed α,

K(n, a) - nl~a/2 Γ (~\ , as n -> oc ,

while for fixed n > 1

C
K(n,a) ~ —^ , as α

a
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Let us observe also that K(n,a) takes the value 1 for n = 1.

Proof. Since \Pμ — ̂ \ and \Pμ\ are subharmonic, we obtain by subordina-
tion, Lemma 4, that if n = 1 and a — 0

Γ
./o

p _ __
" 2π

P - —
μ 2π

and if n > 1, 0 < a < 1, that

(3) jΓ \PJdζ=(J£-) jf \Pμ(f)\2dξ<^-Jo \Pμ\
2dθ.

In the first case, we obtain

by integrating with respect to 2πdr/r and applying Lemma 2, part (ii).

In the second case, using Lemma 2, part (i), and Lemma 4 with v = |PA

we have that

/2n-2+α(^) - C(2n, 2n-2 + a) ί (I
Jo u s n

C(2n, 2n - 2 + α)

,.2n-2+α-l

( 1 - r 2 ) "

< C(2,α)

2π

= K{n,a)Ia(μ),

where

Finally, since u(§>n) = m,

I m
dζ = Js i^K)l 2 ^-^7'

and so, Lemma 2 gives, if n > 1, that

4τr" r 1 I4πn

(n - 2)! JO Jsn

m dξ r2n-Λ dr.
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By Lemmas 3 and 4, we get that

L m
ω2n-l

2π m
ω2n-l

2

dξ

= PS7 m
2 ^

2π m

Therefore

? — / /
( n - 2 ) ! Jo ω2n-\ Jo

m
2 ^

2 4π" 1

= m2 + (2n-2)/ 0(μ).

The proof of Lemma 5 is finished.

Finally, we can prove

-Io(μ)

a

Theorem 1. /// is inner in the unit disk A, /(0) — 0; and E is a Borel
subset of dA, we have:

0 < a < 1.

Moreover, if E is any Borel subset of dA with ca,pa(E) > 07 equality holds
if and only if either f is a rotation or caφa(E) = eapα(9Δ).

Notice the following consequence concerning invariant sets. It is well
known that an inner function / with /(0) = 0, which is not a rotation,
is ergodic with respect to Lebesgue measure, see e.g. [P]. As a consequence
of the above, it is also ergodic with respect to α-capacity. More precisely,

Corollary. With the hypotheses of Theorem 1, if f is not α rotation and
if the symmetric difference between E and f~1(E) has zero a-capacity, then
either capα(£J) —Q or capα(i?) = capα(<9Δ).

In higher dimensions we have

Theorem 2. /// is inner in the unit ball ofCn, /(0) = 0; and E is a Borel
subset of dA, we have:

cap2 n_2 + Q (/-1(J57)) > Kin.a)-1 capQ(£), 0 < a < 1,
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and

< 1 + (2n - 2) log — - , (n > 1).
cap 2 n _ 2 (/ \E)) capo(£/j

Proof of Theorems 1 and 2. To prove the inequalities in the theorems we
may assume that E is closed. Assume first that n — 1, 0 < a < 1. Let us
denote by μe the α-equilibrium probability distribution of £7, and let z/ be
the probability measure such that Pv — Pμe o f. By Lemma 5,

(4) / » < Ia(μe) =

But, from Lemma 3, v (f~1(E)) — 1, and so

/
f-HE)xf-*(E)

Now, let {ifn} be an increasing sequence of compacts subsets in <9Δ, Kn C

f~ι{E), such that z/(ίfn) Z 1 1. Then, for each n > 1,

> v {Knf // Φa[z - w\) —±-
JJκnxKn v(K

>u(Kn)
2

>u(Kn)
2

and consequently

(5) / ^

The inequality in Theorem 1 follows now from (4) and (5).
The cases n > 1 (Theorem 2) and n — 1, a — 0 are completely analogous.

Proof of the equality statement of Theorem 1. First we prove it assuming
that E is closed, to show the ideas that we will use to demonstrate the
general case.

Suppose that 0 < a < 1. We have seen that

capQ (/

Therefore, if .E and f~ι{E) have the same α-capacity, then
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and this is possible only if for all r E (0,1),

Γ \PβAreiθ)\2 dθ = Γ \Pμe(f (reiθ))\2 dθ.
Jo Jo

This can occur only if either / is a rotation or \Pμe | 2 is harmonic. In the latter
case, we obtain that μe is normalized Lebesgue measure, or equivalently that
c&pa(E) = capα(<9Δ). Since E is closed, it follows that E — <9Δ.

In order to prove the general case we need a characterization of the in-
capacity of E when E is not closed (see Lemma 6 below). We begin by
recalling some facts about convergence of measures.

We will say that a sequence of signed measures {σn} with supports con-
tained in a compact set K converges w* to a signed measure σ if

/ h(x) dσn(x) —• / h{x) dσ(x), for all h E C(K).
J n-+oo J

Here, the w*-convergence refers to the duality between the space of signed
measures on K and the space C(K) of continuous functions with support
contained in K.

In this Section, we will denote by Ma(K) (0 < a < 1) the vector space
of all signed measures whose support is contained in the set K and whose
α-energy is finite. ΛΊα(C) or ΛΊα(Δ) is denoted simply by Λία, and Λ4^
denotes the corresponding cone of positive measures.

The positivity properties of Ia [L, p. 79-80] allow us to define an inner
product in Ma (for 0 < a < 1) and e.g. in Λ^oίίkl — 1/2}) (for Qf = 0) as
follows

Observe that the associated norm verifies

lk|Γ=/β(σ).

In the next lemma we collect some useful information concerning the above

inner product.

L e m m a 6.

(i) IfO<a<l,K is a compact subset of C, {cn} is a Cauchy sequence

(with respect to the inner product) in Λ4^(K) and σn^->σ, then

\\σn — σ\\ — ^ 0 5 as n -^ oo .

(ii) // E is any Borel subset of K, then

= inf (I α (μ) : μ a probability measure, μ(E) — 1} ,
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and there exists a probability measure μe supported on E such that

1 , , .

In fact, if Kn is an increasing sequence of compact subsets of E such that

and if μn is the equilibrium distribution of Kn, then

μn^μe and | | μ n - μ e | | —>0,

as n —> oo.

These statements remain true in the case a — 0, if K is a compact subset

of A.

Lemma 6 is contained in [L, p. 82, 89, 145] if 0 < a < 1. The case a = 0

is similar, though we need the restriction K C Δ so that || • || is a norm

[L, p. 80].

Now we are ready to finish the proof of Theorem 1. Let E be a Borel sub-

set of dA such that

(6) c&Pa(Γ1(E))=cΆpa(E)>0.

We choose an increasing sequence of compact sets Kn C E such that
c&pa(Kn) /* ca,pa(E). Let μn be the ̂ -equilibrium measure of Kn and
let μe be the probability measure supported on E given by Lemma 6. We
have

and Ia(μn) \ Ia(μe),

as n -» oo. In fact,

\\βn — Me II -> 0, as n - ^ o o .

Let vn be the probability measure, with vn(f~~ι{Kn)) — 1, such that PVn —
Pμn o f (see Lemma 3). We can suppose after extracting a subsequence if
necessary, that vn converges w* to a probability measure v on f~ι(E). Since
the Poisson kernel is continuous in Δ we obtain, by using the ^-convergence,
that

Pμn -» Pμe and PVn -> Pv , as n - ^ o o ,

pointwise. Therefore Pv — Pμe o /, which in particular shows that v is a
probability measure supported on f~ι(E).
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Claim. Ia(vn) -> Ia{y) as n -> oo.
Since vn is a probability measure on f~ι(E), Lemma 6 guarantees that

capα (/

and so, by letting n —> oo; and using that Pv — Pβe o f (by Lemma 5) we
obtain that

From (6), we deduce that La(v) — Ia(μe). Finally, we can reason as in
the case of E being closed and conclude that either f is a rotation or μe is
normalized Lebesgue measure, i.e., ca,pa(E) — cap α (5Δ).

Proof of the Claim. Consider first the case 0 < a < 1. Since PVp-Vn =

Pμp-μn ° /, by Lemma 5 we obtain that

\Wp-Vn\\2 = I*(Vp-Vn) < h^p ~ βn) = \\μP ~ μnf ^^ 0

Therefore {un} is a Cauchy sequence in the norm and so, by Lemma 6, we

have that

\\un - i/|| -> 0 and La(un) -> Ia{v)

as n -> oo.
For λ > 0, and A C C, we will denote by XA the set λA = {λ^ : z e A}.
If E is a Borel subset of <9Δ, then | .E is a Borel subset of {|z| = 1/2}.

Also, if σ is a probability measure in <9Δ, we will denote by σ* the probability
measure in {\z\ — 1/2} defined by

(7)

for A a Borel subset of dA. It is clear that

(8) I 0 (σ ) = I0(σ) +

Now, in order to prove the case a = 0, let μ* and ι/* be the measures
defined from μn and vn by (7). Then using again Lemma 5 and (8) we have
that

IK - <f = h{v; - K) = io{yP - vn) + log 2K - <f
< J0(μp-/in)+log2 = | / i ; - μ ; |
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Therefore {ι/*} is a Cauchy sequence in the norm and again by Lemma 6,
we obtain that

K - i / | | ->0 and JoK)-> Jo("*)

as n —> oo. It follows, from (8) that

^o(^n) -> io(^)?

 a s n-»oo.

D

4. Some further results on distortion of capacity in the case
n = 1.

First we show that Theorem 1 is sharp. In what follows | | will denote not
normalized Lebesgue measure in dA ( i.e. |<9Δ| = 2π).

Proposition 1, capα (f~1(E)) can take any value between caφa(E) and
capQ(<9Δ). More precisely, given 0 < s < t < capα(<9Δ) there exist a Borel
subset E of dA and an inner function f with /(0) = 0 such that c&pa(E) = s

In order to prove this, we need the following lemma whose proof will given
later.

Lemma 7. Let I be any closed interval in dA with \I\ > 0; and let B be a
finite union of closed intervals in dA such that \B\ = \I\. Then there exists
an inner function f such that

/(0) = 0 and f-\l)=B.

In fact, if 0 < \I\ < 2π, then f is unique.

Remark. It is natural to wonder if this lemma holds in higher dimensions,
more precisely: Is it true that given an interval / in dA and a Borel subset
B of Sn such that

\B\ = \I\ ^
ω2n-i 2π '

there is an inner function / : Bn —y A such that / - 1 (/) = B ?
It is not possible to construct such / by using the Ryll-Wojtaszczyk poly-

nomials (see [Rl]), since in that case the following stronger result would be
true too:
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Given E, I subsets of dA with \E\ — |/| and N £ N, there exists an inner
function / : Δ —> A such that

E = / " 1 ( / ) , and / ω (0) = 0, if j<N.

But it is easy to see, as a consequence of Lemma 8, that in general this is
not possible.

Proof of Proposition 1. Let / be a closed interval in dA centered at 1 and
such that capα(/) = s. Consider the function g(z) — z2. Then (see e.g.
[FP] or Proposition 3 below),

s = capα(J) < capα {g'1^)) < < capα {g-k(I)) -> capα(0Δ).
k—>oo

Therefore, if t = cap^ (g~k(I)) for some fc, we are done.
Note that g~h(I) consists of 2k closed intervals of length 1/1/2* and cen-

tered at the points zjik = e 2 7 ^ 2 * (j = 1,..., 2*).
If capα (g~(<k~1\l)) < t < capα (g~k(I)) a simple continuity argument

shows that there exist a finite union B of 2k closed intervals in dA of total
length |/| with capα(B) = t.

Finally, applying Lemma 7 to the pair /, B we obtain an inner function
/ with /(0) - 0 and f'^I) = B. D

Proof of Lemma 7. Let u be the Poisson integral of the characteristic function
of B, and let u be its conjugate harmonic function chosen such that ύ(0) — 0.
Since u(0) = \B\/2π the holomorphic function F = u + iύ transforms Δ into
the strip S = {ω : 0 < R e α ; < l } . Notice that F has radial boundary values
except for a finite number of points, and F applies the interior of B into
{ω : Reω = 1} and dA\B into {ω : Reω = 0}.

Now, let G be the Riemann mapping of S chosen such that

G(|B|/2π) = 0.

G transforms {ω : Reα; = 1} onto an interval J of dA. On the other
hand, the function h = G o F is clearly an inner function, h(0) = 0 and
h~λ(I) — B. By composing h with an appropriate rotation we finish the
proof of the existence statement.

To show the uniqueness of /, it is sufficient to prove the following

Lemma 8. // A is any Borel subset of dA, such that JA e~ιθdθ φ 0, and f,
g are inner functions with /(0) = g(0) = 0 such that

f-1(A)=g-1(A),
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then f = g.

Here = denotes equality up to a set of zero Lebesgue measure.

Proof. Let F : Δ —> {ω : 0 < Reω < 1} be the holomorphic function given

A
 ιθ - z

F is univalent in a neighbourhood of 0, because

'(0) = - ί
π JA

e~iθdθφ0.

Now, observe that Re (F o /) = Re (F o g) almost everywhere on <9Δ. Since
Re (F o f) and Re (F o g) are bounded harmonic functions it follows that
F o f = F o g + ic in Δ, where c is a real constant. Since /(0) = #(0), we
deduce that F o f = F o g which proves the lemma because F is univalent
in a neighbourhood of 0. D

Observe that, in particular, the condition JA e~ιθdθ φ 0 is satisfied e.g. if
A is any interval in dA with 0 < \A\ < 2π.

The condition JA e~iθdθ φ 0 is not only a technicality. If A is fc-symmetrical
( i.e., there exists a subset AQ C A, with Ao C [0,2τr/fc], such that A = A0U
(A, + 2π/Jfc) U (A) + 4π/jfe) U U {Ao + 2π{k - l)/jfc)), and /Λ e - < w d » ^ 0,
then / = ωg, where ω is a A -th root of unity. To see this, one can use Lemma
8 with the functions ho f, ho g and the set Λ(A), where h(z) = zk.

Also, note that if A is the union of two intervals in 9Δ, then / = ±g,
because JA e~ιθdθ = 0 implies that A is 2-symmetrical.

Notice that if the function g in Lemma 8 were the identity, and 0 <
\A\ < 2τr, then, by ergodicity, we would have that / is a rotation of rational
angle. This, together with the above remark, could suggest that perhaps the
following statement was true:

If A is any Borel subset of <9Δ, such that 0 < | A\ < 2τr, and /, g are inner
functions with /(0) = g(0) =0 such that

then f = Xg with |λ| = 1.
But this is false as the next example shows: Let B be the following

Blaschke product

By applying a theorem of Stephenson [S, Theorem 3] to the pair £?, — £?, one

obtains two inner functions / and g with /(0) = g(0) = 0, such that

Bo f = -Bog.
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But then (B(f))2 = (B(g))2, and so, if we had / — λg, we could conclude
that B(z) = -B(Xz). But, since B'(0) Φ 0, we had λ = - 1 , i.e., B(z) =
—JB(—z), a contradiction.

The following is well known, at least for a = 0, see for instance [A, p. 35-36]
where it is credited to Beurling.

Propos i t ion 2. Let 0 < a < 1. If I is any interval in dA, then I has
the minimum a-capacity between all the Borel subsets of dA with the same
Lebesgue measure than I.

Proof. Let E be a Borel set such that \E\ = \I\. A standard approximation
argument shows that for all ε > 0 there exists a finite union Bε of closed
intervals such that

I \E\ - \Bε\ \<ε and | c a p j £ ) - cap α (5 ε ) | < ε.

Let Iε be a closed interval with the same center than / and such that \Iε\ =
\Bε\. By Lemma 7, we can find an inner function fε such that

Λ ( 0 ) = 0 and fΓ1(Q = Bε.

Therefore, by Theorem 1,

cap α (£) +ε> cap α (£ ε ) > cap α (/ ε ) ,

but capα(/ ε) -> capα(J) as ε —> 0. D

The following proposition is not unexpected since ergodic theory says that
f~k(E) is well spread on dA. Hereafter fk — f'o o/ denotes the A -iterate

Propos i t ion 3. If f : A —> A is inner but not a rotation, /(0) = 0 ;

0 < a < 1 and E is a Borel subset of dA with capα(ϋ7) > 0 ; then

capα (f~k(E)) -> capα(9Δ) as k -> oo .

The proof of this result is an easy consequence of the following lemma.

L e m m a 9. With the hypotheses of Proposition 3, if μ is any probability
measure on E with finite a-energy and if vk is the probability measure in
f~k{E) such that PVk = Pμ o fk, then

a s
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With this, we have

1

ca P α (/-*(£)) - ' a ™ "a\2πJ capα(dΔ)

giving us the conclusion of Proposition 3.

Proof of Lemma 9. We will prove it for 0 < α < 1; the case a = 0 being
similar.

By Lemma 2 (i), we have with an appropriate function ga that

= f Γ\Pσ(reiθ)\2 dθga{r)dr
Jo Jo

for any probability measure σ on <9Δ.
Using (3) we have for all r G (0,1) that

Γ \P»Λreiθ)\2 dθ < Γ\Pμ(re*θ)\
Jo Jo

2dθ.

Since μ has finite α-energy, the right hand side in the last inequality, as
a function of r, belongs to Lι(ga(r) dr). Therefore, by using the Lebesgue's
dominated convergence theorem, we would be done if we show that

(9) | 2 ' \PVk(reiθ)\2 dθ —> -L as k ^ oo ,

for each r with 0 < r < 1. But, by Schwarz's lemma, and since / is not a
rotation, \fk (reιθ)\ —> 0 as k —> CXD, uniformly on θ for r fixed. Therefore,
for each r, PVk (reiθ) — Pμ (fk (reίθ)) —> l/2π, as k -> oc, uniformly on ^,
and this implies (9). D

Even in the case when capα(£I) = 0, the sets f~k(E) are well spread on

dA.

Proposition 4. If f : A —> A is an inner function (but not a rotation)
with /(0) = 0, E is any non empty Borel subset of dA, and μ is any probabil-
ity measure on E, then for some absolute constant C and a positive constant
A that only depends on |/ '(0)|, we have that

' v ' 2τr

for each interval I C dA. In particular,

< Ce~Ak,
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in the usual weak-* topology.
Here vk is the probability measure concentrated in f~k(E) such that PVk —

Proof. The proof is similar to that of Lemma 3 in [P], but using here the
fact that PUk = Pμ o fk instead of Lemma 1 in [P]. D

Proposition 5. // / : Bn —> A is inner, then f assumes in ΘMn all the
values in dA.

Proof. Let / : Bn —> A be an inner function. It is enough to prove that
/-!{1} φ 0. But,

(10) u := R(

Therefore, u is harmonic and positive in Bn and so there exists a positive
measure in Sn such that

By (10) Pμ tends radially to 0 a.e. with respect to Lebesgue measure, since
/ is inner and (by Privalov's theorem, (see e.g., [R, Theorem 5.5.9])) / can
assume the value 1 at most in a set of zero Lebesgue measure. Then, the
Radon-Nikodym derivative of μ with respect to Lebesgue measure is zero
a.e., and so μ is a singular measure.

By Lemma 11 it follows that Pμ -* +oo in a set of full μ-measure. But
this is the same to say that f(reίθ) -> 1 in that set. D

When the inner function / has order k > 1 at 0, we can improve Theorem
1 in the case a=0.

Theorem 3. If f : A —> A is inner,

/(0) = /'(0) = = /<*-*> (0) = 0, /<*>(0) φ 0, (k > 1),

and E is a Borel subset of dA, then

(11) 17*

Moreover, if c&po(E) > 0, equality holds if and only if either f(z) = \zk,
with |λ| = 1, or capo(ϋ?) = capo(dΔ).

Proof. For such a function /, Schwarz's lemma says us that \f(z)\ < \z\k,
with equality only if f(z) = Xzk with |λ| = 1. With this in mind, the
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subordination principle says now (see e.g. [HH]) that if v is a subharmonic
function in Δ, then

Γ v (/ (re")) dθ < Γ v (rkeiθ) dθ,
Jo Jo

with equality for a given r only Ίΐv is harmonic in {\z\ < r} or / is a rotation
of zk.

Now, in order to prove (11), we can assume that E is closed. If μe is the
equilibrium probability distribution of E and v is the probability measure
in f~x(E) such that Pv = Pμ o /, then

Jo Jo

<2π ί ί
Jo Jo

l

r

Substituting r = t, we obtain that

This finishes the proof of (11). The equality statement can be proved in the
same way as that of Theorem 1. D

Remark. For other α's (0 < a < 1) we can show

1 1__ < C«_ ί_l l _ _ λ
^a{f~1{E)) capα(<9Δ) ~ kι-<* \cava(E) capα(aΔ)/capα

where Ca is a constant depending only on α.
We expect Ca = 1, but we have not been able to show this.

5. Distortion of α-content.

The following is an extension of Lowner's lemma.

Theorem 4. Iff : Bn —> Δ is inner, /(0) = 0 and E is a Borel subset of
dΔ, then, for 0 < a < 1,

(i)

and

> Cn>aMa(E)
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Here Mβ and Λ4β denote, respectively, ^-dimensional content with respect
to the euclidean metric and with respect to the metric in § n given by

d(a,b) = \l-{a,b)\1/2,

where (α, b) — Σ α̂  bj is the inner product in Cn. This metric is equivalent
to the Carnot-Caratheodory metric in the Heisenberg group model for Sn.
We refer to [R] for details about this metric.

Recall that in a general metric space (X, d) the α-content of a set E C X
is defined as

Observe that, as a consequence of Theorem 4, one obtains

Corollary. If f : Bn —> Δ is inner and E is a Borel subset of <9Δ; then

Dim {f-^E)) >2n-2 + Όim(E)

and

Vim (f^iE)) >2n-2 + 2Όim(E)

where Dim and Vim denote, respectively, Hausdorff dimension with respect
to the euclidean metric and the metric d.

In order to prove Theorem 4 we will prove a lemma about Poisson inte-
grals. We need to consider the classical Poisson kernel (not normalized)

and the invariant Poisson kernel

Of course, they coincide if n = 1. In this section if v is a positive measure
in § n , we will denote by Pu the function

Pv(z)= ί Pfoz)dv(ξ)

and by Qv the invariant Poisson extension of v

QΛz)= ί Q(ξ,z)dv(ξ).
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L e m m a 10. Let μ be a finite positive measure in dA, and let f : Bn —> Δ
be an inner function. Then, there exists a finite measure v > 0 in S n such
that Pμ o f — PV7 and if v has singular part σ and continuous part 7, and
we denote by A the set

A = {ξ e S n : Pσ(rξ) ->• + 0 0 , as r ->• 1}

and by B the set

B={ξe§n: 3limf(rξ) = f(ξ), \f(ξ)\ = 1 and UmPΊ(rξ) > θ] ,

then A has full σ-measure, B has full ^-measure and

AUB C Z"1 (supportμ)

and so
v(Γx(supportμ)) = \\u\\.

The same is true if we replace Pv by Qv> (Pμ o / = Qv,) and A, B by the
following sets

A' = {ξeSn: Qσ,(rξ)^+00, asr^l},

and

B1 = {ξ E Sn : 31im/(rξ) = f(ξ), \f(ξ)\ = 1 and YimQγ(rξ) > θ} ,

where σ' and 7' denote, respectively, the singular and the continuous part of

v .

Proof. We will prove the lemma only for the measure z/, since the proof of
the result for v, is similar and standard.

Let U : Δ —> C be a holomorphic function such that ReU = Pμ. Then
U o / is also holomorphic and so Re (U o f) — Pμ o / is pluriharmonic, i.e.
harmonic and Λί-harmonic (see e.g. [R, Theorem 4.4.9]). Therefore there
exist finite positive measures v and ι/r in Sn such that

Let us denote by E the support of μ. If ξ E A', then \f(rξ)\ -> 1 as
r —> 1. The curve {/(rξ) : 0 < r < 1} in Δ must end on a unique point

eιψ = f(Q ς. ^^ since otherwise we would have Pμ = +oc on a set of positive
Lebesgue measure. Now, e^ G E, since otherwise Pμ vanishes continuously
at e^. Therefore A1 C f~ι{E). Similarly one sees that B' C f~ι(E).
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The set A' has full σ'-measure since by the inequality (14), that we will
prove later,

jξ6S n : pσ'(ξ)=ooJcA',

where

and the set {£ : Dσ'(ξ) = 00} has full σ;-measure (see Lemma 11 below).

Let us observe that ([R, p. 67])

\Bd(ξ,r)\~r2n.

The set B1 has full 7'-measure, since as r -» 1

Qγ(rξ) _ » * L a.,
with respect to Lebesgue measure L (see, e.g., [R, Theorem 5.4.9]) and

{ j D

L e m m a 11. Suppose that μ is a singular positive Borel measure (with respect

to Lebesgue measure) in Sn. Then

Ό μ(x) = 00 α.e. μ .

Proof. Let *A be a Borel set such that |>A| = 0, and μ is concentrated on A.
Define for a > 0

A* = la; e A: Όμ{x) < a\ .

It is enough to prove that μ(Aa) = 0, and by regularity that μ(K) — 0 for
all K compact subset of Aa.

Fix ε > 0. Since K C *Aα C wΛ, |K| = 0 and so there exists an open set V
with K C V and | F | < ε (| | denotes Lebesgue measure).

Now, for each x G K, we can find r x > 0 such that

< α and Bd(x, rxβ) C V .
d(x,rx)

The family {^(x^^/S) : x € i ί } covers K, hence we can extract a finite
subcollection Φ that also covers K. Now, using a Vitaly-type lemma (see,
e.g., [R, Lemma 5.2.3]), we can find a disjoint subcollection Γ of Φ such that

Kc\jBd{xt,rXi).
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Note that as a consequence of Proposition 5.1.4 in [R] we have that

^ \Bd(x,rx)\ ^
Θd : = SUP γ^— T^ΓT < OO .

δ \Bd(x,rx/3)\

Therefore

μ(K) < Σμ(BAxi,rXt)) < aΣ\Bd(xurXi)\
Γ

< θda\V\ < θdaε.

D

Proof of Theorem 4. We will prove only (ii), since (i) is obtained in a similar
way.

Assume, as we may, that E is a closed subset of dA and Ma(E) > 0.
Then, see e.g. [T, p. 64], there exists a positive mass distribution on E
of finite total mass, such that: (a) μ(E) = Ma(E), (b) μ(I) < Ca\I\a for
any open interval /, where Ca is a constant independent of E. A standard
estimate shows that

with Ca a new constant. Let v* > 0 be a measure in S n such that Pμ o / =
Qv,. Schwarz's lemma (see e.g. [R, Theorem 8.1.2]) and (12) give the
corresponding inequality for v'\

(13) QΛ*) < ( 1 ^θ | |)i-α ' ^

We claim that for each z G

(14) Qi/ 'U)>6 nQ i / ' U ) > 6 n 7 r
v1 IÎ I

where ξ = ^/||^| | and Bd(ξ,R) denotes the d-ball with center ξ and radius
i?.

Assuming (14) for the moment and using (13), we obtain that

(15) v'(Bd(ξ, R)) < Cn,a #<*-!+«), (ξ e Sn, R > 0).

If we cover the set A1 U B' (see Lemma 14) with d-balls of radii Ri, we

see by (15) that

v'(A' U B1) < Cn,α f )
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and so

||i/'|| = v\A! U B1) < Cn,a M2{n-1+a)(A' U B')

So, since /(0) = 0,

Ma(E) = \\μ\\ = IHI < Cn>aM2(n-1+a) ( Γ

Therefore, in order to finish the proof, it remains only to prove (14).
Observe first that we can assume that ξ = ex = ( 1 , 0 , . . . , 0 ) since d is
invariant under the unitary transformations of § n for the inner product ( , •).
Now, if z = rex , write δ2 = 2(1 - r ) . If 77 G i?d(ei , 5), then

| 1 - m\ + \ V l \ ( l -r)< 3 ( 1 - r ) .

Hence, if 77 G i?d(ei ,5)

\l-rm\2J - ( l-r)» "

Since Q is invariant under the action of the unitary group for the inner
product ( , •) in S n , we obtain that if z — rξ and η G Bd(ξ, δ), then

Q-n

Finally,

f _ uf(Bd(ξ,δ))
Qv>{z) > j Q{η,z)du (η) > 9 n _ .

D

6. Distortion of subsets of the disc.

We have discussed how inner functions distort boundary sets. There are
some results on how they distort subsets of Δ. On the one hand Hamilton
[H] has shown that

Theorem H. For all Borel subsets E of Δ,
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where Ha denotes a-Hausdorff measure.
One naturally expects the following to be true:
If f : Δ —> A is inner, /(0) = 0 and E is a Borel subset of A, then

This we can prove only if a = 0. The idea comes from [PI, p. 336].

Theorem 5. Let f : Δ —> A be an inner function. If for some k > 1

/(0) = /'(0) = = fW(0) = 0, /<*>(0) φ 0,

then.

for all Borel subsets of A. Moreover, this inequality is sharp.

Sketch of proof. By approximation, it is enough to prove it if E is closed

and / is a finite Blaschke product. Let / be

Denote by gE, gF the Green's functions of the unbounded connected com-
ponent of C \ E and C \ F (here F = f~~ι(E)) with pole at oo. Therefore,

- k g

as \z\ —> ex). Moreover, since k > 1

gE(f(z)) - k\og\z\ + logΠ \aj\ = log ^—^ + O

as \z\ —>• ex). It is easy to see that

.7 = 1

is harmonic in the unbounded connected component of C\ ί F U ί U^=1 {α^"1} J J

and it is bounded at the points άjι (here gF(z,a~ι) denotes the Green's
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function of the unbounded connected component of C \ F with pole at aj1).
Therefore, the function

(16) G(Z) = lgE(f(Z))-gF(z) -\Σ9F (Z^J1)

•7 = 1

is harmonic and bounded in the unbounded connected component of C \ F.
Since G — 0 on the outer boundary of F, it follows that G Ξ O .

Now, by using the symmetry of Green's function, we have that

gF (z, α"1) —> gF (α" 1) , as \z\ -> oo ,

and so, from (16),

On the other hand, since F c Δ , the maximum principle says that

9F{Z) > 9A(Z) = log 1̂ 1, \z\ > 1.

Hence, from (17), we obtain that

and the inequality in the theorem follows.
Finally, to show that the inequality is sharp one simply has to consider

the function f(z)=zk. D
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IRREDUCIBLE NON-DENSE A^-MODULES

V.M. FUTORNY

We study the irreducible weight non-dense modules for
Affine Lie Algebra A[ ' and classify all such modules having
at least one finite-dimensional weight subspace. We prove
that any irreducible non-zero level module with all finite-
dimensional weight subspaces is non-dense.

1. Introduction.

ί 2-2\
Let A = I and Q — G(A) is the associated Kac-Moody algebra

over the complex numbers C with Cartan subalgebra H C (/, 1-dimensional

center Cc C H and root system Δ.

A ^-module V is called a weight if V = 0 Vλ, Vx = {v E V \ hv = \{h)υ

for all h G H}. If V is an irreducible weight (/-module then c acts on V as a

scalar. We will call this scalar the level of V, For a weight (/-module V, set

P(V) = {\eH*\Vχ^0}.
Let Q = ^2 ̂ Ψ- It ίs clear that if a weight (/-module V is irreducible

then P(V) C λ + Q for some λ G H*. An irreducible weight (/-module V is
called dense if P(V) — λ + Q for some λ G Jϊ*, and non-dense otherwise.

Irreducible dense modules whose weight spaces are all one-dimensional
were classified by S. Spirin [1] for the algebra A± and by D. Britten, F.
Lemire, F. Zorzitto [2] in the general case. It follows from [2] that such mod-
ules exist only for algebras A^\ C^. V. Chari and A. Pressley constructed
a family of irreducible integrable dense modules with all infinite-dimensional
weight spaces. These modules can be realized as tensor product of standard
highest weight modules with so-called loop modules [3].

In the present paper we study irreducible non-dense weight (/-modules.
We use Kac [4] as a basic reference for notation, terminology and prelimi-
nary results. Our main result is the classification of all irreducible non-dense
(/-modules having at least one finite-dimensional weight subspace. This in-
cludes, in particular, all irreducible highest weight modules. Moreover, we
show that this classification includes all irreducible modules of non-zero level
whose weight spaces are all finite- dimensional.

83
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The paper is organized as follows. In Section 3 we study generalized Verma
modules M^(λ,7), a is a real root, λ G if*, 7 G C, ε G {+, —} which do not
necessarily have a highest weight (cf. [5]). By making use of the generalized
Casimir operator and generalized Shapovalov form we obtain the criteria
of irreducibihty for the modules M*(λ, 7) without highest weight (Theorem
3.11).

In Section 4 we classify all irreducible Z-graded modules for the Heisenberg
subalgebra G C Q with at least one finite-dimensional graded component.
Irreducible G- modules with trivial action of c were described earlier in [6].
Let δ G Δ such that Z5-{0} is the set of all imaginary roots in Δ. Following

[6] we introduce in Section 5 the category O(a) of weight (/-modules V
ί

such that P(V) C (J {λ; - ka + nδ | k, n G Z, k > 0} where X{ G H% but
2 = 1

without any restriction on the action of the center (unlike in [6] where the
trivial action of the center is required). The irreducible objects in O{ά) are
the unique quotients of (/-modules Mα(λ, V), where λ G if*, V is irreducible
Z-graded G-module. Modules M α (λ,C), with λ(c) = 0 were studied in [7-
9]. If λ(c) ^ 0 and at least one graded component of V is finite-dimensional
then the module Mα(λ, V) is irreducible [8, 9]. In Section 6 we classify all
irreducible non-dense (/-modules with at least one finite-dimensional weight
subspace (Theorem 6.2). It turns out that these modules are the quotients
of the modules of type M^(λ, 7) or Ma(\,V). Moreover, any irreducible Q-
module of non-zero level whose weight spaces are all finite- dimensional is
the quotient of Mε

a{\,η) for some real root a, \ e H*, 7 G C, ε G {+, —}
(Theorem 6.3).

2. Preliminaries.

We have the root space decomposition for Q : Q — H® ^^Gφ^ where dim

Qφ — 1 for all ψ G Δ. Denote by U{Q) the universal enveloping algebra of Q,
by W the Weyl group and by ( , ) the standard non-degenerate symmetric
bilinear form on Q [4, Theorem 3.2]. Let Δ r e be the set of real roots in Δ
and Δ z m be the set of imaginary roots in Δ. Fix a G Δ r e and consider a
subalgebra Q{oί) C Q generated by Qa and G-a. Then G(cx) — si(2) and we
fix in G(oί) a standard basis eα, e_α, ha = [eα, e_α] where [/zα, e±a] = ±2e±a.
We will use the following realization of G'

G = G{cx) ® C[ί, Γι] Θ Cc θ Cd

with [x®tn + ac+bd, y^^ + axc+bid] = [x,y]<g>tn+m + bmy®tπι-b1nx®tn +
nδn^m(x,y)c, for all x, y G &(α), a,b,au W G C. Then H = C/z α θCcθCcί.
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Denote by δ the element of H* defined by: δ(ha) — δ(c) — 0 and δ(d) — 1.
Then Aim = Zδ - {0} and π = {α, 5 - α} is a basis of Δ. Let Δ + = Δ+(π)
be the set of all positive roots with respect to π. The root system Δ can be
described in the following way: Δ = {±α + nδ \ n G Z}U{nδ \ n G Z — {0}}.
We have G±a+nδ - Q±Oί ®tn, n G Z, Qnδ = Cha ® *n, n G Z - {0}. Set
<Wn* = βα 0 ίn, e _ α + n ί = e_α ®tn, n e Z, e m J = /ια 0 f71, m G Z - {0}.
Then [eΛ(5,emj] = 2kδky_mc, [ekδ, e±a+nδ] = ±2e ± α + ( n + f c ) j , [e α + Λ 5 , e_α+m(5] =
δk,-m(ha + A c) + (1 - ίfc,-m)e(fc+m)(5 for any fe, m G Z.

For a Lie algebra ,A, S(Λ) will denote the corresponding symmetric alge-
bra. We will identify the algebra U(H) — S(H) with the ring of polynomials
C[if *] and denote by σ the involutive antiautomorphism on U(Q) such that
σ(ea) = e_α, σ(e*_α) = ea-δ. Set Λ/*+ = ^ ^ , ΛΛ. = ] Γ

3. Generalized Verma modules.

The center oΐU{Q(a)) is generated by the Casimir element za — (ha + I ) 2 -f
Ae_aea. Denote

= Σ ^. ^ - = Σ G-v
φ£A+-{a} φβA+-{a}

Ta = S(ff) ® C [ ^ ] , Eε

a = (H + G(a)) ® Λ^, ε G {+, -} .

Let λ G J7*,7 G C. Consider the 1-dimensional Tα-module C^ λ with the
action (h<g>z2)v\ — h(λ)jnvχ for any h G S(H), and construct an H + Q(a)-
module

It is clear that the module V(λ,7) has a unique irreducible quotient Vχn.

Proposition 3.1.
(i) IfV is an irreducible weight H + Q'(a)-module then V ~ Vχ,7 for some

(ii) Vλ,7 ~ Vx,iΊ, if and only ifη = 7', λ; = λ + n α ; n G Z ; 7 7
l ) 2 /or α// integers £, 0 < ί < n if n > 0 or for all integers t, n < ί < 0
i/ n < 0.

Proof This is essentially the classification of irreducible weight sZ(2)-modules.

D

Let λ G if*, 7 G C, ε G {+, —}. Consider V\,7 as jE^-module with trivial
action of Λf* and construct the (/-module
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associated with α, λ, 7, ε.
The module M^(λ,7) is called a generalized Verma module. Notice that

Vχ,7 does not have to be finite-dimensional.

Proposition 3.2.
(i) M^(λ,7) is a free σ(U(λί^))- module with all finite-dimensional weight

sub spaces.

(ii) M^(λ,7) has a unique irreducible quotient, Lε

a(λ,j).

(iii) M^(λ,7) ~ M^(λ',7') i/αnd on/j/ i/ε = ε', 7 = 7'", λ' = λ-f nα,n E Z
and 7 / (λ(/ιa) + 2£ + I)2 /or all ί E Z; 0 < t < n if n > 0 or /or all
ieZ,n<£<0ifn<0.

Proof. Follows from the construction of Q- module M^(λ, 7) and Proposition
3.1. D

Let Rχ = {(λ(Λα) + 2£ + I)2 | I G Z}. Recall that V is called a highest
weight module with respect to N+ and with highest weight λ E H* iΐ V =
U{G)v, v E Vχ and Vλ-f̂  = 0 for all φ E Δ+(π). Proposition 3.2, (iii) implies
that M^(λ, 7) and L^(λ, 7) are highest weight modules with respect to some
choice of basis of Δ and, therefore, are the quotients of Verma modules [4],
if and only if 7 E Rχ. The theory of highest weight modules was developed
in [4, 10].

Corollary 3.3.
(i) Let V be an irreducible weight Q-module, 0 Φ v E Vχ and λί^v = 0.

Then V ^ L%{\ 7) for some 7 E C.

(ii) Let λ 0 Rχ. Lε

a(X,j) ~ Lζ,(X',jι) if and only if ε — ε', a' — a or
a1 = -a, 7 = y ; λ ' = λ + n α ; n E Z and 7 φ (\{ha) +21 + I) 2 for all
ί E Z, 0 < ί < n if n > 0 or for all ί E Z, n < I < 0 if n < 0.

Proof. Since V is irreducible 5- module, V — U(Q(a))v is an irreducible
£(α)-module and V ~ σ(U(λί^))Vf. Then V is a homomorphic image of
M^(λ,7) for some 7 E C and, thus, V ~ Lε

a(\,j) which proves (i). (ii)
follows from Proposition 3.2, (iii). D

From now on we will consider the modules M+(λ, 7)(= M(λ, 7)). All the
results for the modules M~(λ,7) can be proved analogously. Set z = za.
For λ E ί/**, 7 E C and integer n > 0 we denote by z(n) the restriction of z
to the subspace M(λ,7)λ_n((5_α).

Proposition 3.4. // 7 ^ (λ(ftα) + 2£ + I) 2 for all 0 < t < 2n then
Specz(n) = {(2A;±λ/7)2 | A; E Z,0 < A; < n).

Proof. Denote Vn ~ M(A,7)A_n(5_a), n > 0. One can easily show that
Vn = ea-sVn-! +e-δeaVn-1 + e_α_*e2Vn-i Let K-i = ®K-i(r),τ E C,
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where Vn-ι(τ) = {v £ Vn_x \ 3N : (z(n - 1) - r)Nυ = 0}. Then the sub-
space ea_δVn_ι(τ) +e__ ( 5eαyn_1(τ) + e_α_(^e^Vn_i(r) C Vn is z(n)- invariant
and z(n) has on it the eigenvalues r and (2 ± \/τ) 2 , thanks to the condition
7 φ (λ(/ια) + 2^ -h I ) 2 , 0 < ί < 2n, which implies that z(n) has eigenvalues

, 0< k<n. D

Corollary 3.5. // 7 0 i ϊ λ £/ιen eα and e_α αcί injectiυely on M(λ,7) .

Proof. If 7 0 i?λ then Specz(n) f| R\~nβ — 0 for all integer n > 0 by Propo-

sition 3.4 and, therefore, eα and e_α act injectively on M(λ,7). D

Fix p e H* such that (p,α) = 1, (/9, <5) = 2. Since M(λ,7) is a restricted
module, i.e. for every v E M(λ,7), Qφυ = 0 for all but a finite number
of positive roots φ, we have well-defined action of a generalized Casimir
operator Ω on M(λ,7) [4]:

_φeφv, v E M(λ,7) μ ,

where e_ v E ̂ -^5 (e~ψ, eφ) = 1, φ E Δ + . Set Ω = 2Ω + id.
Let sa E W, 5Q(μ) = μ — (μ, α)α, μ e H*.

Lemma 3.6. i^or α Q-module M(λ, 7)

Ω = [(λ 4- 2p + sα(λ + 2p), λ) + 7]irf.

Proo/. Follows from [4, Th.2.6] and definition of Ω. D

Lemma 3.7. Let n > 0,/3 = δ - a, 0 φ v E M(λ, j)χ-nβ, 7 / (λ(/ιtt) +
2ί + I ) 2 /or α// 0 < £ < 2n and λf+v = 0. ΓΛen /c2

7 = (n(\(c) 4- 2) - A:2)2

/or some /c E Z ; 0 < A; < n.

Proof. It follows from Lemma 3.6 that z(n)υ = 7 ^ and

(λ - nβ + 2p + 5α(λ - n/3 + 2p), λ - nβ) + i = (λ + 2p 4- 5α(λ + 2p), λ) + 7

which implies

V = 7 + 4n(λ(c) + 2).

But, 7' = (2fc ± y ^ ) 2 for some A E Z , 0 < /c < n by Proposition 3.4.
Therefore, P 7 = (n(X(c) + 2) — A:2)2 which completes the proof. D

Corollary 3.8. Let λ E # % 7 E C - i? λ. // A:2

7 ̂  (n(λ(c) + 2) - A:2)2 for
all n, k E Z7 n > 0, 0 < A; < n then Q-module M(λ, 7) irreducible.

Proof. If the (/-module M(λ,7) has a non-trivial submodule M, then M

contains a non-zero vector υ of weight λ — n(δ — a) , n > 0, such that

Λ/OJ"v = 0. Now, the statement follows from Lemma 3.7. D



88 V.M. FUTORNY

Consider the following decomposition of U(Q):

U{Q) = {N-U{G) + W(α)ΛC) ® TaC[ea]ea © TαC[e_α]e_

Let j be the projection of U(Q) to Tα. Introduce the generalized Shapo-
valov form P, a symmetric bilinear form on U{Q) with values in Tα, as follows
(cf. [11]): F{x,y) = j(σ(x)y), x,y G «(<?). The algebra U(θ) is Q-graded:
U{G) = 0 ^ ( 6 0 ^ . It is clear that F{U{G)m, U{G)m) = 0 if 7ft ^ η2. Denote

U{N-)-η = W(.Λ/1) Π#(<?)_„ and let F^ be a restriction of P to U(N-)-η.
For λ € F*, 7 G C, consider the linear map θXyΊ : Tα —>• C defined by

0λ | 7(Λ ® * n ) = Λ(λ)7n for any Λ G S ( # ) , n G Z + .
Set AA, = λ + fcα, A; G Z. Let μ = λ - n(δ - a) G P(M(λ, 7)), n G Z + and

7 / (λ(/ια) + 25 + I) 2 for all integer s, 0 < s < 2n. Then λ 2 n G P(M(λ,7)),
M(λ, 7 )λ 2 n - Cυn and M ( λ , 7 ) μ = U(λΓ-)_n{a+δ)vn. Set f W - F n ( α + Λ ) . We
define a a bilinear C-valued form F® on M(λ,7) μ as follows:

l n , u2vn) = 6>λ2n)7 ( F ( n ) ( u i , ιz2)) , Wi, u2

One can see that dim L(\η)μ — rank F°.

L e m m a 3.9. i/βί λ G ϋP, 7 G C — R\. The following conditions are
equivalent:
(i) M(λ,7) is irreducible.

(ii) i^_n/ ί_α) is non-degenerate for all integers n > 0.

(iii) 0 λ 2 n, 7 (det F ( n ) ) ^ 0 /or α// integers n > 0.

Proof. Follows from the Corollary 3.5. D

Consider in Ta the following polynomials: fm^ = fc2^ — (ra(c + 2) —
fc2)2, gs — z — (ha + 2θ + I ) 2 , 5,77i, k G Z, 0 < k < m. Lemma 3.7 implies
that if θXn(gs) φ 0 for all 5 G Z, 0 < s < 2n and θX2m,Ί{fm%k) φ 0 for all
m,k G Z, 0 < m < n, 0 < k < m, then M(λ,7) λ_ n ( ( 5_α) = L(λ,7) λ_n ( ( 5_α)
and <9λ2n,7 (det F ( n ) ) ^ 0. We conclude that the polynomial det F ( n ) is not
identically equal to zero and has its zeros in the union of zeros of polynomials
fπι,k, 0 < m < n, 0 < k < m, gs, 0 < s < 2n. Therefore, det F ( n ) is a product
of factors of type fm,k and gs.

L e m m a 3.10. Let n, m G Z, n > Q, 0 < m < n. Then fm,k is a factor of
det F^ if and only if k is a divisor of m or k — 0.

Proof. Assume that A; is a divisor of m or k — 0. Set r — 2n+2m+k. Consider
λ G H* and 7 G C - Z such that θXtΊ(fmtk) = θXn(gr) = 0. For integer 5 > 0
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set vs = λ_s = λ - sa. Then θVa,Ί(fmik) = θUsΠ(gr+s) = 0 and ι^(/ια) 0 Z,
which implies that θUs^(g£) φ 0 for alH E Z, ̂  < r + s . Thus, the form i^°s_^'
β — δ — α is defined for all s > 0, 0 < i < n and M{ys, 7) ~ M ( λ r ) , 5 > 0 by
Proposition 3.2, (iii), where M(λ r ) is the Verma module with highest weight
λ r = λ + rα. Therefore, M{vs^)Vs_.β ~ M(λ r )^_ i / 5 , 0 < i < n as Tα-
modules. The operator z(m) has eigenvectors w+, w~ E M(λ r ) z / s _ m / 3 with
eigenvalues 7 + = (λ(/iα)+4(n+m+fc) + l ) 2 and 7" = (λ(/ια)+ 4(n+ra) + l ) 2

respectively. Since θι/3il(fπiik) = 0, then

7* = 7 - h 4 m ( λ ( c ) + 2 ) E {7+,7~}

and

(i/s + 2/>+5α(z/s + 2p),^ 5 )+7= (v8-mβ+2p+sα(i's-mβ+2p),i'8-rnβ)+'γ*.

Let ?/;* G {^^",^7} and z(m)w*s = 7*^*. Then

Ω < - [(i/s - m/3 + 2p + sα(z/s - m/3 + 2/9), ι/s - m/3) + 7 * ] ^

by Lemma 3.6. But, w* E M(λ r ) and

Ωw*s = (2(λr + 2p,λ r) + l ) <

by Corollary 2.6 in [4]. Hence

2(λ r + 2/o, λ r) + 1 = (i/s - ra/? + 2p + sα(z/s - mβ + 2p), ̂ 5 - m/3) + 7*

and

(λ r 4- 2/9, λ r) - (λ r + 2p - r*, λ r - r*)

where r* = mδ — kα if 7* = 7 + and r* — mδ + A α if 7* = 7" . If Λ: divides
772 or A; = 0 then r* is a quasiroot and D = Homg(M(λr — r*), M(λr)) φ 0
[10, Prop. 4.1].

Let 0 φ x E 2λ Then χ(M(Λ r - r*)) Π M(λ r ) I / s _ n / 3 φ 0 and therefore,
0λ2n_β>7(det F^) = 0 for any integer s > 0. It implies that if λ E ίΓ*,
7 E C - Z and 0λϊ7(/m,*) = 0 then <9λ,7(det F^n)) = 0. Thus, f^k is a factor
of det F ( n ) . Conversely, suppose that /n>fc is a factor of det F ^ n \ A; 7̂  0 and
k is not a divisor of n. Let r = 4n + A;. Consider a pair (λ, 7) E H* x (C — Z)
such that 0λ,7(/n>]fc) = #λ,7(#r) = 0 but θXiΊ(fPίq) φ 0 for all 0 < p < n,
0 < g < p (such λ and 7 always exist). Then #λ > 7(det F ( n ) ) = 0 and the
Verma module M(λ r ) has an irreducible subquotient with highest weight
λ r — T*, where r* is one of nδ + kα, nδ — kα. But, this contradicts the
Theorem 2 in [10]. Therefore, fUjk can not be a factor of det F<n) if k φ 0
and k is not a divisor of n.
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Let now 0 < m < n, 0 < A; < ra, A; is not a divisor of m and /m>fc is a
factor of det F ( n ) . Consider a pair (λ,7) G H* x C such that #λ,7(/m,*:) = 0,
θ\,Ί{fP,q) Φ 0 for all p,q e Z, 0 < p < n, 0 < q < p, (p,g) ^ (m,fe) and
θ\n{gs) Φ 0 for all 5 G Z. As it was shown above fmik is not a factor
of det F^ which implies that 0 λ 2 m ? 7(det F^m )) φ 0. Now it follows from
Lemma 3.7 that M{\,η)x_nβ = L(λ,7)λ-n/? and 0λ 2 τ ι ? 7(det F ^ ) φ 0. But,
this contradicts the assumption that fmik is a factor of det F^n\ The Lemma
is proved. D

For n G Z, n > 0 denote Xn = {0} U {fc G Z+ | f G Z}.

Theorem 3.11. £e£ λ G i ϊ* ; 7 G C — R\. Q-module M(λ,j) is irreducible

if and only if k2η φ (n(λ(c) + 2) - A;2)2 for all n G Z, n > 0, k G Xn.

Proof Follows from Lemmas 3.9 and 3.10. D

4. Irreducible representations of the Heisenberg subalgebra.

Consider the Heisenberg subalgebra G — Cc θ ^ Qkδ C Q. It is a
kez-{o}

Z-graded algebra with degc — 0, deg ekδ — k. This gradation induces a

Z-gradation on the universal enveloping algebra U(G) : U(G) = ^ ^

In this section we study the irreducible Z-graded G- modules. The central
element c acts as a scalar on each such module. In general, we say that a
G-module V is a module of level a G C if c acts on V as a multiplication by
α.

4.1. G-Modules of non-zero level. Let G+ = Y^Gkδ, G_ = ^Gkδ Forτ +
k>0 k<0

a G C* = C - {0}, let Cva be the 1- dimensional Gε θ Cc-module for which
Gεva — 0, cva = ava, ε G {+, —}. Consider the G-module

Mε{a)=U(G) 0 Cva

U(GεΘCc)

associated with a and ε.
The module Mε(a) is a Z-graded: Mε(a) — y^Mε(a)i where

iez

i^i = {σ(U{Gε)) ΠUi) ®va.

Proposition 4.1.
(i) The G-module Mε(a) is irreducible.

(ii) Mε(a) is a σ(U{Gε))-free module.



IRREDUCIBLE NON-DENSE MODULES 91

(Hi) dim Mε(a)i = P(\ i |) where P(n) is a partition function.

Proof, (ii) and (iii) follow directly from the definition of Mε(a). Since α ^ O
one can easily show that for any non-zero u G σ(U(Gε)) there exists υ! G
U{Gε) such that 0 Φ u'uva G Mε(a)0 which implies (i) and completes the
proof. D

L e m m a 4.2. // V is a Z-graded G-module of level a G C* and dim V{ < oo
for at least one i £ Z then

Spec e$e_$ |yC {2raα | m G Z} .

Proof. Let υ G l^ be a non-zero eigenvector of eδe_δ with eigenvalue 6 and
b φ 2ma for all m G Z. Since α ^ 0, if en<^ = 0 then e_n($ι; φ 0, n G
Z - {0}. Denote F = {n G Z - {0,1} | enδv φθ}. We may assume without
lost of generality that j = i and | Y Π Z + | = oo. Elements e# and e_j act
injectively on the subspace spanned by eδv, ek_δv, k G Z. Then, for each
fcE7Π Z+, e^e^ίe^υ) = 6eAίυ and 0 7̂  ek_δekδυ G V̂ . Set w^ = ek_δekδv.
Then eδe^swk — (b + 2ka)wk, k G F Π Z + . This contradicts the assumption
that dim Vi < 00. Therefore, 6 = 27τzα for some m G Z. D

For a Z-graded G-module V and j > 0 denote by V '̂' the Z-graded (7-
module with (V^)i = Vi^ , i G Z.

We describe now all irreducible Z-graded G-modules of non-zero level with
finite-dimensional components.

Proposition 4.3.
(i) Let V be an irreducible Z-graded G-module of level a G C* such that

dim Vi < 00 for at least one i G Z. TΛen F ^ ^ Mε(a) for some
ε G { + , - } ; j G Z .

(ii) E x t ^ M ^ α ) ) ^ M*'(α)) - 0 /or any j G Z, ε,ε' G {+, - } .

Proof, (i) By Lemma 4.2 Spec X |yC {2ma \ m G Z} where X stands for
e^e.tf. Let Vi Φ 0, n be an integer with maximal absolute value such that
2na G Spec X \v. and let 0 φ v G Vu Xv = 2nα?;. Assume that n > 0.
Then efc(5ϊ; = 0 for all k > 1. Indeed, if ekδυ φ 0 for some k > 1 then
-^(ejwf) = ekδXυ — 2naekδv and 2(n + k)a is an eigenvalue of X on
Vί which contradicts the assumption. Therefore, ekδv = 0 for all A; > 1.
Consider the element ϋ — en

δ~
xv φ 0. Then e^δeδv — ekδv = 0, k > 1.

If ejΰ 7̂  0 then υp = e^ί ^ 0, βfĉ p̂ = 0 and, hence e_kδvp φ 0 for all
p > 0, k > 1. This would imply that dim V̂  = 00. Therefore, eδv = 0 and
V — U(G)v ^ M+(a) up to a shifting of gradation. If n < 0 then, clearly,
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V ~ M~(a) up to a shifting of gradation. Suppose that Vi = 0 but, for
example, K-i φ 0. Then efc(5?; = 0 for any non-zero v G K-i for all k > 0
and thus V = U(G)v ~ M+(a) up to a shifting of gradation. This completes
the proof of (i).
(ii) Follows from the proof of (i) and Proposition 4.1, (ii). •

Lemma 4.4. Every finitely-generated Z-graded G-module V of level a G C*
such that dim V% < oc for at least one i G Z /ms α /rnzϊe length.

Proof. If Fj = 0 then statement follows from Proposition 4.3. Let Vi Φ 0, n be
an integer with maximal absolute value such that 2na G Spec e$e_$ \v. and
v be a corresponding eigenvector. It follows from the proof of Proposition
4.3, (i) that V — U(G)v ~ Mε(a) up to a shifting of gradation. Consider a
G-module V — V/V. Then dim V{ < dim V% and we can complete the proof
by induction on dim V^ D

Now we are in the position to establish the completely reducibility for
for finitely-generated G-modules of non-zero level with finite-dimensional
components.

Proposition 4.5. Every finitely-generated Z-graded G-module V of a non-

zero level such that dim V% < oo for at least one i G Z is completely reducible.

Proof. Follows from Lemma 4.4 and Proposition 4.3. D

4.2. G-modules of level zero. The irreducible G-modules of level zero are
classified by V. Chari [6]. We recall this classification.

Let G — U{G)/U(G)c and let g : U(G) —>• G be the canonical homomor-
phism. For r > 0 consider a Z-graded ring Lr — C[£ r,f" r], degt — 1 and
denote by Pr the set of graded ring epimorphisms Λ : G -> Lr with Λ(l) = 1.
Let Lo = C and Λo : G —>> C is a trivial homomorphism such that Λ0(l) = 1,
Λ0(ff(efcδ)) = 0 for all k G Z - {0}. Set Po = {Λo}.

Given Λ G P r , r > 0 define a G-module structure on Lr by:

= A(g(ekδ))fs, k e Z - {0} , ctrs = 0,sGZ.

Denote this G-module by LrA.

Proposition 4.6.
(i) Let V be an irreducibe Z-graded G-module of level zero. Then V ~ L r Λ

for some r > 0; Λ G Pr up to a shifting of gradation.

(ii) Lr\ ~ Lr>^> if and only if r — r' and there exists b G C* such that

= bkA'(g(ekδ)), keZ-{0}.
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Proof, (i) is essentially Lemma 3.6 in [6]; (ii) follows from [6, Prop. 3.8].

D

Remark 4.7. All the results of Section 4, except Proposition 4.1 (iii), are
hold for the Heisenberg subalgebra of an arbitrary Affine Lie Algebra.

5. The category O(a).

Let a E π. Following [6] we define category O(a) to be the category of
weight ^-modules M satisfying the condition that there exist finitely many

r

elements λi,...,λΓ E H* such that P(M) C [jD(λi) where
i=l

D(λi) = {\i + ka + nδ | k, n E Z, A; < 0} .

Notice that the trivial action of c, as in [6], is no longer required. It is clear
that O(a) is closed under the operations of taking submodules, quotients
and finite direct sums.

Denote Ba = Y^Ga+nδ. Then Q = B_α Θ (H + G) θ Ba.
nEZ

Let V be an irreducible Z-graded G-module of level a E C and let λ E H*,
λ(c) = α. Then we can define a B — (H + G) ® βα-module structure on V
by setting: hvi = (λ + iδ)(h)vi, BaVi — 0 for all h E i/, Vi E V^ i E Z.

Consider the ̂ -module

U{B)

associated with α, λ, V.

Proposition 5.1.

(i) The g-module Mα(λ, V) is S(B_a)- free.

(ii) Ma(X,V) has a unique irreducible quotient La(X,V).

(iii) P(Ma(λ, V)) = (D(X) - {λ 4- nδ \ n E Z}) U P(V) C D{X).

(iv) Ma(X,V) ~ Ma,(X',V') if and only if a' E {a + nδ | n E Z} and
exists i G Z 5 ĉ/i £Λa£ λ = λr + iδ and V^ ~ F r as graded G-modules.

Proof. Follows from the construction of Q- module M a (λ, V). D

Now we describe the classes of isomorphisms of irreducible modules in

O(a).

Proposition 5.2.
(i) Let V be an irreducible object in O(a). Then there exist X E H* and

an irreducible G- module V such that V ^ La(X,V).
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(ii) La{\,V) ~ La(X',V) if and only if there exists i G Z such that X =
λ' + iδ and V^ ~ V as graded G-modules.

Proof. One can see that V contains a non-zero element v G V\ such that
Bav — 0. Then V — U(G)υ is an irreducible Z-graded G- module and
V ~ U(B_a)V. This implies that V is a homomorphic image of Mα(λ, V)
and, therefore, is isomorphic to Lα(λ, F) , which proves (i). Part (ii) follows
from Proposition 5.1, (iv). D

L e m m a 5.3. //0 < dim La(X, V)μ < oo for some μ G H* then dim V* < oo
for alii G Z.

Proof. If λ(c) = 0 then V[j] ~ LrΛ for some r > 0, Λ G P r , j G Z by
Proposition 4.6 and, hence dim V̂  < 1 for all i G Z. Let λ(c) = α G C* and
y[i] ^ M ε (α), for any j G Z, ε G {+,-}- By Proposition 4.3, (i), dirnl^ = oo
for all i. If α G Q + (α 0 Q + respectively) then X(ha)—na ^ Z + for all integer
^ ^ ^o ( n ^ ^o respectively) and for some n 0 G Z. Thus, eα_n(je_α+n(5
acts injectively on Lα(λ, V) for all n > n 0 (n < n 0 respectively) which
implies that dim Xα(λ, V)μ = oo. But, this contradicts the assumption. We
conclude that V^ ~ Mε(a) for some j G Z, ε G {+, —} and dim V{ < oo for
all i G Z. D

Theorem 5.4. Let V G O(a) be an irreducible.

(i) [6] IfV is of level zero then V ^ La{X, LΓ IΛ) /^ r ̂ ome λ G H*, λ(c) = 0;

r > 0, Λ ePr.

(ii) If V is of level a G C* αnί/ dim Vμ < oo /or α̂  Zeαs£ one μ G ^(t^)

then V ~La (λ, M ε(α)) /or some X G # * , λ(c) = a, ε G {+, - } .

Proof, (i) follows from Propositions 5.2 and 4.6, while (ii) follows from

Lemma 5.3, Propositions 5.2 and 4.3. D

In some cases we can describe the structure of modules ί/α(λ, V).

Let λ(c) = 0, r - 0, Λ = Λo, LOΛo ~ C. Set M(λ) - M α (λ ,C) .
Notice that M(λ) 2̂  S(B_a) as vector spaces and, therefore, P(M(λ)) —
{λ - nα + kδ \ k, n G Z, n > 0} U {λ} and

dim M(X)x_na+kδ = 00, n > l,dim M ( λ ) λ = dim M(X)x_a+kδ = l,fe G Z.

Proposition 5.5.

(i) Lα(λ, C) ~ M(λ) i/ and only if X(ha) φ 0.

(ii) If X(ha) — 0 ίΛen L a(λ, C) is a trivial one-dimensional module.

Proof. Proposition follows from [7, Proposition 6.2] and is also proved in
[8]. D
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Let λ(c) - a e C*. Set Mε(\a) = Ma(\,Mε(a)). We have

P(Mε(\ a)) = {λ - ka + nδ \ k,n e Z, k > 0} U {\ - εnδ \ n e Z + }

and

dim Mε(\,a)χ_ka+nδ = o o , f c > 0 , n G Z,dim M ε (λ,α) λ _ ε n ( 5 = P(n), n e Z+.

Proposition 5.6. [8, 9] Z,α(λ,Mε(α)) ~ Mε(\a).

Recall, that ^-module V is called integrable if e±a and e±^-a)
 a c ^ locally

nilpotently on V. All irreducible integrable Q- modules in O(a) of level zero
were classified in [6]. In fact, they are the only integrable modules in O(a).

Corollary 5.7. // V is irreducible integrable Q-module in O(a) then V is
of level zero.

Proof. Suppose V is of level α / 0 . Since V is integrable, it follows from
Proposition 5.6 that V φ L α (λ,M e (α)), ε G { + , - } . Then V ~ La{\V)
and for any k 6 Z + there exist i > k, j < —k such that V{ φ 0, V3, ^ 0.
Now the same arguments as in the proof of Lemma 5.3 show that e_α and
es-a a r e n ° t locally nilpotent on such module and, therefore, V has a zero
level. D

Remark. (i) The structure of modules Lα(λ,L r ?Λ), r > 0 is unclear is
general. Some examples were considered in [1, 12].
(ii) Most of the results of Section 5 can be generalized for an arbitrary Affine
Lie Algebra [6, 7, 12].

6. Non-dense ^-modules.

Definition. An irreducible weight (/-module V is called dense if P(V) =

X + Q for some λ G H* and non-dense otherwise.

In this section we classify all irreducible non-dense Q- modules with at
least one finite-dimensional weight subspace. Our main result is the following
Theorem.

Theorem 6.2. IfV is an irreducible non-dense Q-module with at least one
finite-dimensional weight subspace then V belongs to one of the following
disjoint classes:
(i) highest weight modules with respect to some choice of τr;

(ii) L ε

α (λ, 7 ), a € Are, λ G H\ 7 € C - Rx, ε € {+, - } ;

(iii) La(X,LrΛ), a e Δ r e , λ G H\ λ(c) = 0, r > 0, Λ € Pr.
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(iv) Lα(λ,Mε(α)), a G Δ r e, λ G H*, a G C*, λ(c) = a, ε e {+,-}.

Moreover, we can describe the irreducible (/-modules of non-zero level

with finite-dimensional weight subspaces.

T h e o r e m 6.3. Let V be an irreducible Q-module of level α / 0 with all

finite-dimensional weight subspaces. Then V ~ Lε

a(\,η) for some a G Δ r e

;

λ G H*, λ(c) = α, 7 e C, ε G {+, -} .

Remark 6.4. Theorems 6.2, 6.3 imply that in order to complete the clas-
sification of all weight irreducible (/-modules one has to study the following
classes:

(i) Modules of type Lα(λ, V) where V is a graded irreducible G-module
of non-zero level with all infinite- dimensional components.

(ii) Dense (/-modules of zero level.

(iii) Dense (/-modules of non-zero level with an infinite-dimensional weight
subspace.

These classification problems are still open.

The proof of Theorem 6.2 is based on some preliminary results. We start

with the following Definition.

Definition 6.5. A subset P C Δ is called closed if βu β2 G P, βλ + β2 G Δ

imply βι +β2 G P. A closed subset P C Δ is called a partition if PΠ—P = 0,

PU-P = A.

Lemma 6.6. Let P be a partition, P 3 δ, Pre = PΠ Δ r e

; β G Δ r e .
(i) // I Pre Π {β + kδ \k G Z+} |< oo or \ Pre Π {-β 4- kδ \k G Z} |< oo

then Pre = {φ + nδ \nE Z} for some ψ G Δ r e .

(ii) // I Pre Π {/? + kδ \k G Z} | = | Pre Π {-/? + ifeί \k G Z+} |= oo then

P = Δ+(τr) for some basis π of Δ.

Proof. Recall that Δ - {±β + kδ \ k e Z} U {nδ \ n e Z - {0}}. It follows

from [7] that there exist w G W and /?; G Δ r e such that

= {β' + kδ \k G Z} U {H I k > 0}

or

tt F = {βf + n5, - ^ + fcί I n > 0, k > 0} U {kδ \ k > 0} = Δ+(π;)

where π1 -{/?', 5 -/?'}. Then

P = {uT1/? + H I A: G Z} U {H | A; > 0}
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or P — A+(w~1ττ/). This implies the statement of Lemma. D

Definition 6.7. A non-zero element v of a (/-module V is called admissible

ifAf'υ = 0 or Bψv = 0, for some φ G Δ r e , ε G {+, - } .

Lemma 6.8. // the Q-module V contains a non-zero vector v G V\ such

that eφv = 0 and λ + kδ & P(V) for some φ G Are, k G Z - {0} then V

contains an admissible vector.

Proof. We will assume that k > 0. The case k < 0 can be considered analo-
gously. We prove the Lemma by the induction on k. Let k = 1. Then we have
Cφ+mδV = e<5t7 = 0 for all m > 0. If eφ-isv = 0 for all i > 0 then S^υ = 0 and
v is admissible. Let eφ-nδυ Φ 0 for some n > 0 and eφ_iδv = 0, 0 < i < n.
Set i; = e^_n<5?; ^ 0. Then e^-^t; = e^ί = e-φ+(n+ι)sϋ = 0, i < n and, thus,
e^ί = 0 for any φ E P = {φ — iδ, —φ + (n + j + l)δ, (j + 1)5 | i < n , j > 0}.
One can see that P U {—<p + nδ} is a partition and P = Δ + ( π ) — {<p;} for
some (/?' G Δ r e , π = {^',5 — φ'}, by Lemma 6.6. Hence, Af^iv = 0 which
proves the Lemma for k = 1.

Assume now that the Lemma is proved for all 0 < k1 < k and consider
two cases:

(i) There exists n G Z , 0 < n < & such that eφ+iδυ = 0 for all 0 < i < n
but eφ+nδv Φ 0. Then eφ+iδϋ = e_VP+(fc_n)<5ί = 0, 0 < i < n where ϋ = eφ+nδv
and e_φ+(jfe_nμί G Vx+jbj = 0 . If A; — n = 1 or k — n > 1 and e_φ+δv — 0
then Λ/+^ = 0 and v is admissible. Let k — n > 1 and υ ; = e-φ+δv Φ 0.
Then v; G Vv, V ^ ' = 0, λ' 4- (jfe - n - l)δ g P(V) where λ' = λ + (n + 1)5,
y?; = — φ + (k — n)δ and V has an admissible element by the induction
hypotheses.

(ii) Let eφ+iδv = 0 for all 0 < i < k. Since ekδυ = 0 we have eφ+iδv = 0
for all i > 0. If ί m = emδυ ψ 0 for some 0 < m < k then ϋm G V\',
λ' = λ + raί, eφί;m = 0, λ; + (fc — m)δ g P(V) and we can apply induction.
Assume that ϋm — 0 for all 0 < m < k. Then we have eφ+iδv = em($?; = 0,
i > 0, 0 < m < k. If eφ_jδv = 0 for all j > 0 then £ ^ = 0 and v
is admissible. Otherwise, let n be a minimal positive integer such that
v = e^-njv Φ 0. Then e^-^i) = e_φ+(n+k)δv = e^δ = 0, i > 0, j <
n. Assume that e-φ+(n+i)δv — 0. We have e^v = 0 for any φ £ P =
{φ — jδ, —φ + (n + m)5, mδ \ j < n, m > 0}. The set P U {—̂ ? -I- n5} is a
partition, | P r e Π {y? + i ί | i > 0} | = | P r e Π {-y> + i ί | i > 0} | = oo and,
therefore, P = Δ + ( π ) — {φ1} for some φ' G Δ r e , π — {^, δ — φ1} by Lemma
6.6. We conclude that λf^v = 0 and v is admissible. Finally, suppose that
v' = e _ ^ + ( n + 1 ) ^ ^ 0. Then v1 G Vv, e vv' = 0, λ; + (A; - 1)5 0 P(V) where λ'
stands for λ + 5 and, thus V has an admissible element by the assumption
of induction. This completes the proof of Lemma. D
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Proposition 6.9. Let V be an irreducible non-dense Q-module. Then V
contains an admissible element.

Proof. Let λ G P(V) and λ + ψ & P(V) for some φ G Δ. We can assume
that φ G Δ r e . Indeed, let φ = δ. If eaυ — eδ_aυ — 0 for some 0 Φ v E V\,
a G Δ r e then V is a highest weight module with respect to {α, δ — a} and
v is admissible. If, for example, eav φ 0 then λ' = λ + ot G JP(V) and
λ' + ( ί - α ) £ P(V). Hence, we can assume that \ + φ& P(V), <p G Δ r e . Let
0 φ v G Vx. If v1 = eφ_nδυ φ 0 for some n G Z - {0} then e ^ ' = 0, υ' G Vj,
λ = λ + ψ — nδ, λ + nδ 0 P(V) and Proposition follows from Lemma 6.8. If

= 0 for all n G Z then S ^ — 0 and v is admissible. D

Corollary 6.10. // V is an irreducible non-dense Q-module then either
V ~ Le

a(\ Ί) orV ~ Lβ(λ, V) for some a G Are, λ G # % 7 G C, ε G {+, -}
irreducible G- module V.

Proof. Follows from Proposition 6.9, Corollary 3.3 (i) and Proposition 5.2.

D

Now Theorem 6.2 follows from Corollary 6.6 and Theorem 5.4.

Proof of Theorem 6.3. Let μ G P(V). Consider the (?-submodule V —
U(G)Vμ C V. Then it follows from Proposition 4.5 that V is completely
reducible and moreover each irreducible component is isomorphic to Mε(a),
ε G {+, —} up to a shifting of gradation by Proposition 4.3, (i). Denote by
V+ the sum of all irreducible components of V isomorphic to M+(a) and
assume that V+ φ 0 . Let 0 φ v G V+ΠVX, χ G P(V) and V+ΠVx+δ = 0. We
will show that for any a G Δ r e there exists ma G Z+ such that ea+mδv — 0 for
all m > ma. Indeed, let v0 = eav φ 0. Consider the G-modn\eU(G)v0 which
is again completely reducible by Proposition 4.5. If ekδv φ 0 for all k > 0
then υk = e*v0 φ 0 for all k > 0. But, for big enough A:, vk will belong to the
direct sum of irreducible components of U(G)v0 each of which is isomorphic
to M~(a) up to a shifting of gradation. This contradicts Proposition 4.1,
(ii), since e2

δvk — 2k+2ea+(k+2)5V — 2e2<5^. Thus, there exists ma > 0 such
that ea+rncίδv — 0 and, therefore, ea+msv = 0 for any m > ma.

Suppose that χ + δ G P(V). Since V is irreducible there exists 0 φ
u G U(G) such that 0 Φ uv G V^+j It follows from the discussion above
that enδuυ = 0 for big enough n G Z + . The G-submodule V = U(G)uv
is completely reducible by Proposition 4.5 and since V+ Π Vx+& = 0, any
irreducible component L C V such that L Π V +̂(5 7̂  0 is isomorphic to
M~(a) up to a shifting of gradation. Hence, enδϋ φ 0 for any non-zero
v G V Π V^+j by Proposition 4.1, (ii) and enδuv φ 0 in particular. This
contradiction implies that χ + δ 0 - P ^ ) and therefore 7 is a non-dense
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^/-module. Applying Theorem 6.2 we conclude that V ~ Lε

a(λ^) for some
a E Δ r e , λ E ff*, λ(c) = α, 7 G C, ε G {+,-} which completes the
proof. D
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M-HYPERBOLIC REAL SUBSETS OF COMPLEX SPACES

GlULIANA GlGANTE, GIUSEPPE TOMASSINI AND SERGIO VENTURINI

The aim of this paper is to make a first attempt to study
real analytic subsets of complex manifolds (or more generally
of complex analytic spaces) from the viewpoint of the theory
of metric spaces.

1. Introduction.

Our starting point was inspired by the definition of the so-called Kobayashi
pseudodistance on complex manifolds We recall briefly that such a pseudo-
distance is defined on any complex analytic space M using only the space
of all holomorphic maps sending the open unit disk Δ in C in the space
M. Moreover the complex space M is said to be "hyperbolic" if such a
pseudodistance actually is a real distance, namely it assigns non vanishing
values to pair of distinct points of M. In our situation, we introduce a sim-
ilar pseudodistance dv^M on any subset of V of a complex analytic space
M using the space of all holomorphic maps from Δ to M sending the open
interval / =] — 1,1[ in V, and we introduce the concept of M-hyperbolicity
(cf. Section 2).

We are primarily interested in the case when M is a smooth complex
manifold and V is a (closed) real analytic smooth submanifold of M, but
the definitions work in this more general context as well.

Any holomorphic map between complex manifolds is distance decreas-
ing when the manifolds are endowed with the Kobayashi distances. Our
pseudodistances also fulfill this fundamental property. A unexpected phe-
nomenon is that there are some classes of non holomorphic mappings which
enjoy this property. A description of such mappings is given in the Section
3 of the paper. As an application, some hyperbolicity criteria are given, and
some Liouville type theorems are proved.

We also extend the construction of the Kobayashi-Royden pseudometric
when V is a smooth real analytic submanifold of a complex manifold M
(Section 4) and we establish some results on the behaviour of a complex
Lie group G acting holomorphically on M and leaving V invariant (Section
5). Moreover we define and study the "geodesies" for such a metric Some
examples are given (Section 6).

101
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2. Main definitions.

Let us fix some notations. We denote by / the open real interval ] — 1,1[,
and by D the open unit disk in C. The Poincare hyperbolic distance on D
will be denoted by p.

We denote by D(R), 0 < R < +oo, the set of complex number z such
that \z\ < R, and also put I(R) = D(R) Π R

Let M be a complex analytic (reduced) complex space and let V be a
subset of M. By an M-analytic arc in V, or simply an analytic arc in V,
we mean a holomorphic map / : D —> M such that /(/) C V. Given two
points p and q in V, an analytic chain 7 in V joining p and q is given by the
following data:

(i) points α 0 , . . . , ak in /;
(ii) M-analytic arcs / 1 ? . . . , /*. in V such that fι(a0) = p, fk(a>k) — 9

Λ K ) = Λ+iK ) for j = 1,... , fc - 1.
The length of the analytic chain 7 is by definition the number

J f e - l

i=o

We denote by CPjg(V, M) the set af all the M-analytic chains in V joining
p and g.

Using the analytic arcs so defined we introduce a pseudodistance on V by
the formula

dM) i f { ( ) I 7 e C M (

where by definition the second member in the definition is +00 if the set
Cp,q(V,M) is empty.

Clearly the function dVjM{p, q) so defined is a pseudodistance that vanishes
when p — </, it is symmetric in p and q, and satisfies the triangle inequality.

We say that V is hyperbolic with respect to M, or simply M-hyperbolic
if CIV,M{P, Q) > 0 whenever p φ q.

On the other hand we say that V is M-hyperbolically ffat, or simply
M-ffat, if the pseudodistance cfy5M vanishes identically.

In this paper we are interest in the case when V is a real analytic subset
(even a real analytic submanifold) of M. Nevertheless the definition makes
sense with no additional structure on V.

We begin by noting some elementary properties:
(i) If V = M, then cfy,M is the usual Kobayashi pseudodistance on M;

(ii) If M = D and V = /, then the Schwarz Lemma implies that the
pseudodistance dv^M is the restriction to / of the Poincare distance on
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(iii) If (Vi,Mi) and (V2,M2) are pairs of complex spaces as above and
/ : Mi —> M2 is a holomorphic map sending Vλ in V2, then for every p
and q in Vι

(iv) If δ : V x V -> [0, +00] is a pseudodistance such that

*(/(*),/(*)) < P ( M )

for all M-analytic arcs / in V then δ < dVyM.

(v) If M = C and V — R then C?V,M vanishes identically, that is, M is

C-flat; indeed, given y E i , let / be the analytic arc z H-» m/z, n G N;

then /(0) = 0, /(i/n) = y and hence

Taking the limit for n —ϊ -i-oo we obtain G?\/M(0, y) = 0.

3. Hyperbolicity and "good" mappings.

We say that an arbitrary map F : Mx -+ M2 between complex spaces is good,
if, for every holomorphic map / : D(R) —ϊ M 1 ? there exists a holomorphic
map / : D(R) -> M2 such that f(t) = F(/(ί)) for every ί G I{R).

The proofs of the following two Propositions are straightforward.

Proposition 3.1. Let Mx and M2 be complex spaces, V\ and V2 be subsets
of Mi and M2 respectively, and let F : Mi —> M2 be a good map satisfying
F(Vι) C V2. Then, for every pair of points p and q in V\,

dv2,M2(F(p),F(<l)) <dVlMl(p,q).

Proposition 3.2. Let Mi, M2, V1; V2 and F as in the previous Proposition.
(i) IfV2 is M2-hyperbolic and F\Vl is injective, then Vι is Mi-hyperbolic.

(ii) // Vι is Mi-flat and F(Vλ) = V2, then V2 is M2-flat

Every holomorphic map is clearly good. However there also are not holo-
morphic good maps:

Proposition 3.3. The map F : C n -> C 2 n defined by

z = ( z i , . . . ,zn) *-> F(z) = (zuzu... ,zn,zn)

is good.

Proof Let / : D(R) -^ Cn be a holomorphic map. Define /* : D(R) -> C n

by the formula

r(z)=*f(z)), zeD(R).
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Clearly /* is holomorphic and the map / : D(R) —ϊ C?n given by

where fτ and /* are the i-th component respectively of / and /*, satisfies

f(t) = F(f{t)) for every t G I(R). D

Since compositions of good maps are good we immediatly obtain

Proposition 3.4. Let H : C 2 n —̂  M be a holomorphic (or simply a good)

map. Then the maps F,G : C 1 -> M defined by

F(zu... ,zn) = H(zuzu... ,zn,zn),

G(xι +iyw" ->χn + iVn) = H(xuyu... ,xn,2/n),

are good.

For the projective space we have:

Proposition 3.5. The map F : QPn -* CP^, v = [n + I ) 2 - 1, defined by

(3.1) Wij = ZiZj, i,j = 0 , . . . , n

Proof. The assertion follows from the Propositions 3.3 and 3.4, and the fact
that for every k there is a one to one correspondence between holomorphic
maps / : D —> QF^ and holomorphic maps g = (go,- - ,gk) '• D(R) —> C "̂̂ 1

satisfying g{ φ 0 for some ΐ = 0,... , k. D

In order to find hyperbolic spaces the following (almost trivial) remark is

useful.

Proposition 3.6. Let M be a complex space and let V be a subset of M.
If N is a closed complex subspace of M containing V', then

In particular, if N is hyperbolic (as complex space), then V is M-hyperbolic.

Proof. It suffices to show that if / : D -» M is a holomorphic arc in V,
then f(D) C N, that is f~ι(N) = D. But this is obvious, since f~x(N) is a
closed complex subspace of D containing /, and any such a subspace must
coincide with D. D

We now give some example of flat spaces.
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Proposition 3.7. Any interval of the real line is flat.

Proof. It suffices to prove the assertion for the interval J — [0,1]. Indeed, the

map z H* exp(—z2) shows that d/,c(l5 t) = 0 for every t EJO, 1]. Analogously,

the map z •-> 1 - exp(-z 2) yields dJiC(t,O) — 0 for every t E [0,1[. Finally,

one has d J | C ( l , 0) < d J | C ( l , ιh) + rfj.cOΛi 0) = 0. D

As consequence of this Proposition we obtain the following Liouville type
Theorem.

Theorem 3.1. Let V be a subset of a complex space M. If V is M-
hyperbolic then every holomorphic map f : C —> M sending some non-trivial
real interval J C IK in V is a constant map.

Proof. Since V is M-hyperbolic and J is C-flat the map / must be constant

on J and hence it is constant on all C. D

Other examples of flat space are given in the following three Propositions.

Proposition 3.8. Any connected subset of a non-singular real conic in
C = R2 is flat.

Proof. Since real affine self map of C are good, any conic is isometric either
to the unit circle x2 + y2 = 1, or to the equilateral hyperbola xy — 1, or
to the parabola y — x2. Any connected subset of such a conic is the image
of an interval of some real line in C under the maps z •-> cos(z) + isin(z),
z H-> exp(^) + i exp(-2:), and z *-ϊ z + iz2 respectively. D

Proposition 3.9. The boundary S of the unit ball in Cn (with respect to

the standard euclidean norm) is flat.

Proof. Given two arbitrary distinct points p and q in 5, the complex line L
joining p and q intersect S along a circumference, that is, a conic in L, and
hence, by the previous Proposition, one has

ds,& (p, q) < dSπL,L{Pi 9) = °J

and the assertion follows. D

Proposition 3.10. Every real ellipsoid in C n is flat.

Proof. Indeed the unit ball of O1 can be mapped onto any real ellipsoid

under a suitable real linear map of C^, and any such map is good. D

And now here are some examples of hyperbolic sets. The following Propo-

sition is immediate consequence of Propositions 3.4 and 3.6.
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Proposition 3.11. Let K c C = K2n be a subset defined by k equations

(3.2) fi(xuyu... ,xn,yn) = 0, i = 1,... ,&,

where Xι and yτ are the standard real coordinates in C n , and / i , . . . , /& are
real analytic functions defined by real power series converging over all R 2 n .
Let Vc be the subset of C?n defined by the same set of equations 3.27 where
now Xi and yι represent the complex coordinates of C 2 n . Under these hy-
potheses, ifVc is hyperbolic (as complex space) then V is Cn-hyperbolic.

Example. Let z = x + iy be the standard coordinate in C. Let F c C the

graph of the real function y — log(l + x2). Then V is C-hyperbolic. Indeed

according to the previous Proposition it suffices to prove that the complex

curve

Vc = {(z,w) eC2 \exp(w) = 1 + z2}

is hyperbolic. Clearly Vc is regular everywhere, that is it is a closed Riemann
surface in C2. Let denote by g : Vc -> C the restriction to Vc of the projection
map (z, w) H^ z. The map g is a non constant holomorphic map on Vc. Since
the exponential function never vanishes, then the map g necessarily omits
the values i and —i, the zeroes of the function 1 + z2. The little Picard
Theorem therefore implies that the universal covering of Vc can not be the
complex plane, and hence Vc is covered by the unit disc JD, that is, Vc must
be hyperbolic, as asserted.

The following assertion gives a criterion for CP1-hyperbolicity.

Proposition 3.12. Let V C C C GP1 be a subset defined by an equation

(3.3) / ( s , y ) = 0 , z = x + iyeQ

where f(x,y) is a polynomial in the variables x and y of degree d. Let V be
the (topologicaΐ) closure of V in QP 1. Let Vc be the complex curve in C2 of
equation 3.3, where now x and y are considered as complex coordinates in
C 2

; and finally let Vc be the closure of Vc in CP 2 . If Vc is hyperbolic then
V (and hence V also) is QP1 -hyperbolic.

Proof. Let z0 and zγ be homogeneous coordinates in CP 1 , that is, z — x+iy =
z1/z0.

Let g G C[X0>^i>^2] be the homogeneous polynomial defined by the
equation

9(x0,x1,x2) = xd

Qf ( ^ ( * + * )
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Choosing XQ,Xγ,X2 and X3 as homogeneous coordinates in QP3, let W be
the quasiprojective algebraic subset of GP3 defined by

QX% ~~ X\Xi = 0 ,

and let W be the closure in CP3 ofW.
Consider now the map F : CP1 -* CP3 defined by

Xι =
<

Such a map is injective, and Proposition 3.5 says that the map F so defined
is a good map. By construction one clearly has F(V) C W and hence
F(V) C W. By Proposition 3.2, in order to check the QP1-hyperbolicity of
V, it suffices to prove that the curve W is hyperbolic.

It is easy to show that W and Vc are isomorphic (as affϊne algebraic va-
rieties), and therefore W and Vc are birationally equivalent as projective
algebraic curves. Since hyperbolicity is preserved under birational isomor-
phisms between (compact algebraic) curves, it follows from our hypotheses
that W is hyperbolic, as asserted. D

For algebraic varieties of higher dimension hyperbolicity is no longer a bi-
rational invariant. So the previous argument does not apply to higher dimen-
sional projective spaces. Nevertheless the following Liouville type Theorem
for meromorphic mappings holds:

Proposition 3.13. Let F c C n be a subset defined by k equations as in the
Proposition 3.11. Let Vc be defined as in Proposition 3.11, and let Vc be the
closure in CP 2 n of Vc- Let f1,...,fn:C—>Cbe meromorphic functions.
Assume that

(i) there exists a non-degenerate interval J c K such that every f{ has no

poles on J and (/ι(t), . . . , /n(ί)) G V for every t G J;

(ii) the complex space Vc is hyperbolic.

Then every fι is a constant function.

Proof. Let P be the set of all the poles of the functions f{. The set P is
discrete and closed in C It is easy to check that, for every i = 1,... , n, the
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function f*(z) = f(z)} is an entire meromorphic function, and the mapping
F : C \ P ->• C?n defined by

\(fn(z) + mz)),±-.(fn(z) - f:(Z

is a holomorphic map sending the real interval J in Vc Since Vc is closed
in QP 2 n , it follows that F(C \ P) C Vfc. Moreover, by hypothesis, Vc is a
compact hyperbolic complex space. Thus the map F extends throughout all
C (cf. Corollary 3.2. of Chapter VI of [4]). Again by the hyperbolicity of
Vc, the map F must be constant, and this yields our assertion. D

The following Proposition follows immediatly from [8, Theorem 3].

Proposition 3.14. Let M be a complex manifold and let V be a subset of
M. Assume that there exists a bounded plurisubharmonic function u : M —>
K. of class C2. If u is strictly plurisubharmonic at every point ofV, then V
is M-hyperbolic.

4. Real analytic submanifolds.

In this section we assume that M is a (connected) complex manifold and

V C M is a (connected) closed real analytic submanifold of M.

Proposition 4.1. Let p0 G V C M be a point and let (U,x) be a local
real coordinate system on V around p0. Then there exists a neighbourhood
U' C.U of po and a positive finite constant C such that for every p and q in
V one has

i<l) < C\\X(P) ~ x(

In particular the function dv^M is continuous in V x V.

Proof. Let m be the real dimension of V. Thus the map x is a real analytic
diffeomorphism of U onto x(U) C Mm. Put x0 = x(po) Since the map
x~x : x(U) —> V is real analytic, there exists a neighbourhood Uf C U of p0

and a small ball B C Cm centered at x0 and a holomorphic map F : B -» M
such that x(U') CC JB, F(B Π R m ) C U C V, and F(x(p)) = p for every
p G U'. It follows that if p and q are arbitrarily chosen points of U' then

(4.1) dVM(p,q) - dVM{F{x{p)),F{x{q))) <
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Since x(U') CC B it easy to prove, using images under complex affine map-
pings of the unit disc Z), that there exists a constant C such that for every
pair of points y' and y" in x(U') one has

(4.2) dBaam,B(y',y")<C\y'-y"\.

Combining 4.1 and 4.2 our assertion follows. D

The following assertion is an immediate consequence of this proposition.

Proposition 4.2. IfV is M-hyperbolic then the distance dv,M induces the
topology of V.

Proof. As dv^M is continuous we only have to prove that for every p0 G V
the open balls B(r) = {p G V \ dViM(p,q) < r} form a fundamental system
of neighbourhoods of p0.

Let U be an arbitrary neighbourhood of p0. We need to prove that there
exists a ball B(ε) contained in U for some ε > 0. Pick a connected neig-
bourhood U' of x0 contained in U with compact boundary S — dU'. Every
analytic chain in V connecting p0 and an arbitrary point q in V \ U' must
intersect the boundary S of U' and therefore one has

jnf dVM{po >p) > irt dv,M(Po,p) > inf dVM(p0,p) = ε > 0,

where the last inequality follows from the M-hyperbolicity of F, the conti-

nuity of dV)M and the compactess of S. But this implies that B(ε) C U' C U,

as asserted. D

We now introduce a pseudometric on V C M which generalizes the con-

truction of the Kobayashi-Royden pseudometric on complex manifolds, and

then we will prove that its integrated form is the pseudodistance dv,M-
Let us fix some notation. For every p G V we identify the real tangent

space of M at p with the holomorphic tangent space of M at p, so that
the (real) tangent space TPV of V at p will be identified with a subspace of
the holomorphic tangent space T^M of M at p. For later use we denote by
CΓpV the smallest complex vector subpace oΐT^M containing TPV.

If / : D —> M is a holomorphic map sending / in V, for every t G / C D
we then denote by f'(t) either the image of the (real) tangent vector d/βt
under the differential of /μ at £, or the image of the holomorphic tangent
vector d/dz under the (holomorphic) differential of / at t.

With this notation, for every p G V and every ξ G TPV we define
[FV,M](P->0

 a s the infimum of the positive real numbers a > 0 for which
there exists an M-analytic arc / in V such that /(0) = p and /;(0) = a~ιξ.
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It is easy to check that all properties ( i ) , . . . , (v) of the Section 2 stated
for the pseudodistance dViM, with the necessary modifications hold for the
pseudometric [FV^M]. Moreover one sees that this pseudometric decreases
under differentiable good mappings, and that the analogous estimate to that
in Proposition 4.1 can also be given for this pseudodistance.

Up to now very little can be said about the regularity of [i<V)M]. Denoting
the (real) tangent bundle of V by TV with its usual topological structure,
the best result we can prove is the following:

Proposition 4.3. The pseudometric [FyiM] •' TV -* [0, +oc[ is a Borel
function.

Proof. Denote [ F ^ M ] simply by F. We will prove our assertion finding a de-
creasing sequence of lower semicontinuous pseudometrics Fn : TV —» [0, +oo[
such that for every p G V and ξ G TPV one has

(4.3) F(p,ξ) = mΐFn(p,ξ).

Fix a complete hermitian metric h on M and denote by d its associated
distance. For every n E N let denote by Λn the class of all analytic arcs /
in V satisfying d(f(z), f(w)) < n \\z — w\\ for every z and w in D. Let Fn be
the pseudometric defined as the pseudometric F but using analytic arcs in
Λn instead of all analytic arcs in V. As consequence of the Ascoli Theorem,
by the completeness of the metric h and the closure of M, it follows that
if /„ is an arbitrary sequence of analytic arcs in Λn such that the sequence
fu(0) converges to some point p £ V, then a subsequence of fv converges
uniformly on all compact subsets of D to an analytic arc / G Λn such that
/(0) = p. Moreover the derivatives at 0 of such a subsequence converge to
/'(()). It is then an easy matter to derive the lower semicontinuity of the
pseudometric Fn from this fact.

Let now p G V and ξ G TPV be given. Let / be an analytic arc in V
such that /(0) = p and /'(0) — a~1ξ. For every ε > 0 small put fε(z) —
/((I — έ)z), z G D. Then fε -> / uniformely on compact subsets of D,
and each fε belongs to An, for some n — n(ε). All this clearly implies the
formula 4.3. The proof is so completed. D

If 7 : [0,1] —> V is an absolutely continuous curve, the length of 7 (with

respect to the pseudometric [FyiM]) is the number

' [Fv,M}{Ί(s),<y(s))ds.1
The integrated form dVjM{p, Q) of the pseudometric [FV,M] is the infimum

of the lengths of the absolutely continuous curves 7 : [0,1] -> V such that
7(0) =p and 7(1) =q.
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Proposition 4.4. The pseudodistance dViM crnd the integrated form of the
pseudometric [FV^M] coincide.

Proof. It is a direct consequence of the Theorem 2.1 of [9]. D

5. Group actions.

In this section M will stand for a complex manifold, V for a closed real
analytic submanifold of M, and G for a complex Lie group of holomorphic
transformation of M. We denote by G(V) the subgroup of G of the trans-
formations which leave the submanifold V invariant. Being V closed in M,
then G(V) is a closed subgroup of G, and therefore is a (real) Lie group. We
also denote by g and g(V) the Lie algebras respectively of G and of G(V),
and by J the complex structure of g.

Theorem 5.1. If G(V) acts transitively on V, then V is M-flat.

Proof. Let p G V. Then there is a neighbourhood U of p in V such that
every q eV belongs to a real one parameter subgroup t»-» exp(£X), for some
X € gOO? which extends holomorphically to a entire holomorphic map by
C 3 z H+ f(z) = exp(zX). Clearly /(K) C V, and therefore dVM(p,q) = 0.
The triangle inequality then implies that dy^M vanishes everywhere, that is
V is M-flat. ' D

Theorem 5.2. // G(V) acts effectively on V and V is M-hyperbolic then
G(V) is discrete.

Proof. It suffices to prove that g = 0. Pick X G g. Consider the real
one-parameter subgroups

t *-> exp(tX), t M- exp(ί JX).

We have [X, JX] — 0 and consequentely these two one-parameter subgroups
generate a complex one-parameter subgroup H of G. Thus, taking C, the
universal covering of ϋΓ, we obtain a holomorphic action C x M -> M which
extends the real action on V given by (t,p) M- exp(tX)p. Then, from the
Theorem 3.1 it follows that exp(tX)p = p for every t £ M, p G V and this
implies X = 0, because G(y) by hypothesis acts effectively on V. D

Corollary 5.1. If V is M-hyperbolic and dim^G(V) > 0; then G acts-
trivially on V. In particular, if there is a point p0 G V such that CΓP0V =
TPoM, then G acts trivially on M.

Corollary 5.2. Let M be compact, V be M-hyperbolic and suppose that
there is a point p0 such that CΓPo V = TP0M. Denote with Aut(M) the group
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of all the holomorphic automorphisms of M. Then the set

{σ e Aut(M) I σ(V) C V}

is a discrete subgroup of Aut(M).

Proof. Indeed Aut(M) is a complex Lie group wich acts on M effectively.

D

Example. Let M = C2; then C* = C \ {0} acts on C2 by

(z,w) >->(λz,w + (λ2 -l)z2).

Let

V = {(t,t2) | t € R } , V = {(t + it,2it2) \teR}.

Then G(V) = G(V) = M* = K\{0} acts effectively on V and V respectively.
Observe that V and V in this example are flat.

6. Geodesies.

Let M be complex space and V be a subset of M. We say that an analytic
arc / : Δ -* M such that /(/) C V is a M-geodesic if it is a local isometry
with respect to the distances dj^ and dy^M-> that is, for every t0 £ I there
exists a open interval J C I containing t0 such that

dγM(f(t)J(s))=dIΛ(t,s)

for every t and s in J . With abuse of language we also call M-geodesic in V
a one dimensional real submanifold of M contained in V which is the image
of the interval / under a M-geodesic / : Δ —>• M in V.

Remark. If M is a hyperbolic Riemann surface and V — M then the
distance dVM is the distance associated to a Hermitian metric ΛM, and a
M-geodesic in V is a holomorphic map / : Δ -> M such that /μ is a geodesic
with respect to the metric hw

The following Proposition on geodesies on Riemann surfaces is useful for
finding geodesies.

Proposition 6.1. Let M be an hyperbolic irreducible complex curve, that
is an irreducible complex space of (complex) dimension \, and let Mr be the
set of regular points of M. Let φ : M —» M be an antiholomorphic map and
let X be the set of the fixed points of φ. Then each connected component of
X contained in Mr is (the image of) a geodesic of M.

Proof. Let Xo be a connected component of X contained in Mr and let
x0 e Xo. Let π : M -> M be the normalization of M and let x0 G M be the
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unique point such that π ( ί 0 ) = #o Let / : Δ —> M be a universal covering
of M such that /(0) = x0 and let σ : Δ —> Δ be the unique continuous map
such that σ(0) — 0 and πofoσ = φoπof. Then Xo is the image under
π o / of the set Z of the fixed point set of σ. But σ is an antiholomorphic
automorphism of Δ such that σ(0) = 0 and hence there exists θ e E such
that

σ(z) = eiθz.

Thus the set Z is the intersection of Δ and a straight (real) line through
the origin, and therefore it is a geodesic in Δ (for the Poincare metric of
Δ). Since both the covering map / and the restriction of π to π~1(Mr) are
(local) isometries for the Kobayashi distance, the set Xo also is a geodesic
in M, as asserted. D

Example. Let X C C2 be the image of the periodic map / : E -» C2

defined by

( •

' ( e t t - 2 ) ( 2 e t t - l ) ,

Then X is a C2 geodesic. Indeed let M = C \ {0, i/2, 2} and let F : M -» C2

be the map defined by

Then F is a holomorphic embedding of M into C2 and X is the image under
F of S C M, the unit circle in C Hence it suffices to prove that S is
a geodesic in M (for the Kobayashi metric). But this follows immediatly
from the previous proposition, observing that S is the fixed point set of the
antiholomorphic automorphism φ : M —• M defined by

φ(z) = l/z.

Proposition 6.2. Let V C C" = lR2n be a subset defined by k real equa-
tions as in Proposition 3.11. Assume furthermore that V is a real smooth
submanίfold of (real) dimension one. If V is Cn -hyperbolic then each con-
nected component of V is a O1 -geodesic.

Proof. Let F : Cn -> C 2 n be defined by

Z = (X1 + Z J / 1 , . . . ,Xn +iyn) ^ ( ^ l , y i , . . - iXrnVn)-



114 G. GIGANTE, G. TOMASSINI AND S. VENTURINI

Let Vc C C 2 n be defined as in the Proposition 3.11. Let L : C 2 n -» C n be
the holomorphic map defined by

Obviously L(F(z)) — z for every z E C n . Thus, given z,w E V, one has

(6.1)

It follows that the map L : F(V) -> V is an isometry with respect to the
distances dp(v)1c

2n a n d c?y,o 5 and hence in order to prove our assertion it
suffices to prove that each connected component of F(V) is a C2n-geodesic.

Let F(V0) be a connected component of F(V), where Vo is a connected
component of V, and let W be the smallest complex analytic subspace of
C 2 n containing F(V0). Since W is closed in C 2 n then, by Proposition 3.6,
one has

Since V is Cn-hyperbolic, by 6.1 it follows that W is not flat for the Kobayashi
metric, and hence, since W is a complex one dimensional curve, it is hyper-
bolic.

Let φ : C?n -> C 2 n the map defined by

Since Vc is defined by real equations, the space W is invariant under φ.
Clearly the restriction of the map φ to W is an antiholomorphic automor-
phism of W. We end the proof observing that FfVo) is a connected compo-
nent of the fixed point set in W of the map ψ and hence the Proposition 6.1
applies. D
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VALUES OF BERNOULLI POLYNOMIALS

ANDREW GRANVILLE 1 AND Z H I - W E I S U N 2

Dedicated to Emma Lehmer

Let Bn(t) be the nth Bernoulli polynomial. We show that
Bp-ι(a/q) — Bp-ι = q(Up — l)/2p (mod p), where Un is a certain
linear recurrence of order [q/2] which depends only on α, q and
the least positive residue of p (mod q). This can be re-written
as a sum of linear recurrence sequences of order < φ(q)/2,
and so we can recover the classical results where φ(q) < 2 (for
instance, Bp-ϊ(l/6)-Bp-1 = (3p-3)/2p+ (2p-2)/p (modp)). Our
results provide the first advance on the question of evaluating
these polynomials when φ(q) > 2, a problem posed by Emma
Lehmer in 1938.

Introduction.

It has long been known that the nth Bernoulli polynomial Bn(t) , where

and Bk, the A th Bernoulli number, defined by the power series

u

x

take 'special' values at certain rational numbers with small denominators:

(1) Bn{\) = Bn(0) = Bn, f o r n ^ l

Bn (§) = {2l'nn
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Fellow. Also supported, in part, by the National Science Foundation.

2The second author was supported by the National Natural Science Foundation of the
People's Republic of China.

117



118 ANDREW GRANVILLE AND ZHI-WEI SUN

and for all even n > 2,

1

6

It is not known if Bn(a/q) has as simple a 'closed form' for any other
rational a/q with 1 < a < q — 1 and (α,g) = 1, though this has long been
considered an interesting question.

Following work of Friedmann and Tamarkin [FT], Emma Lehmer [Lh,
1938] considered Bernoulli numbers and polynomials modulo primes and
prime powers, and showed amongst other things that (1) and (2) imply

(3)

(mod p)

1 ίQΏ CΛ

(mod p)

(mod p)

"2 P
3 (2p - 2)

E 2 p

The "Fermat quotients", (2p-2)/p and (3p-3)/p play a central role in the
study of the first case of Fermat's Last Theorem (see Ribenboim's elegant
account [Ri]), and this connection with Bernoulli polynomials has recently
been explored in much greater depth by Skula [Sk] (see also [Gr]).

However, until now, no progress has been made in extending the table of
intriguing congruences given in (3). This is the intention here. (It should be
mentioned that recent papers of H. C. Williams [Wl, W2], of G. Andrews
[An] as well as of the second author and his twin brother Zhi-Hong Sun
[SS], each come close to doing this.)

Before stating our main result, which is of a somewhat technical nature,
let's discuss the next class of examples after (3). The two important things
to note about (3) are that,
(i): We've evaluated Sp_1(-) — J3p_i (mod p) where φ(q) — 1 or 2 (φ Is
Euler's totient function);
(ii): Each of the terms of the right hand side, like 2P, 3P, are numbers taken
from a first-order linear recurrence sequence (un+χ — 2un and n n + 1 = 3un

respectively).
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This is the viewpoint we need to generalize. We shall show, for q > 2, that
J5P_! (-) — Bp_ι (mod p) is congruent to a sum of multiples of terms, each of
which are numbers taken from a fcth-order linear recurrence sequence with

k < φ(q)/2.

Thus the next class of examples are those q for which φ(q) = 4, namely
q = 5,8,10,12. We shall show that, for 1 < a < q - 1 with (α, q) = 1 (there
being four such integers α), we have, when prime p does not divide q,

(4)

-T(I)ϊ
-χ - 1) 3 (2>p~ι

where (—) is the Jacobi symbol, and we define the following second-order
linear recurrence sequences:

Fo = 0, Fλ = 1, and F n + 2 - Fn+ι + Fn for all n > 0

Go = 0, Gi = 1, and G n + 2 = 2Gn + 1 + Gn for all n > 0

Ho = 0, iίi = 1, and # n + 2 = 4fίn + 1 - Hn for all n > 0.

({Fn} is, of course, the Fibonacci sequence.)
In general we fix residue classes a and b (mod q), with (ab,q) — 1. Then,

for each divisor o? of g, there exists a recurrence sequence un — un{d, α, b) of
order D = φ(d)/2, with characteristic polynomial

D-l

• _ 9 _1_ p2iπj/d _i_ p-2iπj" '

so that
/ f D - 2 H

for all n > 0. The values of n0, , WJD-I depend on o and 6 (mod d) and
are somewhat complicated to describe - see Section 2 for precise details.

Our main result is that, for any (α, q) — 1, 1 < α < g,

(5) βp_χ ( - ) - Sp_! = j ; l {np(d; α, 6) - (0(d) - /i(rf))} (mod p)
X(lJ d\q ZP
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where b is the least positive residue of p (mod q) (and μ is the Mόbius
function), provided prime p does not divide q. Each term in the sum is a
p-unit.

Our formula involves such an awkward sum of recurrence sequences though
each appears "naturally" in

(6)

μ ( I ) ( V J (jf) - Bp_i) = ̂  {up(q; a, b) - (φ(q) - μ(q))} (mod p)(I) ( (jf) )
where ad is the least positive residue of a mod d. Indeed this is the formula
we shall prove and then (5) is deduced by summing (6) over divisors of q.

We are unable to answer the question as to whether it is possible to give
such a congruence for Bp-χ(-) — JBP_I involving only lower order recurrence
sequences. Indeed this seems difficult, unless one can give a complete char-
acterization of all linear recurrence sequences (Xn)n>o for which Xp = 0 mod
p2 for all but finitely many primes p. However we do not even know how to
decide this for Xn = 2n - 2.

However, it is easily shown that any sum of recurrence sequences can be
written as one recurrence sequence, though of higher order. Thus (5) can be
rewritten

(7) 5p_i ( ^ - B^ = | - {Up(q; a, b) - 1} (mod p)

where, now, Un has characteristic polynomial

(X - 2 + e2iπj/q

Again it is complicated to compute the values of Un for small n.
It is tempting to provide one "concrete" example for arbitrarily large q.

We will now completely describe Up(q\ α, b) in the case that a~±.b (mod q)
(that is a ~ ±p (mod q)) and q is odd:

Theorem. If q is an odd integer > 3 and 1 < a < q with (a,q) = 1, then

(8) £„_! (^) - £„_! = ^ {xp - 1} (mod p)

whenever p = ±a (mod q) where {xn}n>o is the ^th order recurrence se-
quence given by

1 (2n\ q-\
X - = 2 n ' °^^-^-'
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and for D —1γ- we have

ΪD-2

(D-

where

0!

D-2j-k

Since this is the simplest general case, we hope the reader understands
why we suppress so many details in this introduction!

Finally we give the first example with φ(q) — 6, namely q — Ί\ Here we
have that, for 1 < a < 6, and any odd prime p φ 7,

Bv_γ φ - Bp_i = ^ W 7 ; α, b) - 1} (mod p)

where b — 1,2 or 3 with b = ±p (mod 7), and Un satisfies the recurrence
relation

The values of C/i, [/2, Ĉ3 are given in the table below:

±a
2

3

1

3

1

2

a

±b
1

2

3

1

2

3

a

u,
1

2

2

1

3

2

1

u22

7

6

2

11

5

3

5

26

19

6

41

13

10

Analogous results can be given for generalized Bernoulli numbers (for
Dirichlet characters) since they may be expressed in terms of values of
Bernoulli polynomials. It is perhaps more obvious that there should be
simple expressions for these since they can be described in terms of p-adic
L-functions which, in turn, can be written in a number of elegant ways. The
case of quadratic characters has been examined in [KS] and [W2], and here
we give a somewhat different proof of a result proved there:

Suppose that q is a prime = 1 (mod 4). Let hq and εq be the class number
and fundamental unit, respectively, of the real quadratic field Q{y/q) It is

well-known that ε̂  = U + PyfqV for some integers U and V, where
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f - J is the Legendre symbol. Thus the generalized Bernoulli polynomial

(9) *,-!,(;) := Σ (l) {B^ (l) - SP-I} Ξ - 2 (l) *W (™>d p).

The organization of the paper is as follows: In the next section we shall
develop basic identities and results about Bernoulli polynomials that we
shall require in our proofs. In Section 2 we shall see how the values of
Bernoulli polynomials can be expressed in terms of certain functions of roots
of unity. This leads to the proof of a number of the cases mentioned in
the introduction; though, because of the computations needed, we give the
complete proof of the Theorem in Section 4, and the complete proof of (4)
in Section 5. In Section 3 we develop the analogous formulae for those
generalized Bernoulli numbers with quadratic characters, which leads to (9)
above.

We thank Emma Lehmer, Hugh Williams and the anonymous referee for many
useful comments.

1. The (regular) theory of Bernoulli polynomials.

The nth Bernoulli number Bn is defined by the power series

n>0

The nth Bernoulli polynomial Bn{t) is defined by the power series

n>0

so that Bn(0) — Bn and

(1.3, «.<«>-£(>"•
j=Q \ J )

Perhaps the most important property of Bernoulli polynomials is that

(1.4) Bn{t + 1) - Bn[t) = ntn~l for all n > 1

as is easily deduced from (1.2). From (1.4) we notice that Bn(l) = Bn(0) =
Bn for all n φ 1, and that it is "easy" to deduce the value of Bn(t) for any
real number £, once we understand the value of Bn{t) for t in the interval
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It is thus of interest to determine Bn(t) for 'special' values of t in [0,1),
for instance those rational t with small denominator. We already have

and from the

B

identity

n(0) =

2xex

e2x —

Bn

I

(1)

9
Z

= Bn

X

ex — 1

for n 7̂

2x
,02a; 1

we easily deduce that

and thus we have proved (1). We next observe that

(1.5) Bn(l-t) = (-l)nBn(t)

from the identity

eχ _ i e(-χ) _ i '

so we study only t G (0, | ) .
The next important observation is due to Lerch [Lr]: By taking the iden-

tity

qxeax qxe^a+ι)x qxe{aJt2)x qxe{a+q~1)x qxea

eqχ — i eqx - 1 eqx — 1 eqx — 1 ex — 1

we obtain

B. (ί±i) +B.(ψ)+... + B.

and, in particular if a — 0,

(1.7), J5n + Bn {^

In order to remove those Bn(j/q) in which j/q is not in lowest terms we may
use the standard Mόbius inversion formula, as follows: Take Σμ{d)(1.7)q/d

d\q

for q > 3, so that
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Using (1.5) we have, for all q > 3 and n even,

(1-9)

Taking q = 3,4 and 6 we deduce (2).

The seven values | J | J | J | J | J ^ ? |
 a r e the only rationals with small de-

nominators for which such "straightforward" values of Bn(t) are known, with
0 < t < 1. It has, however, been recently observed [AM] that Bn{t) — Bn

shares one surprising property with polynomials which have integer coeffi-
cients: namely that qn(Bn(a/q) — Bn) is an integer whenever a and q are
non-zero integers.

One of the most important, and elegant, applications of these valuations
is to the study of Bernoulli polynomials modulo p for p prime. The Von
Staudt-Clausen theorem asserts that

pB2k = -l (modp)

whenever 2k is divisible by p — 1. In 1850 Eisenstein observed the following
(easily proved) congruences:

(ab)p~l - 1 OP'1 - 1 If-1 - 1 , J ,
^—'- ΞΞ + (mod p)

P P P

and
αi-(p-D_α (αP_α)

= - (mod p).
P P

Thus we deduce (3) from (2) with n—p—l. Such congruences fit elegantly
into the general overview of the first case of Fermat's Last Theorem (see
Chapter 8 of [Ri]).

Actually, by the same method, we can transform (1.9) to read, for any
even n > 2,

Taking n = p — 1 we thus obtain

= i Y (Q {(g/^)p - (q/d)}

d\q V

| ( m o d p )
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However such a formula allows us to evaluate Bn(a/q) only for particular
values of a coprime to g, provided φ(q) < 2. It is the main purpose of this
paper to determine the value of

?) - Bp^ (mod p).

2. Working with roots of unity.

Key Proposition. //1 < a < q and odd prime p does not divide q then

P

Proof. If j q = 1 then

Σ ,
V j=l V \J

since

= Σ - , 1 (-!)v Ξ - Σ - ( m o d p)

P W P X 2 0 - l ) J

We also have

i ^ Ί

Ξ _ i ( m o d ί ? ) .

by substituting x = ηv and m = α/p mod 9 into the identity

(2.2) S . 2 +

Therefore the righthand side of (2.1) is

ί
m Ί P y

m + ̂ (m- i ) (7 ί p + 7-ip) Σ - ( m o d P)
ί

1=1 J j=l

ί 1 ™ /" 1 ! Λ Ί
= —q < m Y^ - + y ^ ( ^ - i) ^ : - Y^ : > (mod p),

o<i<P J i = 1 I o<J<P ψ-rj 0<j<P Ψ J ] \
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using the fact, for 7 = 1, that Y^Z\ l/j = 0 (modp). Now, since ip <
ip + j < (i + l)p and (i — l)p < ip — j < ip, we replace q/(ip dr j) by 1/k so
that the above is

1 m / 1
Ξ - < m Σ Γ+Σ^-ol Σ τ~ Σ

•<£ i=l

— ( m o d p)
A:

Ξ ( P - 1 ) Y, kP~2 (modp).
'—a

But this equals the coefficient of xp ι /(p — 1)! in

(mp-α)/ςr ^(mp-o+g)/ga;

Σ Λ T

'r 1

which is B p _! (mP-«+q\ _ J5p_1 by (1.2). However the Von Staudt-Clausen

Theorem tells us that p divides the denominator of Bn if and only if p — 1

divides n; and so, by (1.3), the denominators of the coefficients of Bp-ι(t) —

Bp^ι are not divisible by p. Therefore

= βp_i - ~ βp-i (mod p),

by (1.5), and the Proposition follows. D

Corollary 1. If I < a < q — 1 and ode/ prime p does not divide q then

(2.3) S p _! ( - ) - B p _!

= - V^ ( 1 I - f 1 I (mod p) .
2 ^ ^ I 2 / p I 2 - 7 P - Ύ~~P /

Proof. It is evident that

(1 - 7 ) p ΞΞ 1 - 7P = 2P~1(1 - 7P) (mod p).
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Therefore

0 = {(1 - Ίγ - 2 ^ ( 1 - 7P)}7(27)P (mod p2)

= -(^1 ^—J + ( l - 7 ) P + ( l - 7 y - 2 p ^ 1 - J.

Thus

P

(l- *£)' - (l-
p P

(modp).

Now, adding each term to its conjugate in (2.1) we get the following congru-

ence modulo p:

Λ
P

Since the two terms in the final brackets are both units mod p we may

multiply the first by 2P~X = 1 (mod p) to get

p V 2-7P-7-P / V P

Ξ ~ ( 2 - Ίv - -P ~ l ) (mθdp">

The result follows.- D

The next result follows immediately by applying Mόbius inversion to (2.3)

and associating the 7 and j ~ λ terms.

Corollary 2. If q > 3 ; 1 < a < q and odd prime p does not divide q then
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where w = e2ιlΊq and ad is the least positive residue of a (mod d).

Next note that if (α, q) = 1 then

5 ] (2 - ^ α - w~n = φ(q) - Σ w* = φ(q) - μ(q).
3=1 t = l

Thus if we define

where α, δ are taken (mod g), then by Corollary 2,

Σ ^ f ^ ) ^ P - 1 ("T ) ~ o ~ {up(^aiP mod(l) ~ (Φ(q) -M(?))} (modp).

Now un so defined is a recurrence sequence with characteristic polynomial

q/2

Note that

Fff((l - X-1)^ - X)) = Π (

where φq(X) is the gth cyclotomic polynomial.

If F(X) = X D - Σ fτX1 where JD - φ(q)/2, then

^n+^D = fD-lUn+D-l + /^-2^n+D-2 H 1" /θ^n for all Π > 0.

We get the same recurrence relation for all un with a given g, but the starting
values, IA0, Wi, , ̂ D - I 5

 a r e different.
Let's define
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This satisfies the same recurrence relation. Moreover since for m = a/b
(mod q) we have

— - = \ ( m - k W ,
k= — m

thus

un(q;bm modg, b) = - Y^ (??2— | A; |)yn(g;6A; mod#);
k= — m

so we may find the starting values, IA0, • , u^-i given those of Vo, * " 5 VD-I-
Now, for 0 < n < φ(q)/2 — D, we have

Q q

Vn(q]k)= Σ wjkb{2-wJ -w~J)n= Σ (-l)nwj{bk-n)(l-wj)2n

3=1 3=1

U,q) = l O',9) = l

= y M n (_l)n+m V-
m—0 \ / J=I

O,ςf)=i

(2;)- Σ (2;)(-ir- Σ
m = 0

since

taking r — q/d. This is computable (though not too beautiful!).

3. Generalized Bernoulli numbers.

For any even character χ (mod q) define

Bp-ι,x = Σ χ ( α ) (B^ fa) - B p λ .

Assume that g is prime, so that from Corollary 2 we have for w — e2ϊ7Γ//ςί,

Ξί \έS / V 2-WPI -W-PJ J y }



130 ANDREW GRANVILLE AND ZHI-WEI SUN

However

ί _ q~ι

ST ( wo ja -ja\ ) ~2XU) Σ X(b)wb for x non-principal
2χ{a)(2w3a w Ja) = (

q for x principal.

If x is principal we thus obtain from (1.7)^,

(modp 2 ),

using the Von Staudt-Clausen theorem. On the other hand if x is even and

non-principal then, for g(χ) = Σi<b<q x(b)wb, we have

_hx Ξ -29{X)
j=0

As an example we'll consider χ5 the real non-principal character (mod g);

that is χ(a) = ί-V the Legendre symbol. We will need q to be 1 (mod 4)

to ensure that χ is an even character. Then

q-l

Σ
α = l

3=υ

We will examine Σq using p-adic logarithms (see Chapter 5 of [Wa] for

definitions): Since

~ - 1 = logn : — (mod p2) ,
~P3 *P \ 2 Wpj W~P3 J

^ : 1 logn
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we deduce that

2 -

= logp

J = l

\i=l

= logpm(2-w*-w-ψ*)(v-

/β-i

= 2 logP

(mod p2)

(mod p2)

')) j (modp2)

(modp 2 ) ,

since q = l (mod 4). Now, as Dirichlet discovered (see Ex. 4.6. of [Wa]),

where εq,h(y/q) are the fundamental unit and class number of Q(y/q), re-
spectively. Thus

(modp).

So, as εq — u + υ^/g where w2 — υ 2 ^ = — 1, then

εP.=up (mod p)

so that εq

 q = (£) (mod p) and thus εq

 q = 1 (mod p). Suppose that

2(p_(£)) l i t 2\

ε9

 9 = 1 -f- p ^ + pv Λjq (mod p ).

Then

1 = εq

 P~ ? ~εq

 P~ q = (1 + p n ' ) 2 - (p^'v^) 2 Ξ 1 + 2pτx' (mod p 2 ),

so that p divides ^ ; . So if
εn ~εn

x -II 13. then (modp 2 ) .
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Therefore logp(4 P~ * ]) = vx2{p_{L))λ/q (mod p2), and since # ( ( - ) )

(which was proved first by Gauss), we have

q-l

this is equivalent to (9).

4. Proof of the Theorem.

Take p = ±α (mod q) in Corollary 1 to get

B^ = Σ { V Ί T Ύ ( ϊ Ί r )

Now i Σ (2 - 7P - 7~p) = 9- Thus, for xn =h Σ (2 - 7 - 7" 1)", we

obtain (8). Now if 0 < n <^y- then

"2 Uλ
If tί; — e227Γ/g then the characteristic polynomial for xn is

The anonymous referee noted that this polynomial seems to be closely related
to the Chebyshev polynomial of the first kind; and we should be able to
determine its coefficients directly from known results. Although we agree
with this opinion we have been unable to do so. To compute the coefficients
we thus proceed as follows: First note that
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taking i + j = k. The inner sum

k

= Σ c o e f f o f TJ i n (1 - τ ) k * c o e f f o f Tm'k-j in (1 -
3=0

= coeffofT » - * i n ( l - T ) - 1 = ( 1 i f k ~ ™
[0 otherwise.

Thus

i)J (m 7 = Σ χι -
~~ z=m (mod 2)

So define

(4.1) Fq(y) := £ ( - ! ) J ( ^ ~J ) (2 - ί/)^" 2 ' '

/<7-3

Then i^(y) is a polynomial in y of degree ^ . For any k, I < k <

Fq{2 -wk - w~k) -

2

by (4.1). Thus Fq(y) is our characteristic polynomial, and

Fί(y) = Σ π (-*/)* w h e r e

Actually Fq(X) — Ri^±(X) where Rn(X) satisfies the recurrence

Rm(X) = (2 - XjiC-iPO + Rm-2(X).
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5. Proof of (4).

A Lucas sequence {xn}n>o is defined by x0 — 0, xλ — 1 and xn — &En_i —
cxn_2 for &U ̂  > 2, for some integers b and c. As is well-known, if we let
D — b2 — Ac then the roots of the characteristic polynomial t2 — bt + c of {xn}
are α, /3 = (6 ± vΊ5)/2; and xn - (αn - βn)/{α - β). Let yn = (α n + /3n) be
the 'companion sequence', which satisfies the same recurrence relation; and
we have αn,βn = {yn ± xny/D)/2.

We shall be considering these recurrence sequences modulo powers of any
prime p that does not divide 2cD: Now, since p divides (p) except when
j — 0 or p, we have

Thus

\ 2 )

Therefore x

(mod p).

(D) = 0 (mod p) and
f \ p )

= ap~{f ^ p "( f ) = — (mod p2).
4 4

( c P

 2

1 + 1 j (mod p2). In fact c — ± 1 in every

i f c = l ;

ifc = - l .

When 0(g) = 4, we let t be the unique integer in the range 1 < t < q/2
that is coprime to q. Fix a primitive qth root w of 1, and let α^ = 2—w-7 —w~j.
By Corollary 2

Therefore yp-^) =

case below so that

(5.1)

α P _ ( f ) φ

2p [αp apt

(5-2) (modp)

where 5 = 0 ! + ^ , C = αiα t and C = C if ( j) = - 1 , with C" = 1

otherwise.
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The cases q = 5 and q = 10: When q — 5 we have t = 2, (x—αi)(#—a 2) =

# 2 — 5a; + 5, so that B = C — 5 and we may take OLJ = |Λ/5 ΓΛ/5 + ( | ) J for

1 < j < 4. Let α = (1 + \/5)/2 and /? = (1 - y/E)/2. By substituting into
(5.2) and then using (5.1) (with 6 = 1 , c = —1 so that xn = Fn) we get

giving the first congruence in (4), since

5 ^ Ξ g ) ( l + i (5-1 - 1)) (modp2).

It would be possible to obtain the congruence for q = 10 in a similar way.
However, by taking q = 2 and a = 1/5 and α = 3/5 in (1.6) we get the
identities

By substituting in the first congruence in (4), and by using the Von Staudt-
Clausen theorem, we get the third congruence in (4).

The case q = 8: Now t = 3, (x - ctχ)(x - α3) = x2 - 4x + 2, so that

5 = 4, C = 2 and we may take aό = y/2 (\/2 + ( j ) ) for any odd j . Let

a = (1 + Λ/2) and ^ = (1 - \/2). By substituting into (5.2) and then using
(5.1) (with 6 = 2, c = — 1 so that xn = Gn), we see that the right side of
(5.2) is

( m o d p )
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since 2 ^ ΞΞ (j) (1+ | (2ί?"1 - 1)) (mod p2). Adding this to the third con-

gruence in (3) gives the second congruence in (4).

The case q = 12: Now t — 5, (x - αi)(aj — α3) = x2 - 4x + 1, so that

6 = B = 4, c - C - l a n d w e may take α, = 2 + ( y ) \/3 for j - 1, 5, 7,11;

and let a — a1 ? /? = a2. Therefore, by using (5.1), the right side of (5.2) is

The final congruence of (4) follows by adding the last two congruences of (3)
and subtracting the first.
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THE UNIQUENESS OF COMPACT CORES FOR
3-MANIFOLDS

LUKE HARRIS AND PETER SCOTT

A compact core for a 3-manifold M is a compact sub-manifold
N of M whose inclusion in M induces an isomorphism of
fundamental groups. A uniqueness result for compact cores
of orientable 3-manifolds is known. The authors show that
compact cores are not unique in any reasonable sense for
non-orientable 3-manifolds, but they prove a finiteness result
about the number of possible cores.

If M is a non-compact 3-manifold with finitely generated fundamental
group, then Scott showed in [Scl] that there is a compact sub-manifold N
of M with the natural map π1(N) —» τri(M) an isomorphism. See [R-S]
for a simpler proof. We call such a sub-manifold a core or compact core for
M. In [McC-Mi-Sw], McCullough, Miller and Swarup showed that if JVi
and N2 are irreducible compact cores of a F2-irreducible 3-manifold M, then
Nι and N2 are homeomorphic. In this paper, we seek to generalize this to
the case when M and its compact cores have no irreducibility restrictions.
Of course, we cannot any longer expect to prove that two cores of M are
homeomorphic, because the Poincare conjecture is not resolved. Thus one
core for M might be the connected sum of another core with a homotopy
sphere. Also we can obtain new cores by removing a 3-ball from a core or by
replacing a connected summand of a core which is a 2-sphere bundle over the
circle by a disc bundle over the circle . However, we give an example showing
that even if one works modulo the equivalence relation on cores generated
by the above operations then uniqueness does not hold. We also show that
there are only finitely many different cores in a given 3-manifold up to the
equivalence relation of almost homeomorphism which we define in §1. We
end by using this finiteness result to prove a natural finiteness result for the
boundary of a 3-manifold which has finitely generated fundamental group.
The result is the following.

Theorem 3.2. Let M be a 3-manifold with finitely generated fundamental
group. Then

(i) There are only finitely many boundary components F of M with
Im(πi(jF) -> τri(M)) not trivial or infinite cyclic,

139
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(ii) There are only finitely many boundary components F of M with

Im(πi(F) -» τri(M)) infinite cyclic and with essential core a Mόbius

band,

(iii) Of those components of the boundary Fι with Im(^(Fi) -» πi(M))

infinite cyclic and with essential core an annulus, there are only finitely

many conjugacy classes in ττι(M) of lm(πι(Fi) -+ πχ(M)).

In a separate paper [H-S], we use Theorem 3.2 to extend earlier results of

Brin, Johannson and Scott [BJS] on compact totally peripheral 3-manifolds

to the non-compact case.

The work in this paper is part of the Liverpool Ph.D. thesis of Luke Harris

completed under the supervision of Peter Scott in 1988. Since then Harris

obtained a job not in the academic world and has never had time to prepare

this for publication. Finally, Scott agreed to prepare this for publication, to

avoid the complete disappearance of his work.

§1. Preliminaries and the example.

Definition. Let M and TV be compact 3-manifolds. Then M and TV are

almost homeomorphic if they are homeomorphic up to connected sum with

compact simply connected manifolds (3-balls and fake 3-spheres) and up to

replacing P 2 x Γs with fake P 2 x J's.

We start with our example to show non-uniqueness for cores. Let M be

a 3-manifold with finitely generated fundamental group, and with core TV in
o o

M. Suppose that M — TV has at least two components Rι and i?2, and let

Fx and F2 be the components of dN which lie in i?x and R2. Let X denote

the solid torus. Note that similar examples can be constructed if X is any

compact manifold with at least one boundary component not the 2-sphere.

We can form the connected sum Mj^X in several ways, depending on the

choice of 3-balls in M and in X. However, M # X is independent of this

choice.

If we form Mj^X by selecting a 3-ball in M which lies in the region Rλ,

then a natural selection of core Nλ for M#X is TV with a 1-handle attached

to Fλ. If we select the 3-ball in iϊ2, then the core TV2 could be TV with a

1-handle attached to F2. We could also select the 3-ball to lie in TV, in which

case the natural core TV0 would be N#X. Note that this is homeomorphic

to TV with the interior of a trivial solid torus removed, where trivial means

that the solid torus lies in a 3-ball in TV and is unknotted there. Also note

that JVi and TV2 are each a boundary connected sum of TV and X.

So long as JF\ and F2 are not homeomorphic, and not 2-spheres, these three

cores are non-homeomorphic in a fairly non-trivial way. They have different
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boundary, for example, and the difference in boundary is not caused just
by adding or removing 2-sphere components. Thus they are not almost
homeomorphic. Further, so long as Fλ and F2 have genus at least two, these
cores cannot be equivalent under the coarser equivalence relation obtained
from the operation of replacing a summand which is a sphere bundle over
the circle by a solid torus. However, they do have certain similarities. All
contain pieces homeomorphic with X and JV, at least up to connected sum
with 3-balls, and these pieces are connected by 1-handles and S2 x /'s.

We cannot avoid this problem even if we insist that one of the cores be
embedded in the other, since in the example given it is possible to embed
either of N± and N2 inside No. To see how to embed Nλ in iV0, for example,
consider a simple closed curve a on Fλ which bounds a disc D in Fx containing
the endpoints of the 1-handle of N\. We can also find a disc E in i?χ with
boundary α, such that E U D defines a 2-sphere in Rλ which is parallel to
the boundary of the 3-ball we removed from Rλ to form M#X. Then Nx

together with a regular neighbourhood of E is homeomorphic to N minus a
trivial solid torus and hence homeomorphic to No.

It is clear that this example is not a special case, and that any connected
sum between two 3-manifolds with cores having non-spherical boundary may
have a number of non-homeomorphic cores, constructed similarly to JV0, Nι
and N2 above.

Now we will need a few definitions. The first four are after Scott in [Sc2].

Definition. A sub-manifold X of a 3-manifold M is incompressible if dX
is incompressible in M.

Remark. Then the natural map πι(X) —> π\{M) is injective.

Definition. A 3-manifold N is weakly irreducible if the manifold N ob-
tained from N by attaching a 3-ball to every boundary 2-sphere of N is
irreducible.

Definition. A chunk in a 3-manifold is a sub-manifold X of M which is
connected, compact, incompressible and weakly irreducible.

Remark. With this definition, a (punctured) 2-sphere bundle over the
circle is not a chunk.

Definition. Let M be a 3-manifold, with fundamental group G = τri(M),
and let H be a finitely generated indecomposable subgroup of G. Then a
chunk in M for H is a chunk X in M such that πχ(X) contains a conjugate
(in G) of H.

Observe that if N is a compact core of a 3-manifold M, then we can
decompose iV into chunks by cutting along a maximal family of 2-spheres
embedded in N and then cutting along compressing discs for the boundaries
of the resulting pieces. Thus N can be viewed as a collection of chunks
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embedded in M joined together by 1-handles and S2 x /'s.
Clearly if πx (M) = Fr * Gλ * G2 * * Gs where Fr is free and the Gi are

indecomposable and not infinite cyclic, then there must be exactly s chunks
Xi for a core N that have non trivial fundamental group, with πι(Xi) — Gi
up to conjugacy after reordering. Thus the non trivial chunks for any two
cores are in 1-1 correspondence. The main result of this section is that these
chunks are almost homeomorphic.

Theorem 1.1. Let X' and X be chunks in a 3-manifold M with finitely
generated fundamental group, and suppose that τri(X') and τri(X) are both
conjugate to H, an indecomposable factor not Z in a free product decompo-
sition of π1(M). Then X' and X are almost homeomorphic.

Remark. Such chunks cannot contain fake 3-balls, but may contain fake
P2 x Γs.

As a first step, we prove the following special case of Theorem 1.1.

Lemma 1.2. The result of Theorem 1.1 holds if either X and X' are disjoint
or if one lies in the interior of the other.

Proof. First consider the case when X lies in the interior of X'. We know that
τri(X) and πι(X') are both conjugate to iί, and that ^\{X) is a subgroup
of π1(X'). But H = 7T1(X) is an indecomposable factor of π1(M), and so no
conjugate of H can be properly contained in H. Thus we deduce that the
inclusion of X in X' induces an isomorphism of fundamental groups.

o

Consider a component R of X' — X. Clearly RΠX = F, a single boundary
component of X. But we must also have πx(R) = πχ(F) by van Kampen's
theorem, since πι(X') = πι(X). Then the /ι-cobordism theorem tells us that
R must be homeomorphic to F x / connected sum with 3-balls unless F = P2,
in which case R might be a fake P2 x / connected sum with 3-balls. (Note
that in fact we cannot have fake 3-balls in iί, since non-simply connected

o

chunks do not contain fake 3-balls.) This is true for all components of X'—X,
and so we conclude that X' is almost homeomorphic to X.

Next consider the case when X and X' are disjoint. Take the cover MH

of M with fundamental group H. Then X and X' lift into MH. Thus H
is the fundamental group of a graph of groups with ^(Jf) and τri(X') as
vertex groups. As each of these vertex groups equals if, it follows that there
is a path between these vertices with all edge and vertex groups equal to
H. In particular, for X and X1 there are boundary components F and F1

respectively with τri(F) —> πi(X) and ττι(F/) —> πι(X') being isomorphisms.
We apply the /i-cobordism theorem to see that both X and X' are almost
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homeomorphic to products F x / = F' x /. Thus X and X' must be almost
homeomorphic. This completes the proof of Lemma 1.2. •

Proof of Theorem 1.1. We may suppose that dM is empty, by pushing X
and X' away from dM and then deleting dM. Then we can find a compact
sub-manifold K with X and X' embedded in the interior of K. The proof
proceeds by altering K in a fairly canonical way until we find a chunk C\
derived from K with X embedded in C\. Lemma 1.2 then shows that X
and C\ must be almost homeomorphic. We may also alter K in a slightly
different way to obtain a chunk C[ containing X'', and so this chunk must
be almost homeomorphic to X'. But because we obtained the chunks in
each case in a fairly standard way, we will be able to show that they must
themselves be almost homeomorphic, which will complete the proof.

So for the moment, we will consider X only. Consider a family of 2-
spheres Σ embedded in K corresponding to a prime decomposition of K.
Note that the pieces obtained by splitting along any such family are unique
up to homeomorphism and connected sum with 3-balls. In particular, the
pieces are unique up to almost homeomorphism. We will alter Σ so that
it does not intersect X, but so that it remains a representation of a prime
decomposition of K.

Σ intersects dX in a collection of embedded circles. dX is incompressible,
so we can choose an innermost circle C of Σ Π dX bounding a disk E in <9X,
with EΠΣ = dE = C.

Now we cut and paste Σ along C using E, and push the new Σ away from
dX on both sides. After deleting any redundant 2-spheres, Σ still represents
a decomposition of K into primes. We repeat until Σ Π dX is empty.

Some components of Σ may lie inside X. We delete these components from
Σ and replace them with the spherical boundary components of X, and then
again delete any redundant 2-spheres. Since X is weakly irreducible, any 2-
sphere embedded in X other than a boundary sphere must be redundant,
and thus Σ still represents a decomposition of K into primes. So we may
cut K along this new Σ, and X will be contained in one of the pieces.

We now wish to compress the boundary of the pieces, whose union we will
continue to call K. We do this by sequentially finding compressing discs for

o

dK, lying in either K or M — K. If a disc D lies outside K, then we add a
regular neighborhood of the disc to K. If the disc is contained in K, then we
cut along it. Note that, so long as the boundaries of the discs and the order
they are dealt with is the same, any sequence of compressing discs yields
pieces unique up to homeomorphism and connected sum with 3-balls. This
is because the components of K are weakly irreducible, and any two discs
with the same boundary embedded in an irreducible 3-manifold are isotopic.
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Consider a disc D lying in K. Then D intersects dX in a collection of
embedded circles. dX is incompressible, so we can find an innermost circle
C bounding a disc E in dX with DDE = dE = C.

We cut and paste D along C using E, and discard the 2-sphere component
of the result. Then we push D away from 5X,thus reducing the intersection
number of D with dX. We can repeat until DΠdX = 0 and thus DΓ\X = ®
since 3D C K — X. Note that this does not disturb dD: so D is still a
compressing disc for dK contained in K.

So after compressing the boundary of all the components, we have derived
from the original K a collection of chunks, one of which contains X. Call
this chunk Cγ. Lemma 1.2 shows that X and Cλ are almost homeomorphic.

If there is another chunk C2 derived from K which also has fundamental
group conjugate to H, then Lemma 1.2 again shows that it is also almost
homeomorphic to X.

Now all the above construction can be done to find a number of chunks C[
for K corresponding to X'. As we have already pointed out, we must get the
same chunks up to homeomorphism and connected sum with 3-balls as we
did with the first construction. Thus C[ is almost homeomorphic to C3 for
some j . It follows that X is almost homeomorphic to X'', which completes
the proof of Theorem 1.1. D

§2. There are only finitely many compact cores for 3-manifold.

In §1, we gave an example which rules out the possibility of a uniqueness
result such as that to be found in the paper [McC-Mi-Sw] of McCullough,
Miller and Swarup. In this section we show that, up to almost homeomor-
phism, there are only finitely many cores for any 3-manifold M.

Theorem 2.1. Let M be a 3-manifold with finitely generated fundamental
group. Then, up to almost homeomorphism, there are only finitely many
different cores for M.

Proof. The proof uses the result of the previous section on uniqueness of
non-simply connected chunks in a 3-manifold. Since all cores have a decom-
position into essentially the same chunks, then these same chunks can be
used as the building blocks to construct any core for M. We can then show
that there are, up to almost homeomorphism, only finitely many ways to put
these chunks together to give a compact 3-manifold with fundamental group
equal to τri(M). Of course, if chunks were unique up to homeomorphism,
it would be trivial that there could only be a finite number of cores up to
homeomorphism.
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So first consider the decomposition of a compact core N into chunks, by
splitting along 2-spheres and discs. Then N is the union of these chunks
together with 1-handles and S2 x Γs. If M has fundamental group τri(M) =
G — Fr * G\ * G2 * * Gs where Fr is free of rank r and the Gi are
indecomposable not infinite cyclic, then we can decompose N into exactly
s chunks d that are not simply connected, and such that πi(Ci) = Gi
up to conjugacy in G. We apply the result of §1 to see that, up to almost
homeomorphism, all cores for M have exactly the same non simply connected
chunks. It will be useful to choose our splitting family of spheres and discs
to be minimal in the sense that no proper subfamily splits N in this way.

Using the decomposition mentioned in the introduction, we first cut se-
quentially along 2-spheres {5,}, and then along discs {Dk}. We can easily
arrange that all the discs and spheres can be embedded in JV, and are disjoint
from one another. Thus the order in which we cut along the spheres and
discs is irrelevant. Since the construction of a core from the chunks is essen-
tially the reverse operation to that of cutting along the spheres and discs,
we will find it useful to choose a particular order in which to decompose N.

We now wish to organize the decomposition into four steps. In step one,
we cut along non-separating 2-spheres. In step two, we cut along discs
which correspond to 1-handles attached to spherical boundary components
of chunks. In step three, we cut along separating 2-spheres, and finally in
step four we split along the remaining discs. We will comment on each stage
of the decomposition.

Step 1 : Cutting along the non-separating 2-spheres.

Let S be such a non-separating 2-sphere. Then we can find a regular
neighborhood S x / for 5. Since S is non-separating, we cam find an arc
λ in the complement of 5 x / joining 5 x 0 to 5 x 1 . S x I together with
a regular neighborhood of λ defines a punctured 2-sphere bundle over the
circle. Thus every non-separating sphere in the family Si corresponds to a
2-sphere bundle over the circle in a prime decomposition of N.

Step 2 : Cutting along discs corresponding to 1-handles attached to spherical

boundary components of chunks.
This step is much simpler that it sounds. Let D be a disc in the family

{Dk}. We can cut along all the other spheres and discs in the decomposition
leaving D until last. Then D corresponds to a 1-handle with ends attached
to discs in the boundary of the chunks. Since D is a compressing disc, if
one end of the 1-handle is attached to a spherical boundary component S
of a chunk, it must be that the other end is also attached to 5, since S is
separating and the family of discs {Dk} is minimal. Any other disc has a
corresponding 1-handle with both ends attached to non-spherical boundary
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components of chunks.
We can cut along all the discs which correspond to 1-handles with both

ends in 5, and so we see that N can be thought of as a simpler manifold
with boundary including S, with one or more 1-handles attached to S.

Step 3 : Cutting along the separating 2-spheres.

This needs little attention for the moment. Note that cutting along such
a 2-sphere corresponds to decomposing as a connected sum (up to adding or
removing 3-balls, anyway).

Step 4 : Cutting along the remaining discs.

As we noted in step 2, all such discs must correspond to 1-handles with
both ends in non-spherical boundary components of chunks. Of course in
particular this means that these 1-handles are not attached to simply con-
nected chunks.

We are now ready to reverse the decomposition process. Let K denote the
disjoint union of the non simply connected chunks C*. Then any core, up to
almost homeomorphism, is obtained from K by adding 1-handles, S2 x /'s
and also simply connected compact manifolds. Eventually we construct a
compact 3-manifold from K by reversing steps one to four of the decompo-
sition process.

We consider the steps of the decomposition individually, and in reverse or-
der. To start with, K is uniquely determined up to almost homeomorphism.
At each stage, we must ensure that there are only finitely many possibilities
for K, up to almost homeomorphism.

Step 4:

To reverse this, we add 1-handles to K. Let H be such a 1-handle. Each
end of H is connected to a non spherical boundary component of a non
simply connected chunk. Thus we do not need to consider simply connected
chunks at this stage.

There are only s non-simply connected chunks in K, and each chunk has
only finitely many boundary components, and so there are only finitely many
ways to attach each end of iϊ, and hence there are only finitely many ways of
attaching H to K, since the ends of H and the orientation of H are the only
factors in determining the homeomorphism class of the result. Note that
we have used the fact that H must be connected to non-spherical boundary
components of chunks, and thus it is irrelevant that K is defined only up to
almost homeomorphism.

Step 3:

In this step, we add S2 x /'s to K, but since one end of an S2 x I can be
attached to a simply connected chunk, we must also add these. Remember
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that all the S2 x JPS in this stage connect different components of if, and
the end result of this is connected.

Consider an S2 x / with either (or both) ends attached to a simply con-
nected chunk. Then it corresponds to forming a connected sum, with one of
the summands being a simply connected compact 3-manifold. Thus, up to
almost homeomorphism, we have done nothing.

Now we consider S2 x /'s which connect non simply connected chunks.
Adding such an S2 x / corresponds to forming a connected sum, since each
end of the S2 x / is connected to a different component of K. If K has n non
simply connected components, then we must add n — lS2xΓs in this step,
and however we do this, the result is unique up to almost homeomorphism.
In particular, it is irrelevant which 2-sphere boundary components of K we
choose to attach an S2 x / to, and also it is irrelevant which components of
K the S2 x / is attached to, since the end result of step 3 is a connected
manifold.
Step 2:

In this step, we attach 1-handles which have both ends in the same spher-
ical boundary component of a chunk. Note that if we wish to add one such
1-handle, we have a choice of 2-sphere boundary components on which to
attach it, but, assuming orientability, any choice gives the same result up to
homeomorphism. If we are adding many 1-handles, we do not care which
2-spheres we attach them to, but only which 1-handles we allow to share the
same boundary 2-spheres, which is a combinatorial question.

If we allow non-oriented 1-handles, there are more possibilities, but there
are still only finitely many different ways of adding the 1-handles to if, up
to almost homeomorphism of the resulting manifold.

Step 1:

As we noted earlier, this is equivalent to forming a connected sum with 2-
sphere bundles over the circle, up to almost homeomorphism. Each 2-sphere
bundle could be orientable or non-orientable.

We have π1 (M) = G = Fr * Gx * G2 * * Gs. Thus there are (r + s - 1)
1-handles, non-trivial S2 x Γs and 2-sphere bundles over the circle to be
added to the chunks Ct to get a compact connected manifold with funda-
mental group G. Hence each of the steps one to four must terminate in
fewer than r + s — 1 steps, since the 1-handles, S2 x /'s and 5r2-bundles
added in these steps are precisely those needed to get a compact manifold
with fundamental group G.

So after r + s — 1 stages, and with a finite number of possibilities at each
stage, we have a compact manifold with fundamental group G. Thus there
are, up to almost homeomorphism, only finitely many compact 3-manifolds
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that can be formed from the C{ with fundamental group G, and so M can

have only finitely many different cores up to almost homeomorphism. This

completes the proof of Theorem 2.1. •

§3. Applications of uniqueness of cores.

In this section we use Theorem 2.1 together with results of McCullough

[McC] on compact cores to deduce information about the boundary of a

3-manifold M with finitely generated fundamental group.

The first result is an obvious deduction from Theorem 2.1.

Corollary 3.1. Let M be a 3-manifold with finitely generated group, and let

Xi be an infinite sequence of cores of M. Then there is a subsequence Xj of

Xi such that all members of the sequence Xj are almost homeomorphic.

Before we get to the main result of this section, we need a definition. Let

M be a 3-manifold with finitely generated fundamental group G. Let F be

a component of dM, and let H = Im(πi(F) —> π ^ M ) ) be the image of the

fundamental group of F under the natural induced map into G. Then H is

finitely generated, by the result of Jaco in [Ja]. Now we can take a compact

regular neighborhood of based loops in F representing the generators of if,

and add compressing discs in F to get a compact subsurface C of F with

Im(τri(c) —)• τri(M)) = if, and C incompressible in F. Then:

Definition. With M, F and C as above, we call C an essential core for F.

Remark. C need not be incompressible in M. Also, if Iui(ττ1(F) —> πi(M))

is infinite cyclic, we can choose a simple closed curve on F to represent a

generator, and thus we may choose the essential core in this case to be an

annulus or a Mobius band. We assume in what follows that we always choose

such an essential core when possible.

We can now state the main result of this section. McCullough gives a

result equivalent to part (i) and (ii) of this theorem in the case when dM is

incompressible as a corollary to his main theorem in [McC]. See also [R-S].

Theorem 3.2. Let M be a 3-manifold with finitely generated group. Then:

(i) There are only finitely many boundary components F of M with

I m ( ^ ( F ) —> τri(M)) not trivial or infinite cyclic,

(ii) There are only finitely many boundary components F of M with
Im(πχ(F) —>> τri(M)) infinite cyclic and with essential core a Mόbίus
band,

(iii) Of those components of the boundary F{ with Im(πι (Fi) —> τri(M))

infinite cyclic and with essential core an annulus, there are only finitely

many conjugacy classes in π x (M) ofϊm(π1(Fi) —> τ
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Proof. Let the boundary components of M be i^. Then we can find essential
cores Cι for the F i ? with the C] being annuli or Mobius bands when possible.
We are only interested in those F{ with non-trivial image in πi(M), so we
will assume that none of the Ct are discs. Now the theorem of McCullough
[McC] tells us that given a (possibly disconnected) compact subsurface C
of the boundary of a manifold M, we can find a compact core X for M with
X Π dM — C. Thus a manifold M, we can find a sequence of cores Xi for

M with XiΠdM = \JC3.
3 = 1

By taking a subsequence if necessary, we can assume that this sequence
is stable, i.e. that all the X{ are almost homeomorphic. Let dXi denote
the union of all the non-spherical boundary components of X{. Then dXi
is homeomorphic to a fixed closed surface dX, for all i. Now for any union
of non-trivial essential cores of boundary components of M, we can find an
embedding of these essential cores in c?X;, for some i, and hence an embed-
ding in dX. Since dX has only finitely many components, we immediately
see that there can only be a finite number of closed surfaces embedded in
dX. So we are only concerned with subsurfaces of dX which are not closed.
Also we can assume that the subsurfaces are injective in dX, by adding discs
lying in dX to them. Thus none of the subsurfaces is a disc, and none of the
components of the complement of the subsurfaces is a disc.

Assume for the moment that dX is connected. Consider its Euler charac-
teristic χ(dX). Any collection of embedded disjoint subsurfaces
{Ci : i < m} of dX splits dX into a collection of subsurfaces {Ci : i < n}
where {Ci : m + 1 < i < n} are the components of the complement of
{Ci : i < m). Then χ(dX) = ΣΓ=iX(^) N o n e o f t h e Ci a r e d i s c s ( o r

are closed), so χ(Ct) < 0 Vz. Also, any (7, which are not Mobius bands or
annuli have negative Euler characteristic, and so dX can contain at most
|χ(dX)| such surfaces. Of course, when dX is not connected this holds for
any component of dX. This proves the first part of the theorem.

Similarly dX can contain only a finite number of Mobius bands, this time
limited by the rank of Hι(dX, Z2), and so also there are only a finite number
of boundary components of M with essential core a Mobius band. This
completes part two of the theorem.

Consider now essential cores which are annuli. There is no bound on
the number of these that can be embedded in a surface dX. However, we
can embed only finitely many non-parallel such annuli. Parallel annuli have
fundamental groups which are conjugate in τri(M), so this completes the
third part of the theorem. D
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ESTIMATION OF THE NUMBER OF PERIODIC ORBITS

BOJU JIANG

The main theme of this paper is to estimate, for self-maps
/ : X -> X of compact polyhedra, the asymptotic Nielsen
number 7V°° (/) which is defined to be the growth rate of the
sequence {N(fn)} of the Nielsen numbers of the iterates of/.
The asymptotic Nielsen number provides a homotopy invari-
ant lower bound to the topological entropy h(f). To intro-
duce our main tool, the Lefschetz zeta function, we develop
the Nielsen theory of periodic orbits. Compared to the ex-
isting Nielsen theory of periodic points, it features the map-
ping torus approach, thus brings deeper geometric insight and
simpler algebraic formulation. The important cases of home-
omorphisms of surfaces and punctured surfaces are analysed.
Examples show that the computation involved is straightfor-
ward and feasible. Applications to dynamics, including im-
provements of several results in the recent literature, demon-
strate the usefulness of the asymptotic Nielsen number.

Introduction.

Motivated by dynamical problems, Nielsen theory of fixed points of self-maps
/ : X —> X of compact polyhedra was generalized to study periodic points,
i.e. solutions to fn(x) = x, where fn is the n-th iterate. See e.g. [J l , §111.4].
As the Nielsen number N(f) is a homotopy invariant lower bound to the
number of fixed points of / , the Nielsen number N(fn) is certainly a lower
bound to the number of n-points (i.e. fixed points of the n-th iterate) for
any map g homotopic to / .

However, generally speaking, the Nielsen numbers are notoriously difficult
to compute. We will demonstrate that the asymptotic growth rate of the
sequence {N(fn)} (when n —>• oc), which we denote by N°°(f), is a more
computationally accessible invariant than the sequence itself, yet one that is
still useful for dynamics. Although the exact evaluation of N°° (f) would be
desirable, its estimation is a more realistic goal and, as we shall show, one
that is sufficient for many applications.

For an asymptotic study, the first challenge is to develop a unified algebraic
formulation for the Nielsen theory of all iterates of / so that we can easily
relate the fixed point class data of various fn. This is why we propose the
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Nielsen theory for periodic orbits. The key idea is to work on the mapping
torus Tf of / and to count periodic orbits rather than periodic points, then
Nielsen equivalent /-orbits on X correspond to freely homotopic closed orbit
curves on Tf. (This observation of [J2] can actually be traced back to the
pioneering work of Fuller [Fu] in a different context.) The fixed point data of
fn are organized into the generalized Lefschetz number LΓ(/ n), a homotopy
invariant living in the free abelian group generated by the set of conjugacy
classes in Γ = π1(Tf).

For the sake of practical computation, we assume that a matrix represen-
tation p of Γ is given. The traces of the p-images of the generalized Lef-
schetz numbers constitute a sequence of complex numbers. The Lefschetz
zeta function ζf is a generating function for this sequence which turns out
to be a rational function easily computable for cellular maps. Our Lefschetz
zeta function is the same as that of Fried [F4] using matrix representations
of πι(Tf), rather than the earlier version in [Fl] using abelian representa-
tions, so that non-abelian information can be better retained. This makes a
difference in applications, as shown in §4.3.

Now every zero or pole of ζf supplies a convenient lower bound for the
asymptotic Lefschetz number L°° (/) of /, defined to be the growth rate
of the sequence {||£Γ(/n)||} of norms of the generalized Lefschetz numbers.
On the other hand, the asymptotic Lefschetz number is identified with the
asymptotic Nielsen number for some important classes of maps.

The sketch above, of the approach to the estimation of N°° (/) that we
will present in this paper, is given a more detailed exposition in [J3].

The structure of the paper is as follows. §1 establishes the basic Nielsen
theory of periodic orbits and introduces the Nielsen numbers, the Lefschetz
numbers and the Lefschetz zeta function. §2 defines the asymptotic invari-
ants, discusses the conditions for their equality and their relation to the
topological entropy, and provides methods for their estimation. §3 analyses
the case of homeomorphisms of compact aspherical surfaces and proposes a
theory for homeomorphisms of punctured surfaces which often arise in re-
cent 2-dimensional dynamical systems theory. The examples in §4 serve to
illustrate our theory. Some open problems are given in §5.

1. Nielsen theory for periodic orbits.

We first give a brief account of the invariants of Nielsen fixed point theory in
§1.1. To simplify the algebra involved, we shall work with the natural semi-
flow on the mapping torus described in §1.2. The notion of periodic orbit
classes is introduced in §1.3. The Lefschetz numbers and Nielsen numbers
are then defined in §1.4, and their invariance shown in §1.5. When a matrix
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representation of the fundamental group of the mapping torus is given, we
introduce in §1.6 the associated Lefschetz zeta function. Since this will be
our main tool for asymptotic estimates, an analysis of our requirement on
the representation is given in §1.7. Finally, in §1.8 we introduce the relative
invariants.

1.1. Nielsen theory for fixed points. The basis of Nielsen fixed point
theory is the notion of a fixed point class.

Let X be a compact connected polyhedron, / : X -> X be a map. The
fixed point set Fix / :— {x G X | x = f{x)} splits into a disjoint union of
fixed point classes. Two fixed points are in the same class if and only if they
can be joined by a path which is homotopic (relative to end-points) to its
own /-image. Each fixed point class F is an isolated subset of Fix / hence
its index ind(F, /) G Z is defined. A fixed point class with non-zero index
is called essential. The number of essential fixed point classes is called the
Nielsen number N(f) of /. It is a homotopy invariant of /, so that every
map homotopic to / must have at least N(f) fixed points. (Cf. [Jl, p. 19].)

Pick a base point v (Ξ X and a path w from υ to f(v). Let G := πι(X,v)
and let fG : G —> G be the composition

Two elements g,gf E G are said to be fG-conjugate if there is an h G G
such that g' = fG{h)gh~ι. (There are two definitions of /G-conjugacy in the
literature, related by an inversion. The one we use here is the original one
of [R] and [We] which turns out to be more convenient than the other one
used in [Jl, p. 26].) Thus G splits into /G-conjugacy classes. Let Gf denote
the set of /G-conjugacy classes, and ZGf denote the abelian group freely
generated by Gf. We use the bracket notation a *-» [a] for both projections
G —» Gf and 7LG —> ZG/, where ZG is the integral group ring of G.

For every x G Fix /, its G-coordinate cdG(:r, /) G Gf is defined as follows:
Pick a path c from v to x. The /G-conjugacy class in G of the loop w(foc)c~1,
which is evidently independent of the choice of c, is called the G-coordinate
of x. (This also differs from the definition in [Jl, p. 26] by an inversion.)
Two fixed points are in the same fixed point class if and only if they have
the same G-coordinates. The G-coordinate cd G (F,/) of a fixed point class
F is then defined to be the common G-coordinate of its members.

The generalized Lefschetz number is defined ([R], [We], cf. [FH]) as

(1.1) LG (/) := £ ind(F, /) • cdG (F, /) G ZG,,
F

the summation being over all (essential) fixed point classes F of /. When
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all fixed points of / are isolated, we also have

(1.1') La(f)= Σ ™d(x,f)-cda(x,f)

The Nielsen number N(f) is the number of non-zero terms in LG(f): and
the indices of the essential fixed point classes appear as the coefficients in

LG(f)
The invariant LG(f) used to be called the Reidemeister trace because it

can be computed as an alternating sum of traces on the chain level ([R],

[We]).

Let p : X:ϋ -> X,v be the universal covering. The deck transformation

group is identified with G. Let / : X —> X be the lift of / such that the

reference path w lifts to a path from ϋ to f(v). Then for every g £ G we

have fog = fG(g) o f (cf. [Jl, pp. 24-25]).

Assume that X is a finite cell complex and / : X —>> X is a cellular map.

Pick a cellular decomposition {e^} of X, the base point v being a 0-cell. It

lifts to a G-invariant cellular structure on the universal covering X. Choose

an arbitrary lift ed

3 for each ed. They constitute a free ZG-basis for the

cellular chain complex of X. The lift / of / is also a cellular map. In every

dimension d, the cellular chain map / gives rise to a ZG-matrix Fd with

respect to the above basis, i.e. Fd — (α^ ) if /(ef) = ΣjaijCj> aιj

Then we have the Reidemeister trace formula

(1.2) LG(f) = Σ(-l)d[tτFd] GZGf.
d

Remark. The base point υ and the path w serve as a reference frame for
the G-coordinate. (When υ is a fixed point and w is the constant path, the
G-coordinate of v is [1] £ ZG/.) A change of the reference path w would
affect the homomorphism /G, hence also the /G-conjugacy relation in G and
the set Gf where the G-coordinates live. This develops into a considerable
mess when we apply the above theory to all the iterates fn of /, as we
are then forced to deal with infinitely many different sets G^ at the same
time. In order to simplify the algebra, we propose the following alternative
approach to the coordinates of fixed points.

1.2. The mapping torus. The mapping torus Tf of / : X —> X is the
space obtained from X x M^ by identifying (x,s 4- 1) with (f(x),s) for all
x £ X, s e K+, where IR+ stands for the real interval [0, oo). On Tf there is
a natural semi-flow ("sliding along the rays")

φ : Tf x R+ -> Tf, φt{x, s) = (x, s + t) for all t > 0.
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A point x G X and a positive number τ > 0 determine the time-τ orbit
curve (p(x,r) -"= {<Pt(x)}o<t<r in Tf. We may identify X with the cross-
section X x 0 C T/, then the map / : X —> X is just the return map of the
semi-flow (/?.

Take the base point v of X as the base point of Tf. Let Γ := 7Γχ(Tf, v). By
the van Kampen Theorem, Γ is obtained from G by adding a new generator
z represented by the loop φ(Viι)W~ι, and adding the relations z~ιgz = fG(g)
for all g G G:

(1.3) Γ = (G,z\gz = zfG(g) for all g G G).

Remark. Note that the homomorphism G —> Γ induced by the inclusion
X C Tf is not necessarily injective. Its kernel equals Um>oker(/™), the
union of the kernels of all iterates of fG : G —> G. This fact can be proved
by a topological argument similar to that of [J2, §3].

Notation. Let Γc denote the set of conjugacy classes in Γ. Theoretically,
it is better to regard Γc as the set of free homotopy classes of closed curves
in T/, so that it is independent of the base point. Let ZΓ be the integral
group ring of Γ, and let ZΓC be the free abelian group with basis Γc. We use
the bracket notation a \-ϊ [a] for both projections Γ -» Γc and ZΓ —» ZΓC.

1.3. Periodic orbit classes. We intend to study the periodic points of /,

i.e. the fixed points of the iterates of /.
We shall call PP / := { (rr, n) G X x N | x = fn(x) } the periodic point set

of /, where N denotes the set of natural numbers. A fixed point x of fn is
called an n-point of /, and its /-orbit {x, f(x), . •, fn~λ{x)} an n-orbit of /.
The latter is called a primary n-orbit if it consists of n distinct points, i.e.
if n is the least period of the periodic point x.

A fixed point class F n of fn will be called an n-point class of /. Re-
call from [Jl, Proposition III.3.3] that /(F n ) is also an n-point class, and
ind(/(F n ),/ n ) = ind(F n ,/ n ) . Thus / acts as an index-preserving permu-
tation among its n-point classes. We define an n-orbit class of / to be the
union of an orbit of this action. In other words, two points x,x' G Fix/ n

are said to be in the same n-orbit class of / if and only if some fι(x) and
some fj(x') are in the same n-point class of /. The set Fix/ n splits into a
disjoint union of n-orbit classes.

On the mapping torus Tf, observe that (#,n) E P P / if and only if
the time-n orbit curve φ(Xin) is a closed curve. The free homotopy class
of the closed curve φ(x,n) will be called the T-coordinate of (x,n), written
cdΓ(rc,n) = [φ(rE,n)] G Γc.

It follows from [J2, §3] that periodic points (x,n), (x',n') G P P / have
the same Γ-coordinate if and only if n = n! and x,x' belong to the same
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n-orbit class of /. Thus we can equivalently define x,x' E Fix fn to be in
the same n-orbit class if and only if they have the same Γ-coordinate, and
define the Γ-coordinate of an n-orbit class O n as the common Γ-coordinate
of its members, written cdΓ(On).

Remark. The notion of Γ-coordinate has great algebraic advantage over
that of G-coordinate (cf. Remark in §1.1). Ordinary conjugacy classes have
replaced the awkward skew-conjugacy classes. The Γ-coordinates cdΓ(On)
are independent of the choice of the base point, and for any n they all live
in the same set Γc.

An important notion in the Nielsen theory for periodic orbits is that of
reducibility. Suppose m is a factor of n and m < n. When the n-orbit
class O n contains an m-orbit class O m then cdΓ(On) is the (n/m)-th power
of cdΓ(Om), because for x E O m the closed curve φ(x,n) is the closed curve
Ψ{χ,m) traced n/m times. This motivates the definition that the n-orbit class
O n is reducible to period m if cdΓ(On) has an (n/m)-th root, and that O n is
irreducible if cdΓ(On) is primary in the sense that it has no nontrivial root.

This notion of reducibility is consistent with that introduced in [Jl]. An
n-orbit class On is reducible to period m if and only if every n-point class
F n C O n is reducible to period m in the sense of [Jl, Definition III.4.2].

1.4. Lefschetz numbers and n-orbit Nielsen numbers. Every n-orbit
class O n is an isolated subset of Fix fn. Its index is ind(On,/n), the index
of O n with respect to fn. An n-orbit class O n is called essential if its index
is non-zero.

For each natural number n, we define the (generalized) Lefschetz number
(with respect to Γ)

(1.4) LΓ(F) := X>d(O",/") c dr(θ") e zrc,

the summation being over all n-orbit classes O n of /. When every fixed
point of fn is isolated, we also have

(1.4') LΓ(fn) = Σ i n d ( * , Γ ) [*>(**)] e zr c.
(i.n)GPP/

Let NΓ(fn) be the number of non-zero terms in LΓ(fn). It is the number
of essential n-orbit classes, and will be called the Nielsen number of n-orbits.
Clearly it is a lower bound for the number of n-orbits of /.

Let NIΓ(fn) be the number of non-zero primary terms in LΓ(/ n). It is
the number of irreducible essential n-orbit classes, and will be called the
Nielsen number of irreducible n-orbits. It is a lower bound for the number
of primary n-orbits.
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The indices of the essential n-orbit classes appear as the coefficients in
LΓ(fn). Another numerical invariant derived from L Γ (/ n ) is its norm. We
give a general definition here:

Notation. For any set S let ZS denote the free abelian group with the

specified basis S. The norm in ZS is defined by

= Ύ^ \ki\ £ Z when the s^s in S are all different.(1.5)

The norm | | L Γ ( / n ) | | is the sum of absolute values of the indices of all the
(essential) n-orbit classes. It equals | |L G (/ n ) | | , the sum of absolute values
of the indices of all the (essential) n-point classes, because any two n-point
classes contained in the same n-orbit class must have the same index. Hence

Corresponding to the trace formula (1.2), we have the following trace
formula:

Theorem 1.1. Let Fd be the ZG'-matrices defined before (1.2). Then

(1.6) LΓ(Γ) =
d

where zFd is regarded as a ZΓ-matrix.

Proof. Applying the theory of §1.1 to the iterates fn of /, n > 1, we get

(1.7) LG (Γ) := Σ i n d ( p n ' Γ) ' c d . (pn> n e ZGr,

the summation being over all fixed point classes F n of fn. (The reference

path for fn is taken to be the path w^ := w(f ow) (fn~1 o w) from υ to

By definition, for (x,n) 6 P P / and for any path c in X from v to x, the
Γ-coordinate of (x,n) is the conjugacy class in Γ of the loop c</?(x>n)C

-1 ~

ψ(v,n)Un ° C)C~1 ~ ZnW{n){fnOc)c-1. SO

(1.8) cdΓ(a;,n) = 2 r n cd o (a;,/ n ) .

Now from (1.4) and (1.7) we see

(1.9) LΓ(r) = znLGUn)-

On the other hand, the trace formula (1.2) gives
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where F^ is the matrix of fn. Since fog — fG(g)o f for all g £ G, we have

(1.11) F™ = rG~
lFd • rG~

2Fd • • • fGFd • Fd.

Hence by (1.9-11) we obtain

= £ ( - ! ) " [tv(zFd)
n] G ZΓC.

d

D

Remark. Occasionally in applications we may use a homomorphism from Γ
to a more convenient group Γ", which determines an obvious homomorphism
ZΓC -> ZΓ;. Let Lτ,(fn) be the image of LΓ(fn). Let Nr,(fn) be the
number of non-zero terms in LΓ, (/ n ), and let NIr,(fn) be the number of
non-zero primary terms. Then Nr,(fn) etc. are lower bounds for NΓ(fn)
etc. respectively. This technique is similar to that for fixed points developed
in [Jl, §ΠL2].

1.5. Invariance properties. The following basic invariance properties are
similar (with similar proofs) to that for fixed points (cf. [Jl, §§1.4-5]).

Homotopy invariance. Suppose f ~ f : X -ϊ X via a homotopy

{ft}o<t<i The homotopy gives rise to a homotopy equivalence Tf,v ~Tf>,υ

in a standard way. If we identify Γ' = πi(T//,υ) with Γ = πι(Tf,υ) via

this homotopy equivalence, then LΓ(f/n) — LΓ(fn) for all n, hence also

NΓ(Γ) = NΓ(fn) and NIΓ(f'n) = NIΓ{fn).

Commutativity. Suppose f : X —> y and g :Y -» X. Then Tgof and Tfog

are homotopy equivalent in a standard way. If we identify Γ = πι(TgOf) with

V = πι(Tfog) in this way, then LΓ((g o f)n) = LΓ((f o g)n) for all n, hence

al8θNΓ((gof)n)=NΓ((fog)n) and NIΓ((g o /)») = NIΓ((f o g)n).

Homotopy type invariance. Suppose h : X —> X' is a homotopy equiv-
alence. Suppose f : X —ϊ X and f : X' -» X' are maps such that the
diagram

X —£-» X

4 i
X' —^ X'

commutes up to homotopy. Then Tp is homotopy equivalent to Tf, and when

Γ = 7ri(7>) is suitably identified with Γ = TΓ^T)), we have LΓ(f'n) = LΓ(fn)

for all n, hence also NΓ(f'n) = NΓ(fn) and NIΓ[f'n) = NIΓ{fn).
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1.6. Twisted Lefschetz numbers and Lefschetz zeta function. Let R
be a commutative ring with unity. Let GL/(i?) be the group of invertible
/ x / matrices in i2, and Λ4ιxι(R) be the algebra of / x / matrices in R.

Suppose a representation p : Γ —>• GLι(R) is given. It extends to a repre-
sentation p : ZΓ —> Λ4ιxι(R). We define the p-twisted Lefschetz number

(1.12) Lp(Γ) := tr (LΓ ( Γ ) ) p = £ ind(On, fn) tr (cdΓ (On))p e R
Qn

for every n £ N, the summation being over all n-orbit classes O n of /. It

is well defined because matrices in a conjugacy class have the same trace.

When all fixed points of fn are isolated, we have

(1.120 LP(Γ) = Σ i n d ( ^ /") * t r (*>(*,»)) ^ R-
(i,n)6PP/

It has the trace formula

d

(1.13) =Σ(-l)dtτ((zFdy)n eR
d

where for a ZΓ-matrix A, its p-image Ap means the block matrix obtained
from A by replacing each element α^ with the / x / iϊ-matrix ap

i3.
We now define the (p-twisted) Lefschetz zeta function of / to be the formal

power series

(1-14)
Tb

It has constant term 1, so it is in the multiplicative subgroup 1 + £/?[[£]] of
the formal power series ring i?[[t]].

Clearly ζp(f) enjoys the same invariance properties as that of LΓ(fn). As
to its computation, we obtain from (1.13) the following determinant formula:

Theorem 1.2. ζp(f) is a rational function in R.

(1.15) ζp(f) = Πdet (/ - t{zFd)")(~l) ^ G R(t),
d

where I stands for suitable identity matrices.

Proof.
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D

By (1.12), (1.14) and the homotopy invariance, we have the

Twisted version of the Lefschetz fixed point theorem. Let f : X —> X
be a map and p : ττι(Tf) —> GL/(i2) be a representation. If f is homotopic
to a fixed point free map g, then Lp(f) = 0. If f is homotopic to a periodic
point free map g, then ζp(f) — 1.

Remark 1. When R = Q and p : Γ -> GLχ(Q) = Q is trivial (sending

everything to 1), then Lp(f) G Z is the ordinary Lefschetz number £ ( / ) ,

and ζp(f) is the classical Lefschetz zeta function ("(/) := e x p ^ n L(fn)tn/n

introduced by Weil (cf. [Bt]).

Remark 2. Our Lefschetz zeta function is essentially the same as the
twisted Lefschetz function of David Fried. He first introduced it in [Fl]
using /-invariant abelianizations of πi(X), and showed in [F2] that it is a
certain Reidemeister torsion of the mapping torus Tf. Then in the paper [F4]
he adopted the Reidemeister torsion approach, with respect to a flat vector
bundle (which is equivalent to a matrix representation of the fundamental
group).

Example. (Recipe for surfaces with boundary).

Let X be a surface with boundary, and / : X —> X be a map. Suppose
{αi, ,α r} is a free basis for G = π\(X). Then X has the homotopy type
of a bouquet X' of r circles which can be decomposed into one 0-cell and r
1-cells corresponding to the α '̂s, and / has the homotopy type of a cellular
map / ' : X' -> X1. By the homotopy type invariance of the invariants, we
can replace / with / ; in computations. The homomorphism fG : G —>> G
induced by / and / ' is determined by the images α' := /G(fli), i = 1, • , r.
By (1.3), the fundamental group Γ = τri(ϊ/) has a presentation

(1.16) Γ = ( α l 5 ,a r ,£ | aτz — zo!iΊ i — 1, ,r ).

As pointed out in [FH], the matrices of the lifted chain map / ' are

(1-17) Fo = (1),

where D is the Jacobian matrix in Fox calculus (see [Bi, §3.1] for an intro-
duction). Then, by (1.6), in ZΓC we have

(U8) ^ O - M -
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When a representation p : Γ -> GL/(iϊ) is given, by (1.13) and (1.15) we
have

(1.20) Lp(f) = tτzp - tv(zD)p G R,

2 1 det{I-t(zDY)
p det(/ — tzp)

1.7. A closer look at the representation p. A practical difficulty in the

use of Lp(fn) and ζp(f) is to find a useful p which was assumed to be a

group homomorphism Γ -> GLι(R). Can we weaken the assumption on pΊ

Observe from (1.8) that the Γ-coordinate of an n-orbit class can be writ-

ten as zng for some g G G, whereas a general element of Γ has the form

zkgz~ι with g G G and k,l > 0. The definition (1.12) only requires that

tr(cd Γ (O n )) p G R be well defined, so p need to behave well only on a subset

of Γ, not on the whole Γ. This motivates the following approach.

Definition. Let Γ + be the monoid defined by the presentation (1.3)

(1.22) Γ + := Monoid ( G , * | gz = zfG(g) for all g G G).

In other words, as a set,

(1.23) Γ+ = {zng\n>0,geG}.

The letter z is regarded as a symbol so that Γ + is in one-one correspondence

with Z + x G, where Z + is the monoid of non-negative integers. And the

multiplication in Γ + is defined by

(1.24) (zna)(zmb) := z«+m (fG(a)b) .

The obvious projection η : Γ + -» Γ, zng H-» zng is a monoid homomorphism
which will often be omitted in notations. Beware that η is not necessarily
monomorphic.

L e m m a 1.3. Suppose zna,znb G Γ + project to conjugate elements in F,
where n > 0. Then there exist 0 < r < n and h G G such that in Γ + we have

(1.25) znb = h~lzn~razrh.

Proof. Suppose znb = j~ιznaj for some 7 G Γ. This 7 can be written in the

form 7 = zkcz~ι with c G G and k,l > 0. So in Γ we have

JG\ ' — z \Z oz ) — z \z υ)z — z yy A
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= {c-ιz-k)zna(zkc) = (C-V)(z-*az*)c = z^^c^f^c,

hence/^(6) = /»(C- 1)/*(α)c.
By the Remark in §1.2, we can find some m > 0 such that

fo+m(b) = f^ic-^f^WZic) G G.

Increasing m if necessary, we may assume l + m = pm and k + m = gm + r,
where p,q > 0 and 0 < r < n.

Let Λ = /^(α- 1)/G"+' (α-1) / ^ - 1 ) " + ' (α-1)/™(C)/^-1)' ι(ί>) /c"(6)6 G
G. Then we have

= ftb-1) • • • fp

G

n(b-l)fc

+m(b)f{Γ1)n(b) • • • fW)b = b-

Thus, in Γ + we get

= h-ιzn-rzrfr

G{a)h = h-ιzn-razrh,

as required. D

Theorem 1.4. Suppose a monoid representation p : Γ + —>> Λ4/x/(i?) is
given. In other words, suppose we have a group representation p : G —>
GLι(R) and a matrix zp G Λ4ιxι(R) satisfying the condition

(1.26) gpzp = zp(fG{g))p for any g G G.

Extend p to a ring homomorphism p : ZΓ+ -» Λ4ιxι(R). Then the theory of
§1.6 works.

Proof. The basis of §1.6 is the definition (1.12) of Lp{fn). So it suffices to
show that for any zna, znb G Γ + that are conjugate in Γ, we have tτ(zna)p —
tτ(znb)p.

Let r and h be as in Lemma 1.3, and write ap,bp,hp as A,B,H respec-

tively. Then

tτ{znb)p = tτ(h-ιzn-razrh)p = tτ(H~ι Zn~r AZr H)



ESTIMATION OF THE NUMBER OF PERIODIC ORBITS 163

= tτ{Zn-rAZr) = tτ(ZnA) = tτ(zna)p.

D

Remark. If zp is invertible, p will give a group representation Γ —> GLι(R).
The point of the theorem is that we do not require zp to be an invertible
matrix.

Example. (Free abelian group).
Suppose G is a (multiplicative) free abelian group with basis {gλ, , ρ r},

and the homomorphism fG:G-*Gis given by the r x r integral matrix
A = (aij) such that fG(9i) = g?* #•>.

Every element g — g\x g*r G G corresponds to an integer row-vector
υ(^) := (υu • , v r). Clearly υ(fG(g)) = v(g) A for any 5 G G.

Then the assignments

(1.27)

define a monoid representation p : Γ + —> Λί(r+i)x(r+i)(Z). The verification
of the condition (1.26) is trivial.
1.8. Relative invariants mod a subpolyhedron. Let X be a compact
connected polyhedron as before, and A be a subpolyhedron. Let / : X, A ->
X, A be a self-map of the pair.

A fixed point x of / is related to A if there is a path c such that c c ^ / o c :
/, 0,1 -> X, or, A, where ~ means homotopic. A fixed point class F of / will
be called a fixed point class on X \ A if it is not related to A. The number
of essential fixed point classes of / on X \ A is called the Nielsen number of
the complement, denoted N(f\X \A). It is a lower bound for the number
of fixed points of / on X \ A, and it is invariant under homotopy of maps
X,A -> X, A ([Z], cf. [S, §2.3]). Obviously N(f;X\ A) < N{f).

Under the mapping torus point of view, a fixed point x of / is related to
A if and only if the corresponding closed orbit curve ψ(Xiι) in Tf is freely
homotopic to a closed curve in Γ/|Λ5 the mapping torus of the restriction
f\A : A —> A naturally regarded as a subspace of Tf.

The Nielsen theory of periodic orbits for X developed above has a natural
relative version for X \ A. A free homotopy class of closed curves in Tf
(i.e. an element of Γc) will be called related to A if it contains a closed
curve in Tf\A C Tf. An n-orbit class of f on X \ A is defined to be an
n-orbit class of / whose coordinate is not related to A. The Nielsen number
of the complement NΓ(fn;X \ A) is the number of essential n-orbit classes
of / on X \ A. The Lefschetz number of the complement LΓ(fn;X \ A) G
ZΓC is obtained from LΓ(fn) by deleting the terms related to A. Clearly
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2. Asymptotic Nielsen numbers and topological entropy.

The asymptotic behavior of the number of periodic orbits is more important
than that number for a specific period n. The former is also often easier to
estimate. In §2.1 several asymptotic invariants are defined as growth rates of
the Nielsen numbers and Lefschetz numbers. Sufficient conditions for these
invariants to be equal are given in §2.2. In §2.3 we propose our method of
lower estimation for the asymptotic absolute Lefschetz number via twisted
Lefschetz zeta functions. §2.4 provides a method of upper estimation. §2.5
is devoted to the relation between the asymptotic Nielsen number and the
topological entropy. The final section §2.6 is an aside discussing the growth
rates of some Nielsen type numbers.

2.1. Asymptotic invariants. The growth rate of a sequence {an} of com-
plex numbers is defined by

(2.1) Growtlv^oottn := max < 1, limsup|αn |1//n >
L n—>oo J

which could be infinity. Note that Growthαn > 1 even if all an = 0. When
Growthαn > 1, we say that the sequence grows exponentially.

We define the asymptotic Nielsen number of / to be the growth rate of
the Nielsen numbers

(2.2) N°°(f) := G r o w t h s W ( / n ) = G r o w t h ™ ^ (Γ),

where the second equality is due to the obvious inequality NΓ (/n) < N(fn) <
n - NΓ(fn). And we define the asymptotic irreducible Nielsen number of / to
be the growth rate of the irreducible Nielsen numbers

(2.3) NΓ(f) := GrowthsJVIΓ(Γ)

We also define the asymptotic absolute Lefschetz number

(2.4) L ~ ( / ) : = G r o w t l w | | L Γ ( Γ ) | | .

All these asymptotic numbers enjoy the invariance properties of §1.5.
The following proposition ensures that these asymptotic invariants are

finite positive numbers.

Proposition 2.1.

(2.5) iV7 0°(/)<iV 0 0(/)<L 0 0(/)<oo.

Proof. The first two inequalities are from the obvious fact

iV/Γ(Γ)<iVΓ(Γ)<||LΓ(Γ)||.
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The last one is by Proposition 2.6 below. D

Remark. These asymptotic invariants have obvious generalizations to the
relative setting of §1.8.

2.2. Conditions for the equalities NI°°{f) = N°° (f) = L°°(f). To com-
pare NI°° (/) with N°° (f), we need the following definition.

Definition. An n-orbit class On and all n-point classes contained in it will
be called essentially irreducible if it is essential and it does not contain any
essential m-orbit class for any m < n.

Clearly every irreducible essential n-orbit class is essentially irreducible,
but not vice versa.

Theorem 2.2. A sufficient condition for the equality NI°° (/) = N°° (/) is
that f has the following Property of Essential Irreducibility:

The number En of essentially irreducible n-point

(El) classes that are reducible is uniformly bounded in n.

Proof. The case N°° (f) = 1 is trivial. We assume N°° (f) = 1 + a > 1. Let
E be a bound for En.

Let Sn := Σm<nNΛfm) Then by [FLP, p. 185, Lemma 1],
Growthn_,oo5n = N°°(f) = 1 + α, hence Sn < (1 + \a)n for sufficiently
large n.

We have

NIΓ(F) > NΓ(F) ~ En - Σ NΛΓ) > NΛF) -E- Sn/2
m\n

m<n

> N (f)(l

Pick a subsequence {rij} such that lim^oo NΓ(fnj)ι/ri:) — JV°°(/), so that
N Γ (/ n 0 > (1 + | α ) n j for sufficiently large j . Then Snj/2/NΓ{fn^ < (1 +
|α)~ n j / 2 , so the quantity in the big parentheses approaches 1 when j -» oo.
Hence the conclusion. D

Theorem 2.3. A sufficient condition for the equality N°° (/) = L°° (/) is
that f has the following Property of Bounded Index:

The maximum absolute value Bn of the indices

(BI) of n-point classes F n is uniformly bounded in n.
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Proof. Suppose Bis a bound for Bn. Then | |L Γ (/ n ) | | = Σ F - || i n d ( F n , / n ) | | <
BN(fn). Hence L°°(/) < N°°{f). D

Note that both properties (El) and (BI) are invariant under homotopy.
Both are satisfied in many important cases, e.g. when X is a torus of any
dimension, or when / is a homeomorphism of a surface X with χ(X) < 0.

2.3. Lower estimation of L°°(f) via Cp(/)

Proposition 2.4. Let R = C and let p : Γ+ -> M.ixi(C) be a monoid

representation. Suppose {μn} is a sequence such that for every n E N,

(2.6) \tτ(zng)p\<μn forallgeG,

and μ := G r o w t l ^ ^ ^ ^ Le£ w be a zero or a pole of the rational function

CP(/)eC(ί).

(2-7)
μ\w\

Proof. Note that w φ 0 because Cp(/)(O) = l We know from complex
analysis and (1.14) that GrowthLp(/n) is the reciprocal of the radius of
convergence of the function logζp(/), hence GrowthLp(/n) > l/|w|.

On the other hand, according to §1.6, the Γ-coordinates of n-orbit classes
are in the form [zng] with g G G. So we can assume LΓ(fn) = Σiki[zng^
where the (V^J's are different conjugacy classes in Γ. Then Lp(fn) £ C are
bounded by |L,(/ n ) | = | Σ . *i t r ( ^ f t )

p l < Σ< N I tτ{zngty\ < μn Σ , M -
μ n | |L Γ (Γ) | | . Hence GrowthLp(/Λ) < μ L°°(f).

So we get the formula (2.7). D

Example 1. For homomorphisms of free abelian groups, the representation

p defined by (1.27) satisfies the assumption of Proposition 2.4 where μ equals

the spectral radius of the matrix A. More precisely,

(2.8) /i = max{l,|λ1 |, , |λ r | },

where λi, , λr are the eigenvalues of A.

Example 2. (Maps of the circle).
Let / : Sι -> S1 be a self-map of the circle and let d E Z be its degree.

The fundamental group G = ̂ i(Sλ) is the infinite cyclic group generated by
α, and the homomorphism induced by / is fG : G —> G, α ι-> ad. By (1.16),
the fundamental group Γ = τri(Γ/) has a presentation Γ = (a,z | az = zad).
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According to (1.27) with r = 1, a representation p of Γ+ into -M2χ2(Z) is
defined by specifying

An easy computation shows that for any d G Z, we have

(2.10)

j>, - f ^ V _ (dd(d-l)/2\ _ (dd(d- l)/2

Thus

(2 11)
(2.11)

CP(/) - ( 1 _ < ) ( 1 _ d ί )

Hence, by (2.7) and (2.8), we get

(2.12) L~(/)

Since the trace of a unitary matrix is bounded by its dimension, we get
the very useful

Corollary 2.5. Suppose p : Γ -> U(Z) is a unitary representation. Let w
be a zero or a pole of the rational function ζp(f). Then

(2.13, £-(/) > X

2.4. Upper estimation of L°° (/). In practice, the initial data of our lower
estimation in the last section is the knowledge of the ZG-matrices {Fd}
provided by a cellular map, which enables us to compute the Lefschetz zeta
function. There is also a simple way to derive an upper bound from the
same data.

We first extend the notation (1.5).

Notation. For a matrix A = (αάj ) in Z5, its matrix of norms is defined to
be the matrix

(2-14) Mil := (KH)

which is a matrix of non-negative integers. (In what follows, the set S will
be G or Γ.)
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Proposition 2.6. Let Φd := | |F d | | for every dimension d. Then

(2.15) L°°(/) < maxjspectral radius of Φd}.
d

Proof. By (1.6) and the definitions,

\\LΛF)\\ < ΣHM^ΠH < £
d d

ll̂ ll" = Σ t r φ2
d

d d d

Hence

L~(/) = G r o w t h ^ | |L Γ (Γ) | |

d

= max{Growthn_^oo tr Φ^}
d

= max{spectral radius of Φ^}.
d

D

The use of this Proposition will be illustrated by the examples in §4.

2.5. Topological entropy. The most widely used measure for the com-
plexity of a dynamical system is the topological entropy. (See [Wa] for an
introduction.) For the convenience of the reader, we include its definition.

Let / : X -> X be a self-map of a compact metric space. For given e > 0
and n G N, a subset E C X is said to be (n, e)-separated under / if for each
pair x φ y in E there is 0 < i < n such that d(fi(x), fι(y)) > e. Let sn(e, /)
denote the largest cardinality of any (n, e)-separated subset E under /. Thus
sn(e,f) is the greatest number of orbit segments {x,f(x),... ,fn~ι(x)} of
length n that can be distinguished one from another provided we can only
distinguish between points of X that are at least e apart. Now let

(2.16) h(f,e) := limsup-logsn(e,/),

h(f):=limh(f,e).

The number 0 < h(f) < oo, which is easily seen to be independent of the
metric d used, is called the topological entropy of f.

If h(f,e) > 0 then, up to resolution e > 0, the number «sn(e,/) of distin-
guishable orbit segments of length n grows exponentially with n. So h(f)
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measures the growth rate in n of the number of orbit segments of length n
with arbitrarily fine resolution.

Λ basic relation between periodic points and topological entropy is proved
by Ivanov [I]. We present a different proof.

Theorem 2.7. Let f : X —» X be a self-map of a compact connected
polyhedron. Then

(2.17) /*(/)> logΛΓ(/).

Proof. Let δ > 0 be such that every loop in X of diameter < 2δ is con-
tractible. Let e > 0 be a smaller number such that d(f(x),f(y)) < δ when-
ever d(x,y) < 2e. Let En C X be a set consisting of one point from each
essential n-point class. Thus \En\ — N(fn). By the definition of h(f), it
suffices to show that En is (n, e)-separated.

Suppose it is not so. Then there would be two n-points x φ y E En such
that d{fι(x), fι(y)) < e for 0 < i < n hence for all i > 0. Pick a path c* from
fl{x) to fι(y) of diameter < 2e for 0 < i < n and let cn — c0. By the choice
of δ and e, / o cτ ~ cι+1 for all i, so fn o c0 — cn — co This means x, y in the
same n-point class, contradicting the construction of En. D

Theorem 2.7 is remarkable in that it does not require smoothness of the
map and it provides a common lower bound for the topological entropy of
all maps in a homotopy class.

Example 1. (Linear maps on tori).
Let Tk := Rk /Zk be the fc-dimensional torus. Let / be an automorphism

of Tk defined by an integer matrix A. Then

(2.18) Λ(/)=

where λi,.. ., λΛ are eigenvalues of A. (Cf. [Wa, p. 203] or [Bl, Corollary
16].) Note that Πμj>i M ιs ^ e spectral radius of the endomorphism /*
induces by / on the cohomology ring H* (Tk, R) which is the exterior algebra
of the linear space Hι(Tk, E). So, according to [MP], it is a lower bound for
the entropy of all continuous maps homotopic to /. Thus / has the minimal
entropy in its homotopy class.

On the other hand, N{fn) - |L(/n) | and L{fn) = det(J - An) = Π<(1 -
λ^), so that

(2.19) JV (/) = Growth n ^ 0 0 TT|l-λΠ =
V V ' ' ' *' ' " 'λ ' otherwise.
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Observe that / has both Properties (El) and (BI), so N°° {f) = NI°°(f) =
L~(f). Eence, ifL(f) ^ 0 then h(f) = log L°°(f)= log N°°(f) = log NΓ(f).
If L(f) = 0, then all L(fn) = N(fn) = 0 and log L°°(f) = log7V°°(/) =
log NI°°(f) — 0, but h(f) may be positive.
Example 2. (Pseudo-Anosov maps).

Let X be a compact surface with χ(X) < 0. Let / be a pseudo-Anosov
homeomorphism with stretching factor λ > 1. Then

(2.20)

is the minimal entropy in the homotopy class of / ([FLP, p. 194] and [I]).

2.6. Growth rate of Nielsen type numbers. In Nielsen theory for peri-
odic points, it is well known that N(fn) is often very poor as a lower bound
for the number of fixed points of fn. A good homotopy invariant lower
bound NFn(f), called the Nielsen type number for n-th iterate, is defined
in [Jl, Definition IΠ.4.8]. Consider any finite set of periodic orbit classes
{Okj} (of varied periods kj) such that every essential periodic m-orbit class,
m I n, contains at least one class in the set. Then NFn(f) is the minimal
sum Σj kj for all such finite sets.

The definition of NFn(f) is rather complicated, and if we count periodic
orbits instead of periodic points, a good lower bound can be defined in a
simpler way. The Nielsen type number for n-orbits NOn(f) is defined to be
the total number of essentially irreducible m-orbit classes for all m \ n.

When we count primary n-points, a good lower bound NPn(f), called the
Nielsen type number of least period n, is defined in [Jl] to be n times the
number of irreducible essential n-orbit classes. If we count primary n-orbits,
the good bound should be NIΓ(fn) defined in §1.4.

The following proposition says that as far as asymptotic growth rate is
concerned, these Nielsen type numbers are no better than the Nielsen num-
bers.

Proposition 2.8.' For any map f : X -> X,

(2.21) Growth^N Fn(f) = Growth^TVC^/) = N°° (/),

(2.22) Growthn_ooiVPn(/) - NΓ (/).

Proof. Let Sn be as in the proof of Theorem 2.2. By the definition of NFn(f)

we see NΓ(fn) < N(fn) < NFn(f) < Σ H n ^ ( / m ) < Σ m | n ™ • ^ r ( / m ) <
nSn. Similarly for NOn{f) we have NΓ{fn) < NOn(f) < Σm\nK{fm) <
Sn. Hence the formula (2.21). The second formula follows from the equality
NPn(f)=n-NIΓ(fn). D
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3. Periodic orbit classes of surface homeomorphisms.

The results of §§2.2-3 provide us with a method of asymptotic estimation for
maps / : X -> X that have both Properties (El) and (BI). In §3.1 we show
that self-homeomorphisms of aspherical surfaces have both these Properties
and the asymptotic Nielsen number coincides with the largest stretching
factor in the Thurston canonical form. §3.2 is devoted to the development
of a Nielsen theory for self-homeomorphisms of punctured surfaces which is
very useful in applications.

3.1. Compact aspherical surfaces. Let X be a compact connected as-
pherical surface and let / : X —> X be a homeomorphism. The main result
3.7 of this section is easy when X is the disc, the annulus, the Mόbius strip,
the torus or the Klein bottle. So we shall assume χ(X) < 0.
Thurston Theorem ([T]). Every homeomorphism f : X —>• X is isotopic
to a homeomorphism φ such that either

(1) φ is a periodic map, i.e. φm = id for some m; or

(2) φ is a pseudo-Anosoυ map, i.e. there is a number λ > 1 and a

pair of transverse measured foliations ( # s , μ s ) and (#M,μw) such that

φ(P,μa) = (if, \μs) and φ($u,μu) = GP,λμ") ; or

(3) φ is a reducible map, i.e. there is a system of disjoint simple closed
curves 7 = { jι, , 7^ } in int X such that 7 is invariant by φ (but the
7i 's may be permuted) and 7 has a φ-invariant tubular neighborhood U
such that each component of X\U has negative Euler characteristic and
on each (not necessarily connected) φ-component of X \U, ψ satisfies
(1) or (2).

The φ above is called the Thurston canonical form of / . In (3) it can be
chosen so that some iterate φm is a generalized Dehn twist on U. Such a
φ, as well as the φ in (1) or (2), will be called standard [JG, §3.1]. A key
observation is that if φ is standard, so are all iterates of φ.

For the convenience of the reader, we list the following information about
the fixed point classes of a standard φ (cf. [JG, Lemmas 3.6 and 3.4]).
The superscripts '-{-' and c—' indicate that φ preserves or reverses the local
orientation at the fixed point class.

Lemma 3.1. Every fixed point class of a standard φ is connected. The

possible types of fixed point classes are listed below, with a description of

their local behavior.

(l)^1 Isolated fixed point x:

(a) + x G intM, φ is conjugate to a rotation in a neighborhood of x;

m.ά(x,φ) = 1.
(b) + x G int M is a fixed point of an annular flip-twist; ind(#, φ) = 1.
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(c)+ x G int M is a type (p, k)+ interior fixed point of a pseudo-Anosoυ
piece; ind(rc, φ) — 1 — p or 1.

(d)~ x G int M is a type (p, k)~ interior fixed point of a pseudo-Anosoυ
piece; ind(:r, ψ) — 1, — 1 or 0.

(e)~ x G dM and rr zs in a type {p,k)~ invariant boundary component
of some pseudo-Anosov piece; ind(a;, φ) — 1 or 0.

(2)± Fixed circle C:

(a) + C C Ίnt M is a fixed circle of an annular twist; ind(C, φ) = 0.
(b)~ C C intM and in a neighborhood of C, φ is conjugate to the

reflection (z, t) t-ϊ (z,l — t) on the annulus S1 x I or the Mδbius

bandS1 x 1/ ~; ind(C,φ) = 0 .
(c)+ C C int M; on one side C is a type (p, 0) + boundary component

of some pseudo-Anosov piece, on the other side C is a boundary
component of an annular twist; ind(C, ψ) = —p.

(d) + C C dM, and C is a type (p, 0) + boundary component of some
pseudo-Anosov piece; ind(<7, φ) — —p.

(3)~ Fixed arc A, contained in some subsurface B of M on which φ acts as

an involution. Every endpoint x of A is either

(a) x G i n t M ; on the outside of B, x is in a type (p,k)~ invariant

boundary component of a pseudo-Anosov piece, or

(b) x G dM.

The possible values ofind(A,φ) are 1,-1 or 0.

(4)+ Fixed subsurface B of M with χ(B) < 0. The possible forms for a

component C of ΘB:

(a) C C i n t M ; on the outside of B, C is a type ( p c , 0 ) + invariant
boundary component of some pseudo-Anosov piece;

(b) C C i n t M ; on the outside of B, C is a boundary component of
an annular twist;

(c) C C dM.

We have ind(jB,<p) = χ(B) — Σpc <0, where the summation is over
the components C of dB of type (a).

Moreover, a fixed point class F is related to a boundary component

C C dX if and only ifF intersects C.

When we talk about the type of an n-point class F n of a standard φ, we

mean the type of F n as a fixed point class of φn.

Definition. An n-point class F n is special if it is either of type ( lc) + with

p > 3 and k = 0, or of types (2c)+, (2d)+ or (4)+.

Corollary 3.2. Almost all essential n-point classes has index ±1. More
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precisely,
(i) If an n-point class F n is special then ind(Fn,<^n) < —1. Otherwise

-1 <ind(Fn,^n) < 1.

(ii) The number of special n-point classes is at most — 2χ(X), and

special F n

(iii) \\LΓ(ψn)\\+2χ(X) < N(φn) < \\LΓ(<pn)l

(iv) Suppose A C dX is a union of a > 0 boundary circles of X. Then

N(φn; X\A)> \\LΓ(φn)\\ + 2χ{X) - 2a.

(v) // X is orientable and φ preserves orientation, then

N{φn-X\A)>\\LΓ{ψn)\\+^x{X)-

Proof, (i) is clear, (ii) follows from the proof of [JG, Theorem 4.1]. (iii)
follows from (i) and (ii). (iv) uses the last statement of Lemma 3.1 and the
fact that each boundary circle can intersect at most 2 fixed point classes of
φn, so N{ψn\X \ A) > N(φn) — 2a. In the orientation preserving case (v),
observe that if F n intersects dX then F n is special. D

Corollary 3.3. Special n-point classes of φ are stable under iteration, and
are the only ones that can contain an inessential periodic point class of lower
period. More precisely:

Let F n be an n-point class of φ. Let n! be a multiple of n and F n ' be the
n!-point class containing F n . Then

(i) ind(Fn, ψn) > ind(Fn' ,φn').

(ii) // F n is special, then Fn and F n ' are equal as subsets of X and

(iii) If ind(Fn,φn) = 0 > ind(Fn ',^n ') then Fn> is special and φn reverses
the local orientation at F n .

Proof Clear from Lemma 3.1. D

Lemma 3.4. // an n-point class F n of φ is reducible to period m, then it
contains some m-point class F m .

Remark. The reducibility of F n to period m means it "contains" some
(possibly empty) ra-point class. The point of this Lemma is that it indeed
contains some non-empty m-point class.
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Proof. It clearly suffices to prove the case m ~ 1. We want to show F n

contains a fixed point of φ.
By [Jl, Lemma IΠ.4.6], the reducibility of F n to period 1 implies there is

a path c from some x G F n to φ(x) such that the loop c(φ o φ (ψ71'1 ° c)
is contractible. Now (φ o c) • (φn~ι o c)((^n o c) is also contractible, hence
c ~ (/?noc. Applying [JG, Lemma 3.4] to the standard map φn, we find a path
7 in F n homotopic to c. It follows that φ(Fn) = F n , and 7(^07) (φn~x 07)
is contractible in F n (because it is contractible in X and ^ ( F n ) injects into

According to Lemma 3.1, F n is either a point, or a circle, or an arc, or a
subsurface B of X with χ(B) < 0. In the first or the third case, φ certainly
has a fixed point on F n . In the second case φ is a rotation or a reflection
on the circle, no path 7 of the above type can exist unless φ\γn has a fixed
point.

It remains to consider the case that F n is a subsurface B and φ\B : B -> B
is a periodic map. Equip B with a hyperbolic (or Euclidean) metric such that
ψ is an isometry. Let 70 be a shortest path of the above type, i.e. from some
point to its φ-image and β0 := jo(φ o j0) {ψn~ι o 70) contractible. This
β0 must be a smooth closed geodesic because otherwise 70 can be shortened.
But a smooth closed geodesic cannot be contractible unless it degenerates
to a point. Hence 70 is a point, a fixed point of φ. D

Corollary 3.5. Every homeomorphism f : X —> X has Properties {El)
and (BI), hence NI°°(f) - N°°(f) = L°°(f).

Proof. Via isotopy we may replace / with a standard φ. By Lemma 3.4
and Corollary 3.3(iii) every reducible essential n-point class contains some
essential periodic point class of lower period, except possibly the special
ones. By Corollary 3.2(ii) we have Property (El) with E = -2χ(X). (When
X is orientable and φ preserves orientation, we can even take E — 0.)

On the other hand, by Corollary 3.2(i),(ii), / has Property (BI) with
B = l-2χ(X).

Then apply Theorems 2.2 and 2.3. D

Lemma 3.6. Suppose φ is standard and λ is the largest stretching factor of
the pseudo-Anosov pieces (λ := 1 if there is no pseudo-Anosov piece). Then

h(φ) = logλ and N°° (φ) = λ.

Proof. Let U be the open regular neighborhood of the k reducing curves in
the Thurston theorem, and {Mj} be the components of X\U. Let λ̂  be the
stretching factor of ψj if ψj is pseudo-Anosov and λ̂  = 1 otherwise. Thus
λ =
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The topological entropy of a periodic map is 0. By (2.20) we see h(ψj) =
log Xj for all j . Since the topological entropy of a Dehn twist is 0, h{φ\U) = 0.
So the first conclusion follows from the fact that h(φ) — max{ft(^), h(φ\U)}
(cf. [Wa, Theorem 7.5]).

To prove the second conclusion, we need an inequality

(3.1) N(φά) -2k< N(φ) < ΣN(<Pj) + 2k

j

Let F be a fixed point class of φ. Observe from Lemma 3.1 that if F C Mj:

then ind(F, φ) = ind(F, ψj). So if F is counted in N(φ) but not counted in
Σ3 N(ψj)) it must intersect U. But we see from Lemma 3.1 that a component
of U can intersect at most 2 essential fixed point classes of ψ. Hence the
second inequality.

Let Fj be a fixed point class of ψj and let F be the fixed point class of φ
containing F^ . If Fj makes a contribution to N(ψj) — N(φ), F must intersect
U. Via Lemma 3.1 we check that each component of U can contribute at
most 2 to N(ψj) — N(φ). Hence the first inequality. Thus (3.1) is proved.

Applying (3.1) to φn, we have

?) -2k< N(φn) < £ # ( < # ) + 2k.
j

Taking the growth rate in n, we get

(3.2) N°°(φ) =maxN°°(φj).
3

But according to (2.20), JV°° (ψj) = λ̂ . Hence the second conclusion. D

The above results are summarized in

Theorem 3.7. Let X be a compact connected surface with χ{X) < 07 and
let f : X —ϊ X be a homeomorphism. Let A C dX be a union of boundary
circles such that f(A) = A. Then

NΓ(f) = NΓ(f;X\ A) = ΛΓ(/) = N"(f;X\ A) = L°°(f) = λ,

where λ is the largest stretching factor of the pseudo-Anosov pieces in the
Thurston canonical form of f (λ := 1 if there is no pseudo-Anosov piece).

3.2. Punctured surfaces. Let X be a connected compact surface and let
P be a nonempty finite set of points (punctures) in the interior of X. Assume
that χ(X) - \P\ < 0 where |P | denotes the cardinality of P. Let / : X,P ->
X, P be a homeomorphism.
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Let Y be the compactification of X \ P by blowing up each point of P into
its circle of unit tangent vectors. Then Y is a compact surface with χ(Y) —
χ(X) - \P\ < 0. The added circles form a set Q C dY and Y \ Q = X \ P.

There always exists a homeomorphism /' : X, P —> X, P that is piece-
wise linear near P and isotopic to / rel P. We can even require that the
connecting isotopy is supported in any given small neighborhood of P. See
[E, Appendix]. We shall call such an /' a local rectification of /. (Indeed /'
can be further made smooth near P if one prefers.)

Let g : Y, Q —> Y, Q be the blow-up of /' \ P, i.e. the homeomorphism
extending f : Y \ Q -> Y \ Q to Q according to the piecewise differential
of /' at P (cf. [B2, §2]). Then the homotopy class of #, hence the isotopy
class of g also (see [E]), is independent of the local rectification /'. Since
G := τri(Y) = τri(Y \ Q) = 7ΓX(X \ P), we can identify the automorphism
gG : ffl(y) -> iπ(Y) with /G :πι(X\P)-+ πx(X \ P).

The relative Nielsen number N(g] Y \ Q) is thus independent of the local
rectification /'. We define the punctured Nielsen number of / to be N(f \
P) := N(g; Y\Q). It is a lower bound for the number of fixed points of / \ P
because if g is the blow up of a rectification /' of / in a sufficiently small
neighborhood of P, then every fixed point of /' that is not a fixed point of
/ must be a fixed point of g related to Q.

There is a direct definition of the punctured Nielsen number N(f \ P)
without using rectifications. Two fixed points £, x' of / on X \ P are said
to be in the same punctured fixed point class of / if there is a path c in
X \ P such that c ~ / o c : /,0,1 -» X \ P,x,x'. A fixed point x of /
on X \ P is said to be related to P if there is a path c in X such that
c ~ / o c : I , J \ { l } , 0 , 1 -> X, X \ P, x, P. The punctured Nielsen number
N(f \ P) is defined to be the number of essential punctured fixed point
classes of / that are unrelated to P.

The equivalence of the two definitions is not difficult to see. Let U be
a regular neighborhood of P in X and let V be a smaller one such that
f{V) C U. Then every fixed point of / on V \ P is related to P. Let / ; be
a rectification of / on V and let g be its blow-up. This iV(g; Y \ Q) is easily
identified with the second definition.

The definition using rectifications is more convenient in computations be-
cause it explicitly involves the ordinary Nielsen theory on Y.

But the direct definition sometimes gives us more insight. For example,
we can see N(f \ P) > N(f) — |P | . In fact, consider an essential fixed point
class of/ that does not intersect P. It must be a disjoint union of punctured
fixed point classes of / that are unrelated to P, so at least one of these latter
classes must be essential, hence the inequality. Similarly, we can see that if
P C P' and / : X,P ; ,P -> X,P ; ,P, then N(f\P) + \P\ < N{f\P')+ \P'\.
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Remark. N(f \ P) is not the same as iV(/; X \ P). The former is often a
much better lower bound for the number of fixed points of / on X \ P. See
the examples in §4.2. Note that the coordinates of the fixed point classes of
/ \ P are not in TΓ^I)), but in Γ := ^{Tg) = -κλ{Tg \ TglQ) = m(Tf \ T / 1 P),
the fundamental group of the complement of the link Tf\P in Tf.

We now turn to the punctured invariants for periodic orbits of /.

Definition. NΓ(fn \ P) := NΓ{gn] Y \ Q), a lower bound for the number
of n-orbits of / on X \ P.

NIΓ(fn \ P) := NIΓ(gn; Y \ Q), a lower bound for the number of primary
n-orbits of / on X \ P.

N(fn \ P) := N(gn', Y \ ζ)), a lower bound for the number of n-points of
fonX\P.

LΓ(fn \ P) ~ LΓ(gn] Y \ Q), the sum of absolute values of the indices of
n-orbits of / on X \ P.

The asymptotic invariant is also defined.

Definition. N°° (/ \ P) := Growth^^JV^/71 \ P).

Theorem 3.8. N°° (f\P) is the common growth rate of various punctured
Nielsen numbers:

N~(f \ P) = Growthn^N(fn \ P) =

= Growthn_K X ) | |LΓ(/n\P)| | = λ,

where λ is the largest stretching factor of the pseudo-Anosov pieces in the
Thurston canonical form of the punctured homeomorphism f : X\P -> X\P
(λ := 1 if there is no pseudo-Anosov piece).

Proof Easy from Theorem 3.7 and the definitions. D

To compare N°° (/ \ P) with the topological entropy h(f), we need a
lemma.

Lemma 3.9. There exists a finite regular branched cover X,P -> X, P
with branching set P such that every homeomorphism f : X, P -> X, P lifts
to a homeomorphism f : X , P —> X,P.

Proof. We need the following fact from group theory: Suppose G is a free
group of finite rank and gu ,gk 6 G are all φ 1. Then there exists a
normal subgroup K C G with finite index in £?, which is invariant under any
automorphism of G, and such that all <ji, 5#& $• K. (See [LS, pp. 143,
195-196].)
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Let Y, Q be the blow-up of X, P as before. Then X, P is obtained from
Y, Q by shrinking every component of Q to a point. Let G — πχ(X \ P) =
π1(Y). Let k — \P\ and gλ, ,gk G G be elements represented by the circles
in ζ). Since χ(Y) = χ{X) — | P | < 0, no boundary curve of Y is contractible
in Y, hence every gτφ\. Now take a normal subgroup K guaranteed by the
above algebraic fact.

Let q : Y —> Y be the regular covering of Y such that q^π1(Y) — K, and
let Q = g-^Q). Let p : X, P -> X, P be obtained from q : Y, Q -> Y, Q by
shrinking every component of Q and Q to a point. Then p : X , P —>> X, P
is a finite regular branched cover. Every point of P is a branching point
because a small circle around it cannot be lifted to a circle in X. On X \ P,
the covering p:X\P-+X\P also has p*πi (X \ P) = K.

A homeomorphism / : X, P -> X, P restricts to f\P:X\P->X\P
which induces an automorphism of G. By the invariance property of K C G,
the homeomorphism / \ P lifts to a homeomorphism f\P:X\P—> X\P.
Then compactify to get the required lifting / : X —> X. D

The following is the analogue of Theorem 2.1 for punctured surfaces.

T h e o r e m 3.10. For any homeomorphism f : X, P -> X, P,

M/)>iogiv
σo(/\p).

Proo/. Let / ' : X, P ->• X, P and g : Y, Q -^ Y, Q be as before. Let ψ :
Y, Q —>- Y, Q be the standard form of g, and let 99 : X, P —>• X, P be the
blow-down of rφ1 i.e. shrinking every component of Q back again to a point.

First consider the simpler case that no component C of Q is a 1-prong
boundary component of a pseudo-Anosov piece of φ. Then </? itself is a
standard map isotopic to /. So by Theorems 2.1 and 3.7,

> log iV~ ( / ) = log λφ = log λψ

= log TV" (g) = log N°°(g;Y \ Q) = logΛH/ \ P).

For the general case, let X , P —> X, P be the finite branched cover in

Lemma 3.9, and lift / to a homeomorphism / : X, P —ϊ X, P. When blown

up, Y, Q -* Y, Q is an honest regular cover. Let g, φ : Y, Q —> Y, Q be the

lifts of p,^. Now -0 is a standard map. If a component C of Q projects to

a boundary component C of a pseudo-Anosov piece of φ, then C has more

prongs than C does because every point of P is a branching point. Thus φ

belongs to the simpler case already proved, so h(f) > logλ^. But we know

h(f) = h(f) by [Bl, Theorem 17], and λ^ = λ^ by construction. Hence by



ESTIMATION OF THE NUMBER OF PERIODIC ORBITS 179

Theorem 3.7,

h(f) > logλ^ = logN~(g) = logΛT (/ \ P).

D

4. Examples of asymptotic estimates.

To illustrate our method of estimation, we study some surface homeomor-
phisms arising in the recent literature of dynamical systems theory. §4.1
improves a well known result of Handel. §4.2 uses an abelian representation
to estimate the growth rate of periodic orbits. §4.3 displays the power of
non-abelian representations when abelianization does not work. For more
applications to dynamics, see [J3].

4.1. Orientation reversing homeomorphisms of surfaces. The follow-
ing theorem strengthens a result of Handel [H]:

Theorem 4.1. // / : X —» X is an orientation reversing homeomorphism
of a compact oriented surface of genus g, and iff has orbits with g+2 distinct
odd periods, then the number of primary n-orbits grows exponentially in n,
hence h(f) > 0.

Proof. It is shown in [H] that the punctured homeomorphism / : X \ P —>
X \ P, where P is the union of the known orbits, has at least one pseudo-
Anosov piece in its Thurston canonical form. According to Theorem 3.8,
this guarantees JV°° (f\P)> 1, hence h(f) > 0 by Theorem 2.7. D

In [H] periodic points are discussed under the assumption that / is dif-
ferentiable at the periodic points in question, which is now deleted, and the
conclusion is that / has orbits with infinitely many distinct periods.

4.2. Orientation preserving embeddings of the disk. Let X — D2 be
a disk in the plane R2, and let / : X -» X be an orientation preserving
embedding. Suppose P — {xλ, • ,rrr} is a finite set in the interior of D2

such that f(P) — P. Then N°° (f \ P) can be estimated once we know the
induced automorphism fG : G -> G where G := nx(X \ P). (That / is
an embedding rather than a homeomorphism is only a technical problem.
By slightly enlarging the disk, we can extend the embedding to a homeo-
morphism of D2 so that all the additional periodic points arising from this
extension are related (on D2 \ P) to the boundary of D 2, hence do not affect
the asymptotic Nielsen number by Theorem 3.7.)

Consider the map / : X, P -> X, P studied in [GST], where r = 3 and G
is the free group on 3 standard generators 0,1,0,2,0,3. We do not quote the
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description of the map / given there in terms of a braid, but only point out
that fG:G-^Gis easily seen to be

(
a'2:=fG(a2)=au

af

3 := fG(a3) = a3

λ

In [GST] it is shown that there exist primary periodic orbits of every period
n. We shall give a lower bound to the growth rate of the number of such
orbits.

The Jacobian matrix D in Fox calculus is readily calculated.

According to (1.16), we have Γ — (aua2,a3,z \ a{z — za\, i = 1,2,3). An
obvious way to get a representation of Γ is to abelianize. Thus we obtain
a U(l) representation p by letting all α* π-» a and z ι-> 1, where a is a
unimodular complex number.

Thus

(4.3)

so that by (1.21), for the blow-up g : Y, Q —> Y, Q of a local rectification of

Take a = — 1, then we get the zeta function ζp(g) = 1 — 3t + t2 and its
smallest root is r = (3 - \/5)/2. Hence, by Corollary 2.5, Theorem 3.8 and
Theorem 3.10, we get the estimates

(4-5) i o g .

To obtain an upper bound by Proposition 2.6, note from (1.17) that

( 4 . 6 ) ll^oll = ( i ) , 11^11 = 1 1 ^ 1 1 = I l o o I .
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The characteristic polynomial of | |D| | is (λ - l)(λ2 - 3λ + 1), so (2.14) gives

(4.7) L°° (/ \ P) < spectral radius of ||£>|| = (3 + λ/δ)/2.

Now that the lower and upper estimates coincide, we have

(4.8) NΓ (f\P) = N~ (/ \ P) = L~ (/ \ P) = (3

Since X is the disk, all N(fn) — 1 and N°° (f) — 1, so the punctured
Nielsen numbers do give better estimates.

Another example on the disk is Smale's horseshoe. In [F3] it was shown
that for the horseshoe embedding / : D2 -» D2 there is a 5-orbit P —
{PiΓ" >Pδ} Using this orbit as punctures, the argument of [F3, §4] can
be adapted to show that, for some representation p : Γ -* U(l), ζp(f) —
1 + t - t2 + t3 + t4. Thus by Corollary 2.5 we get N°° (f \ P) > 1.72 and
h(f)> log 1.72.

4.3. A homeomorphism of the torus. The following example is taken
from [LM, Example 2] where it was shown that h(f) > 0.

Let X be the torus T2 represented as M2/Z2, and let the three points
Qx = (0,0), Q2 = (|, | ) and Q3 — (|, | ) constitute the puncture set P. Let
Dχ,D2 : X, P -> X, P be diίfeomorphisms of the form

(4.9)

where x,y are in the unit interval /, and BUB2 are smooth functions on
/ with Bx (|) — 1, Bχ(x) — 0 for x outside of the open interval (|, | ) ,
B2 (|) — 1, B2(y) — 0 for y outside of the open interval (|, | ) . Let / =
D2oDλ : X , P - + X , P .

Choose the point (|, ~) to be the base point in X. The fundamental group
G = πx(X \ P) is a free group of rank 4 with generators a2,a3,bub2, where
&i is represented by the loop {( | + ί, | ) } ί G / ; 2̂ by the loop {(|, | + *)} ί e /;
α2 is represented by the square loop with sides on the lines y — | , x = | ,
y — \ and x = | ; α3 represented by the square loop with sides on the lines

It is clear that Dχ,D2 act on G by

2 »-> &2 α 2

(4.10) A : < _ 2 Γ>2
6i H-> a 3 b\

b2 H^ 6 2 j
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So t h e a u t o m o r p h i s m fG:G-^G i n d u c e d by / is

(4.11) So-

α 2 »-)• a'2 —

α 3 ι-> a'3 —

b2 b'2 —

It is routine to compute the Fox calculus Jacobian matrix D.

(4.12) D =

6i

4)
0

0 1 - a'2 0 \
V2 (1 - a'3) b2 ( 1 - a'2) 1 - a 2

— 1 — 1 r\

-α 3 α 3 u
0 bo — bo 1 /

Now

(4.13) Γ = a2z — za'2,a3z = — zb'2).

The abelianization does not work here, because the nature of (4.11) would
force both a2:a3 to become 1, so that any U(l) representation can only
give the trivial estimate N°° (f \ P) > 1. Thus we have to look for non-
abelian representations of Γ. Fortunately a simple representation of Γ into
the multiplicative group of unimodular quaternions works.

(4.14)

p : Γ -» Sp(l); 2 I-M, α2 •—>- —1, a3 t-> —1, bx H> j , 62 ^ ^

Under this representation, the matrix zD becomes

(4.15)

\

θ 2t 0\
2 j -4j 2*
Oi -i 0
i 0 -2j i

But quaternions form a skew-field, not a field. We have to identify Sp(l)

with SU(2) via the correspondence

(4.16) 1
10 N

0 1 , 1 ,0-i
jfe I—»-

Όi

Thus (zD)p becomes an 8 x 8 complex matrix. One then calculates that

(4.17) det(l - t(zDY) = (1 + ί)2(l + *2)[(1 - t + t2)2 + 3t%
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from which follow the estimates

(4.19) N°°(f\P) >2.29, h(f) > log 2.29

by Corollary 2.5.

For the upper bound, we have

/I 0 2 0\

(4.20) ||Fo|| = (l), | |^\| | = ||Z>|| = 2

Q\\\

κ102: ,

The characteristic polynomial of \\D\\ is (λ2 + l)(λ2 - 4λ + 1). Then (2.14)
gives

(4.21) L°° (/ \ P) < spectral radius of | |D| | = 2 + Λ/3 < 3.74.

So the estimate we get is

(4.22) 2.29 <N°°(f\P)< 3.74.

5. Questions.

It is clear from our discussion that among the asymptotic invariants, NI°° (/)
is most interesting geometrically, and L°° (/) is most manageable algebraically.
So, the conditions for the equalities NI°°(f) — N°° (f) = L°° (/) and the ex-
tent to which they can fail are worth further study. (In fact, the author
knows of no counter-example to the equality NI°° (f) = N°° (/).) For exam-
ple,

Question 5.1. Is it true that a self-homeomorphism (or self-map) / of an

aspherical compact polyhedron X always has Properties (El) and (BI), or

at least NΓ(f) = N°° (f) = L°°(/)?

A question related to the Entropy Conjecture of Shub is the following:

Question 5.2. For smooth maps of compact manifolds, is it always true

that

Another natural question is
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Question 5.3. Give conditions for log7V°° (/) to be the best lower bound
for h(f) of all maps homotopic to /. In other words, in the inequality

mί{h(g) I g ^ f : X -> X} > log N°°(f)

when does the equality hold? (The example of torus maps in §2.5 shows
that the equality may fail even for very nice maps.)
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FACTORIZATION OF P-COMPLETELY BOUNDED
MULTILINEAR MAPS

CHRISTIAN LE MERDY

Given Banach spaces Xι,... , XN, Yί,... , Yjγ,X, Y and sub-
spaces Si C B(Xi,Yi) (1 < i < N)9 we study p-completely
bounded multilinear maps A : SN x x Si -> B(X,Y). We
obtain a factorization theorem for such A which is entirely
similar to the Christensen-Sinclair representation theorem for
completely bounded multilinear maps on operator spaces. Our
main tool is a generalisation of Ruan's representation theo-
rem for operator spaces in the Banach space setting. As a
consequence, we are able to compute the norms of adapted
multilinear Schur product maps on B(ί™).

1. Introduction and preliminaries.

1.1. Introduction. In a recent paper, Pisier [Pil] proved that the Witt-
stock factorization theorem for completely bounded maps (cf. [Ha], [Pal],
[Pa2], [W]) has a natural generalization to the more general framework of
p-completely bounded maps defined on sets of Banach space operators. The
main goal of this paper is to prove a version of the Christensen-Sinclair
theorem (cf. [CS, PS]) in this extensive setting.

Let us first recall the definition of p-complete boundedness as introduced
(or suggested) in [Pi]. Let 1 < p < +oo be a number. Let X,Y be Banach
spaces. We denote by B(X,Y) the space of all bounded operators from X
into Y. Let S C B(X,Y) be a subspace. We denote by Mn,m{S) the vector
space of all nxm matrices with entries from S. Any s = [si<7 ] £ Mn^m(S) may
be canonically identified with a bounded operator from ί™(X) into £p(Y).
Under this identification, s has the following norm:

= sup

Then the usual concept of complete boundedness has the following natural
extension.

187
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Definition 1.1. Let Xu ... , XN, Yu ... , YN, X, Y be Banach spaces. For
each 1 < i < JV, let S{ C i?(Xn Y») be a subspace. Let A : 5^ x - x SΊ -»
J5(X, Y) be a TV-linear map. We will say that A is p-completely bounded if
there is a constant C > 0 for which the following holds.

For any

sN e Mn^N_l(SN):sN^1 e MkN_lykN_2(SN-ι)i - ,

we have:

•N-I)") S(N-l)(rN-ι,rN-2) )

l<r£<ke

Moreover, we denote by || A\\pcb the least constant C > 0 for which this holds.
We will prove that whenever p G]1, +OO[, a p-completely bounded multi-

linear map A as above factors as a product of ̂ -completely bounded linear
maps defined on each Si (see Theorem 5.1 for a precise statement). Thus
using Pisier's generalization of the Wittstock theorem, we obtain a represen-
tation of A which is quite similar to the Christ ensen-Sinclair representation
for a completely bounded multilinear map on operator spaces. This answers
the question raised by Pisier in the Final Remark of [Pil]. Note that our
result is new only for N > 3. However, even in the case TV = 2, we feel that
our proof is simpler than Pisier's one.

The recently developped theory of operator spaces (see [B, BP, BS, ER1,
ER2]) has emphasized the role of the Haagerup tensor product in the study
of completely bounded multilinear maps. It is now well-known to specialists
(see [B, Theorem 2.4] for example) that the Christensen-Sinclair theorem
may be viewed as a combination of the factorization theorem for completely
bounded bilinear forms (which goes back to [EK]), Ruan's representation
theorem for operator spaces (see [R, ER3]) and simple properties of the
Haagerup tensor product. In this approach, the crucial point is that given
two operator spaces, their Haagerup tensor product is again an operator
space. This essentialy follows from Ruan's theorem. In order to prove our
main Theorem 5.1, we will follow the above scheme. We will especially
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prove a generalization of Ruan's theorem (see our Theorem 4.1) which is of
independant interest.

Let us now explain the organization of the paper. In the two follow-
ing subsections, we recall Pisier's result about p-completely bounded linear
maps and introduce necessary definitions about matrix normed spaces. In
Section 2, we define a generalized Haagerup tensor product ®h adapted to
our definition of p-complete boundedness and prove elementary properties
which will be needed later. In Section 3, we combine ideas from [E], [ER3]
and [Pil] in order to prove an abstract factorization theorem which is used
in the two following sections. Section 4 is devoted to our generalization
of Ruan's theorem. We follow the same line of attack as Eίfros and Ruan
[ER3]. Our main result explained above is proved in Section 5. In the last
Section 6, we investigate some of the properties of our new tensor product
®ft. We then prove a theorem about multilinear Schur products on B(ί^, ££)
which generalizes previous works on this subject (see [ER4, Gr, Ha, S] for
example).

1.2. Pisier's theorem. We wish to recall Pisier's theorem as stated in
[Pil]. It will be formulated in the language of ultraproducts. We first
introduce a notation which will be frequently used in this paper.

Definition 1.2. Let E and X be Banach spaces. Let 1 < p < +oo be
a number. We will write E G SQP(X) provided that E is (isometric to) a
quotient of a subspace of an ultraproduct of spaces of the form Lp(μ\ X).

Let X\,Y\ be Banach spaces and S C JB(-XΊ, Yi). Consider a number 1 <
p < +oo. Let (Ωj, βj)jeJ be a family of measure spaces and let U be an ultra-
filter on the index set J. Let us denote by X\ and YΊ respectively the ultra-
products relative to U of the families (Lp(μj X1))jeJ and (Lp(μj Yi))jGj.
For any a G B(XuYλ), we may define π](a) : Lp(μό Xi) ->J^p(μj Yί)
by setting (πj(a)f)(w) = a.f(w). We denote by π(α) : Xλ -+ YΊ the map
associated to the family (π J(α)) j E J . Let N C M C Xλ and N' C M' C Yi be
closed subspaces such that for any s G S, π(s)(M) C M' and π(s)(N) C N'.

MM'
Then letting G — — and G' = —-, we obtain that π/S canonically induces

a map π : S -> B(G,Gf). Namely we may set π(s)(m + N) = π(s)(m) + Nr

for any (s,m) G S x M. Such a map will be called a p-representation from
S into B(G,G'). More precisely we state the following:

Definition 1.3. Let G G SQp(Xλ) and G1 G 5QP(YΊ) be two Banach
spaces. Let π : S -> B(G, G') be a bounded linear map. We will say that π
is a ^-representation provided that it may be constructed as above.

Theorem 1.4 ([Pil, Theorem 2.1]). Let S C B{XuYλ), let A : S ->
B(X, Y) be a linear map and let C be a constant. The following assertions
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are equivalent:
(i) A is p-completely bounded and \\A\\pcb < C.

(ii) There are two Banach spaces G G SQp(Xι),Gt G SQP(Y1) and a p-
representation π : S -> B(G, G') as well as operators V : X —> G and
W : G" -> Y with \\V\\ \\W\\ < C such that:

V s G S, A{s) = Wπ(s)V.

1.3. Matrix normed spaces. Let S be a complex normed space. Let us
denote by Mn^m(S) the vector space ofnxm matrices over S. As usual, we
just denote by Mn(S) the space Mn,n(S). In the case when S — C, we will
simply write M n > m or Mn for these spaces. We will say that S is a matrix
normed space provided that we are given norms || | | n m on each Mn^m(S)
satisfying Mx (S) — S and:
(i) For any s G Mn,m(S), s' e Mn,k(S),

Ί,,m-\-k

(ii) For any s G Mn,m(S),0 G Mntk(S),

(iii) For any s € Mn>m(5),s' e MKm{S),

m a x

(iv) For any s 6 Mn,m(S), 0 € M,,m(5),

n-\-k,m

Actually, these are very weak conditions. They are chosen to ensure two
reasonnable properties. First, for any n,m < A:, the canonical embedding of
Mni7n(S) in Mk(S) is isometric. Secondly, for any 5 = [s^ ] G Mnί7n(S),

(1.2)

Thus MΠ ϊ T n(5) and 5'n m are isomorphic as normed spaces. From now on,
we leave the notation || \\nm and merely denote by || || the norm on all the
spaces MniTn(S). We will have to distinguish a possible property of a matrix
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normed space S. For any s G Mnj7n(S), s1 G Mn^m>{S), we set s Θ s1 —

1 , 1 6 Mn + n/m + m/(S f). We will say that S satisfies V^ whenever the

following condition is fulfilled:

V^i F o r a n y ^ M ^ μ Έ M ^ ^ ) , \\s Θ s'|| - max {||s||, ||s'||} .
The latter property is one of the characteristic conditions in Ruan's rep-
resentation theorem for operator spaces. It will play a similar role in our
Theorem 4.1.

Let us now introduce some standard definitions and traditional notation.
Let S, T be two matrix normed spaces and let u G B(S,T). We define u^

LMn(S) -> Mn(T) by ] We let ||ti||c6 - sup LM
We say that u is completely bounded (in short c.b.) provided that |M|c 6 <
+00. We denote by CB(S^T) the resulting normed space. We say that u is
completely contractive (in short c.c.) when ||w||c6 < 1 and u is completely
isometric provided that for any n > 1, u^n>) is isometric.

2. p-matrix normed spaces.

We introduce a special kind of matrix normed spaces.

Definition 2.1. Let p,q e]l,+oo[ be such that ± + -q = 1. Let S be a
matrix normed space. We will say that S is a p-matrix normed space if it
satisfies the condition Ί)^ above and the following:

(2.1)

(2.2)

(2.3) For any s G MΛtm{S),ae Mm | 1,

(2.4) Forany 5GMn,m(S),/?GM 1 ) n, \\βs\\ < \\s\\ (Σ?= 1

Example 2.2. Let X,Y be Banach spaces. Let S C B(X,Y) be a sub-
space. Let us equip each Mn^m(S) with the norm defined by (1.1). Recall
that this yields an isometric embedding Mntm(S) C B{P£(X),(%{Y)). Then
it is not hard to check that S becomes a p-matrix normed space. Let us em-
phasize for further that given a finite family {sj)ι<j<n in 5, the corresponding
column and row matrices have the following norms:

(2.5) = sup / x G l , \\x\\ < 1
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(2.6)

Throughout the rest of the paper, we fix a number p G]l,+oo[ and let
q = n_i (i.e.: - + - = 1). Given a subspace S of some B(X,Y), we will
always assume that it is endowed with its p-matrix normed space structure
as defined in Example 2.2. As announced in the introduction, our purpose is
to define an adapted variant of the Haagerup tensor product. Although we
will be mainly concerned by matrix normed spaces S C B(X, Y) as above, it
is convenient to work in the slighly more general setting of p-matrix normed
spaces. We will only give short proofs of the results listed below since they
are all variants of known results of the classical theory of operator spaces.
We will use the following well-know fact :

ί θpap θ~qbq 1
(2.7) V (α,6) G R*_, ab = inf I + / θ > 0 L

Let 5,T be two p-matrix normed spaces. Given 5 — [sir] G Mn,k(S) and
k

t = [trj] G Mfc,m(T), we define 5 0 ί - [ ^ 5 i r ® t r j ] G M n,m(S®T). For any
r—l

z € Mn,m(S ®T) we set:

(2.8) N | Λ = inf {||s|| ||t|| / s e Mn,k(S),t e Mk,m(T),z = s Qt} .

Proposition-Definition 2.3. The function || ||Λ is a norm on each space
Mn^m(S®T). Endowed with these norms, S®T becomes ap-matrix normed
space.

We will denote by S ®h T this ^-matrix normed space.

Proof. Let z = s © t and z1 = s' Θ V G Mn,m(S ® Γ). Then z + z' =

(s,s')© ( w) . Therefore, applying (2.2) to (5,5'), (2.1) to ί * | and (2.8), we

deduce that || | |h is a semi-norm on Mn^m(S®T). It is clear that these semi-
norms satisfy all the conditions (i), (ii), (iii), (iv) required in the definition
of a matrix normed space. Hence by (1.2), in order to prove that || | |Λ is a
norm on each Mn^m(S®T), it is enough to show that || ||Λ is non-degenerate

N

on S ® T. Let z = ] Γ <?r <g> tr G S ® T. Let 5* G 5*,ί* G T*. Since the
r=l

/Λ \1/q

s p a c e 5 s a t i s f i e s ( 2 . 3 ) , w e h a v e : I 2 ^ | ( θ * , s r ) | Q 1 < | | s * | | \ \ ( s u ... , s N ) \ \ .
\r=l /
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Analogoulsy,

Now,

hence we obtain

<ιis*ι ι ι ι n

Therefore, \\z\\h — 0 implies z — 0 and we are done.
It remains to check the condition V^ and the four properties (2.1) - (2.4).

Mn,m(S ® T) and *' = s' Θ t' e Mn,,m,(S T). ThenLet z = s Θ t

I , = ( s θ s ' ) Θ / ) Hence, applying V^ to s θ s' and (2.1) to [
V J V J V

obtain that S®T satisfies (2.1). The proofs of (2.2), (2.3), (2.4) and
are similar, we omit them.

we

D

Remark 2.4. In the case when S and T are operator spaces, the space

S ®hT defined above is the usual Haagerup tensor product of S and T.

Remark 2.5. The tensor product ®h is associative. Thus given p-
matrix normed spaces S Ί , . . . ,SN, we may define unambigously the space
SN <8>h ''' ®h Si. Let us now come back to Example 2.2. Let TV > 2
and -XΊ,... ,XN,Yι,... ,YN be Banach spaces. For any 1 < i < N, we
give ourselves Si C B(Xi:Yi). From above, we may consider the p-matrix
normed space S = S^ ®h • ®Λ SΊ Let X,Y be two Banach spaces and
let A : SN x x SΊ -> S(X, y ) be a multilinear map. It may be viewed
as a linear map A : S -> i?(-X", Y) as well. Now it is easy to see that A
is p-completely bounded in the sense of Definition 1.1 if and only if A is

completely bounded. Moreover, - \\AL
Web " U p c b '

Let E be a Banach space. The identification E — B(C,E) allows us
to define a p-matrix normed space structure on E. To conform with the
notation used in the operator space theory, we denote by Ec the p-matrix
normed space above. Similarly, we denote by E* the p-matrix normed space
structure on E* defined by the identification E* — B(E,C). Two simple
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facts should be noticed:

(2.9) For any xu ... ,xn <E E,

l/p

= Σw

* = i

Ec

any x 1 ? . . . , x n t i^ , IK^i, J^TJHE*

\ /
We end this section by two simple lemmas about these p-matrix normed
spaces.

L e m m a 2.6. Let S be a p-matrix normed space and let J5, F be Banach
spaces.
(a) For any u : S -> Ec,

(b) For any υ : 5-> Fr%

Proof. Apply (2.9), (2.3) to show (a) and apply (2.10), (2.4) to show (b).
D

Let S be a p-matrix normed space and let E: F be Banach spaces. Let
u : S —>• B(E,F**) be a linear map. We can regard u as a trilinear form ύ
on F* x 5 x E by setting:

Lemma 2.7. Tfte map u\-+ u gives rise to the isometric identification

DProof. Apply (2.9) to E and (2.10) to F.

Remark 2.8. It should be noticed that the one-dimensional vector space
C may be endowed with several different p-matrix structures. Very natural
examples may be obtained as follows. We give oursleves a Banach space X.
Let us denote by Ix the identity map on X. Then we set

(2.11) Cx =Span {IX}CB{X,X)
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and this provides us a p-matrix structure on C. We refer to Section 3 below
for more about Cx. In the sequel, we keep the notation C to refer to the
p-matrix normed space C 0 . Now let S be a p-matrix normed space. We wish
to point out two simple facts.

(a) For any linear form ξ : S -> C, \\ξ\\ = \\ξ\\cb. This is a straightfoward
consequence of the assertions (2.3) and (2.4).

(b) Let X, Y be Banach spaces. Let J (resp. Λ, J2) be the canonical
identification map from S onto Cγ (g)̂  S Θ^ Cx (respectively S 0^
C x , C y ®Λ 5). Then it follows from (2.3) and (2.4) again that J, J 1 } J 2

are isometric. Moreover they are obviously c.c. maps. However, in
general, they are not completely isometric. We will come back to this
problem in Remark 4.3.

3. An abstract factorization theorem.

Let X be a Banach space. Given a = [α^] G M n ? m , we let

(3.1) \\a\\PιX = sup

where the supremum runs over all the Xι,... ,xm in X which satisfy

To understand the relation between this definition and preceding ones,
consider the subspace S = Cx C B(X, X) defined by (2.11). Let s = a®Ix G
^n,m(5') Then the definitions (1.1) and (3.1) obviously give | |s | | = | |o| | x

The following criterion of Hernandez will be used several times.

Theorem 3.2 [Hel, He2]. Let E and X be Banach spaces. Then E E

SQP(X) if and only if:

V α G Afn, \\a\\PtE < \\a\\pX .

Proof. We follow [Pil, Section 3] and refer to this for more informations.
Let A : Cx -> B(E,E) be defined by A(IX) - IE Then A is c.c. iff
V a E M n , | H | p £ ; < IMIpx Hence the result follows from Pisier's theorem
1.4. Finally we should mention that in the particular case X = C, this result
goes back to Kwapien [K]. D

In order to prove our Theorem 3.4 below, we will need techniques used

by Pisier in the proof of Theorem 1.4. As in [Pil], the following form of the

Hahn-Banach theorem will prove useful.
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L e m m a 3.3. Let A be a real vector space equipped with a cone Λ+. Let
λ : Λ -> 1R be sublinear and let μ : Λ+ —>> M+ δe superlinear. Assume that
μ < λ on Λ+. TΛen ί/iere 25 α positive linear form f : Λ —> R sue/i £Λα£ μ < f

on Λ+ and f < λ on A.

We are now ready to prove the main result of this section.

Theorem 3.4. Let X1,X2,Yί,Y2 be Banach spaces and let T C B(XUY1),
Z C B(X2,Y2) be subspaces. Let S be a matrix normed space and σ : Z x
S x T -ϊ C be a trilinear map. Assume that S satisfies the condition V^
and that for any zu . . . ,zm E Z, s = [s^ ] E Mm(S), t u ... , t m G T :

(3.2) Σ <\\s\

Then there exist Banach spaces E E SQp(Yι),F E SQP(X2) and three com-
pletely contractive maps φ : S —> β(£^, F), u : T -+ Ec and v : Z -^ F* such
that:

V (z,s,t) eZ x SxT, σ(z,s,t) = (φ(s)u(t),v(z)).

Proof. Let Λ be the set of all functions φ : X\ x Y2 -> !R for which there
exist a > 0, β > 0 such that

(3.3) V(xuy*2)€X1xY2*, \φ(Xl,y*2)\ < ap H ^ f + β" \\y*2\\q .

Then Λ is a real vector space and the subset Λ+ of non-negative functions in
Λ is a cone. We will apply Lemma 3.3 in this space. For any φ E Λ, we let:

where the infimum runs over all (α,/?) E M+2 such that (3.3) holds. This
clearly defines a sublinear map λ : Λ —> IR. For any φ E Λ+, we let:

Reσ(zi,sij,tj)

where the supremum runs over all m > 1,
ti, • , t m E Γ such that | |s| | < 1 and

E ^, 5 = [«sZJ] E Mm(S),

v
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We claim that μ is superadditive on Λ+. To check this, consider φ,φ' E

Λ+,(2i)i<i<n, {z[)ι<τ<m in Z, (*j)i<j<n,(*i-)i<i<m in T such that for any
{xuy*2)EX1 xY*:

VΪ) > Σ WΦi)WP + Σ H (̂%*) and
2 = 1

Then letting
/ //

and

V j / j<n+m V 1 ? ' "

we obtain for all Xι,y% :

n+m

? ^ n j ^ l j • • 5 ^"m/

n+m

Γ + Σ » "
Now the point is that if we consider 5 = [si<7 ] E Mn(S) and s' = [5^] E Mm(S)
with norms less than one and let 5" = 5 ® s' = [«ŝ ] E M n + m (S r ) , we have
||5 / ; | | < 1 (by our assumption on S) and

, 4 , t?) = X; iϊe σ(^, s^t,) z[, s'

We thus obtain μ(φ+φ') > μ(φ)-\-μ(φ') as claimed above. Hence μ : Λ+ ->

is a non-negative superlinear map. Let us now prove that:

V φ E Λ+, μ(</>) <(3.4)

We give ourselves (α,/3) E M^2, ( î)i<»<m in ^ and {tj)ι<j<m in Γ such that

for any (xi^y^) ^ -^i χ ^2* :

Then < α and < β by (2.5) and (2.6). Hence for

any s = [s»j] G Mm(S) of norm less than one, we have by (3.2):
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Therefore / Reσ(zi,Sij, tΛ < 1 whence (3.4).

By Lemma 3.3, we thus obtain a positive linear form / : Λ

(3.5) V φ G Λ, f(φ) < λ(φ)

such that:

(3.6) μ(φ) < f(φ).

We now come to the definitions of E, F, u, v. We proceed with similar con-
structions as in [Pil].

Let Qι be the set of all the functions φ : Xι —» Y± for which there exists
a > 0 such that for any x1 G Xu \\ψ(xi)\\ < & \\xι\\. Clearly Qλ is a complex
vector space. Moreover, for any φ G G\, the function φ : Xλ x Y£ -> M
defined by φ{x\^y^) — | |^(a;i) | |p belongs to Λ, hence we may define:

The function Nx is a semi-norm on Qγ. We denote by G\ the Banach space
obtained after passing to the quotient by the kernel of Nλ and completing
the resulting normed space.

For any t G Γ, let us denote by φt G Q\ the function defined by φt(xi) —
t(xι). We may define a linear map u : T —> GΊ by setting (up to equivalence
classes): u(t) =pιfpφt.

Let us regard u a s a map from T into (Gι)c. Then ||t*||c 6 < 1. Indeed for
any finite family ( ί 1 ? . . . , tn) in T:

Hence the result follows from Lemma 2.6 (a).
In the same manner, we can introduce the vector space Q2 of all the

functions φ : F2* -> X$ for which there exists β > 0 such that for any y^ G
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Yf, \\1>(V2)\\ < /ΊlvSH Letting 1>{xuvD = \\<ψ(y*2)\\q and N2(φ) =
we can similarly define a Banach space G2 from (G2,N2). We then define a
map v : Z —> G2 by letting (up to equivalence classes) ^ ( z ) ^ ) = Q1^q^*{y2)'
Then using (2.6) and Lemma 2.6 (b), we obtain that υ : Z —> (G^)* satisfies

IML < i

Finally, we set E = u(T),F = v(Z)* and can consider that we actually
have u:T -+EC and υ : Z -* Fr* with | |u | | c 6 < 1 and ||v||c6 < 1.

In view of Theorem 3.2, we clearly have Gγ G SQp(Yι) and therefore
E e SQpiYx). Similarly, we obtain that G2 G 5Qg(X2*). Thus by a simple
duality argument, we deduce that F E SQP(X2).

In order to complete the proof of Theorem 3.4, it remains to show that
for any zu . . . , zm G Z, s = [s^ ] G M m (5) , tu... , t m G T, we have:

(3.7)

Indeed, such an inequality allows to define φ : S -> B(E,F) by letting

(φ(s)u(t), υ(z)) = σ(z, 5, £) and proves that ^ is c.c. Let us now check (3.7).

By trivial scaling, we may assume that | |s| | = 1 and ̂ 2σ(zi^sϋ^j) ^ ^ +

We define φ G Λ+ by setting φ[xuy*2) = ]Γ Ht^xOlΓ + ̂  IK(»5)IΓ • T h e n

3 i

we have:

<μ(φ)<f(φ) by (3.6)

Since we have ^ σ ( ^ , s ^ , tj) = ]Γ^σ(0 lzi->sij >^j) f° r a n y # > 0, the pre-

ceding inequality implies for all θ > 0 :

From (2.7), we deduce that (3.7) holds. D

4. A generalization of Ruan's representation theorem.

Let X and Y be Banach spaces and let S C B(X, Y) be a subspace. For any
n, m > 1, we may define (unambigously) a p-matrix structure on Mntm(S)
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by letting M J M(Mn,m(S')) = MknJm(S) for all k,l > 1. In other words,
this p-matrix structure is given by the canonical embedding Mn^m(S) C
B(ί™(X),£%(Y)). Now let X be a Banach space and let n > 1 be an integer.
Recall the definition (2.11). We set :

(4.1) J # = M l t Π ( C * ) .

Actually, R% is a p-matrix structure on the Banach space tn

q.

Indeed for any t = (ί(-£))i<*<n € tn
q, let t : i%(X) -> I be defined by

/

<• τhen 1*1 l W = ll*lland w e

£=l \t=l 1

have:

Rn ={t/teς}cB(ίn

p(X),X).
In the same manner, given a Banach space Y, we set for any n > 1 :

(4-2) Cr = M n > 1 (C r ) .

C^ is a p-matrix structure on £%. For any z = (z(k))ι<k<n € ^ , we may let
% ) = {z(k)y)k<n E ln

p{Y) for all y e Y and:

The spaces i ϊ^ and C^ will be used in the proof of Proposition 4.2.
The following is the main result of this section:

T h e o r e m 4.1. Let X,Y be Banach spaces and let S be a matrix normed

space. The following assertions are equivalent:

(i) S satisfies the two following conditions:

V^ . For any s E M n , m (5), s' G M n W ( S ) ,

MPiYiX: For any a G M n , m , s G Mm(S),b E M m , n ,

(ii) TΛere earisί Banach spaces E G SQP(X),F G S'QpίY) β ĉί α completely
isometric map J : S -+ B(E, F).

This statement will allow us to consider any matrix normed space S which
satisfy V^ and Mp,γ,χ as a subspace of B(E,F) for some suitable Banach
spaces E, F. In the particular case when p = 2 and X = F — C, we recover
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Ruan's representation theorem [R, ER3]. However for 1 < p φ 2 < +oo,
the particular case X — Y — C is already new. We will come back to this in
the last Section 6. We do not know whether Theorem 4.1 can be extended
to the case p = 1. Before coming into the proof of Theorem 4.1, note that a
matrix normed space S satisfying the condition (i) above for some Banach
spaces X and Y is obviously a p-matrix normed space as defined in Section
2. Although we could not find any convincing example, it seems unlikely
that the converse is true. The problem arising here is the following: given a
p-matrix normed space *S, does there exist a couple of Banach spaces X and
Y for which Mp^χ holds ?

In order to prove Theorem 4.1, we will follow the approach of [ER3].

More precisely, we will deduce the non-trivial implication (i) => (ii) from a

convenient factorization of the linear forms ξ G Mn(S)*.

Proposition 4.2. Let S be a matrix normed space satisfying the assumptions

D ^ and MpΎ,x. Let n > 1 and ξ G Mn(S)* with \\ξ\\ = 1.
Then there exist Banach spaces E G SQP(X),F G SQP(Y) and a com-

pletely contractive map φ : S —> B(E,F) such that: V s G Mn(S), \ξ(s)\ <

hin)(s)\\.

Proof. We denote by T = R% and Z — C% the two p-matrix normed spaces

defined in (4.1) and (4.2). Fix ξ G M n (5)* with ||ξ|| = 1.

Given z = (z(k))k<n G Z and t = {t(£))t<n G T, we denote by zt G Mn

the matrix obtained by the product of the column matrix \ with the

z{n)
row matrix ( ί ( l ) , . . . ,t(n)). Namely, we have zt — [z(k)t(i)]. With the above
notation, we define σ=^ZxSxT-^Cby letting σ(z, 5, t) = ξ(zt 0 5).

We claim that σ satisfies the assumption (3.2) of Theorem 3.4. In order to
show that, consider zu... , zm G Z, < l r . . , ί m G Γ and 5 = [si3] G Mm(S).
Let a = [aki] G M n ? m and 6 = [bjέ] G M m , n be defined by aki = zt(k) and bj£ =

lj(i) Clearly we have 22σ(zι,sij,tj) — ξ(asb) hence

\asb\\ . Note that from the definitions (4.1) and (4.2), we have | |α | | p y =

u . . . ,zm)\\ and \\b\\PtX = . Therefore, the assumption ΛdPiγtχ

implies that (3.2) holds.
Moreover we assumed that S satisfies V^. Hence we may apply The-

orem 3.4 to the trilinear map σ and this yields two Banach spaces E G
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SQP(X),F E SQP(Y) and three c.c maps u : Γ -> Ec,υ : Z -+ Fr* and
φ : S -> B(E,F) such that σ(z,s,ί) = (<p(s)u(<),i;(2)) for all (*,s,*) E
Z x S x T. Let us denote by {ηj)i<j<n

 a n d (^)i<«<n the canonical bases of
T and Z respectively. Then for any s = [s^] E Mn(S),

hence

n n

Now ^ | | ^ ( % ) f < 1 and ^ ||v(i/<)|Γ < 1 by Lemma 2.6. Hence \ξ(s)\ <
j=l z = l

||(^(n)(s)|| . This achieves the proof. D

Proof of Theorem 4.1. We assume (i). Let In be the unit sphere of Mn(S)*
and let / = U In. For any ξ E /n, we may apply Proposition 4.2 and thus

n>l

obtain Eξ G 5Q p (X),F ξ G SQP{Y) and a c.c. map φi : 5 -> B{Ei,Fi) such

that for any s E M n (S), |^(^)l < | | ^ n ) | |
Let E = Θ # £ and F = Θ F£. Of course we have E e SQJX),F e

SQP(Y). We now define J : S -> B(E,F)by setting

Since each J(s) acts diagonally we have for any 5 E Mn(S) :

| | ^

Therefore, J is a completely isometric map. This proves (i) => (ii). The
converse implication is obvious. D

Remark 4.3. Let S be a ;>matrix normed space. Note that S satisfies V^.
Therefore an obvious reformulation of Theorem 4.1 is that the two following
are equivalent:
(i) The canonical identification Cγ ®h S ®h Cx = S is completely iso-

metric.

(ii) There exist Banach spaces E E SQP(X), F E SQP(Y) and a completely
isometric embedding S C B(E,F). This complements Remark 2.8 (b).
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Remark 4.4. It is not hard to modify the proofs of Proposition 4.2 and
Theorem 3.4 in order to settle an isomorphic variant of Theorem 4.1. Con-
sider the three following properties depending on some constants Cι,C2,C3.
( a ) F o r a n y S! € M n i > m i ( S Ί ) , s 2 <Ξ M n 2 ^ { S 2 ) , . . . , s k € M n ^ m k { S k ) ,

| | * i θ . θβfc|| < CΊmax

(b) For any a G Mn<m, s € Mm (S), b € Mm>n,

\\asb\\ < C2 \\a\\PιY \\s\\ \\b\\PtX .

(c) There exist Banach spaces E E SQP(X),F E SQP(Y) and a complete
C3-isomorphic embedding J : S -» B(E, F).

Then, the assertion (c) implies that (a) and (b) hold with CΊ = C2 = C3.
The converse (and more significant result) is that if (a) and (b) hold, then
condition (c) is fulfilled with C3 = CλC2.

5. Representation of p-completely bounded multilinear maps.

In this section we show how to deduce a representation theorem for p-c.h.
multilinear maps from our previous work. We will give two formulations of
this result. Here is the first one:

Theorem 5.1. Let -Xi,... ,XNlYu... ,YN,X,Y be Banach spaces. For
each 1 < i < N, let St C B(Xii Yi) be a subspace. Let S — SN ®h •' ®Λ 5Ί
(see Remark 2.5 for the definition) and let A : S -> B(X,Y) be a c.b. map.

Then there are Banach spaces Kt (1 < i < N—l) and c.b. maps A\ : SΊ —>
,ϋΓi), Aj : Sj -»• BiKj^Kj) (2 < j < N- 1), AN : SN -> 5 ( ^ - 1 , F)
that

and:
V ( θ ^ , . . . ,sι) e SN x •- x Su

A(sN,... ,sχ) = A

The proof of Theorem 5.1 will rely upon two lemmas which are now simple
corollaries of Section 3 and 4.

Lemma 5.2. Let X1,Y1,X2iY2 be Banach spaces and letT C B{Xι,Yλ) and
Z C B(X2,Y2) be subspaces. Then there are Banach spaces E £ SQp(Xι),
F e SQp(Y2) and a completely isometric map J : Z <g>hT -ϊ B(E,F).

Proof. Let z G MmΛ(Z), t E MΛ, r o(T), a G M n > m , & E M m , n . Then α(z © t)b -
α^ 0 tδ and | |α^| | < | | α | | p y 2 | |^| |, ||t&|| < | |t | | | | 6 | | p X l Hence we may apply
Theorem 4.1 with S = Z (g>Λ T, X = Xu Y - Y2. D
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Lemma 5.3. The statement of Theorem 5.1 holds in the case N — 2, X —

Proof. We consider a c.c. map A : S2 ®h Sλ -> C. Let 5 = CYl C J5(Yi, Yi)
and let σ : S2 x S x SΊ —> C be defined by σ(52,/y1,5i) = A(s2,s1). Then
we may clearly apply Theorem 3.4 with T = SΊ and Z = S2 and this yields
the result. D

Proof of Theorem 5.1. We follow the approach of [B, Theorem 2.4]. Since

Lemma 5.2 allows us to use induction, we only need to consider the case

N — 2. We thus consider a c.c. map A : S2 ®h SΊ —> 5pΓ, Y) Let us define
A : (Yr* ®Λ S2) ®h (Si ®Λ Xc) -> C by setting:
(5.1)
V (y*,s2,sux) eY* x S2x SλxX, A(y* ® s2,sλ ® x) =

From the associativity of ®^ (see Remark 2.5) and Lemma 2.7, we have

\A < 1. Apply Lemma 5.2 to Si <&h Xc and Y* ®h S2 together with
cbcb

LemmaJ5.3. This yields a Banach space K and two completely contractive
maps Aι : Si ®h Xc -> Kc and A2 : Y* ®h S2 -> K* such that:

(5.2) v z e Y ; Θ h S 2 , v t e s x ® h x c , A(z,t) = (ii(t),i2(*)).

We now proceed with converse identifications. We define A\ : Si —> B(X, K)

and A2 : S2 -> 5(^,1"**) by setting

(5.3) V(5 i ,x) G S i x X , Ai(5i)(a;) = A ί ( 5 i ® re).

(5.4) V ( 5 2 ,y ) G S 2 x y*, (A 2 (s 2 )) (y*) - X2(y* ® 5 2).

Clearly, (5.1), (5.2), (5.3), (5.4) imply that for any {s2,s1) G S 2 x Su

A(s2,s1) =A2{s2) o

Now it is easy to see that we may as well assume that K — Aι(S\)(X) and
then, A2 is actually a c.c. map from S2 into B(K,Y). This concludes the
proof. D

Remark 5.4. The converse of Theorem 5.1 obviously holds. Namely,
given c.c. maps Ax : SΊ -» B[X,KX), AN : SN -> S(ίίΛr_i,y) and ^ :
Ŝ  -> BiKj-uKj) (2 < j < TV-1), the map A : SN x • x SΊ -> B(X,Y)
defined by A(sN,... , Si) = AJV(SJV) o o Ai(si) provides a c.c. map from
SN®h--'(S>hS1 into B(X,Y).
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Remark 5.5. In view of Lemma 5.2, we could have been more precise
in the statement of Theorem 5.1. For example we may write that for any
1 < j < N - 1, Kj e SQp(Yj). However, we shall see in Theorem 5.6 that
such an information is not really an improvement.

We now turn back to the terminology of p-completely bounded maps
defined in the introduction (see Definition 1.1). Recall that given S C
B(XuYλ) and two Banach spaces G e SQp(Xι),G' e SQp(Yi), it made
sense to define a notion of ^-representation from S into B(G,Gf) (see Defi-
nition 1.3).

Then by an obvious combination of Theorem 5.1, Remark 5.4, Remark
2.5 and Theorem 1.4, we obtain:

Theorem 5.6. Let Xϊ:... ,XN,YU... ,YN,X,Y be Banach spaces. For
each 1 < i < N, let Si C B(XuYi) be a subspace. Let A : SN x x Sλ ->
B(X, Y) be a N-linear map and let C be a constant. The following assertions
are equivalent:
(i) A is p-completely bounded and \\A\\ b < C.

(ii) There exist Banach spaces

G, € SQP{X,){1 < j < N), G'j e SQp(Yj)(l < j < N),

p-representations Έj : Sj —> B(Gj1G'J) (1 < j < N) and operators
Vo : X -> Gi, VN : G'N -> Y and Vj : G'ά -> Gj+1 (1 < j < N - 1) such
that \\V0\\... ||VN\\ <C and V (sN,... , Si) G SN x x Su

A(sN,... ,5X) = VNπN(sN)VN-ι.. .V2π2(s2)V1π1(sι)Vo.

6. Complements.

6.1. Some remarks about ®h. The Haagerup tensor product of operator
spaces has been extensively studied recently (see [B, BP, BS, ER2, PS]). A
main feature of this tensor product is that it is both injective and projective
in the category of operator spaces. It is then natural to study similar prop-
erties in our more general framework. We will easily obtain that our tensor
product (g>h is projective and is not injective. Let us make these statements
precise.

Let S be a matrix normed space and let T C S be a closed subspace. We

may define a norm on each Mn>m I — j by setting Mn>m I — j — M

r h m}T\

S
Endowed with these norms, — becomes a matrix normed space. Moreover,
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if we assume that S is a p-matrix normed space, then — is also a p-matrix

normed space.
The announced surjectivity of ®Λ is:

Proposition 6.1. Let Sι,S2 be two p-matrix normed spaces. For i = 1,2,
c

S
S

c
let Ti C Si be a closed subspace and let qι : Sτ —> -φ be the associated quotient

map. Consider Q = q2 ® q\ : S2 ®h S\ —> Λ, p

T/ien Q is α complete quotient map, i.e. for any n > 1, ζ ^ «5 α quotient
map.

Proof. Mimic the proof of [ER2, Proposition 3.1]. D

Remark 6.2. The tensor product ®^ is not injective. Indeed let E, F, G be
Banach spaces such that E C F. Let j : G*<S>h^c —> G*r®hFc be the canonical
embedding. We wish to prove that j is not isometric in general. Assume for
simplicity that G is reflexive. Then (G* ®h Ec)* = B(E,G), (G*r ®h F c)* =
B(F,G) and j * : B(F,G) -» B(E,G) is the restriction map. Therefore, j *
is onto if and only if any bounded linear map from E into G has a bounded
linear extension to F. This fails in general and then, j is not even isomorphic
in general.

We now fix two Banach spaces X, Y. Let us denote by Cχ^γ the class of
all p-matrix normed spaces 5 defined by a completely isometric embedding
S C B(E,F) for some E e SQP(X) and F e SQP(Y). Note for further the
following straightforward consequence of our Theorem 4.1:

(6.1) — E Cχ?y whenever S E Cχ,y.

The end of this subsection is devoted to a convenient identification result
about CXjY. Let S be a p-matrix normed space. Recall from Section 4 that
given z E C% and £ E ϋ ^ , we may define zt E M n j m as a matrix product.
Thus we can introduce a canonical map

by letting J(z <g) s <g>t) = zt ® s.

Proposition 6.3. Assume that S E Cχ,γ. Then the above map J induces a
completely isometric identification

(6.2) Cl®hS®hRl = Mn,m(S).

Proof. 1st step. Under our assumption, it is clear from the proof of Propo-
sition 4.2 that the map J is isometric (see also Remark 4.3).
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2nd step. We claim that for any k,N,n >, 1, we have canonical isometric
identifications :

(6.3) Mhk {Cjj ®h Cl) = Mhk (C%n)

(6-4) ΛfM (R* ®h R%) = Mktl {R*N) .

Let us check (6.3). We have the following isometric identifications

Mljk (Cjj ®h Cl) = Cjj ®h Cl ®h Rζ by the first step

= MNik (Cl) by the first step

= Mhk (ClN) by (4.2)

whence (6.3). The proof of (6.4) is similar.
3rd step. We now prove that (6.2) is indeed a completely isometric iden-

tification. Fix N > 1. Then we have (isometrically):

MN {Cζ ®h S ®h Rl) = Cl ®h Cl ®h S ®h R^ ®h R* by the first step

- Cγ

Nn ®h S ®h R^N by (6.3) and (6.4)

= MNri}Nm(S) by the first step

and thus MN (C% ®h S ®h R%) - MN(Mn,m(S)). D

6.2. Multilinear Schur products on B{t%). Although Schur products
have been studied for a long time (see [Gr, Be]), Haagerup [Ha] was the
first to realize the link between Schur products and the theory of completely
bounded maps. Namely he proved that for any Schur product map φ :
B(t%) -> fi(^), we have \\φ\\ = \\φ\\ch. This approach was lately exploited
in [PPS]. We refer to this paper for further information. Recently, Effros
and Ruan [ER4] proved that multilinear Schur products may be naturally
defined on B(ί™) and that their c.b. norms may be easily computed from
the Christensen-Sinclair theorem. Moreover, it is not hard to deduce from
[S] that for such a multilinear Schur product map φ : B(ί2

n) x x B{ί2

n) ->
J3(£^), we have \\φ\\ — \\φ\\cb as in the linear case. In this last subsection, we
will indicate how to generalize all these results to multilinear Schur products
on B(ί;).

In the sequel, we will simply denote by Rn and Cn the p-matrix normed
spaces i?^ and C^ defined by (4.1) and (4.2). Similarly, the notation SQP

will stand for SQP(C) and C will stand for Cc,c Let (ε;)i<i<n and (^
be the canonical bases of Rn and Cn respectively. We set:

Gn = Span [ετ ® ε\ j iφ j) C Rn ®h Cn.
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Recall that (Rn ®h Cn)* = B{ί™) (see Lemma 2.7 for example). In this
duality, G^ is clearly identified with the space of diagonal operators on

ίp). Thus G^ — ί7^ and therefore we have isometrically:

(6.5)

Now the quotient formula (6.5) defines a p-matrix structure on i™ (see the
Subsection 6.1). In the sequel we will always consider I™ as the p-matrix
normed space defined above. Note that from Lemma 5.2, we have Rn®hCn G
C. Thus by (6.1) we obtain that t™ G C. Note also that when p = 2, this space
is nothing but Max {1%). Thus the following is not really surprising.

L e m m a 6.4- Let E, F be Banach spaces and let A : £% -> B(E, F) be a linear
map. Assume that E G SQP and F G SQP. Then we have \\A\\cb = ||A|| .

Proof. Let (r^)i<z<n be the canonical basis of I™. For any 1 < i < n, let
Ά = A{ητ) G B{E~F). We define A : F; ®h Rn ®h Cn ®hEc-+C by setting:

V 1 < i, j < n, A(/*,ε n ε; ,e) = δτj(Tτ(e)J*).

By Lemma 2.7 and Proposition 6.1, we have A — || A| | c 6 . Since E,F G S'Qp,

Proposition 6.3 implies that Cn ®h Ec = (^(£?))c and Fr* ®Λ i?n = {t%{F))*r

completely isometrically. Thus by Lemma 2.7 again:

(F; »„ R, ®k Cn β 4 £«)• = Mn(B(E, F")).

Γ1 Ί
Under this identification, A becomes the diagonal matrix " . . There-

\ -Ln/

fore \\A\\ = Sup-<n | |T 2 | | . Since ||A|| = Sup ί<n \\Ti\\, the result follows. D

We now turn to multilinear Schur products. Let N > 1 and let n 0 , . . . , nN

be some fixed positive integers. We give ourselves a finite family of complex

numbers a = (αiΛΓ,...,i0) o<i<;v . Note that any m(j) G B U^~\(^3) has a

canonical matrix representation m(j) — [m(j)ljjlj_1]ij^j_1 with respect to
the canonical bases of i^-1 and i™j. We define the JV-linear Schur product

Φ R (OnN-i pnN\ /ov, . . . /ov D (pnι 0n2\ /5>L D ̂ /no pnΛ . r> ίpn0 pnN\

a s s o c i a t e d t o a as follows. For a n y 1 < j < N, let m(j) — [mij)^,i3-.x\i3 ,i3-t ^

B [ίn

v

J-\ίn

v^ . Then we set
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We now introduce another map naturally asociated to a. For any 0 < j <
N, let us denote by (ηiJ)i<ij<nj the canonical basis of £™3. Then we define
φa :tΐN®h... ®h iΐ1 ®l if U C by setting ψa (ηiN,... , ηio) - aiN_ f i o. We
are now ready to state our last result. We keep the notation above.

Theorem 6.5. The following are equivalent.

(i) l | Φ « l l < i
(ϋ) l | Φ α | | c 6 < l

(iϋ) | I V α | | < l

(iv) There are Banach spaces K\,... ,KN which are all in SQP and there

are linear contractions Tio : C -> Kx (1 < i0 < n 0 ), Ti} : Kj -^

Kj+1(l <j<N-l,l<iά< rij), TiN : KN -> C(l < iN < nN) such

that for all i 0 , . . . ,%N :

Q>iN,...,i0 =TiNo-.-oTh oTio.

Proof. Recall that for any 0 < j < N, the p-matrix normed space ί™3' belongs
to C. Thus the equivalence (iii) Φ=4> (iv) follows from Theorem 5.1, Remarks
5.4, 5.5 and Lemma 6.4. Let us now check that (ii) <̂ => (iii).

Let s = B(ίn

p

N-\ίn

p

N) ®h...®hB(i ^i ή ®hB(ίn

p«,ίn

P

λ)

By Proposition 6.3, each B ί ^ " 1 , ^ ' ) m a Y ^ e completely isometrically

identified with Cn. ®h Rnj_Ύ. Thus by Lemma 2.7, this yields:

CB [s,B(ίl\ηr)) - (RnN ®h CnN ®h- Θh Cni ®h R
no

Now since ®h is projective (see Proposition 6.1), ( ^ N ®h ®h i"1 ®

may be viewed as a subspace of (RnN ®h CnN ®h ' " ®/ι Cno)*. As a con-

sequence, we obtain an isometric embedding p : (ίιN ®h m'' ®h ^ΐ°T ~^

GB (S,B UP°JP

N)) . Now it is not hard to see that the range of p is ex-

actly the set of ΛΓ-linear Schur products from S into B (tp°,£pN^ and that

p{ψa) — Φα This achieves the proof of (ii) <=> (iii).

Since (ii) => (i) is obvious, it remains to show that (i) ==> (ii). We

follow the approach of [S, Theorem 2.1]. First note that given βeB (ip

N^ ,

ae B (^°) and m(j) £ B (i^~\i^) (1 < j < N), we may set β{m(N) ®

• ® m(l))α = βm(N) ® ®m(l)a. By linearity this allows us to consider

the product βsa for all s E S. It is easy to check that for any a.\,... , am G
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B (e ή ,βu...βmeB (e ή, s = [sek] e Mm(S) •.

(6.6) Σ ,
l<ί,k<m

a

\\(βu ••-,

We now define Dno C B (^°) (resp. DnN C B{i^N)) as the space of all

the diagonal operators on B K™0) (resp. B (ipN)) A main feature of Schur

products is that:

(6.7) V (ft s, a)eDnNxSx Dno, Φa{βsa) - βΦa{s)a.

We are now ready to show that | | Φ α | | c 6 < 1. In order to achieve this, take

s = [sik] E Mm{S) a n d x u . . . ,xm G in

v\ y j , . . . ,y*m G ( ^ ) * = ίn

q

N s u c h

that II5II < 1 and

(6.8) <

k=l ι=ι

We thus have to show that:

(6.9) < 1.

For any 1 < t, k < m, write xk = (xk(io))i<io<no and j / | = {y*£(iN))i<iN<nN-

We define x G ^° and y* G £ ^ by letting x(i0) = ( ^ \xk{io)\P ) and

y*(i^) = ] Γ |% (̂ τv)Γ • τ h u s ( 6 8) imply:

(6.10) | | ί | | < l and ||y*ll < 1-

Now we define ak G Dno as follows. We set ak(i0) = J?f\ \ for any 1 < i0 <

n0
ίwith the usual convention π — 0j and we let ak —

Similarly we define βι =

βι{nN);
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Obviously, we have for all 1 < k,ί < m : xk = ak(x) and y\ — β%(y*)
Hence we have:

(Φa(Σι,kβtStk<Xk)3,P)\ by (6.7)

/αΛ

<\\(βu... ,βm\\ : by (6.6) and (6.10).

Clearly we have

Oil 1/p

l<ιo<τn \k==

Hence we have

< 1.

Similarly, | | (A, . . . ,/3m)|| < 1 and therefore, (6.9) follows. D

Remark 6.6. In the particular case N — 1, the previous factorization

theorem can be refined as follows. We give ourselves a family a — (atj) ι<^<n

to which we associate a Schur product map Φa : B{t™,t™) -> B(ί™,lp) as

above as well as the linear map ua : ί™ -> i7^ of canonical matrix a. Then

the following are equivalent:

0) l | Φ α | | < l
(ii) The map ua factors contractively through Lp-spaces, i.e. there exist a

measure space (Ω,μ) and linear contractions 7\ : ίψ —ϊ Lp(Ω,μ), Γ2 :
Lp(ίl,μ) -+ f^ such that ua = T2TX.

Indeed by Theorem 6.5, | |Φ α | | £ 1 if and only if ua factors contractively
through S'Qp-spaces. From the lifting property of ίγ and the extension prop-
erty of £00, this is equivalent to (ii).

The (linear) result mentioned in this remark was learned to me by G.
Pisier. It is stated in [Pi2, Chapter 5] where explanations on its origine are
given.
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FINITELY GENERATED COHOMOLOGY HOPF ALGEBRAS
AND TORSION

JAMES P. LIN

if-spaces X whose mod p cohomology is finitely generated
as an algebra are studied. Even generators of infinite height lie
in degrees 2p> for j > 0. If H*(X] Zp) is not finite dimensional,
then H*(X; Z) must have p torsion of all orders if X is two
connected.

Introduction.

In this note we begin a study of iϊ-spaees whose cohomology mod p is not
finite dimensional, but is finitely generated as an algebra. We study these
.ίf-spaces by studying the structure of their Borel decompositions. From the
Borel structure theorem, if the mod p cohomology of an iϊ-space is nonfinite,
either there are an infinite number of algebra generators or there are elements
of infinite height. We prove the following:

Theorem A. Let A be a modp cohomology Hopf algebra admitting an action
of the Steenrod algebra. If A is finitely generated as an algebra, then the
generators of infinite height lie in degrees of the form 2pj, for j > 0.

In the next theorem we show that nonfinite iϊ-spaces must have un-
bounded p-torsion in their cohomology.

Theorem B. Let X be a two-connected H-space and suppose prH*(X; Z)
is torsion-free for some r > 0. Then if H*{X\ΊJP) is finitely generated as an
algebra, then it is finite dimensional.

Theorem C. Let X be a two-connected H-space with H*(X] Zp) finitely
generated as an algebra, but not finite dimensional. Then βιQHeven(X; Zp) ψ
0 ; where βx is the first cohomology Bockstein.

Theorem D. Let X be a two-connected H-space with H*(X] Zp) finitely-
generated as an algebra, but not finite dimensional. Then H*(X; Z) has
p-torsion of all orders.

Corollary E. Let X be a homotopy associative H-space with H*(X; Zp)
finitely generated as an algebra and primitively generated. If p is an odd
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prime, all even generators lie in degrees 2p\ j > 0 ; and for every primitive
even generator x, of degree greater than 2, βiX φ 0.

One should note that the three-connective cover of a Lie group is an
example of an iϊ-space whose cohomology mod p is finitely generated as
an algebra, but not finite dimensional. Other examples are K(Zpr, l)s and
ϋ"(Z, 2)«s. Presently these are the only examples known to the author. From
this, one might conjecture that all iϊ-spaces whose cohomology mod p is
finitely generated, but not finite has the mod p cohomology of a product
of a finite iί-space with copies of three-connective covers of Lie groups and
K(Zpr, l)s and K(Z, 2)s.

There are a number of results related to Theorems A, B, C, D. Throughout
this discussion, let X be an ϋf-space whose mod p cohomology is finitely
generated as an algebra. If the Bockstein βx vanishes, Lin [LI] shows if p is
odd, all even generators lie in degree 2. If X is homotopy commutative and
homotopy associative, Slack [S] shows X is mod 2 equivalent to a generalized
Eilenberg MacLane complex with homotopy groups in degrees 1 and 2. If X
is the loops on an ap space, Lin [L2] proves the same result for p odd.

Throughout the entire paper, all spaces will have the homotopy type of
a connected CW complex with finitely many cells in each degree. Unless
otherwise specified, all cohomology or homology modules will be understood
to be with Zp coefficients where p is a prime. All Hopf algebras are assumed
to be connected and biassociative. We will assume the reader has some
familiarity with the concepts of cohomology Hopf algebras. These objects
are discussed in detail in [MS].

Finally the author would like to express his appreciation to Mike Slack
and Clarence Wilkerson for several useful conversations. In particular, The-
orem 2.1 is due to Wilkerson. Also the referee considerably shortened the
proof of Theorem A.

§1. Elements of Infinite Height.

In this chapter we prove Theorem A using the T-functor technology originally

due to Lannes [L]. Throughout this chapter, A will be a finitely generated

mod p cohomology Hopf algebra over the Steenrod algebra.

Proposition 1.1. There exists an integer N such that the pN powers of
elements of A form a Hopf subalgebra that has only elements of infinite
height.

Proof. Let ξ : A —> A be the pth power map. Then ξNA is a finitely generated
Hopf algebra over the Steenrod algebra. If the generators of finite height
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have height less than pN, then ξNA is polynomial by the Borel structure
theorem. •

Following the notation of Lannes, let V = (Zp)
£ and BV = K((ZP)

£, 1).
Recall

H*{BV Zp) * A{xu . . . ,xt) ® Zp[yu . . . ,yt)

for p odd where the degrees of the XiS is one and the degrees of the y^s is
two. For p = 2,

Proposition 1.2. Suppose ξNA embeds as Hopf algebras into H*(BV,ZP)
for some £ > 0. Then the generators of infinite height of A lie in degrees 2pJ

for j > 0.

Proof. If the generators of ξNA lie in degrees 2pk for k > 0, then the gener-

ators of infinite height of A lie in degrees 2pk~N so we are done.

Let g : ξNA -» H*(BV\ Zp) be a Hopf algebra embedding. Then suppose
by induction that all generators of degree less than m in ξN A lie in degrees
twice a power of p. Let B be the subalgebra generated by elements of degree
less than m. Then B is a Hopf algebra and ξNA = B ® ξNA//B as a left B-
m o d u l e a n d i f * ( W ; Z p ) ^ g(B)®H*(BV; Zp)//g(B) asa le f tp(S) module,
from [MiMo].

It follows that there is an induced monomorphism

of Hopf algebras. If x is an algebra generator in degree m, then 0 ^ g{x} G
P(H*(BV\Zp)//g(B)). It follows that degree {x} = 2pk for some k > 0.
Hence deg x — 2pk. D

Proposition 1.3. Let C be a polynomial algebra over Λ{p) with finitely
many generators of even degrees. There is an embedding of Hopf algebras
over the Steenrod algebra C —> H*(BV;ZP) for any appropriately chosen V.

Proof. By the Adams Wilkerson embedding theorem [AW], there is an
embedding of domains / : C —> H*(BTn;Zp). Follow this by the map
H*(BTn] Zp) -> ii*(BZ^; Zp) and call the composite g : C -* H*(BΈ^ Z p).
By [DW, Thm. 4.1, (1) =* (2)], T%{C) * T]f(C). By [DW, Lemma 4.5]
T^{C) ^ C. Finally by [DMW, Props. 3.5, 3.6], Tj\C) -+ H*{BV;ZP) is
monic, and hits the smallest A(p) Hopf algebra containing g(C). D

Proof of Theorem A. Theorem A now follows from Propositions 1.2 and 1.3.

Corollary 1.4.
(1) ζNA is primitively generated.
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(2) There is a map of Hopf algebras A —> H*(BV;ZP) which is monic

when restricted to the pN powers of A.

Proof. ξNA may be considered a subHopf algebra of H*(BV;ZP), which
is primitively generated. Hence, so is ξNA. This proves (1). (2) follows
since H*(BV;ZP) is an unstable injective in the category of unstable alge-
bras. D

§2. Torsion and Finite Generation.

In this chapter we develop the connection between p-torsion in H*(X; Z)
and finite generation of the Hopf algebra H*(X\ Zp), for X an ff-space.
The following result is due to Wilkerson.

Theorem 2.1. Let A be a differential cohomology algebra modp and suppose
A is finitely generated as an algebra. Then the homology of A is also finitely
generated as an algebra.

Proof. Consider A as a left module over the subring ξA of pth powers. Then
the differential d is a £A-module map and A is finitely generated as a ξA-
module. ξA is Noetherian, so A is a Noetherian ^-module. Hence the
cycles Z(A) and boundaries B(A) are also finitely generated ξA modules.
Hence the homology H(A) is a finitely generated £A-module and algebra
generators of H(A) may be chosen from Q(ξA) and the module generators
of Z(A). D

Theorem 2.2. Let X be an H-space with H*(X] Zp) finitely generated as

an algebra. IfprH*(X; Z) is torsion free, than βsQE^ven is decomposable for

s > 1 where Es is the sth term of the Bockstein spectral sequence.

Proof. By a theorem of Browder [B] (infinite implications) given x G QE2

s

n

with βxx — y φ 0 indecomposable, either there is a new generator xx G
QE2

s

nP with βsxλ = yλ φ 0 or βs+ι{xp] - {xp'λy} φ 0 in QES+1. Now if
prH*(X; Z) is torsion free, Er — E^. Let r be the smallest integer such
that Er = EOQ. Then for some s < r there must be an infinite sequence
of nontrivial even generators x, x l 5 x2, ••• in QE*ven. But H*(X\ Zp) is
finitely generated as an algebra. Hence by Theorem 2=1 each Es is also
finitely generated as an algebra. It follows that we must have βsQEξven is
decomposable for s > 1. D

Proof of Theorem B and Theorem C. Since H*(X] Zp) is finitely generated
as an algebra, the algebra generators of infinite height lie in degrees 2pj for
j > 0 by Theorem A. Further j > 1 since X is two-connected. Therefore
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it suffices to show there are no generators of infinite height. For p odd, by
Theorem 1.3.3 of [L3], and the fact that /3i#e v e n(X; Zp) is decomposable
(by Theorem 2.2), it follows

(2.1) QH2pJ(X; Zp) = V^H^-^iX; Zp).

If H*(X\ Zp) has a generator of infinite height, let x be such an element
of lowest degree. Then by (2.1) and Theorem A,

x = Vιy + d where d is decomposable.

By choice of rr, y and d both have finite height. Hence x has finite height.
This is a contradiction, so H*(X; Zp) has no generators of infinite height.
The Borel structure theorem implies H*(X] Zp) is finite dimensional.

For p = 2, if H*(X] Z2) is not finite dimensional, let x be a Borel generator
of infinite height of highest degree, say 2j. The Adem relations imply for

2^2Sq**1 = Sq^Sq1 + Sq'Sq'Sq

We have j > 1 since X is two-connected. Then since Sq1 = β\ we have by
Theorem 2.2,

SqιH2\X; Z2) and SqιSq23-2H*(X; Z2) are decomposable.

We now apply Theorem 1.3 of [L3]. Let B(m) be the A(2) subHopf algebra
generated by elements of degree less than or equal to m. By induction on
ra, assume B(m) is finite dimensional, and Ax E B(m) ® B(m), x ^ B(m).
By Theorem 1.3 of [L3] there is an element φ(x) G H23+1(X; Z2) with

(2.2) Aφ(x) = x ® x + im Sq23 + im Sq2 + z

where z e H* ® I(B{m))H* + H*I(B(m)) ® H\
We will show φ(x) is a generator of infinite height. This will contradict

the fact that # is a generator of highest degree of infinite height.
We first show φ{x) is indecomposable. Consider the subalgebra B gener-

ated by ξH* + im Sq1 + ΊmSq2 + B(m). Then x has non-zero projection in
Q(H*(X)//B) since x is indecomposable and elements of im Sq1 + im Sq2 +
B(m) have finite height. Therefore, there is a primitive t G H*(X; Zp) with

(ί, x) = 1, (ί, B) = 0.

By (2.2), (ί2, φ(x)) = (ί, x)2 = 1 so φ(x) is dual to a primitive. Therefore,
(/>(#) is indecomposable.
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Now z and Sq2(H*®H*) in degree 2j+1 both have finite height in H*®H*,
since B(m) has finite height and Hodά and Sq2H4s+2 have finite height for
5 > 1, by Theorem A. By (2.2), if ί is large,

(2.3) Aφ(xf = x2ί ® X2' + ^ ( i m Sq2').

We claim φ(x)2ί φ 0 because hφ{xγ φ 0. If hφ{xγ = 0 then x2' =
y2 for some y so (x — y2) has height 2£. But a Borel generator has the
property that the height of x is less than or equal to the height of x + d
where d is decomposable. This is a contradiction, so Aφ(x)2<ί φ 0 for all ί
and φ(x) is a generator of degree higher than x of infinite height. Further,
φ(x) cannot be changed by decomposables to have finite height. So there
must be a Borel generator of degree greater than degree of x of infinite height.
This is a contradiction. We conclude H*(X; Z2) is finite dimensional.

To prove Theorem C, notice the above argument shows if βιQHeven(X] Zp)
= 0 then if H*(X; Zp) is finitely generated as an algebra, there are no ele-
ments of infinite height. D

Proof of Theorem D. By Theorem C there exists an even degree generator
x E H2n(X\ Zp) with βix — y where y is indecomposable. By infinite
implications we have either Er is not finitely generated as an algebra or there
is an even generator z in Er+ί with βr+\Z indecomposable. By Theorem 2.1
we must have βr+ΐ φ 0 for every r. This implies there exists p torsion of all
orders. D

Proof of Corollary E. By [Zl, Thm. C] H*(X\ Zp) is free commutative, so
by Theorem A, all even generators lie in degrees 2p>. Now suppose there is
an even primitive generator x E PH2pJ (X; Zp) with βλx — 0, and j > 0.
Then the Adem relations imply

where Ci, c 2 E Z p .

We have Vp3~1x is decomposable primitive, hence it is zero since all prim-
itives lie in degrees 2//, ί > 0. Therefore by [Z2], there is a secondary
operation φ(x) with

Aφ(x) = x ® ® x

Since a ^ i m ? 1 , there exists a t E Piϊ*(X;Zp) with

{t,x)φθ and (t, imV1) = 0.
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It follows that
(£p, φ(x)) φ 0, so tp φ 0.

But f/*(X; Zp) has no pth powers since ίP(X; Zp) is primitively generated.
We conclude βλx Φ 0 for every primitive even generator of degree greater
than 2. D
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THE POSITIVE DIMENSIONAL FIBRES OF THE PRYM
MAP

JUAN-CARLOS NARANJO

The fibres of positive dimension of the Prym map are char-
acterized.

Let C be an irreducible complex smooth curve of genus g. Let π : C —> C
be a connected unramified double covering of C.

The Prym variety associated to the covering is, by definition, the compo-
nent of the origin of the Kernel of the norm map

P{C, C) = Ker(Nmπ)° C JC.

It is a principally polarized abelian variety (p.p.a.v.) of dimension g(C)—g =

9-1-
One defines the Prym map

Pg : Ug —-»• Ag-!

where 7Zg is the coarse moduli space of the coverings π as above and Λg-\

stands for the coarse moduli space of p.p.a.v.'s of dimension g — 1.

It is well-known that this map is generically injective for g > 7 (Friedman-

Smith, Kanev). On the other hand this map is never injective; this is a

consequence of the tetragonal construction due to Donagi (see [Dol] for a

description of the construction). This fact is already implicit in the results

of Mumford ([M]):

The coarse moduli space 1ZΉ.g of unramified double coverings of smooth

hyperelliptic curves of genus g has [̂ -̂ ] + 1 irreducible components Tl/Hg^u

t — 0,..., \^γ-\ For an element ((5, C) G TZ<Ήg,t there exist two hyperelliptic

curves

Pl :CΊ — > P \ p2 :C2 —^IP 1

of genus g(Cι) — t < g — t — 1 = g(C2) such that

a) C — Cι Xpi C2 and
b) C — C/(σ1 o α 2), where σλ (resp. σ2) is the involution on C attached

to the branched covering C —> C\ (resp. C —> C2).

223
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Mumford proves (loc. cit. p. 346) that one has an isomorphism of p.p.a.v.

)*Jd xJC2.

Consequently the fibres of the restriction of Pg to ΊRJHg have positive
dimension. In fact Pg(ΊZΉgj) is contained in the product J%t

 x JΉg-t-i,
where JWS stands for the locus of Jacobians of hyperelliptic curves of genus
s. Thus

dimJing,t = 2g-l> ώmJHt x JUg-t-i = { r

[2# —3 if t = 0.

On the other hand positive dimensional fibres also appear for some cover-

ings of bi-elliptic curves (a curve is called bi-elliptic if it can be represented

as a ramified double covering of an elliptic curve).
In this note we characterize the fibres of positive dimension of the Prym

map. To state our theorem we need some notation: let lZBg be the coarse
moduli space of the unramified double coverings TΓ : C —> C such that C is
a smooth bi-elliptic curve of genus g. This variety has [̂ ŷ ] + 2 irreducible
components

(see [N] for more details).
We obtain:

Theorem. Assume g > 13. A fibre of Pg is positive dimensional at (C,C)

if and only if C is either hyperelliptic or

(C,C)e{J7lBg,t.

Proof. If C is hyperelliptic we apply the results of Mumford. On the other
hand, all the irreducible components of the fibres of Pg\nBg,t &re positive
dimensional for t > 1 (see [N, §20]). This finishes one implication.

The first step to see the opposite implication is to prove that the curve C
is tetragonal (i.e. there exists a g\ on C).

Let η G JC be the two-torsion point characterizing the covering and
denote by L the line bundle u>c ® η> It is easy to check that L is very ample
if C is non-tetragonal. Let ΦL be the projective embedding of C defined by
L.

As in Beauville ([B, p. 379]), we replace ΊLg and Λg-ι by the correspond-
ing functors. Then, the Prym map defines a morphism of functors Prg. Our
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hypothesis on the fibre of Pg implies that the cotangent map to Prg at ((7, C)
is not surjective. By loc. cit. Prop. (7.5), this map can be shown as the
cup-product map

S2H°(C,L) —>H\C,L®2)

followed by the isomorphism induced in cohomology by L®2 = ω®2. Hence,
the non-surjectivity implies that ΦL(C) is not a projectively normal curve.

We recall Theorem 1 in [G-L]: If L is very ample and

deg(L) > 2g + 1 - 2k1(L) - Cliff(C),

then ΦL(C) is projectively normal (where Cliff(C) is the Clifford index of
C).

Since hι{L) = 0 and deg(L) = 2g - 2 one obtains Cliff(C) < 2. By
using Clifford's Theorem and [Ma, Propositions 7 and 8], it follows that the
curve either possess a g\ or is plane curve of degree six. The second case
contradicts g > 13.

Thus C is tetragonal. Since g > 13 the results in [De] can be applied:
either the fibre is finite (generically, three elements) or we are in one of the
following three possibilities: C is either hyperelliptic or bi-elliptic or trigonal.

Assume that C is bi-elliptic. Theorems (9.4), (10.9) and (10.10) in [N]
states that P~1(P(C1C)) consists of two points for every (C,C) G TZBg^0 U
TZB'g, hence

(C,C)e\JHBg,t.
t>l

To finish the proof we have to rule out the case: C trigonal. In [R],
Recillas (cf. also [Do2]) establishes an isomorphism

τ : ΊlTg —> MgJi ,

where TZTg is the coarse moduli space of unramified double coverings of
trigonal curves and M^lf is the moduli space of pairs (X,g\) of tetragonal
curves X and a base-point-free tetragonal linear series on X not containing
divisors of the form 2x + 2y. This map satisfies that

r(C,C) = (X,g\) = • P(C,C) = JX (as p.p.a.v.).

Let us fix (C,C) as above and let {D,D) G Hg such that P(D,D) ^
P(C,C) = JX. Since C is not hyperelliptic, then the singular locus of
the theta divisor of P(D,D) has codimension 3 by [M, p. 344]. In loc. cit.
a list of the Prym varieties with such property appear. We obtain that D
is either trigonal or bi-elliptic. Since P(D, D) is the Jacobian of a curve the
bi-elliptic case contradicts [S].
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Hence it suffices to prove that all the fibres of the restriction of Pg to TZTg

are zero dimensional. This follows from the bijection r. Indeed, a curve X
of genus g > 12 has at most one base-point-free g\ without divisors of the
form 2x + 2y; otherwise there exists a map / : X —> Ψ1 x P1 and then either
the genus is <9 or X is bi-elliptic. By [T, Lemma (4.3)] the linear series of
degree 4 and dimension 1 on a bi-elliptic curve come from g\ linear series on
the elliptic curve, thus divisors of the forbidden form appear.

Now the classical Torelli Theorem says that

is injective. Composing with r we are done. D

Remark. Note that if one drops the hypothesis on the genus, at least one
gets that the Clifford index of C is < 2.

References

[B] A. Beauville, Varietes de Prym et Jacobiennes Intermediates, Ann. Sci. E.N.S.,
10 (1977), 309-391.

[De] O. Debarre, Sur les varietes de Prym des courbes tetragonales, Ann. Sci. E.N.S.,
21 (1988), 545-559.

[Dol] R. Donagi, The tetragonal construction, Bull. Amer. Math. Soc, 4 (1981), 181-185.

[Do2] R. Donagi, The fibres of the Prym map, Preprint 1992.

[G-L] M. Green and R. Lazarsfeld, On projective normality of complete linear systems on
an algebraic curve, Invent. Math., 83 (1985), 73-90.

[M] D. Mumford, Prym varieties, I, in Contributions to Analysis, New York 1974.

[Ma] G. Martens, Funktionen von vorgegebener Ordnung auf Komplexen Kurven, J. reine
angew. Math., 320 (1980), 68-85.

[N] J.C. Naranjo, Prym varieties of bi-elliptic curves, J. reine angew. Math., 424
(1992), 47-106.

[R] S. Recillas, Jacobians of curves with gl's are the Prym's of trigonal curves, Bol.
Soc. Mat. Mexicana, 19 (1974), 9-13.

[S] V.V. Shokurov, Distinguishing Prymians from Jacobians, Invent. Math., 65 (1981),
209-219.

[T] M. Teixidor, On translation invariance for W^, J. reine angew. Math., 385 (1988),

10-23.

Received March 1, 1993. The author was partially supported by the European Science

Program, "Geometry of Algebraic Varieties" project, contract no. SC1-O398-C(A) and by

the DGICYT no. PS90-0069.

DEPARTAMENT D'ALGEBRA I GEOMETRIA

UNIVERSITAT DE BARCELONA, GRAN VIA 585

08007 BARCELONA, SPAIN

E-mail address: naranjo@cerber.ub.es



PACIFIC JOURNAL OF MATHEMATICS

Vol. 172, No. 1, 1996

ENTROPY OF A SKEW PRODUCT WITH A Z2-ACTION

KYEWON KOH PARK

We consider the entropy of a dynamical system of a skew
product T on X1XX2 where there is a Z2-action on the fiber X2.
If the Z2-action comes from a Cellular Automaton map, then
the contribution of the fiber to the entropy of the skew prod-
uct is the directional entropy in the direction of the integral
of a skewing function φ from X\ to Z2.

1. Introduction.

J. Milnor has defined the notion of directional entropy in the study of dy-
namics of Cellular Automata [Mil], [Mi2]. When the notion is applied to
a Zn action it is considered to be a generalization of the entropy of non
co-compact subgroups of Zn.

In the case of a Z2-action, we denote the generators of the groups by

{£/, V}. Let P be a generating partition under the Z2-action. We write

P{j = UιViP. If a subgroup is generated by UpVq, then there is a natural

way to compute the entropy of UpVq as a Z-action on the space. Milnor

extended this idea to define the entropy of a vector by embedding Z2 to the

ambient vector space R2 as follows.

V PiJ
(i )£B+\o t)v

Given a vector ΐ7, we let θo be the angle between two vectors v and (1,0).
Let w = tarc3 so that (w,l) is a scalar multiple of the vector v. It is easy to
see that

1 ([ty] \
h{v) = lim lim -H [ \J \/ Pitj ,

yj=O—m+jw<i<m+jw J

where [a] denote the greatest integer < a.
We note that if ΰ ~ (p,q), then h(v) = h(UpVq). And it is easy to see

that directional entropy is a homogeneous function, that is h(cv) — ch(v)
for any c G R.

Directional entropy in the case of a Z2-action generated by a Cellular
Automaton map has been investigated in [Pal, Pa3] and [Si]. D. Lind
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defined a cone entropy, denoted by hc(υ), of a vector v. Given a vector
v = (x, y) and a small angle 0, we consider the vectors vθ — (xe,y) and ΰ_θ =

y y

(x_θ,y) where xθ and x^θ satisfy — — tan(0o + θ) and = tan(#o — θ)
XQ X-θ

respectively. Cone entropy is defined as follows.
i /fry]

hc{v) = lim lim -H V V P< ?

From the definition, it is clear that we have hc(υ) > h(v).
We say that a Z2-action is generated by a Cellular Automaton if one of

the generators of the Z2-action, say V, is a block map (a finite code) of U.
That is, (V(x))i depends only on the coordinates α;_ r,:r_ r+1,... , rrr [He].
We call r the size of the block map V. We will show that in the case of a
Z2-action generated by a Cellular Automaton map, the directional entropy
and the cone entropy are the same (Theorem 1).

Let (XiXx^μ^G) and {X2,ζ2,β2,H) be two ergodic measure preserving
dynamical systems with finite entropy, where G and H denote the respective
group. Given an integrable skewing function φ : Xλ —> H, we define a skew
product G-action T on (Xι x X^Ci x C2? βi χ M2) such that Tg(x,y) =
(T9x,Fφ{χϊy) where Γ denotes the G-action of Xx and F denotes the H-
action on X2. When we have G = H — Z, then the entropy of T has been
extensively studied by many people (e.g. [Ab], [Ad], [Ma, Ne]). It is well
known in this case that h(T) - h(T) 4-1 / φdμ\h(F). The above formula says
that, as we expect, the fiber contribution to the entropy is | / φdμ\h(F).

We investigate the entropy of T when G = Z and H — Z2. Note that
the above formula cannot hold when the acting group on the fiber is a more
general group, say Z2. First of all, / ψdμ is in general a vector. Secondly,
if the skewing function takes a constant value, say (1,1), then the fiber
contribution should come from the entropy of UV, not necessarily from the
whole Z2-action. We prove that if the fiber Z2-action is generated by a
Cellular Automaton map, then we have the analogous theorem (Theorem 2)
to the case when H — Z.

We may mention that directional entropy can be also defined in a topo-
logical setting. D. Lind constructed an example whose topological entropy
does not satisfy the analogue of our Theorem 3 [Li]. His example involves
a Z2-action which is not generated by a Cellular Automaton map. It is not
clear that Theorem 3 holds for topological entropy when we have a Z2-action
on the fiber generated by a Cellular Automaton map. Lind's example is not
interesting in the measure theoretic sense because it has the trivial invariant
measure.

We have constructed a counterexample which does not satisfy Theorem 3
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[Pa2]. For the example we explicitly construct the base transformation and
use the Z2-action due to Thouvenot [Th] on the fiber. Both of them are
constructed by cutting and staking method. It would be interesting to find
out how generally Theorem 3 holds. For example, it is unknown if Theorem
3 is true when we have a topological Markov shift which does not satisfy
the condition of Corollary 4. We are more interested in the case when the
topological Markov shift has 0-entropy as a Z2-action.

Although Theorem 2 and 4 are more general than Theorem 1 and 3, we will
prove Theorem 1 and 3 because their proofs are easier and more geometric.
It is also easy to see the proofs of Theorem 2 and 4 from those of Theorem
1 and 3.

We would like to thank Professor D. Ornstein for helpful discussions and
the Referee for many valuable comments.

2. Cone entropy.

Throughout the section we assume that our Z2-action is generated by a
Cellular Automaton map. We denote by Hm(v)

fn-l m+jw

V V
n-»oo γι

Note that Hm(v) is independent of the size of the vector ΰ. Let r denote

H(Po,o).

Lemma 1. Hm(v) = Hm>(v) ifm,m' >2r + w.

Proof. Case 1. v is not a scalar multiple of (1,0).
Suppose m' > m. Clearly from the definition we have Hm' (ΰ) > Hm{υ).

Hence it is enough to show Hm'(v) < Hm(v). Note that

1 (n~ι

Hm{v) = lim -H V V
y j = O — 77iH-,;iί;<i;

1 /

= lim - Σ J 5 Γ I V
—m+jw<i<m+jw

V V
0<k<j -m+kw<i<m+kw
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-m<i<m— —

n - 1

m<i

y
v

π - 1

V V
kw<ι<2m+kw

V V

V V
-2m+jw<i<-2πι+(j-l)w+r

We make the following observations:

(1)

lim -H\ V Pi,o) =0= lim -H I \f Pifi
y-m<z<ra y y—m'<ι<m' j

(2)

V

> H V

v v p^
0<k<j kw<i<2m+kw

V V J
0<k<j kw<i<2m'+kw

because we condition on more information.
(3) By the same reason, we have

H V V V
0<k<j -2m+kw<i<kw

V V i
-2m+itu<i<-2m+(j-l)t/;+r

> i ί | V ^

V V

V V
0<k<j -2m'+kw<i<kw

-2m'
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These observations together with the formula for Hm(ΰ) above shows Hm' (v) <
Hm(v).

Case 2. ΰ — 7/(1,0) for some real η.
We analogously denote by Hm(v)

1 f[nη] m \

lim -H V V PiJ •

We note that

1 /[nη] m+2(m'-m) \

H™\v)= lim-H V; V pij]

Λ ( /[nη] m

= I i m - ί V V Pu

m+2(m'—m)

ίf V V
j=m+l

V
i=0 j=-m

771+2(771'-m)

i = 0

[nη]

i = 0

- m+2(m/-m) / r

- Σ H V V p*j
i=[nη]-r

^ 771+2(771'-m)

<Hm(v)+ lim - V 2r.r

i m 4rr(m'-m)
Π

= Hm(v).

Since we have H™ (v) > Hm(v) by definition, the proof is complete.

Corollary 1. Ifv is not a scalar multiple of (1,0), then we have

fn-l \ Λ ίn-l

V v
ij=0 -71

<l-H{ V no
\m<\i\<m'

< T
2(m' - m)

n

D
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Theorem 1. hc(v) = h(v).

Proof. It is enough to show that hc(v) — h(v) is small. If v = (x, y) where
y / 0 , then by rescaling, we may assume that v = (a;, 1). Given any ε > 0,
there exists 0 such that if « < 0, then

(i)

lim -H I V V P ' . i I < Λ C ( ^ + ε

n->oo 77, \ v v I
\0<j<n jxκ<ι<jx-κ )

(ii) \x~Q — XΘ\ < 7 where 7 satisfies that ητ < ε. There exists m 0 such that
if 7τι > mo, then

lim iff (V V Piλ=h(υ).
\j=0 -m-\-jx<i<m+jx )

We choose n0 such that if n > n o, then we have

(in)

h{v)-ε<l-H[ V V P

\0<jf'<n—1 —mo-\-jx<.i<.mo-\-jx

(iv)

hc(υ) - 2ε < ̂ H I V V Phj ] < hc(v) + 2ε,
\o<j<n-l jxθ<i<jx-θ )

(v)

\J Pij < ε, where
— mo-f-jx<2<7no+jίc /

(vi)

K — max{j : j\xθ — x\ < mo and j\x-β — x\

and

v v p>Λ~ϊ-n

H[ v v J
^o<j<n jxθ<i<jx-θ ) \θ<j<n -mo+jx<i<m0+jx
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We compute

\hc{ΰ) - h(ΰ

1
V V Pa

o<j<n jxθ<t<jx-θ

1
n V V 3ε

-» v V
\o<j<n n{xβ—x)-\-jx<i<n{x-θ—x)+jx

1
n V 3e

n
V 3ε

0— x)<i<n(x-β— %

< —ηnτ + 3ε.
n

Hence we have

\h{v)-hc(υ)\ <4ε.

In the case of v = (x, o), it is not hard to see that the idea of the second
part of the proof of Lemma 1 combined with the idea of the proof above will
give the desired result. D

P0,iTheorem 2.

Proof. We note that if we choose M so that

V '

V P ϊ 0 I is finite, then we have hc(v) =

m=M — m<i<m

then we get

m — M

Σ
fc=-m+M

V
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for all m > M. Using this, it is easy to see that if ra2 > m\ > M, we have
that for any n,

-i f[ny] -m2+jw \ 1 ί[ny] πiι+jw

n" V . V <••,)<1-" V V+ «.,
\J=0 ι=m24-^ty y \J=0 ι=—mi+jw

where - r comes from the difference between —H I V Pi o )
n n \i=-mi ' /

1 / m2 \
- i ϊ V P<fo).

Hence for a given ε > 0, there exist mo as in Theorem 1 such that for a
sufficiently large n,

\hc(v)-h(v)\

V V i
vo<j<n n{xθ-x)+jx<i<n{x-θ-x)+jx

V V J
\o<j<n —mo+jx<i<mo+jx

- 7 n r 4- 2ε 4- 3ε.
n

D

Corollary 2. // F Z5 a finitary code with finite expected code length, then

hc(v) = h(ΰ).

Proof. It is easy to see that a finitary code with finite expected code length
satisfies the condition of Theorem 2. See [Pa3]. D

3. Main Theorem.

Let λ = μι x μ2. We denote Σ7=o Ψki^z) by φ%(z) for k = 1 or 2 and

2 G Xi Given two partitions, βι and /32, we write βx < β2 if /32 is a finer

partition than βx.

Theorem 3. h(f) = Λ(T) + Λ(i?) w;Λere v = f φ dμ = {f φ1 dμ, f φ2 dμ).

Proof. Since j φ dμ is finite, as in the case of a Z-valued skewing function,
there exists φ' which is bounded and cohomologous to φ. Hence we may
assume that φ is bounded. Let |<Pi(.z)| < L and | ^ 2 ( ^ ) | < L. Suppose
v = J φ dμ = (x, y) where y Φ 0. We let a denote the generating partition
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of the base. Let β denote a partition of X2- Both of the partitions a and β
can be considered in a natural way to be a partition of X\ xX 2 For a given
z E Xi) we denote the set {(z,u) : u E X2} by Iz.

Since

j /n-l \ . /n-l \ 1 /n-l n-l

iff V^ία V β) ] = - ^ I V f i« + - # V f ^
n Vi=o v / n l i lo J n Kilo

and

we have

1.
n

/„_!

i=o

n - l

i=o

. /n-l \

7 n \t=o /

, /n-i \

sup/i ff ,αv/3) = sup lim -H \Jfi(a/β)

= h (f, a) + sup lim / -H ( \/ T'β^lΛ dμ

/

, /n-l \

-Hi X/TβrnllΛ dμ,
ΐi \ . I

m L-l

where βm denote the partition V V -F»,j
ι=-mj=O

We denote lim^oo -H Γyf'β^lλ by hz (f,βm) .

As in Lemma 1, it is not hard to see that for sufficiently large m and ra',
we have

hz(τ,βm)=hz(τ,βm,).

We will show that for sufficiently large ra,

1 /n-i^ \

- i ϊ \jT^m\Iz -> Λ(tO as n -^ 00, for a.e. ^ € Xx.
n Vi=o /

We denote by Xι the x-intercept of a line in R2 passing through ^(2:) with
the same slope as v. Let

sn = max{a;i,... ,xn} and

tn = min{xi,... ,xn}.

Given ε > 0, let fco be the integer such that if k > ko, then we have
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(i)
f[ny] k+jw

h(v) - lim -H V V Pij
0 i=-k+jw

< ε.

Given any δ > 0 and ε > 0, there exists no such that if n > no, then we
have
(ϋ)

(iii)

(iv)

μE1 = μ\z : φ dμ φn{z) < δ > > 1 - ε,

* < * > - = * Y . y. p '
I j—Oi—-ko+jw

1 / n - 1 \

-- i/ ί \JTβko\lΛ <ε\>l-ε,

2
and
(vi) | 5 n - t n | <2nδ.

We choose δ < ε2 and choose no satisfying (ii)-(vi) above. We fix m0 such
that ko < (ε/2)no < mo < εno. For notational convenience, we write m and
n instead of m0 and no respectively. We note that

n - l

\/fjβmonIz

3=0

on Ix

<P2~Ύ(z)+L-l sn+m+jw

< V V Pi,jθnlz.
j=0 i=tn~m-\-jw

Since tn and sn satisfy that

|(ίn + m) - {sn - m)\ = |2m + ίn - sn | > |2m -

and

- (tn -m)\ < εn,
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if z E Eλ, then by our Corollary and (ii), we have

ko+jW

V1 v "v n, -ii
j=0 i=tn—m+jw ) \j=0 i= — ko+jw

sn+m+jw

V J
U=gi ι=tn—m+jw\i=tn-m

-rεn + -(92 —
ΐl Tί

2r)

where gi = min{[ny], φ^~ι

Hence we have

— 1} and q2 = max{[ra/], φ%~ι{z) + L —

Λ (n-\ \ 1 /[ny] Λo+jti; \

-H \\JT βm\Iz I - - i f V V i i j I

(z)-\-L — 1 5n-|_ί7ι-j-^ιt;

V V i

τ(ε + ί(tt; + 2r)) + ε.

Is
n

^[ny] ko+jw

V V J
j=0 i= — ko+jw

Let E = Eι Π JB2. If z E E, then by our choice of m and Corollary 1, we have

n

<

i=o

, βm)

+ ifΓ (n\Jf̂ k\Iz\ - hz (f, /?,) + |Λ, (f, ft) - Λ, (f,
\i=0 /

< ε + ε + -πiT < ε{2 + r).
n

Since φx and ̂ ?2 are bounded, it is easy to see that there exists ω such

that hz ί ί , β) < α; for all /3 and all z. We may also assume that h(ΰ) is
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bounded above by ω. Now we compute

sup f hz (f, /?) dμ - h(υ)

< J \hz (f, βm) - Λ(v)

< ί hz (f,

(f, /?) - h(υ)\ dμ + ε

+ sup/ hJf, β)-h(υ) dμ

< ε(2 + r) + τ(ε + ί(iϋ + 2r)) + ε +

< ε(4 + 2τ + τ(w + 2r) + 4ω).

4ωε

In the case when v = f φ = η(l,0) for some real number 77, we need
to argue differently. We may assume η > 0. We construct φ' which is
cohomologous to φ as follows. Let φ' = (φ[^ φ'2).

(i) φ[ takes the values [7/] — 1, [η] and [77] + 1
ψ'2 takes the values —1,0,1.

(ii) In an orbit of a point, φ'2 value, 1 or -1, follows its value 0.

(iii) We use the ergodic theorem to construct φ'2 so that it takes the value
0 for all z's except a set of small measure.

Hence we may assume that ψ satisfies these properties.
\n] m

We let βm = V V Pij- Recall that r denote the size of the block map.

As in the previous case,we choose mo so that if m > mo, then

(i) mo > lOr,

(ii) \h(v)-H™(v)\<ε,

(iii) μ [z : |suP/3 / hz (f, β) - hz (f, βm) I < ε} > 1 - ε.
We fix 77i > mo. We choose no so that if n > n0, then

(iv)

(v) μ{
dand

- hz (f ,

< ε ) > 1 - ε,

(vi) μ I
n

< ε for all 0 < k < > 1-ε.

Let £? denote the set satisfying the above conditions, (iii), (iv), (v) and
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(vi). We have μE > 1 - 4ε. Let z G E.

Let

I 2=0 J

and

v = mmlγ^φ2(Ti(z)) : k = 0,1,... ,n - 1 [ .
I 2=0 J

Since 77 > 0, there exists io = max{fc : φ\(z) < i} for a.e. z G X±. We

denote by Φ ^ ^ )

max < V ψ2 {Tζ{z)) : 0 < k < i0, i - [η] < φ\(z) <

Now we compute

U \j=-m i=

m+u-! / m+u

= nH[ V

<i« V V
vΐ(z) ™+

V V fij + 2 - 2 ( ε n ) . r - r
)

1 (n~ι

-Hly

The second to the last inequality is clear because by the condition (i) on m0

we have

u+m

H[\/ V P»
i=0 j = _

V V p«
i=0 j=-

(n+m r-1 u+m Ψ\(z)

V V^. v V V
j=m z=0 j=v+m i=φ1f(z)—r
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< u r r + (u — υ) r r.

Since the following inequality is also true

1
- I f
n

Λ"1

t = o

1 / rn-f-u ψ\ \*<)

<-Hl V V*
n \ = _ v *
1 fm+u-v Ψi(z)

1 / m vΓW \

m+u

V

we have

1 /n-1 \ -, / m+u Ψι(z)

lH[\]Tβm\Λ-l-H[ V V ^
U \»=0 / n \-m+u ϊ =0

< 4εrτ.

We note that

-H[ V1 v

n k—m+u i=0 n
Vv

converges to h(v).
As in the case of ΰ = / (/? d/i = (x, y) where y 7̂  0, it is now clear that

sup / hz (f, /3) cίμ - h{v)

can be made arbitraily small.

Similarly we can prove the following theorem.

D

Theorems P0Λ
V P ι ? 0 I is finite, then we have h(T) =

h(T) + h(v) where v = / ψ dμ — (/ φ1 dμ, J φ2 dμ).

The following Corollaries are also almost immediate from the proof of

Theorem 3.
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V V Pί,j I is finite for some k,Corollary 3. // Σ ~ = o # ( P0,i
— ra<2<m

then we have h(T) = h(T) + h(v) where v is given as above.

Corol lary 4. // a fiber Z2-action, F, satisfies the condition of Corollary

3 after a linear transformation by a matrix A in SL(2,Z), that is, AoF

satisfies the condition, then we have the above formula in Corollary 3 for the

entropy.

References

A.b, Ro] L.M. Abramov and V.A. Rohlin, The entropy of a skew product of measure preserv-
ing transformations, AMS Translations, Ser. 2.

[Ad] R. Adler, A note on the entropy of skew product transformations, Am. Math. Soc,
4 (1963), 665-669.

[He] G.A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system.
Math. Syst. Theor., 3 (1969), 320-375.

[Li] D. Lind, personal communication.

via, Ne] S.B. Marcus and S. Newhouse, Measure of maximal entropy for a class of skew
products, Springer Lect. Notes Math., 729 (1979), 105-125.

[Mil] J. Milnor, On the entropy geometry of cellular automata, Complex Systems, 2
(1988), 357-386.

[Mi2] , Directional entropies of cellular automation-maps, Nato ASI Series, vol.

F20, (1986), 113-115.

[Pal] K.K. Park, On the continuity of directional entropy, Osaka J. Math., 31 (1994),

613-628.

[Pa2] , A counter example of the entropy of the skew product, preprint.
[Pa3] , Continuity of directional entropy for a class of Z2-actions, J. Korean Math.

Soc, 32 (1995), 573-582.
[Si] Y. Sinai, An answer to a question by J. Milnor, Comment. Math. Helv., 60 (1985),

173-178.

[Th] J.P. Thouvenot, personal communication.

Received February 10, 1993 and revised June 24, 1993. This research has been supported

in part by NSF DMS 8902080 and GARC-KOSEF.

AJOU UNIVERSITY

SUWON, 441-749
KOREA





PACIFIC JOURNAL OF MATHEMATICS
Vol. 172, No. 1, 1996

COMMUTING CO-COMMUTING SQUARES
AND FINITE DIMENSIONAL KAC ALGEBRAS

TAKASHI SANO

A relationship between finite dimensional Kac algebras
and specified commuting co-commuting squares is discussed.
The Majid's bicrossproduct Kac algebra is explained in our
context.

1. Introduction.

The theory of Kac algebras (Hopf algebras) has been drawing considerable
attention (see [6] for the reference), and in fact many intensive studies have
been made recently. ([1, 18, 19, 34, 35, 36], etc.) On the other hand,
the announcement by A.Ocneanu ([20, 21]) brought us a new aspect in the
theory of Kac algebras : it is his claim (proved in [4, 17] and also [28]) that,
for an irreducible inclusion of factors M D N with finite index and depth =
2, M is described as the crossed product algebra of N by an outer action of
a finite dimensional Kac algebra. Hence, we investigate Kac algebras from
the Jones index theoretical point of view.

The purpose of this paper is to find a finite dimensional Kac algebra via
the index theory : let L D K be an irreducible inclusion of factors with
finite index. Suppose that, for an intermediate subfactor M, both inclusions
L D M and M D K are of depth 2. Although the inclusion L D K does
not always satisfy the depth 2 condition, it can be proved that this pair
is of depth 2 if these factors L,M,K, and another intermediate subfactor
N form a commuting co-commuting square. Details will be explained in
§2 after recalling basic facts on commuting co-commuting squares. Another
criterion for the inclusion L D K to be of depth 2 is also obtained. Examples
are given in §3.

The author would like to express his sincere gratitude to Professor Shigeru
Yamagami for helpful advice (in fact the present work was motivated by
[33]) and to Professor Hideki Kosaki for fruitful discussions and constant
encouragement. He is grateful to the referee for many useful comments.
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2. Main results.

Let
L DM
U U
ND K

be a quadruple of type Πx factors satisfying [L : K] < oo. (For the standard
facts on the index theory, see [8, 11, 23, 25, 26].) It is said to be a commut-
ing square if E^(N) C K, where E^ is the conditional expectation from L
to M. (See [8] for other equivalent conditions.) A quadruple (L,M,N,K)
is said to be a co-commuting square if the quadruple

K1 DM'
u u

N' D L\

or equivalently, that of basic extensions

(L,eL

κ)D(L,eL

M)

U U
(L,<%)D L

on the standard space L2(L) is a commuting square. Here, ej^ejy, and
eL

κ are relevant Jones projections (see [27, 30, 31]). For a commuting co-
commuting square (L,M, TV, if), we have K — M Π N and L = M V N.
(In [27], a quadruple satisfying these equations is called a quadrilateral and,
for a quadrilateral (L,M,JV,ϋΓ), Ang(M,iV) = Op-ang(M,JV) = {|}
corresponds to the commuting co-commuting condition.)

For a commuting square, we have characterization of co-commutativity
([27, Corollary 7.1] and [26, Proposition 1.1.5]).

Proposition 2.1. Let (L,M,N,K) be a commuting square of type Hi
factors satisfying [L : K] < oo. Then the following are equivalent :

(1) (L,M,N,K) is co-commuting.

(2) L = M N = {ΣieF miniΊ F is a finite set, mi G M,nτ G N) .

(3) [L:M] = [N:K].
(4) A Pimsner-Popa basis for N D K is also that for L D M.

Remark that, in [26], a commuting square satisfying (one of) the above
conditions is called "non-degenerate" and (1),(2) of the following proposition
are mentioned in [26, Proposition 1.1.6] (see also [9, Proposition 2.3]). We
will see them for the completeness of this article.
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Proposition 2.2. Let (L,M, JV, K) be a commuting co-commuting square
of type IIχ factors satisfying [L : K] < oo. Then,

(1) (M,ej£) D M is conjugate to (M,e&) D M.

(2) TΛe quadrilateral ((L,e%), (M, ejy) ,L,M) is α/so commuting co-com-
muting,

(3) (L, ejf) is identified with the Jones extension for (L, eĵ ) D (M, e^).

/. (1) While the condition Σiaieκ^i = 0 (α^ft; G M) is equivalent to
Σ* aiE%(bic) = 0 for c G M on L2(M), the condition Σ* fl»4fti = 0 (α Λ G
M) means 0 = Σ<α<^Λr(6i«i) = Σi^E^ib^d = Σiθ>iEκ(bic)d for c E
M, d £ N on L2(L) thanks to Proposition 2.1.(2) and the commuting square
condition. Hence, we may consider the map φ : (M,e^f) —• (M, ejy) defined

by φ(Σiaieκbi) = ΣiaieN^i I* ^s e a s y t o s e e *^a* * ^ s m a P 0 gives an
isomorphism between them and </>|M = id.

(2) follows from [8, Corollary 4.2.3], [11, Proposition 3.1.7], and Proposi-
tion 2.1.

(3) Since the commuting square condition means e^e^ = e^, we have
((L,eL

N) ,eL

M) = {L,eL

κ). We will show that <L,e£) - ((L,eL

N) ,eL

M) is the
Jones extension for (L, ejy) D (M, e^ ). The commuting square condition
implies [e^,x] = 0 for a; G (M, e^). And for the conditional expectation

get the conclusion by [24, Proposition 1.2.(2)]. D

Thus, we have extensions of a commuting co-commuting square (L, M,
iV, ΛΓ) in compatible ways.

For an irreducible inclusion, we have a refined estimation of the dimension
of relative commutant algebras as in [8, Theorem 4.6.3] (cf. [11, Corollary
2.2.3]). We will see this in terms of sectors ([10, 12, 14, 15, 16]).

Lemma 2.1. For an irreducible inclusion M D N of type Hi factors
satisfying [M : N] < oo,

dim(MkΠN') <[M :N]k,

where N C M = Mo C M1 C is the Jones tower.

Proof We only treat the case k = 2 since a similar proof will work for any
k. We may assume that M and N are properly infinite and isomorphic
(by [16, Lemma 2.3]) and denote N by p{M) for an endomorphism p G
End(M). Consider the irreducible decompositions : pp — ΣjmjajiPPP —
Σj,krnjnjkβk (ajP — Σkn3kβk) > where p is the conjugate sector of p. By



246 TAKASHI SANO

the Frobenius reciprocity, we have βkp > Σjnjk&ji&jp > m j P Combining
these, we get

[M : ^ ] 2 = {[M : N]2

0 =) d(p)4 =

thanks to the additivity and the multiplicativity of the statistical dimension
d. D

As a corollary of [8, Theorem 4.6.3], we have the following ([10, Proposi-
tion 4.2]) :

Corollary 2.1. Let M D N be an irreducible inclusion of type Hi factors

with finite index. Then the following are equivalent :

(1) The inclusion M D N is of depth 2.

(2) dim(M1ΠiV/) = [M :iV].

(3) M 2 Π N' is a factor.

We give another lemma to prove main results.

L e m m a 2.2. Let (P, Q,i2, C) be a commuting square of finite dimensional
algebras. Then we have

d i m P > dimQ • dimiϊ.

Proof Let us take a linear basis {sci,^?*" ,^m} f°Γ R a n d a Pimsner-
Popa basis {λi,λ2, * ,λn} for Q D C with respect to the conditional
expectation E from P to R (m := dimi?,n := dimQ). Then Xiλ*{^ 0)
are linearly independent suppose that J ^ aijXiλ*j = 0 for α^ G C. Since

0 = (Σij ciijXiλ*) λk = E feu aijXiλ^λk) = Σij VijXiE (λ*λΛ) = Σι <*ikXi

for any k, we have aik = 0. Hence, we get d i m P > nm. D

For a given commuting co-commuting square, we can get a kind of tiling
by double sequences {Jlίii}i,i=o,i,2,- of subfactors (see [22, 32]). By looking
at a tiling, we have two criteria for an irreducible inclusion L D K to be of
depth 2 :
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Theorem 2.1. Let (L,M,N,K) be a commuting co-commuting square of
type IIχ factors satisfying [L : K] < oo and L Π K' — C. // both inclusions
L D M and M D K are of depth 2, then so is the inclusion L D K.

Proof. Let us denote extensions by {M^}2)j=0,i,
 s u c h that

(M1UM1O1MOUMOO) = (L,M,7V,K),M2 2

M 3 0 = (M 2 0 , β?2), and so on.

Here, e^ means the Jones projection for the inclusion M^ D Mki.

^ 0 3

^ 0 2

^01

^ 0 0

*13

M-12

M-11

Λf110

^ 2 3

* 2 2

^21

^ 2 0

^ 3 3

M,32

*31

M,30

Figure 1.

Clearly, we have M 2 2 Π MQ 0 D M 2 0 Π Mό0, M 1 2 Π M[ o . But it can be shown
that

M 2 2 n M'oo = (M 2 0 n Λς,) (M 1 2 n Mί 0 ) .

Let us think of the following commuting square (for the conditional expec-

tations of the restriction of the canonical trace on M 2 2) :

M 2 2 n MK

EU

M20 Π ML D

M 1 2 Π M[[o

oo

U

c.
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Here, we remark that ( M 2 2 , M 2 0 , M 1 2 , M 1 0 ) forms a commuting square. It
follows from Corollary 2.1 that dim(M2 0 Π MQ0) = [M : K](=: m) and
dim(M12ΠM[0) = [L : M](—: n). Applying Lemma 2.2 to this square, we get
dim(M2 2 Π MQ0) > mn — [L : K\. Combining this with Lemma 2.1, we have
that dim(M2 2 Π M^) = [L : K] and M 2 2 Π M ^ - (M 2 0 Π M^) • (M 1 2 Π M^o).
Therefore, we get the conclusion by Corollary 2.1. D

Theorem 2.2. Lei (L, M, TV, if) be a commuting co-commuting square of
type Hi factors satisfying [L : K] < oo and L Π if7 = C. // both inclusions
M D K and N D K(or L D M and L D N) are of depth 2, then so is the
inclusion L D K.

Proof. Let us keep the same notation as in the proof of Theorem 2.1. It is
sufficient to consider the case that M D K and N D K are of depth 2 since
another case can be proved by looking at the extension (M 2 2, M 2i, M12, Mn).
For the commuting square (M2 2 Π MQ 0, Λf22 Π M^, M 2 0 Π MQ 0 , C), we remark
that

M 2 2 n M'2Q ^ M 0 2 n M'm

by Proposition 2.2.(3) and Takesaki duality between M 2 i D M 2 0 and Mox D
MQO, which follows from a similar argument in [23, Proposition 1.5] about
a common Pimsner-Popa basis for M10 D M o o and Mn D MOi. Applying
Lemma 2.2 and 2.1 to the commuting square (M 2 2 Π M Q 0 , M 2 2 Π M'^^M^ Π
Mό o,C), we get that M2 2ΠMoO = {M22^M!lo)'(M2o^M'm), and dim (M22^
MQ 0 ) = [L : K]. Therefore, we get the theorem by Corollary 2.1. D

R e m a r k . Let (L,M,N,K) — (M 1 1,M l o,Moi,MOo) be a commuting co-
commuting square as in Theorem 2.2. The Majid's bicrossproduct method
corresponds to looking at the quadruple (M2uM20,MιUM10) and the rela-
tive commutant algebra M 3 2 Π M[o.

3. Examples.

In this section, we will explain two examples. The first one is considered in
[33, Proposition].

(1) Let G be a finite group with two subgroups A,B satisfying G — AB
and A Π B — {e}. Let 7 be an outer action of G on a type IIχ factor P.
Then we have

Proposition 3.1. The inclusion of crossed product algebras

(L :=)(P ® Γ{G/B)) xGDPx A{=: K)
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is irreducible and of depth 2, where the action of G on 1°°{G/B) is induced
by the left translation.

Proof. Let us consider the commuting co-commuting square

((P ® l°°(G/B)) *G,{P® l°°(G/B)) x A =: M, P x G =: iV, P x A).

Since (P ® l°°(G/B)) x G Π (P x A)' - l°°(G/B)A, the assumption G -
A£? corresponds to the irreducibility of the inclusion L D if. Considering
Takesaki duality between L D M and P x B D P as in the proof of Theorem
2.1, and Proposition 2.2.(1) for M D if (D P ) , we also see that L D M
and M D K are of depth 2. Hence, applying Theorem 2.1 to this square
(L, M, JV, if), we get the conclusion. D

Remark. The Jones tower and the tower of relative commutant algebras
can be explicitly written down as in [3, 13, 29] the Jones tower is

if = P x A c ( P ® Γ(G/B)) xG = L

C (P ® B{12(G/B)) ® Γ(G/A)) x G =: U

C (P ® B(12(G/B)) 0 l°°(G/B) ® 5(/2(G/Λ))) x G =: L2

And the tower of relative commutant algebras is

c = J K ' n i Γ c L n J K ' / = Γ(G/B)Λ = c

C Lx Π if7 - (B(12(G/B)) ® / ° A

C L2 Π if' = {B(12(G/B)) ® Γ(G/B)

Hence, we also see that the depth of L D if is 2. Next we recall the
matched pair ([18, 19]) because of the uniqueness of the decomposition of
an element in G = AS — J5A, we can represent ab for a E A, 6 G B as

The associative law implies

Qίαα'(&) = aa(aa/{b)),aa{bbf) = αα

A6'(α) = βh(βb>(a)),βb(aa') = ^ (



250 TAKASHI SANO

for α, a1 E A, 6, bι E B. Therefore, the matched pair (A, B, α, β) in [18, Theo-
rem 2.3] appears. (Here, we remark that if we write ab = rγa(b~1)~1δb-ι (a)(E
BA), then the matched pair of another type (A, J9,7, δ) in [19] is obtained,
but in this article we would like to treat the former one for our purpose.)

For the matched pair (A, B, α, /?), we have a finite dimensional Kac algebra
of Majid's type ([19]) the bicrossproduct Kac algebra consists of the crossed
product algebra Q := l°°(B) xiα A on 12{B) ® I2(A) (and others, see below)
generated by mf ® 1 (simply denoted by /® 1 = /) for / E l°°(B) and ua®\a

(simply denoted by λα) for α G i , where rrif is the pointwise multiplication
operator on 12(B), the action a of A on l°°(B) is induced by the action a
of A on B aa(f)(b) = f(aa-i(b)) for / E Z°°(J3), ϊ/α is the implementing
unitary on 12(B) such that (uaξ)(b) = ξ{aa-i(b)) for ξ E Z2(S), and λα is the
left regular translation; (λαξ)(α') = ^ ( U Γ V ) for ξ E ί2(A).

We know the Kac algebra structure of this crossed product algebra and its
dual Kac algebra ([19]) for the crossed product algebra Q — l°°(B) xα A,
the comultiplication Γ, the antipode K, and the Haar weight φ are described
by:

b'b"=b

for fa E 1°°{B), and χ6 is the characteristic function onb E B. And we have

where the right-hand side is generated by l®/(/ E /°°(τ4)) and λb®vb (b E S)
on P{B) ® P(A)((vbξ)(a) = ξ(βb-.(a)), ξ G /2(A)).

The above Kac algebra K = {l°°(B) xa A(= Q),Γ,κ,ψ) has a left action
([5]) on the factor K = P xi7 A let us write two generators π(p)(p 6 P)

\'a(a e A) of P »7 A :

), (Kξ)(a') =

for ξ El2 (A, L2{P)).
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Lemma 3.1. The following map δκ : K —> K ®Q gives a left action of the
Kac algebra K on K = P xi A :

This lemma follows from direct computation, hence the author leaves its
proof to the reader.

So far, we are now ready to give the theorem.

Theorem 3.1. The factor (P ® l°°(G/B)) x\ G is described as the crossed
product algebra of P xi A by the left action 5χ in Lemma 3.1 of the Majid's
bicrossproduct algebra K — (l°°(B) x A,Γ,ft,ψ).

Proof. We may think that three kinds of generators π(p) {p G P),π(/) (/ G
l°°(G/B)), and λ̂  (g G G) of the crossed product algebra (P®l°°{G/B)) xi G
look like

(π(p)ξ)(aB,g') =Ίgl-r(p)ξ(aB,g'),

for ξ G 12(G/B x G,L2{P)). Identifing G/B x G with AxBxAby

(a'B,g = ba) <-» (α,6,α'),

we may write these generators acting on L2(P) ® I2(A) ® ί2(β) ® ̂ 2(̂ 4) such

as

(π (p) ξ) (a, b, a') = 7(6β)-i (p) ξ (α, 6, α'),

(π(f)ξ)(a,b,a') = f(a')ξ(a,b,a'),

(λ-aξ) (a, b, a') = e (A-. (α)"1 a, αa-i (6), ό" 1 ^) ,

for / G l°°(A),a G A,S G B and ξ G /2(>l x 5 x i4,L2(P)). On the other
hand, the crossed product algebra of N by the (outer) action δκ of l°°(B)» A
is generated by δκ{K) V 1 ® (Z°°(B) x ^ ) " = ^ ( K ) V l ® ( ΰ κ /°°(A)). (See
[5].) It is easy to see that δκ(π(p)) = τr(p),5iί(λ'α) = λα, 1 <g> λj, = Xt, and
1 <g> / = π(/). Therefore, we are done. D



252 TAKASHI SANO

(2) Let M D TV be an irreducible inclusion of type IIχ factors satisfying
[M : N] < oo and depth 2, and G be a finite group with an outer action
7 on both M and N. Moreover, suppose that (M xi G) Π N' = C. (This
condition is equivalent to strong outerness of the action 7 for M D N.)
Then we have the depth 2 inclusion (M <g> /oo(Gί)) x G D N xi G. In fact,
this inclusion is contained in the commuting co-commutig square ((M ®
Z°°(G)) x G,(iV ® Z°°(G)) x G,M x G,iV x G). Similar argument as in
Proposition 3.1 implies that the assumption in Theorem 2.1 for the inclusions
(M 0 l°°(G)) x G D (N ® /°°(G)) x G(= M D TV by Takesaki duality) and
(N <g> /°°(G)) x G D TV x G holds, hence we have the conclusion. (Cf. the
orbifold construction [3, 7] and also [2].)
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SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS
WITH FULLY NONLINEAR TWO POINT BOUNDARY

CONDITIONS

H.B. THOMPSON

We establish existence results for two point boundary value
problems for second order ordinary differential equations of
the form y" = f(x,y,y'), x E [0,1], where / is continuous and
there exist lower and upper solutions. First we consider bound-
ary conditions of the form G((y(0),y(l)); (y'(0), y''(1))) = 0, where
G is continuous and fully nonlinear. We introduce compati-
bility conditions between G and the lower and upper solu-
tions. Assuming these compatibility conditions hold and, in
addition, / satisfies assumptions guarenteeing a'priori bounds
on the derivatives of solutions we show that solutions exist.
In the case the lower and upper solutions are constants one
of our results is closely related to a result of Gaines and
Mawhin. Secondly we consider boundary conditions of the
form (y(i),y'(i)) G J(i), i — 0,1 where the J(i) are closed con-
nected subsets of the plane. We introduce various compatibil-
ity type conditions relating the J{ϊ) and the lower and upper
solutions and show each is sufficient to construct a compat-
ible G which defines these boundary conditions. Thus our
existence results apply. Almost all the standard boundary
conditions considered in the literature assuming upper and
lower solutions are, or can be, defined by compatible G and
their associated existence results follow from ours; in many
cases we can improve these results by deleting some of their
assumptions.

1. Introduction.

In this paper we consider two point boundary value problems for second
order ordinary differential equations of the form

(l.i) y" = f{χ,y,y'), foraiise [0,1],

where / : [0,1] x R2 -> R continuous. By a solution of (1.1) we mean a twice
continuously differentiable function y satisfying (1.1) everywhere. The first
class of boundary conditions we will consider are of the form

(1-2) 0 =G((y(0),y(l));(y'(0),y'(l))),

255
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where G — ((Λg1),*?* : K2 x IR2 -> R, i = 1,2 are continuous and fully
nonlinear. We will refer to boundary conditions of the form (1.2) as fully
nonlinear boundary conditions. The second class of boundary conditions we
will consider are of the form

(1.3) (y(i),y'(i))Gj(i)ΐori = 0,l,

where J{i) are continuua. We will refer to boundary conditions of the form
(1.3) as boundary set conditions.

We always assume that lower and upper solutions a < β, respectively,
exist for (1.1) (see Definition 1 below).

In paragraph 2 we introduce some notation and definitions.
In paragraph 3 we introduce the central notion of compatibility of the

boundary conditions G with the lower and upper solutions. In the litera-
ture when lower and upper solutions are assumed to exist and the Picard,
Neumann or Periodic boundary conditions are considered the assumptions
usually made are equivalent to compatibility. We show by simple examples
that if the boundary conditions are not compatible with the lower and upper
solutions, then solutions need not exist.

In paragraph 4, we present our main existence results. If the boundary
conditions G are compatible with a and β and / satisfies additional assump-
tions guarenteeing a'priori bounds for y1 for solutions y of (1.1), then there
exist solutions y of (1.1) and (1.2) satisfying a < y < β on [0,1].

In paragraph 5 we briefly describe the results of Gaines and Mawhin [16]
and show their relationship to ours.

In paragraph 6 we consider problem (1.1) and (1.3). We introduce two
types of compatibility of the boundary sets J{i\ i = 0,1 with the lower and
upper solutions. These are satisfied by the usual boundary sets conditions
considered in the literature. Given compatible boundary sets J(i), 1 = 0,1
we show that there exists compatible G such that (1.2) implies (1.3). Thus
our existence results apply to such boundary set conditions.

Lower and upper solutions exist for (1.1) if/ satisfies suitable monotonic-
ity and or growth conditions (see Ako [2, 3], Baxley [6], Gaines [15], Gaines
and Mawhin [16], Palamides [30], and Jackson and Palamides [22]).

A'priori bounds on y' follow if, for example, / satisfies either the Bernstein-
Nagumo growth condition with respect to y' (see Bernstein [12], Nagumo
[27]) or it's one sided generalisations (see Baxley [6]) or the Scorza Dragoni-
Zwirner growth condition with respect to (x, y, y') or the Nagumo-Knobloch-
Ako-Schmitt condition (see Ako [2], Nagumo [28, 29], Knobloch [23, 24],
Schmitt [31]) or a Lyapunov condition (see George and Sutton [18]).

To prove existence of solutions we modify the differential equation and
turn the modified equation into an integral equation, couple it with the two
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equations defining the boundary conditions and regard the resultant as an
operator equation defined on (^([O,1]) x M2, where the boundary values
are regarded as independent variables with values in R2. We use Schauder
degree theory employing homotopies and the reduction theorem to show
that the Schauder degree of the operator is the Brouwer degree of a suitable
mapping associated with the compatible G on the domain which contains
the boundary values.

Methods used in the literature to establish existence results include shoot-
ing with initial values, shooting with boundary values, the Schauder fixed
point theorem, and Schauder degree theory. Often these methods are ap-
plied to a modified problem whose solutions are solutions of the unmodified
problem. Some variants of shooting with initial values use the Kneser-
Hukuhara continuum theorem and/or Wazewski's retract method and their
refinements. Initial value shooting has been commonly used to prove exis-
tence for fully nonlinear boundary conditions of the form (1.2) and has been
the only method used for boundary set conditions of the form (1.3).

Gaines and Mawhin [16] and Guenther Granas and Lee [19] give very
general existence theorems via coincidence degree, respectively topological
transversality, provided associated one parameter families of boundary value
problems have no solutions on the boundary of a suitable domain in a suit-
able function space. These one parameter families are used to construct
homotopies. Gaines and Mawhin and Granas Guenther and Lee go on to
show that a substantial number of the earlier existence results follow from
their general theorems. Also they go on to give many and substantial new
results and a coherent framework for viewing old and new results. Gaines
and Mawhin [16], Theorem V.34 establish an existence result for systems of
equations which, in the special case of a single equation, is closely related
to the special case of our result above of constant a and β. They apply
their result [16], Theorem V.37 to a single equation with non constant α
and β and a restricted class of G using a modification argument, modifying
G. The interdependence required between the boundary conditions and the
lower and upper solutions to guarentee existence of solutions is not clear
from their work.

In a forth coming paper we extend our result to systems including [16],
Theorem V.34 as a special case. Also, Gaines and Mawhin [16] discuss
a'priori bounding of solutions from a geometric perspective giving a new
insight into the role of many of these conditions.

Ako was one of the first authors to obtain existence results for nonlin-
ear boundary conditions. He used shooting with the boundary values of
minimal solutions as he did not assume uniqueness for the Picard problem;
(y'(0), y'{l)) is a continuous function of (y(0), y(l)) if solutions of the Picard
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problem are unique.
Existence results for boundary set conditions assuming lower and upper

solutions have been obtained by a number of authors (see, for example,
Jackson and Klassen [21] and Bebernes and Fraker [9], and their references).

The literature on problem (1.1) and (1.2) is vast and for further informa-
tion we refer the interested reader to the excellent monographs by Bailey,
Waltman and Shampine [4], Bernfeld and Lakshmikantham [11], Gaines and
Mawhin [16], Guenther, Granas and Lee [19], Hartman [20], and Mawhin
[26] and their references.

The contributions this work makes are twofold. First we introduce the
compatibility conditions. These conditions are concrete conditions involv-
ing the given data which can be easily checked and are satisfied by just
about every concrete existence result in the literature. They permit the con-
struction of the one parameter families of boundary value problems used to
construct the homotopies in an appropiate function space; both the homo-
topies and the function space are unusual and clearly demonstrate the role
of the compatibility conditions.

Second, we show that the boundary set conditions of the form (1.3) usually
considered in the literature are special cases of fully nonlinear boundary
conditions.

Most existence results in the literature for (1.1) together with (1.2) or
(1.3) which assume lower and upper solutions exist follow as a corollary to
our results. In many cases our results can be used to significantly improve
upon these results. This is especially true for results concerning fully non-
linear boundary conditions. Some results in the literature concerned both
with linear and with nonlinear boundary conditions which assume growth
conditions but do not assume explicitly the existence of lower and upper so-
lutions can be obtained from ours by constructing lower and upper solutions
compatible with the boundary conditions. In such cases the construction of
the lower and upper solutions and the verification of compatibility is usually
easier than the given direct proofs of existence. This is true, for example,
of some of the results in Baxley [6]. Also the central notion of compatibil-
ity extends to Caratheodory / with a and β having absolutely continuous
first derivatives, to systems with lower and upper solutions, to single equa-
tions and systems with lower and upper solutions replaced by other surfaces
a'priori bounding solutions. We will discuss these extensions of our ideas
and further applications of our results and their extensions in forthcoming
papers.
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2. Background Notation and Definitions.

In order to state our results we need some notation.
We denote the closure of a set T by T and its boundary by &T. As usual,

Cm(A\ B) denotes the space of m times continuously differentiate functions
from A to B endowed with the maximum norm. In the case of continuous
functions we abreviate this to C(A\ B). In the case β = Rwe omitt the B.
If A is a bounded open subset o f l n , p E i n , / G C(A] Rn) and p $ f(dA)
we denote the Brouwer degree of / on A at p by d(/, A,p). It is common
in the proofs of existence of solutions of two point boundary value problems
for (1.1) to modify /. We will do this making use of the following functions
(see [33]).

If c < d are given let π : R ->• [c, d\ be the retraction given by

(2.1) π(y, c, d) = max{min{d, y}, c}.

For each e > 0, let K G C(R x (0, oo); [-1,1]) satisfy

1. if( , e) is an odd function,

2. K(t, e) = 0 iff t = 0 and

3. K(t, e) = 1 for all t > e.

If c < d and e > 0 are given, let T G C(R) be given by

(2.2) Γ(y, c, d, e) = ΛΓ(y - π(y, c, rf),c).

Let

/(l-a?)t, forθ<t<z<l
\ ( 1 -t)x, foτO<x<t< 1,

and ty(yOJyi)(x) = yo(l - x) + 2/î  Let X = ^([0,1]) x R2 with the usual
product norm. Define C : C([0,1]) -> C^p, 1]) by

C(φ)(x) = - f Q(x,t)φ{t)dt,
Jo

for all φ e C([0,1]) and x E [0,1]. Clearly C is completely continuous.

Definition 1. We call a (β) a lower (upper) solution for (1.1) if a (β)

£C2([0,l]), and

α"(aθ > f(xM*),<*'{*)), for all x G [0,1]

(β"(x) < f(x,β(x),β'(x)), for all x G [0,1]).

If the inequality in (2.3) is strict then we call a (β) a strict lower (upper)
solution for (1.1). As mentioned earlier we assume that a < β and set
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βM = ma,x{β(x) : x G [0,1]} and am = min{α(x) : x G [0,1]}. We will call
the pair non-degenerate if Δ = (α(0),/?(0)) x (α(l),/3(l)) is nonempty. We
set

(2.4) ώ = {(*, y) G [0,1] x R : α(z) < y < β(x)}.

We will discuss the degenerate case Δ empty later.
Lower solutions are used with maximum principle arguments to obtain

a'priori bounds on solutions. For a discussion of the relationship between
them and subfunctions and some indication of how the smoothness condi-
tions can be relaxed see Thompson [35]. As mentioned earlier our central
idea leads to existence results for those / for which there are a'priori bounds
on y' for solutions y satisfying a < y < β. There are two well known con-
ditions which we employ in our existence results either of which guarentee
a'priori bounds on yι for solutions. The first is the Bernstein-Nagumo con-
dition.

Definition 2. Let a < β be lower and upper solutions for (1.1) on
[0,1]. We say / satisfies the Bernstein-Nagumo condition if there exists h G
C([0, oo); (0, oo)) and TV > 0 such that

(2.5)

|/(x,y,p)| < /ι(|p|), for all (#,y) G [0,1] x [a(x),β(x)] and

(2.6) / ~ >βu-θirn

where σ = max{|/5(l) — α(0)|, \β(0)-a(l)\}. We say / satisfies the strength-
ened Bernstein-Nagumo condition if (2.6) is replaced by

The second condition for guarenteeing a'priori bounds on y' for solutions
we call the Nagumo-Knobloch-Schmitt condition.

Definition 3. Let a < β be lower and upper solutions for (1.1) on [0,1].

We say / satisfies the Nagumo-Knobloch-Schmitt condition relative to a

and β if there exists Φ < ΐ e C 1 ( [ 0 , l ] x l ) such that

f{χ,y,φ(χ,y)) > ®χ{χ,y) + ®y{χiy)Φ{χ,y) a n d

f(x,y,Ύ(x,y)) < Ύx{x,y) + Ύy(c

for all (#, y) G ώ.

See Gaines and Mawhin [16] for some discussion of the relationship be-
tween these conditions.
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3. Nonlinear Boundary Conditions and Compatibility.

Definition 4. We call the vector field Φ = (φ0^1) G C(Δ;R2) strongly
inwardly pointing on Δ if for all (C, D) G dA

(3.1) Φ°(a(0),D) > α'(0), φ°(β(0),D) < β'(0) and

We call Φ inwardly pointing if the strict inequalities are replaced by weak
inequalities.

Definition 5. Let G G C(Δ x f tf). We say G is strongly compatible
with a and β if for all strongly inwardly pointing Φ on Δ

(3.2) Q(C, D)φQ for all (C, I>) G dA and

(3.3)

where

(3.4) Q[C, D) = G((C, D); Φ(C, !>)) for all ((7, £>) G A.

We say G is compatible with a and /? if there is a sequence G* G C(Δ x R2 IR2)
strongly compatible with a and β and converging uniformly to G on compact
subsets o f Δ x E 2 .

In what follows where there is a strongly inwardly pointing vector field
clearly defined from the context Q will denote the vector field defined by
(3.4).

Remark 6. If G is (strongly) compatible with a and /?, then the Brouwer
degree (3.3) is independent of the strongly inwardly pointing vector field
Φ. To see this for strongly compatible G let Φ i7 i = 1,2 be two such
vector fields. Then setting Φ(C,D,0) = Θ^X(C,D) + (1 - 0)Φ2(C,D) and
H(C,D,Θ) = G((C,D);Ψ{C,D,Θ)) on A x [0,1], H is a homotopy for the
Brouwer degree (3.3).

It is not difficult to see that strongly inwardly pointing vector fields always
exist. Moreover, if (3.2) holds for all inwardly pointing vector fields we may
choose

when computing the Brouwer degree (3.3).
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For the Picard (also called Dirichlet) boundary conditions

, 5) g°((y(ΰ),y(l)y, (y'(0),y'(l))) = y(0) - A = 0 and

51((ί/(0),y(l));(ί/ l(0),ί//(l)))=ί/(l)-S = 0,

while for the Neumann boundary conditions

, , 5°((y(0),y(l)); (y'(0),y'(l))) = y'(0) - A = 0 and

&1((y(0),y(l));(y'(0),y'(l)))=y'(l)-S = 0,

and for the Periodic boundary conditions

, ? ) <7°((y(0),y(l)); (y'(0),y'(l))) = y(0) - y(l) = 0 and

51((2/(0),y(l));(y'(0),y'(l)))=y'(l)-y'(0) = 0.

For these boundary conditions the compatibility conditions become the fa-
miliar ones usually assumed in the presence of lower and upper solutions;
that is,

(3.8) α(0) < A < 0(0), α(l) < B < 0(1),

(3.9) α'(0) > A, 0'(O) < A, α(l) < 5, 0(1) > B,

and

(3.10) α(0) = α(l), /3(0) = /?(1), α'(0) > α'(l), ^(0) < ^(1),

respectively. We prove this in the case of periodic boundary conditions.

Lemma 8. The periodic boundary conditions are {strongly) compatible iff
(3.10) holds.

Proof. Let Φ be an strongly inwardly pointing vector field on A.
Assume that (3.10) is satisfied, let G = {g°,gι) be given by (3.7) and

(C,£>) Ed A. If C - D = α(0) then Qλ - ψι{C,D) - φ°(C,D) < α'(l) -
α'(0) < 0. If C = α(0) < D then °̂ = C - D < 0. Similar inequalities hold
for the other cases (C,D) e dΔ. Thus Q φ 0 for (C, D) G <9Δ. Let 7(2;) =
(a(x)+β(x))/2, U{C,D,Θ) = (l-2β)α(σ,Z?)+2β(α°(C,£>),i?-7(l)/2), for
θ G [0,1/2] and H{C, D, θ) = (2 - 20)(^°(C, /?),/?- 7(l)/2) 4- (20 - 1)(C -
7(0)/2,D - 7(l)/2), for θ G [1/2,1]. Since U is a homotopy for Brouwer
degree d(g(-),Δ,0) - d(7ΐ( ,0),Δ,0) = d(H(-,l),Δ,0) = 1^0. Thus G is
strongly compatible and hence compatible.

Assume now that G is given by (3.7) and that G is strongly compatible
with a and 0. We show that (3.10) is satisfied.
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We may assume that [α(0),/3(0)] Π [α(l),/3(l)] Φ 0 otherwise for any
strongly inwardly pointing vector field Φ setting Q — G((C, D)); Φ(C, Z}),
G(C, D) φ 0 for all (C, D) G Δ and d(£, Δ, 0) = 0, a contradiction. Assume
that α(0) ^ α(l) and in particular that α(0) < α(l) = D = C < /?(0).
Thus we may choose a strongly inwardly pointing vector field Φ as follows.
First choose ψ1 then define Ί/>0 such that Φ is strongly inwardly pointing and
ψ°(C,D) < mmiβ'iO)^1 (C,D)} for all C > τ(0)/2. Thus G(C,D) φ 0 for
all {C,D) G Δ and again cf(ί7,Δ,0) = 0, a contradiction. The other cases
that α(0) 7̂  α(l) and β(0) φ β(l) follow by similar arguments.

Assume now that α ;(l) > α'(0). Define a strongly inwardly pointing
vector field Φ as follows. Let α'(l) > ^ ( C X l ) ) > α'(0) for all C G
[α(0),/?(0)] and^ίC,/?^)) > βf(l) for all C G jα(0),/3(0)]. Using the Teitze
extension theorem (see Dugundji [13]) we may extend φ1 as a continuous
function to Δ. By continuity and compactness we may choose e > 0 such that
^ 1 (C,α( l))-e > α'(0) for all C G [α(0),/3(0)]. Let Ξ = {ξ°,ξλ) be a strongly
inwardly pointing vector field. Set ψ°(C, D) = min{^°(C, D), ψ1 (D, C) - e}.
Thus Φ is strongly inwardly pointing and Qι φ 0 on A, where Q is defined by
(3.4). Thus d((7(-),Δ,0) = 0, a contradiction. The other case β'(0) > β'(l)
leads similarly to a contradiction. Thus (3.10) holds. If G is compatible
then there exist strongly compatible Gι and the result follows. D

The proof that the Picard, respectively Neumann, boundary conditions
are compatible iff (3.8), respectively (3.9), is satisfied is simpler, follows
similar lines and hence is omitted.

Remark 8. In the following two examples G is not strongly compatible
since condition (3.3) fails. In the first there are solutions of (1.1) and (1.2)
lying between a and β and in the second there are no such solutions.

We choose R > 0 and

GeC{[-R,R}2 x f R2)

such that
G((C,D);(P,Q)) =G((C,D);(S,T))

for all

( ( C , D ) ; ( P , Q ) ) , ( ( C , D ) ; ( S , T ) ) €[-R,R}2 x R \ GφO

on d(—R,R)2 and d(Q, (—R,R)2,0) = 0; Q is independent of the choice of
strongly inwardly pointing vector field Φ. Let / be identically zero and
-a = R = β.

For the first example we choose G so that G((C, D)\ (P, Q)) — 0, for some
(C,D)e(-R,R)2.
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For the second example we choose G so that G φ 0 for any (C, D) G
{-R,Rf.

4. Existence of Solutions.

Theorem 1. Assume that there exist non-degenerate lower and upper
solutions a < β for (1.1), that f satisfies the Bernstein-Nagumo condition
and that G E C(Δ x M2;IR2) is compatible with a and β, then problem (1.1)
and (1.2) has a solution y lying between a and β.

Proof. Assume first that G is strongly compatible with a and β.
We modify the differential equation for y not between a and β to obtain a

second pair of lower and upper solutions. We reformulate the problem as a
coupled system of integral and boundary condition equations and show that
a solution of the modified problem lies in the region where / is unmodified
and hence is the required solution. We use Schauder degree theory to prove
existence for the modified problem and compute the degree using a homo-
topy; the modification is chosen to facilitate the construction of a suitable
homotopy.

Choose L, € > 0 such that

7 7 > β M a m + 2e
h(s) + e

where L > m&x{\a'(x)\, \β'(x)\ : x G [0,1]}. Let

j{x,y,p) = f{x,π(y,a{x),β(x)),π(p - L,L)), and
k(x,y,p) = (1 - \T(y,a(x),β(x),e)\)j(x,y,p)+

T(y,a{x),β(x),e)(\j(x,y,p)\ +e),

where π and T are given by (2.1) and (2.2), respectively. Thus A; is a bounded
continuous function on [0,1] x K2 and satisfies

\k(x,y,p)\<h(\p\)+e,

for all p with \p\ < L.
Consider

(4.2) y" = k(x,y,y'), for all x e [0,1]

together with (1.2). It suffices to show that problem (4.2) and (1.2) has a
solution y satisfying a <y < β and \y'\ < L on [0,1] since / and k coincide
in this region.
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Let
ae = am-e

Now
< = 0 > - ( I j ( a ? , α e , 0 ) | + e )

= k(x, α€ , α'€), for all x E [0,1]

so α e is a lower solution for (4.2). Similarly βe is an upper solution for (4.2).
Also, by (4.1),

(4.3)

Suppose that y is a solution of (4.2) and (y(0),y(l)) G A. We show that
y is a solution of (1.1). We show that a < y < β on [0,1]. Suppose for
example that y{t) < a(t) for some t G [0,1]. From the boundary conditions
and continuity we may assume that a — y attains its positive maximum at
t e (0,1). Thus a'{t) = y'(ί) so that \y'(t)\ < L and a"{t) < y"(t). Prom the
definition of k we have

y"(t) = k(t,y(t),y'(t))

a contradiction. Similarly y < β on [0,1]. Now \y'\ < L on [0,1] by the
standard argument and y is the required solution.

Let Ωe = {y € ^([0,1]) : α e < y < /3£,|y'| < L, on [0,1]} and Γ£ =
Ω, x Δ.

Define K : C1^, 1]) -+ C([0,1]) at re e [0,1] by

K{φ)(x)=k(x,φ(x),φ'(x)).

Define « : f t x [0,1] -»• X by

,(7,D,^) = (</» + C/C(<̂>) - w(C,D),S(ψ, C, D,θ))

for § < 0 < 1,

W(^, C, £>, β) = (φ + C3{θ - l/Z)lC(φ) - w(C, D),G{C, D))

for I < 6> < | , and

H(φ, C, D,θ) = (φ- Ww(C,D) - (1 - 30)(α£ + βe)/2, G(C,D))

for 0 < θ < | , where

S(φ, C, D, θ) = G((C, D) (3(θ - 2β)(φ'(0), φ'(l)) + 3(1 - 0)Φ(C, D))).
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Clearly % is completely continuous. It is easy to see that y is a solution of
(4.2) and (1.2) with (y,y(0),y(l)) G f e iff «(y,y(0),y(l), 1) = 0. If there is a
solution with (y,y(0),y(l)) G dΓe then we are through. Suppose there is no
solution in dYe. We show that Ή is a homotopy for Schauder degree on Γ€ at
0. To see this assume there are solutions of Ή(y, C, J9, 0) = 0 with 0 G [0,1]
and (y,C,D) G <9Γe. We consider the cases 0 G [2/3,1] and [1/3,2/3); the
case 0 G [0,1/3) is trivial.

Consider the case 0 G [2/3,1]. By assumption there is no solution with
0 = 1. Assume there is a solution (y,C,D) with 0 G [2/3,1). As before
a(x) < y(x) < β(x) on [0, l],y(0) = C and y(l) = Zλ

Assume that (y(0),y(l)) G <9Δ. If y(0) = α(0), then y'(0) > α'(0). Thus
3(0 - 2/3)y'(0) + 3(1 - 0)</>°(y(O),y(l)) > α'(0) and <S(y,y(O),y(l),0) φ
0, a contradiction. Similarly the other cases (y(0),y(l)) G <9Δ lead to a
contradiction.

Assume that y G 9Ω€. Again, by a standard argument, \y'\ < L on [0,1].
Assume that y(t) = a€(t) for some t G [0,1]. Prom the boundary conditions
we see that t G (0,1) and thus y'(ί) = α'€(ί) = 0 while y"(<) > α;;(ί) = 0.
From the definition of k we have

y"(t) = k(t,y{t),y'(t))

a contradiction. Similarly the assumption y(ί) = βe(t) for some ί G [0,1]
leads to a contradiction. Thus there are no solutions of Ή(y, (7, D,0) = 0
with 0 G [2/3,1] and (y, C, Z>) G dΓe.

Assume that 0 G [1/3,2/3). Since Φ is strongly inwardly pointing and G is
strongly compatible, by (3.2) there are no solutions (y, C, D) with (C, D) G
dA. The proof that the case y G 3Ωe leads to a contradiction is similar to
that for0G [2/3,1).

Thus Ή is a homotopy for the Schauder degree and since Ή( , 0) = (/—c, Q)
where / is the identity on (^([0,1]) and c G Ω€ is a constant it follows that

, 0)7*0.

Suppose now that G is compatible with a and /?. Then there is a sequence
{GJgi strongly compatible with a and /? and converging uniformly to G
on compact subsets of R2 x M2 to G. Let y{ be the corresponding solutions.
By compactness there is a subsequence of the ŷ  converging in C2([0,1}) to
the desired solution. D

Remark 9. The Bernstein-Nagumo growth condition can be generalised
to: There exist h G C([0,oo); (0,oo)), h G C([am,βM]\ (0,oo)) and r G



SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS 267

C([0,1]; (0, oo)) such that

\f(x,y,p)\ < h(\p\)h{y) +r{x), for all (x,y) € [0,1] x [a(x),β(x)} and

τ- Γ T > / h(s)ds + K r(x)dx,

where K = sup{s//ι(s) : s G [σ,L]}.
See Scorza Dragoni [32], Zwirner [36] and Thompson [34].

Remark 10. In the case Δ is degenerate we have to modify the result.
Suppose, for example, that α(0) = β(0). Then we set Δ = (α(l),/3(l)) and
change the other conditions as follows.

The vector field Φ E C(Δ) is said to be strongly inwardly pointing on Δ
if

Let G (Ξ C(Δ x M) and a < β be lower and upper solutions for (1.1),
respectively. We say G is strongly compatible with a and β if for all strongly
inwardly pointing Φ on Δ

Q(D) φ 0 for all D e dA and

where Q{D) = G(D, Φ(-D)). We define compatible as before. Theorem 1 and
its proof are modified in the obvious way.

Our results do not apply to the case α(0) = β(0) and α(l) = β(l) since
there are no solutions if our compatibility conditions are extended in the
natural way.

As mentioned earlier our central idea leads to existence results for those /
for which there are a'priori bounds on y' for solutions y satisfying a <y < β.
We now discuss the case where / satisfies the Nagumo-Knobloch-Schmitt
condition.

Theorem 2 Assume that there exist nondegenerate lower and upper so-
lutions a < β for (1.1), that f satisfies the Nagumo-Knobloch-Schmitt con-
dition, that G € C(Δ xR 2 ;R 2 ) is compatible with a and β, that a'{x) >
Φ(x,a(x)) and β'{x) < Ύ(x,β{x)) on [0,1] and that G{{C,D);{E,F)) = 0
only if E e [Φ(0,C),T(0,C)]. Then problem (1.1) and (1.2) has a solution
y lying between a and β.

Proof. Again we modify /. First choose

L>max{\Φ(x,y)l\Ύ(x,y)l\a'(x)l\β'(x)\:(x,y)eώ}1
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where ώ = {(x, y) 6 [0,1] x E : a(x) <y < β{x),x E [0,1]}. Let

fmax{/(z,y,Φ(a;,y)) + (Φ(z,y) - p ) , / ( z , y , p ) } , for p < Φ(rz,y)

<min{/(a;,y,T(a:,y)) + (T(rc,y) - p), /(rc,y,p)}, for p > T(rr,y)

[ / (# j 2Λ P) > otherwise

and

m(x, y,p) = /(re, y, π(p, - L , L)).

Thus a and /? are lower and upper solutions for

(4.4) y" - m(x, y, y') for all re G [0,1].

It is easy to see that m satisfies the conditions of Theorem 1 and thus there
is a solution y of problem (4.4) and (1.2) satisfying a < y < β. To show
that this is a solution of our problem it suffices to show that Φ(rr,y) <y'<
T(rr,y). From the boundary conditions there are no solutions for y'(0) ^
[Φ(0,y(0)),T(0,y(0))]. Suppose that y'(t) < Φ(ί,y(ί)) for some t G (0,lj.
By continuity and the definition of L we may choose t and u E (0, t) such
that — L < y'(x) < Φ(x,y(x)) for all x G (u,t] and y'(ύ) — Φ(u,y(u)). Now

{y'(x) - Φ(x,y(x)))' = m{x,y(x),y'{x))

- Φx(x,y(x)) - Φy(x,y(x))Φ(x,y(x))

> f(x,y(x),Φ(x,y(x)))

- Φx{x,y{x)) - Φy(x,y(x))Φ(x,y(x))

a contradiction. Thus Φ(rr, y) < y;. Similarly the y' < Ύ(x, y) and the result
follows. D

Remark 11. The conditions G((C, D)\ (JS, F)) - 0 only if

(2.8) guarentees the solution y satisfies Φ(rc,y(rτ)) < y;(rc) < T(rr,y(x)).
There are other ways to guarentee this as for example in the case of periodic
boundary conditions where we may replace the inequality signs in (2.8) by
not equals to signs (see for example Schmitt [31]).
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5. Comparison with Gaines and Mawhin.

Games and Mawhin consider problem (1.1) and (1.2), where / : [0, l ]xK 2 n ->
Mn, G : R2n x R2n -> R2n and y,y' G Mn, making the following definitions.

Definition [16, Definitions V.2 and V.18]. A set G C Rn is called au-

tonomous curvature bounded with respect to (1.1) if for each y0 G dG there

exists V{y) = V{yo;y) such that V G G2(Mn), G C { y e Γ : V{y) < 0},

V(y0) = 0 and

PtVyy(yo)p + Vy(yo)f(x,yo,p) > 0

for all peRn satisfying Vy(y0)p = 0 and x G (0,1).

Theorem [16, Theorem V.34]. Let G be a convex autonomous curvature
bounded set relative (1.1) such that 0 G G and for each y0 G dG, Vyy(yo) is
positive semi-definite. Assume that there exists nondecreasing

h G ^([OjOoJ ίOjOo)) έmcA that

\f(x,y,p)\ < h(\p\) for all (x,y) e Gu

where Gλ = [0,1] x G. Let T - sup{|y(x)| : x G [0,1]} αncί M > 8T be
t2

chosen such that -—r > 4T for all t > M. Assume that if y is a solution of
fι{t)

y" = λf(x,y,y') for all xG [0,1]

' 0

twίΛλe (0,1), y(x) eόforxe [0,1] and \y'(x)\ < M, theny{0),y(l) £ dG.
Moreover assume that

where G0(C,D) = G{{C,D + C)\(D,D)) for all (C,D) G Δ o and Δ o =
{(C,£>) G M2n : ( C , ΰ + C) G G}. TΛen ^Λere exists a solution y of (1.1)

(1.2) κ;i£/i (#,y) G Gi

The assumptions on h are standard for systems where it is well known that
the Bernstein-Nagumo condition is no longer sufficient to guarentee a'priori
bounds on the derivative of solutions. For some more recent variants see
Fabry [14], for example, and the references cited there.

The essential problems with this remarkable result are concerned with how
to extend it to the case Gi is not autonomous but varies with x. What is the
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appropriate replacement for Δo bearing in mind the requirements imposed
by the method of proof? In such an extension how would one check that (5.1)
is satisfied; this is not difficult in the autonomous case? Such an extension
is necessary if the result is to be applied to the range of problems currently
considered in the literature as we show in a paper forshaddowed above. In
the context of systems as opposed to single equations such an extension may
not have seemed so important since other technicalities involved in proving
such results have hitherto required the autonomous bounding set.

There is a close relationship between conditions (5.2) and the compatibil-
ity condition as the following theorem and example demonstrate.

Theorem 3. Let G be as in [16], Theorem V.34,

(5.3) Φ(C, D) = {D - C, D - C) for all (C, D) £ A

where A = G2 and let G(C,D) be given by (3.4). Then

Proof. This follows by the Leray Multiplication Theorem (see Lloyd [25,

Theorem 2.3.1]) letting the homeomorphism i : R2n -> Δ be given by

L{C,D) = (C,D-C). D

In the following examples compatibility fails however there exist strongly
inwardly pointing vector fields for which (3.2) holds. In the first example
there exists solutions and in the second there are no solutions. Moreover the
first example highlights a difference between our assumptions and those of
Gaines and Mawhin. Let

(5.4) y" = y,

β = 1 = — a. There is a solution y with

(y(0),y'(0)) = (- l ,o) , (ί/(l),y'(l)) = (1,6) and a,b > 2.

Choose

i /
1 ((C,l);(P 1 Q)) = l i f Q < 1 + 6/2, ^ ( ( C , -1); (P, Q)) = - 1

and ^ ( ( - 1 , 1 ) ; (α, b))= 0, i = 0,1; G can be extended to all of A x E2 as
continuous functions using Teitze's Theorem. It is easy to see from Lemma
14 below that (3.2) holds. It is easy to see that Theorem V.34 applies
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and there are solutions. Moreover it is easy to see that there is a strongly
inwardly pointing vector field such that (3.2) holds but (3.3) does not hold
for all strongly inwardly pointing vector fields.

To produce an example with no solutions is easy. Just let

there is a solution of (5.4) with these values }.

Set go((C,D)',(P,Q)) = 1 on W. Let g°((-l,D) (P,Q)) = -1 for P < 6/2
and p°((l,£>);(P,Q)) = 1 for P > -6/2, where b = (coshl - l)/(sinhl).
Again G can be extended to all of A x K2 as continuous functions using
Teitze's Theorem. Again, by construction there is a strongly inwardly point-
ing vector field Φ such that (3.2) holds and (3.3) does not hold for all strongly
inwardly pointing vector fields.

It is easy to see from the above that our compatibility condition is a
strengthening of (5.2) and the trade off is that we do not require that (5.1)
holds. Apart from the fact that [16], Theorem V.34 applies to systems
whereas Theorem 1 applies to a single equation this is the essential difference
between these results.

For the convenience of the reader and to highlight the difficulty in applying
Theorem V.34 to nonconstant a and β we state [16], Theorem V.37 which
is the result in [16] closest to our Theorem 1.

Theorem [16, Theorem V.37]. Assume that there exist strict lower and
upper solutions a < β for (1.1), g° is independent of D,Q, nondecreasing in
P7 g1 is independent of C, P, nondecreasing in Q and G satisfies

<0 ,g°((a(0),D);(a'(0),Q)) >0
; (P,«'(1))) < 0.

Assume that f satisfies the strengthened Bernstein-Nagumo condition, where
h G C1([0,oc);(0,cx))). Then (1.1) and (1.2) has a solution.

The interested reader is referred to [16] and [19] for other results of a
similar nature.

6. Compatibility for Boundary Set Conditions.

In this section we consider problem (1.1) and (1.3) again assuming that there
exist lower and upper solutions a < β, respectively and look for solutions y
lying between a and β.

Problems of the form (1.1) together with (1.2) and with (1.3) have been
considered by many authors. Shooting methods have been used combined
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variously with the maximum principle, with the Jordan separation theorem,
the Kneser-Hukuhara continuum theorem and/or the Wazewski retraction
theorem. Often these have been refined in the process. See Baxley [6],
Baxley and Brown [5], Bebernes and Fraker [9], Bebernes and Wilhelmsen
[7], Bernfeld and Palamides [10], Jackson and Klassen [21], Jackson and
Palamides [22], Palamides [30] and their references.

We show that the results of Bebernes and Fraker [9] can be derived from
our results. In a forthcoming paper we systematically show how all these
results involving set valued boundary conditions can be obtained from our
results. At first sight this may seem suprising since our results are derived
from Schauder degree theory while the others are derived from variants of
shooting. The key idea in shooting is a generalised Jordan separation the-
orem while the key idea in the retract method is that the boundary of the
sphere is not a retract of the sphere. Both of these can be derived from
degree theory thus a connection of this nature is not suprising but to be
expected.

In order to state our results we need some notation (see Bebernes and
Fraker [9]). For x G [0,1] let C(x) = {{x,y,p) E ώ x l } , Sa{x) = {(z,y,p) G
C(x) : y = a(x)}, and Sβ(x) = {{x,y,p) G C{x) : y = β{x)}.
Definition 12. We say the pair of sets {J{O),J{1)} C R2 is strongly
compatible, respectively compatible, for (1.1), a and β if there exists G G
C(Δ x IR2;IR2) which is strongly compatible, respectively compatible, for
(1.1), a and β and such that G{{C,D);(E,F)) φ 0 for all {C,E,D,F) £
J{0) x

Definition 13. Let J(i) C IK2, i — 0 or 1 be a closed connected subset of
[α(i),/?(i)] x R We say it is of compatible type 1 if there is (a(i),u(i)) G
J(i), where (~lY(af{i) - u(i)) > 0, and there is (β(i),u(i)) G J{i), where
(— iγ(u(i) — β'(i)) > 0. We say it is of compatible type 2 if for every p G l

there is y G [a(i),β(ιj\ such that (?/,p) G J{%). If it is of compatible type 1

or 2 we say simply it is of compatible type.

Theorem 4. Let the sets J(i) CR 2 i — 0,1 be of compatible type, then
the pair {J(ΰ),J(ϊ)} is compatible for (1.1), ex. and β.

We will need the following Lemma in the proof of Theorem 4.

Lemma 14. Let M = {rn?,mι) G C(Δ;M2) satisfy m°{a(0),D) < 0,
m°{β{0),D) > 0 and ra^CXl)) < O ^ ^ C ^ l ) ) > 0 for all (C,D) G A
and M(C, D) φ 0 for all (C, D) G <9Δ; then d{M, Δ, 0) φ 0.

This follows since S — ΘM + (1 — Θ)(I —p) is a homotopy of M with I — p
where / is the identity on R2 and p G Δ is any point.
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Proof of Theorem 4. Let J{i) i = 0,1 be of compatible type. We define
G = (g0^1) as follows.

Let O = [α(0),/?(0)] x R \ J(0). Then (9 is a relatively open subset of
[α(0), /?(0)] x R. Since ^7(0) is of compatible type, by the generalised Jordan
curve theorem, (see Lloyd [25]) O = U UV UW where U is the union of
all components of O which intersect Lo = {α(0)} x [α'(0),oo), V is the
union of all components of O which intersect L\ = {β(0)} x (—oo, β'{0)] and
W = O \ {U U V}. Now U + 0 φ V. Set

Q°((CD) (EF)) = l dist((C,E),J(0)), ΐoτ all (C,E)eVUW
U ' M ' j j \dist((C£)J(0)) forall(C,£)Ef/Uj(0).

It is easy to see that g° is continuous, g°((α(0),Z?); {E,F)) < 0 for all # >
α'(0) and that 0°((/3(O),I>);(JE,F)) > 0 for all F > β'(Q). Similarly we
define g1 using J(l). To see that G is compatible we set 9?((C, D); (£?, F)) =
p°((C, D)\ (E, F)) + (C - (α(0) + β(0))/2)/i) and similarly approximate 31.
Let Φ be a strongly inwardly pointing vector field on Δ. Thus Qi(C,D) =

0 and g\{C,β(ϊ)) > 0 for all (C,D) G Δ. The result follows by Lemma
14. D

The next result is an immediate consequence of Theorems 1 and 4.

Corollary 15 [9, Theorem 2]. Assume that there exist lower and upper
solutions, a < β, respectively, for (1.1), that f satisfies a Bernstein-Nagumo
condition and that the sets J(ϊ), z = 0,1 are of compatible type. Then there
is a solution of (1.1) and (1.3) lying between a and β.

We show now how the results of Bebernes and Fraker follow from ours.

Corollary 16 [9, Theorem 1]. Assume that there exist lower and upper
solutions a < β for (1.1) and that for any J52 > 0 and t0 E (0,1] there is
N(B2) > 0 such that any solution of (1.1) with \y'(0)\ < B2 and a(x) <
y{x) < β{x) for all x G [0,t0] satisfies \y'(x)\ < N(B2) for all x E [0,to] If
J{ϋ) is compact and of compatible type 1 and J(Ί) is of compatible type 2,
then problem (1.1) and (1.3) has a solution lying between a and β.

Proof By compactness there is B2 > 0 such that (y(0),y'(0)) E J(β)
implies that |y;(0)| < B2. By assumption we may choose N such that \y'\ <
N for all solutions y of (1.1) with {x,y) E ώ on [0,1] and L such that
L > max{\a'(x)l\β'{x)\,N : x E [0,1]}. Let j(x,y,p) = /(z,y,τr(p;-L,L))
for all (x,y,p) E [0, l j xK 2 . Consider

(6.1) y"=j{x,y,v') for all x E [0,1]
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together with (1.3). Now a and β are lower and upper solutions for (6.1)
so by Corollary 15 there is a solution y for this problem between a and β.
Assume that \y'\> L for some x E [0,1]. Set t = min{x E [0,1] : \y'(x)\ <
L}. By continuity and the choice of L, we have t > 0 and |y'(#)| < L for
all x E [0, t\. Thus y is a solution of (1.1) on [0,ί] lying between a and /?
but \y'(t)\ > N a contradiction. Thus |y'| < L o n [0,1] and y is the required
solution. •

In the above result Bebernes and Fraker assume that there exist strict
lower and upper solutions.

The above result can be sharpened as follows.

Definition 17. Set

(6.3)
SO = {(y, -N) : α(0) < y < β(0)} U {(α(0),p) : α'(0) > p > -N},

(6.4)
S2 = {(y,N) : α(0) < y < β(0)} U {(β(0),p) : β'(0) <p<N},

(6.5)
S, = {(y, -M) : α(l) < y < ,5(1)} U {(β(l),p) : ̂ (1) > p > -M} and

(6-6)
U {(α(l),p) : α'(l) < p < M}.

Corollary 18 [9, Theorem 3]. Assume that there exist lower and upper
solutions a < β for (1.1) and that f satisfies a Bernstein-Nagumo condition.
Further assume that J{ϊ) C C(i), i = 0,1 are closed connected sets satisfying
J(0) Π {So U S2} φ 0 and J ( l ) Π {Si U S3} 7̂  0, ^Λere the Sτ are given by
(6.3) to (6.6) and M — N is given by (2.5). T/ien ίΛere is a solution y lying
between a and β.

Proof. This follows since either {β{0),u) E J{0) for some u > βι(0) or
(y, iV) E v7(0) for some y E [a(0), /3(0)) and we add the straight line segment
joining (y,N) to (β(0),N) to ,7(0). Similarly, either (a(0),u) E ,7(0) for
some u < αr(0) or (y, -JV) E ,7(0) for some y E (α(0),/3(0)] and we add the
straight line segment joining (y,—N) to (θf(0),—iV) to i7(0). Similarly we
modify J(l) as above. Thus the modified J[i) are of compatible type and,
by Corollary 15, there exists a solution for (1.1) and (1.3). This solution
satisfies \y'\ < N and hence is the required solution. D

There is a typographical error in Bebernes and Fraker [9], Theorem 3
and a counterexample can be constructed to the result as they have stated
it. To explain the error we need the following notation. Let / satisfy the
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strengthened Bernstein-Nagumo condition, and λ = max{σ, |α'(z)|,
xe [0,1]}. Define N(t) by

N(t) s

——ds = max{/3(w) : u e[O,t]} — min{α(u) : u € [ 0 , t ] } ,

and N by

(6.7) N = min{N(t) : t E [0,1]}.

Bebernes and Praker take N from (6.7) and M = N(l). The min should
be max in (6.7).
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SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS
WITH FULLY NONLINEAR TWO POINT BOUNDARY

CONDITIONS II

H.B. THOMPSON

We establish existence results for two point boundary
value problems for second order ordinary differential equa-
tions of the form y" = f(x,y,yf), x G [0,1], where / satisfies the
Caratheodory measurability conditions and there exist lower
and upper solutions. We consider boundary conditions of the
form G(Q/(0),?/(l));(?/'(0),ΐ/'(l))) = 0 for fully nonlinear, contin-
u o u s G and of t h e form (y(i),y'(ι)) £ *J(j>), i — 0,1 for c losed

connected subsets J(ϊ) of the plane. We obtain analogues of
our results for continuous /. In particular we introduce com-
patibility conditions between the lower and upper solutions
and : (i) G; (ii) the J(i), i — 0,1. Assuming these compatibil-
ity conditions hold and, in addition, / satisfies assumptions
guarenteeing a'priori bounds on the derivatives of solutions
we show that solutions exist. As an application we generalise
some results of Palamides.

1. Introduction.

In this paper we consider two point boundary value problem for second order

ordinary differential equations of the form

(1.1) y" = f(x, y, y'), for almost all x e [0,1]

where / : [0,1] x E2 —)> K satisfies the Caratheodory conditions. By a

solution of (1.1) we mean a function y with y' absolutely continuous and y

satisfying (1.1) almost everywhere. The first class of boundary conditions

we will consider are of the form

(1-2) 0 = G((y(0),y(l));(2/'(0),j/'(l))),

where G : R2 x R2 -> M2 is continuous. We call boundary conditions of this

form fully nonlinear boundary conditions. The second class of boundary

conditions we will consider are of the form

(1.3) (y(i),y'(i))E J(i) for i = 0,1,

279
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where J{i) are continuua. We will call boundary conditions of this form
boundary set conditions.

We always assume that lower and upper solutions α < /?, respectively,
exist for (1.1) (see Definition 1 below). We prove analogues of our existence
results for the case / is continuous.

In paragraph 2 we introduce some notation, definitions and preliminary
results. We define lower and upper solutions which are the natural analogues
of those for continuous /. These cannot be used directly in maximum prin-
ciple arguments. We define strong lower and strong upper solutions which
can be used directly in maximum principle arguments and show how lower
and upper solutions can be approximated by strong lower and strong up-
per solutions, respectively, for an approximating differential equation. We
introduce the central notion of compatibility of the boundary conditions G
with the lower and upper solutions. In the literature when lower and upper
solutions are assumed to exist and the Picard, Neumann or Periodic bound-
ary conditions are considered the assumptions usually made are equivalent
to compatibility (see [29]).

In paragraph 3, we present our main existence results. If the boundary
conditions G are compatible with a and β and / satisfies additional assump-
tions guarenteeing a'priori bounds for y' for solutions y of (1.1), then there
exist solutions y of (1.1) and (1.2) satisfying a < y < β on [0,1]. The exis-
tence proofs follow the same general lines as in the case that / is continuous
(see [29]) but with an additional and more subtle modification argument
(see [28]).

In paragraph 4 we give some applications generalising some results of
Palamides [24].

In paragraph 5 we consider problem (1.1) and (1.3). We recall two types
of compatibility of the boundary sets <7(i), i = 0,1 with the lower and upper
solutions (see the author [29]). These are satisfied by the usual boundary
sets conditions considered in the literature. We give some existence results
for problem (1.1) and (1.3) when the boundary sets are compatible.

The compatibility conditions are concrete conditions involving the given
data which can be easily checked and are satisfied by just about every con-
crete existence result in the literature. Most existence results in the liter-
ature for (1.1) together with (1.2) or (1.3) which assume lower and upper
solutions exist follow as a corollary to our results. In many cases our results
can be used to significantly improve upon these results. This is especially
true for results concerning fully nonlinear boundary conditions as can be
seen for example in the application to Theorem 2.1 of Palamides [24] given
in paragraph 4. Also the central notion of compatibility extends to systems
with lower and upper solutions, to single equations and systems with lower
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and upper solutions replaced by other surfaces a'priori bounding solutions.
We will discuss these extensions of our ideas and further applications of our
results and their extensions in forthcoming papers.

The literature on problem (1.1) and (1.2) is vast and for further informa-
tion we refer the interested reader to the excellent monographs by Bailey,
Waltman and Shampine [2], Bernfeld and Lakshmikantham [9], Gaines and
Mawhin [11], Guenther, Granas and Lee [12], Hartman [13], and Mawhin
[19] and their references.

2. Background Notation, Definitions and Results.

In order to state our results we need some notation.
As usual we say a function / : [0,1] x M2 —» M satisfies the Caratheodory

conditions if
l f ('tillp) ι s measurable for each (y,p) G M2

2. f(x, , •) is continuous for almost all a? € [0,1]

3. to each I > 0 there is an integrable function τ\ : [0,1] —>• M satisfying
\f(x,y,p)\ < rt(x) for all (y,p) G [—Z,/]2 and almost all x G [0,1].

As usual, we denote the closure of a set T by Γ and its boundary by dT.
We denote the space of m times continuously differentiable functions from A
to B endowed with the maximum norm by Cm(A; B). In the case of continu-
ous functions we abreviate this to C(A; B). We denote the space of measur-
able functions from A to B endowed with the usual norm by Lm(A\ B). In the
case β = Rwe omitt the B. We denote by VF2)1([α, b]) the Sobolev space of
functions y : [α, b] -» R with y' absolutely continuous and y" G Lλ([a^ b]) with
the usual norm. If A is a bounded open subset of Rn, p G Mn, / G C(A Rn)
and p £ f(dA) we denote the Brouwer degree of / on A at p by d(f,A,p).
It is common in the proof of existence of solutions of two point boundary
value problems for (1.1) to modify /. We do this making use of the following
functions (see [27]).

If c < d are given let π : R -> [c, d) be the retraction given by

(2.1) π(?/, c, d) = max{min{d, y}, c}.

For each e > 0, let K G C(R x (0, oc); [-1,1]) satisfy

1. K(-,e) is an odd function,

2. ϋΓ(ί,e) = 0 i f f £ = 0and

3. K{t,e) = 1 for alH > e/4.
If c < d and e > 0 are given, let T G C(M) be given by

(2.2)
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Let
ί( l-rr) ί , forθ<ί<x<l

yίx, t) — {
\(l-t)x, for 0 < a: < t < 1,

and w(yo,yi)(x) = j/0(l - x) + J/î  Let X = ^([0,1]) x R2 with the usual
product norm. Define C : C([0,1]) -> ^([O, 1]) by

x) = - / Q{x,t)φ(t)dt, for all (0,C,£>) G X

Clearly C is completely continuous.

Definition 1. We call Oί(β) a lower (upper) solution for (1.1) if α G

a"{x) > f(x,a(x),a'(x)), for almost all x G [0,1],

(β"{x) < f(x,β(x),β'(x)), for almost all x G [0,1]).

If a and β are lower and upper solutions for (1.1) on [0,1] we will assume
that a < β and set ω = {(x,y) G [0,1] x R2 : a(x) < y < β(x)} and ώ =
{(x,y) G [0,1] x R2 : a(x) <y< β{x)} We will call the pair nondegenerate
if Δ = (α(0),/?(0)) x (α(l),/5(l)) is nonempty. Let π Δ : R2 -> A be the
retraction given by

πA(C,D) = (τr(C,α(O),/3(O)),π(£»,α(l),/3(l))).

Lower and upper solutions themselves cannot be used in maximum prin-
ciple arguments consequently we introduce strong lower and upper solutions
(cf Ako [1]).

Definition 2. We call a G PV2>1([0,1]) a strong lower solution for (1.1) if
to each c G (0,1) there is an open interval Ic C (0,1) satisfying c G Ic and a
δ(c) > 0 such that

(2.4) a"(x) > f(x,u(x),υ(x)), for almost all x G /c,

where w, υ : Ic —> R are measurable and

(u(x), υ(a )) G (α(x) - 5, α(rr)] x (α'(c) - 5, α'(c) + δ).

Similarly we define a strong upper solution β by substituting β in place of
OL and reversing the inequalities above; in this case

(u(x)M*)) e \β(x),β(x)+δ) x (/3'(c) - δ,βί{c) + δ).

Let α < β be lower and upper solutions, respectively. In the next lemma

we show that there exist strong lower and strong upper solutions for an
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approximating equation which approximate the lower and upper solutions,
respectively.

Define ί / : [ 0 , l ] x R 2 - ^ K by

(2.5) g(x,y,p) = f(x, π(y, a{x),β{x)),p) for all x G [0,1].

L e m m a 3. Let f : [0,1] x R2 —> R satisfy the Caratheodory measurability
conditions. Let a < β be lower and upper solutions, respectively and g be
given by (2.5). Given e G (0,1) there is a continuous function κe : [0,1] x
R2 -> R such that \κ€(x,y)\ < e for all (x,y) G [0,1] x R. Moreover, setting

j(z>y,p) =g{x,yiP + Ke(xiy))i for all (x,y,p) G [0,1] x R2,

there exist strong lower and strong upper solutions a€ and β€, respectively,
for

(2.6) y" = j(x, y, y% for almost all x G [0,1]

satisfying

a(x) - e/2 < ae(x) < a(x) - e/6 < β(x) + e/6 < βe(x) < β{x) + e/2,

/or o//a; G [0,1].

The proof of [28, Lemma 7] by the author applies. Moreover we see that
α'(0) - αe /(0), β'(ϋ) - βe'(0) and |α'(z) - α e ' (z) | , | ^ ( ^ ) -/3 e /(x)| < e/2 on
[0,1].

We associate with these strong lower and strong upper solutions ae and
β€ the function 7 : E —>• R given by

(o(l) - D){a'{\) - α£'(l))/(α(l) - ae(l)), for £» < o(l)

0, for α(l) < ΰ <

), for £> >

Definition 4. Let a < β be lower and upper solutions for (1.1) on [0,1]. We
say / satisfies the Bernstein-Nagumo-Zwirner condition if there exist L > 0,
h G C([0,oo);(0,oc)), h G ^([α™,/^]; (0,oo)) and r G #([0,1]; (0,oo))
such that

(2.7)
\f(x,y,p)\ < h(\p\)h(y)+r(x), for all (x,y) e [0,1] x (α(x),/3(x)) and

(2.8)
/"•̂  sd s f^M - [^
I 7-7-7- > / h(s)ds + K r(x)dx,

Jσ ϊι(s) Jam Jo
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where K = sup{s//ι(s) : s G [<τ,L]}, βλf =τnax{β(x) : x G [0,1]},
am = min{a(x) : x G [0,1]} and σ = max{|/3(l) - α(0)|, \β(0) - α(l) |}.

See Bernstein [10], Nagumo [20], Scorza Dragoni [26], Zwirner [30] and
Thompson [28].

Remark 5. In the special case h — 1 and r — 0 this has been called the
Bernstein-Nagumo condition by some authors (see Granas et al [12]).

For the convenience of the reader and the sake of completeness we recall
some notation and definitions from [29].

Definition 6. We call the vector field Φ = (ψ0^1) G C(Δ;M2) strongly
inwardly pointing on Δ if for all (C, D) G dA

(2 9) </>V(0),£) > a'(0),ψ°(β(0),D) < β'(0) and

" ' Φ1{C

We call Φ inwardly pointing if the strict inequalities are replaced by weak
inequalities.

Definition 7. Let G e C(Δ xR 2 ;R 2 ) . We say G is strongly compatible
with a and β if for all strongly inwardly pointing Φ on Δ

(2.10) g(C, D)^0 for all (C, D) € dA and

(2.11)

where

(2.12) g(C, D) = G((C, D); Φ(C, D)) for all (C, D) G Δ.

We say G is compatible with a and β if there is a sequence {Gi}^ strongly
compatible with a and β which converges to G uniformly on compact subsets
of Δ x R 2 .

3. Existence of Solutions.

Theorem 1. Assume that f satisfies the Carathέodory measurability con-
ditions, that there exist nondegenerate lower and upper solutions a < β
for (1.1) and f satisfies the Bernstein-Nagumo-Zwirner condition. If G G
C(Δ x M2;]R2) is compatible with a and β, then problem (1.1) and (1.2) has
a solution y lying between a and β.

Proof. Assume first that G is strongly compatible with a and β.
We approximate the lower and upper solutions by strong lower and strong

upper solutions ae and /3% respectively, for the approximating differential
equation (2.6). We modify this equation for y not between a and β to
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obtain a second pair of constant strong lower and strong upper solutions
ae and /?e, respectively, satisfying ae < ae < a < β < βe < βe. We also
modify the boundary conditions so that they are compatible with a6 and βe.
We reformulate the approximating problem as a coupled system of integral
and boundary condition equations and show that a solution of the modified
problem lies in the region where j is unmodified and hence is solution of the
approximating equation and modified boundary conditions. We obtain the
required solution by using compactness to find a subsequence converging to
the desired solution. We use Schauder degree theory to prove existence for
the modified problem and compute the degree using a homotopy; it is easier
to construct a suitable homotopy for the modified equation and boundary
conditions.

Extend h to R by h(y) — h(π(y,am,βM)) By (2.8) and the Monontone

convergence theorem there exist e0 > 0 such that

— — - > / h(s)ds + K / (r(x) + eo)dx.

Choose N > max{|α'(α;)|, \β'(x)\,L : x € [0,1]} + e0, and let

(3.2) k(x,y,p) =j(x,π{y,ae(x),βe{x)),π{p,-N,N)), and

l(x,y,p) =(1 -

(3.3)

where π and T are given by (2.1) and (2.2), respectively. Let ae = am — e
and βe = βM + e. Thus / satisfies the Caratheodory conditions on [0,1] x M2

and by continuity, for almost all x £ [0,1] and e small enough

(3.4) \l(x,V,p)\ < (h(\p\)+eo)h(y) + (r(x) +c 0),

Consider

(3.5) y" = l(x,y,yf), for almost all x E [0,1]

together with

(3.6)

Suppose that (3.5) and (3.6) has a solution ye satisfying ae < ye < βe and
\ye'\ < L on [0,1]. Then by compactness there is a subsequence y€i converging
in VF2'1([0,1]) to y, say, as ê  converges to 0 and y is the required solution.
To see this proceed as follows. First a < y < β and \y'\ < L on [0,1]. Since
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κ€τ converges uniformly to 0, letting ê  go to 0 in the the integral equation
satisfied by yu and noting that / and I coincide for (a;, y) G ώ it follows that
y is a solution of the (1.1). Now j(y€t(l)^a€i^β€t) converges to 0 and thus y
satisfies the boundary conditions.

We show that there is such a solution ye. First

αc" = 0 > -(\k(x,u{x),υ(x))\+e)

— l(xyu(x),v(x)), for almost all x G [0, l],u(x) < am — 2e/3.

Thus ae is a strong lower for

(3.7) y" = θl(x, y, y') for almost all x G [0,1]

for each θ G (0,1]. Similarly β€ is a strong upper solution for (3.7).

Letώ€ = {{x,ye) G [0, l]xR : ae{x) < ye < β€{x)} and Δ e - (αe(0),/?e(0))x

Suppose that ye is a solution of (3.7) with ae < ye < βe on [0,1] and
θ G [0,1]. Then \ye/\ < L by the standard argument (see for example the
author [28]). Suppose that ye is a solution of (3.5) and (3.6) satisfying
ote < ye < βe and (ye(0), y e(l)) G Δ € . We show that ae < ye < βe on [0,1] and
hence ye is the required solution. Suppose for example that ye(t) < ae(t) for
some t G [0,1]. Prom the boundary conditions and continuity we may assume
that ae — ye attains its positive maximum at t G (0,1). Thus ae'(t) — ye'(t).
From (3.3) and the continuity of a6' and yef there is an interval Jt C It such
that we have

< l(x,a€(x),a€f(x)) < ae"(x) for almost all x G Jt

a contradiction. Similarly ye < βe on [0,1], Thus ye is the required solution.
We show that y€ exists. As the proof is similar to that in [29, Theorem 1]

we only sketch the proof highlighting the differences.
Let Ω€ = {y E ^([0,1]) : ae < y < βe,\y'\ < JV, on [0,1]} and Γe -

Ωe x Δ e C X.
Define C : ^([0,1]) -> Lx([0,1]) by

Let Φ be a strongly inwardly pointing vector field on Δ and let Λ : Δ€ -> R2

be given by

(3.8) Λ(C,D) = G(πA(C,D);*(πΛ(C,D))).
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Then Λ φ 0 on 9Δ€, since G is strongly compatible with a and β. Define
U : Γ t x [0,1] ->• X by

C, £>, 0) = (0 + ££(<£) - w(C, D), V(φ, C, D, θ)) for θ e [2/3,1],

H(φ, C, D, θ) = (φ + 3(0 - lβ)CC(φ) - w(C, D),Λ(C, D))

for θ € [1/3,2/3] and

H(φ,C,D,θ) = (φ-Ww{C,D) - (1 -36>)(αt + βe)/2,Λ(C,D))

for 0 e [0,1/3], where

,D,θ)) and

+ 3(l-0)Φ(τrΔ(C,D)).

Clearly ?ΐ is completely continuous. Now H(y€,y€(0),ye(l), 1) = 0 iff ye is a
solution of (3.5) and (3.6) with (ye,ye(0),ye(l)) G fc. If there is a solution
(ye,ye(0),ye(l)) in dΓe we are through.

Assume that there is no such solution. We show that H is a homotopy
for Schauder degree on Γe at 0. Assume that there is a solution (y€,C,D)
of U(y\ C, D, θ) = 0 in <9Γe with θ e [0,1). Prom the formula for U we see
that θi [0,1/3).

Assume that θ € [2/3,1). As in the case θ = 1, ae(x) < ye(x) < βe(x) on

[ ] ) ( )
Assume (y€(0),ye(l)) e dAe. lΐye(l) = αe(l), then ye'(ΐ) < α e '(l). This

leads to the contradiction that <S(y€,y€(O),y€(l),0) < OL'{\) and
V(y€,ye(0),ye(l),θ) φ 0. The other cases (ye(0),ye(l)) G <9ΔC follow simi-
larly.

Now a€ < ye < βe on (0,1) since αe and ^€ are strong lower and strong
upper solutions, respectively, for (3.5). Thus ye £ dΩ,€ and there are no
solutions of U{ye, C, D, θ) = 0 with θ E [2/3,1] and {ye, C, Z>) E dΓe.

Assume that θ E [1/3,2/3). Since Λ(C,D) / 0 on dAe there are no
solutions (y€,C,D) with (C,D) E 9Δe. The proof that ye £ 3Ω€ is similar
to that for θ e [2/3,1).

Thus Ή, is a homotopy for the Schauder degree. Now H(φ,C,D,ϋ) =
(φ - c, ̂ 4(C, D)) where c E Ω€ is a constant and A Φ 0 in Δ€ \ Δ. Thus by
the Homotopy invariance, Reduction and Excision properties of Schauder
degree

, 0),ΓCΪ0)
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Thus there is a solution ye of (3.5) and (3.6) and hence a solution y of (1.1)
and (1.2).

Suppose now that G is compatible with a and β. Then there is a sequence
{^i}£i strongly compatible with a and β and converging uniformly to G
on compact subsets of A x i 2 . Let y{ be the corresponding solutions. By
compactness there is a subsequence of the y{ converging in W2>1([0,1]) to
the desired solution. D

Remark 8. In the case Δ is degenerate we have to modify the result. Let
a < β be lower and upper solutions for (1.1), respectively and suppose, for
example, that α(0) = β(0). Then we set Δ — (α(l),/3(l)) and change the
other conditions as follows.

We call the vector field Φ G C(Δ) strongly inwardly pointing on Δ if for

all D edA

We call Φ inwardly pointing if the strict inequalities are replaced by weak
ones.

Let G G C(Δ x R) and Q{D) = G(D, Φ(Z>)) for all D G Δ. We say G is
strongly compatible with a and β if for all strongly inwardly pointing Φ on

A

Q(P) φ 0 for all D G dA and

We define compatible as before. Theorem 1 and its proof are modified in
the obvious way. In the degenerate case α(0) = β(0) and α(l) = β(l) strong
compatibility implies that there are no solutions to the problem.

As mentioned earlier our central idea leads to existence results provided /
is such that there are a'priori bounds on y' for solutions y satisfying a < y <
β. We now discuss the case where / satisfies the Nagumo-Knobloch-Schmitt
condition.

Definition 9. Let a < β be lower and upper solutions for (1.1) on [0,1].

We say / satisfies the Nagumo-Knobloch-Schmitt conditions relative to a

and β if there exists Φ < T G Cι([0,1] x R) such that

(3.9) f(x,y,Φ(x,y)) > Φx{x,y) + Φy{x,y)Φ(x,y) and

(3.10) f(x,y,Ύ(x,y))<Ύx(x,y) + Ύy(

for almost all x G [0,1] and all y G [a(x),β(x)].
See Nagumo [21, 22], Knobloch [16, 17] and Schmitt [25].
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Theorem 2. Assume that there exist nondegenerate lower and upper so-
lutions a < β for (1.1), that f satisfies the Nagumo-Knobloch-Schmitt con-
dition, that G G C(Δ x R2;R2) is compatible with a and β, that a'(x) >
Φ(x,a(x)) and Ύ(x,β(x)) > β'{x) almost everywhere and moreover
G({C,D) (E,F)) = 0 only if E G [Φ(0, C), T(0, C)]. Then problem (1.1)
and (1.2) has a solution y lying between a and β.

Proof. Again we modify /. Choose

N > max{|Φ(α;,y)UT(^y)|, \a'(x)\,\β'(x)\ : (x,v) G ώ}

and let

l(x,y,p) =

( y) - p), f{x,y,p)}, for p < Φ(x,y)

< min{/(a;, y, Ύ(x, y)) + (T(x, y) - p), /(re, y,p)}, for p > T(a;5 y)

[f(x,y,p), otherwise

and

m(x, y,p) = l(x, y, π(p, -JV, N)).

Thus α and /? are lower and upper solutions for

(3.11) y" = m(x,y,y') for almost all # G [0,1].

It is easy to see that m satisfies the conditions of Theorem 1 and thus there
is a solution y of problem (3.11) and (1.2) satisfying α < y < β. To show
that this is a solution of our problem it suffices to show that Φ(x, y) < y' <
Ύ(x,y). From the boundary conditions there are no solutions for y'(0) £
[Φ(0,y(0)),T(0,y(0))]. Suppose that y'(t) < Φ(t,y(*)) for some t G (0,lj.
By continuity and the definition of N we may choose t and u G (0, t) such
that — N < y'(x) < Φ(x,y(x)) for all x G (u,t] and y'(u) = Φ(u,y(u)). Now

(yf(x) - Φ{x,y{x)))f = m(x,y(x),y'{x))

- Φx(x,y(x)) - Φy(x,y(x))Φ(x,y(x))

> f(x,y(x),Φ{x,y(x)))

- Φx(x,y(x)) - Φy(x,y(x))Φ(x,y(x)) > 0,

a contradiction. Thus Φ(x,y) < y'. Similarly the y' < Ύ(x,y) and the result

follows. D

Remark 10. The conditions G((C, D)] (E, F)) = 0 only if

JSe[Φ(0,C),T(0,C)],



290 H.B. THOMPSON

(3.9) and (3.10) guarentee the solution y satisfies

Φ{x,y(x)) < y'(x) < Ύ(x,y(x)).

There are other ways to guarentee this as for example in the case of periodic
boundary conditions where we may replace the inequality signs in (3.9) and
(3.10) by not equals to signs. See for example Schmitt [25].

4. Applications.

To show that the boundary conditions (1.2) are compatible we must show
that (2.11) holds. Usually this follows easily from the properties of Brouwer
degree (see, for example, Lloyd [18]) however the following lemma often
suffices.

Lemma 11. Let M = {M^M1) G C(Δ;M2) satisfy

M°{a(0),D) <0,M°(/?(0),£>) > 0

and
Mι(C,a(\)) < ΰ,Mι{C,β{\)) > 0

for all (C, D) G Δ and

M(C,D) φO

for all (C,D) G <9Δ; then d(M,Δ,0) φ 0.

This follows since S — ΘM + (1 — Θ)(I — p) is a homotopy of M with I ~p
where / is the identity on M2 and p G Δ is any point.

Problems of the form (1.1) and (1.2), usually for the case / is continuous,
have been considered by many authors. Shooting methods have been used
combined variously with the maximum principle, with the Jordan separation
theorem, the Kneser-Hukuhara continuum theorem and/or the Wazewski
retraction theorem. Often these have been refined in the process. See Baxley
[4], Baxley and Brown [3], Bernfeld and Palamides [8], Jackson and Klassen
[14], Jackson and Palamides [15], Palamides [23, 24] and their references. In
[24] Palamides used an extension of Wazewski's retraction principle involving
the Kneser-Hukuhara continuum theorem and the maximum principle to
prove the following existence result.

Theorem 2.1 of [24], Let f satisfy the Caratheodory conditions and for
each fixed p G R and almost all x G [0,1] let / (#, ,p) be nondecreasing for
y G [a(x),β(x)], where a(x) = -m + j(x) and β(x) — m — j(x), j(x) —
{l-[l + Kvmvx)ίv-ιVv)l(K{ι>-l)mv-1) and K > 0,m > 0,v = 2/c + l, k -
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1,2,..., and rh — — 7;(1) are such that: For each p > 0 there exists a

nondecreasing real-valued function M(p) such that

\f(x,y,p2) ~ f(x,y,Pi)\ < M(p)\p2 - p i | , for \p2 -pλ\ < p

\ for\p\>m

for almost all x G [0,1] and all y G [a(x),β(x)], where M(ρ) < Kρv, for
p > rh. Let f satisfy the Knobloch-Nagumo-Schmitt condition. Assume that
there exists θ0 G (π/4, π/2) such that G((C,D);(P,Q)) is continuous for
(C,P,D,Q) eExE, where

E = j(C,Ctan<9) : -m < C < m and - < θ < θo\ and

E = [a(l),β(l)]x[qm,qM]

where qm = min{Φ(l,y) : a{ΐ) < y < β(l)} and qM = max{T(l,?/) :

Oί{l) < y < /?(1)} Moreover assume that:
1. For each fixed C G [-m, m],φe [π/4, θ0] and (D, Q) G E

and g1(y^D);(Cta>nφ^q) are nondecreasing functions with respect to

the corresponding variables y,z or q but ^1((C, z); (Ctan</>, q)) is

(strictly) increasing with respect to both variables z and q and fur-

thermore for each y G [—m, m] and θ G [π/4, θ0] we have

(4.1) ^((y,

2. For each point y G [—m, ra] we

Φ(O,y)<y,ytan0o<ϊ(O,ί/).

3. For eαcΛ pair of points (yι,zuqι) and (y2, z2,q2) £ [—m, m]x E we have

(4.2) go((yuz1);(yι,qι))go((y2,z2);(y2t3inθo,q2))<0.

Then problem (1.1) and (1.2) has a solution y such that for all x G [0,1]

a(x) < y(x) < β(x) and Φ(x,y(x)) < y'(x) < Ύ(x,y(x)).

We indicate how this result can be generalised after first showing how it
follows from our Theorem 2.
Outline. As in [24], a < β are lower and upper solutions for (1.1). There
are two cases to consider. The first case is #°((C, D); (C, Q)) not identically
0 on [α(0),/?(0)] x E. We modify G without changing its zero set and also



292 H.B. THOMPSON

denote the modification by G. Then we extend G to A x E2 without changing
its zero set when (D, Q) G E so that the extension is compatible with a and
β. Then solutions of the new problem are solutions.

Replace g°((C,D);(P,Q)) by Cgo((C,D);(P,Q)). Let Si : [α(0),/?(0)] ->
R, i = 1,2 be defined by

—sA—C) = s2(C) = <

V ' X ' \C, forC<0.

By (4.2), replacing g° by — g°, if necessary, we may assume that

go((C,D);(s2(C),Q))<0

and
go((C,D);(s1(C),Q))>0

for all (D,Q) G JS. We extend g° as a continuous function toΔxR 2 satisfying
g°{(C,D)i(P,Q)) < 0 for all P > s2(C) and go((C,D);(P,Q)) > 0 for all
P < sx(C) for all (D,Q) G [α(l),/3(l)] x R. By (4.1), and monotonicity,
^((C,α(l));(P,Q)) < 0 for all qm <Q< a'(l) and g\{C,β{ΐ)Y (P, Q)) > 0
for all qM > Q > β'{l) and all (C,P) E JE; it is not difficult to show
from the definition of lower and upper solutions and the Knobloch-Nagumo-
Schmitt condition that qm < α'(l) and β'(l) < qM- Extend g1 to a continuous
function o n Δ x R 2 so that ^((C,α(l)); (P,Q)) < 0 for all Q < a'(l) and
gι({C,β{ΐ))-, (P,Q)) > 0 for all Q > β'(l). It is easy to see that G now has
the required properties. We show that a'(x) > Φ(x,a(x)) and Ύ(x,β(x)) >
β'{x) almost everywhere so that Theorem 2 applies and a solution exists.

Now a'(0) = -m = α(0) so α'(0) > Φ(0,α(0)) by assumption (2). Sup-
pose that z(t) — a'(t) - Φ(ί,α(t)) < 0 for some t G (0,1]. By continuity we
may choose u G [0,i) such that z(u) — 0 and z < 0 on (u,t]. By (2.3), (2.8)
and the lipschitz condition on / there is a constant k such that

z'{x) > f{x, a(x),a!{x)) - Φx{x, a(x)) - Φy(x, a{x))af(x)

> f(x, a{x), a'{x)) - f{x, α(ar), Φ(x, a(x)))

- Φy(x,a(x))(a'(x) - Φ(x,a(x)))

> kz(x)

for almost all x G [u,<], a contradiction. Thus a'(x) > Φ(x,a(x)) almost
everywhere. Similarly Ύ(x,β(x)) > β'(x) almost everywhere.

The second case is g°((C,D)] (C,Q)) identically 0 on [α(0),/?(0)] x E. In
this case we replace E by the set E1 = {(C,C) : C G [α(0),/3(0)]} and
Si(C) = s2(C) = C. The rest of the proof remains unchanged. D
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Remark 12. In the second case of the proof above the boundary condition
g° admits the solution y(0) — j/'(0) and in our proof we have effectively
replaced g° by the simpler y(0) — y'(0) and our solution satisfies this.

In the above proof the monotonicity assumptions on g1 are used only to
guarentee that g1((C,a(l))](PJQ)) < 0 for all qm < Q < a'(I)
and ^((C,/3(l));(P,g)) > 0 for all qM > Q > β'(l) and all (C,P) G E
and hence can be relaxed. In Palamides's proof they are required in a shoot-
ing argument and it is not clear how they can be weakened.

We do not need either the local lipschitz or monotonicity conditions on
/ required in Palamides's proof for application of the maximum principle
in a shooting argument. We used the local lipschitz condition only along
(x,a{x),a'(x)) and (x,β(x),β'(x)) and only to show that Ύ(x,β(x)) > β'{x)
and a'{x) > Φ(x,a(x)) almost everywhere. We used the monotonicity
condition on / only in the construction of the lower and upper solutions.
Palamides also used the monotonicity condition on / in the construction of
the lower and upper solutions.

Moreover the other results of [24] also follow from our Theorems 1 and 2;
in the statement of Theorem 2.2 of [24] conditions on g have been omitted
although the intended conditions are clear.

We illustrate the improvement our results represent over [24] by modifying
the example presented there.

Example. Let

f(x,y,p) = -sin a; — (cos £ - y2)2smy — p5 for x e [0,1],

y(0) + (y2(l) - y'2(l))/10 and

= y(0) + y'(0) + 6y(l) + y'(l) + sin(y(0) - y'

Thus we have translated the x interval so it is now [0,1] and modified / in
the y variable so that it is no longer monotonic with respect to y. In view of
our remark above Palamides's example has a solution with y(0) = y'(0) so we
have modified g° to avoid this. Also we modified g1 to avoid monotonicity.

To see that there is a solution we apply Theorem 2 to a modified prob-
lem. We let β(x) = π/2 = -a(x) and Ύ(x,y) = 2 = -Φ(x,y). It is
easy to check that the a < β are lower and upper solutions and that
the Knobloch-Nagumo-Schmitt condition is satisfied. As above we set
E = [-π/2, π/2] x [-2,2] but replace E by E2 = E. It is easy to check that
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if Φ is a strongly inwardly pointing vector field with |Φ| < 2 then conditions
(2.10) and (2.11) are satisfied. We modify G for (y'(O),τ/'(l)) g [-2,2]2 by
projecting (y'(0), y'(l)) in the obvious way so that the modified G is strongly
compatible with a and β. Thus, by Theorem 2 there is a solution y of the
modified problem. However given the bounds on y and on y' the solution
lies in the region where G was not modified. Thus y is the required solution.

Notice that from our analysis of Theorem 2.1 of [24] and the above it is
clear we could have obtained existence of solutions for the example of [24]
from our Theorem 2 using constant α, /?, T and Φ.

5. Boundary Set Conditions.

In this section we consider problem (1.1) and (1.3) again assuming that there
exist lower and upper solutions a < /3, respectively, and look for solutions y
lying between a and β.

Problems of the form (1.1) and (1.3) for the case / is continuous have been
considered by many authors. Shooting methods have been used combined
with with the Jordan separation theorem (see Bebernes and Praker [7] and
Bebernes and Wilhelmsen [5, 6] and their references).

We show that analogues of the results of Bebernes and Praker [7] for the
case / is continuous can be derived from our results.

In order to state our results we need some notation (see Bebernes and
Fraker [7]). For x G [0,1] let C(x) = {(x,y,p) EώxR}, Sa(x) = {(x,y,p) G
C{x) : y = α(x)}, and Sβ(x) = {(x,y,p) G C(x) : y — β(x)}. For the conve-
nience of the reader and the sake of completeness we recall the definition of
compatibility of boundary sets (see [29]).

Definition 13. We say the pair of sets {J{0),J(ϊ)} C R2 is strongly
compatible, respectively compatible, for (1.1), a and β if there exists G G
C(Δ x KP IR2) which is strongly compatible, respectively compatible, for
(1.1), a and β and such that G{{C,D);{E,F)) φ 0 for all (C,E,D,F) £
J(0) x J(l).

Definition 14. Let J{%) C [α(i),/3(ΐ)] x M, i = 0 or 1 be a closed
connected set. We say it is of compatible type 1 if there is (α(i),ιx(i)) G
J(i), where (-l)*(α'(i) - u(i)) > 0, and there is (β(i),u(i)) G J{i), where
(—l)ι(u(i) — β'(i)) > 0. We say it is of compatible type 2 if for every p G M
there is y G [α(i),/?(i)] such that (y,p) G J(ϊ). If it is of compatible type 1
or 2 we say simply it is of compatible type.

Theorem 3 [29, Theorem 4]. Let the sets J(i) C M2, i = 0,1 be of
compatible type, then the pair {̂ 7(0), i7(l)} is compatible for (1.1), a and β.

The next result is an immediate consequence of Theorems 1 and 3.
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Theorem 4. Assume that there exist lower and upper solutions, a < β,
respectively, for (1.1), that f satisfies a Bernstein-Nagumo-Zwirner condi-
tion and and that the sets J{i), i ~ 0,1 are of compatible type. Then there
is a solution of (1.1) and (1.3) lying between a and β.

We now state the analogue for measurable / of [7, Theorem 1].

Theorem 5. Assume that there exist lower and upper solutions a < β
for (1.1) and that for any B2 > 0 and t0 G (0,1] there is N(B2) > 0 such
that any solution of (1.1) with \y'(0)\ < B2 and a(x) < y(x) < β(x) for all
x G [(Mo] satisfies \y'(x)\ < N(B2) for all x G [0,<0] If J(fy is compact and
of compatible type 1 and J(l) is of compatible type 2, then problem (1.1)
and (1.3) has a solution lying between a and β.

Proof By compactness there is B2 > 0 such that (y(0),y'(0)) G J(0)
implies that \y'{0)\ < B2. By assumption we may choose N such that \y'\ <
N for all solutions y of (1.1) with {x,y) G ώ on [0,1] and L such that
L > max{\a'(x)l \β'(x)\,N : x G [0,1]}. Let

j(x,y,p) = f(x,y,π(p\-L,L))

for all {x,y,p) G [0, l ] x R 2 . Consider

(5.1) V" = j(x,v,y') for all are [0,1]

together with (1.3). Now α and β are lower and upper solutions for (5.1) so
by Theorem 4 there is a solution y for this problem between α and β. Assume
that \y'\ > L for some x G [0,1]. Set t = min{z G [0,1] : \y'{x)\ < L}. By
continuity and the choice of L, we have t > 0 and |y'(x)| < L for all x G [0, t].
Thus y is a solution of (1.1) on [0, ί] lying between α and β but \y'{t)\ > N a
contradiction. Thus \y'\ < L on [0,1] and y is the required solution. D

The above result can be sharpened as follows.

Definition 15. Set

(5.2) So - {(y, -L) : α(0) < y < β(0)} U {(α(0),p) : α;(0) > p > -L},

(5.3) 5 2 - {(y, L) : α(0) < y < /3(0)} U {(/3(0),p) : /J'(0) < p < L},

(5.4) 5i = {(y, -L) : α(l) < y < β(l)} U {(/?(l),p) : ^(1) > p > -L} and

(5.5) S3 = {(y, L) : α(l) < y < β(l)} U {(α(l),p) : α ;(l) <p<L}.

We can now state the analogue for measurable / of [7, Theorem 3].

Theorem 6. Assume that there exist lower and upper solutions a < β for
(1.1) and that f satisfies a Bernstein-Nagumo-Zwirner condition. Further
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assume that J(i) C C(i), i = 0,1 are closed connected sets satisfying J(ϋ)Π

{So U S2} ^Φ and J(l) Π {SΊ U 53} 7̂  0, wΛere tfie S{ are given by (5.2) to

(5.5) and L > max{|a'(a;)|, \β'(x)\ : x G [0,1]} satisfies (2.8). TΛen fftere is

α solution y lying between a and β.

Proof. This follows since either {β(0),u) G J ( 0 ) for some u > β'(0) or

(y, L) G ,7(0) for some y G [α(0), /?(0)) and we add the straight line segment

joining (y,L) to (β(0),L) to ,7(0). Similarly, either (α(0),u) G J(0) for

some it < α'(0) or (y, —L) G ^7(0) for some y G (α(0),/?(0)] and we add

the straight line segment joining (y, — L) to (α(0),—L) to i7(0). Similarly

we modify J{1) as above. Thus the modified J(ϊ) are of compatible type

and, by Theorem 3, there exists a solution for (1.1) and (1.3). This solution

satisfies \y'\ < L and hence is the required solution. D
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THE FLAT PART OF NON-FLAT ORBIFOLDS

FENG XU

We use integrable lattice models to determine the complete
invariants of a series of new finite depth orbifold subfactors
from Hecke algebras.

Introduction.

Commuting squares are an efficient way of producing subfactors. One can
always ask the question about how to determine the higher relative commu-
tants once a subfactor is produced. The interest in this question is that in
many well-known examples, these higher relative commutants which are fi-
nite dimensional C* algebras if the index is finite, seem to be the right "Quan-
tum symmetry" ([2]). In the language of coupling system of 0cneanu([3]),
the question is to determine the flat part of a connection. In [1], we found
a necessary and sufficient for a certain class of connections from orbifold
construct ion ([4]) to be flat. In this paper, we will determine the flat part
of those non-flat connections. The exact meaning of this will be explained
in Section 1. It turns out that the subfactor constructed from those non-
flat connections is the same as a sufactor from a flat orbifold construction,
where one does orbifold with respect to a subgroup of the original abelian
group. (See the theorem of Section 2.) The paper is organized as follows: In
Section 1 we recalled the part of [1] we need as well as fixing the notations.
In Section 2 we proved the main result. This paper is a continuation of [1].

1. Orbifold Constructions in subfactors.

The material of this section is contained in Section 2 of [1] and Section 4 of
[4]. Let G be a connected, simply connected, compact simple lie group with
nontrivial center, i.e. G = SU{N),S0(2N + l),SO(2N),SP{2N),E6,E7.
Let Z be a nontrivial subgroup of the center Z(G) of G. Let φ be a finite di-
mensional representation of G. K E N is a fixed integer (level). In [5], a cou-
pling system associated to φ is constructed, denoted by {gφ(K), hφ(K),B, τ).
Here gφ{K) is the principal graph constructed out of the fusion graph of
φ,hφ(K) is its dual. If K is such that Z(0) G ge

φ

ven Π he

φ

υen, since the connec-
tion is invariant under the action of the central element (see 2.12 of [1]), one
can apply orbifold method with respect to Z to this coupling system. To get

299
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a better picture of the orbifold construction, let us take a concrete example,
namely, let us describe the orbifold construction of the WenzΓs subfactor
as in [4]. It corresponds to the case G — SU(N), φ is the fundamental
representation of SU(N), Z is the cyclic group ZN and N\K. Let

where the Λ '̂s are the N —1 weights of the fundamental representations and
n = k + N. For fixed N, we define An as follows. The vertices of An are given
by elements of P £ + and its oriented edges are given by N vectors β{ defined
by βι = Λjjβi = Λj — Λj_!,i = 1, ...,N — l,eN = — Λjv-i We define an action

of the cyclic group ZJV as follows. We set Ao = *, and label the other end
vertices of the graph An by ^ = Ao + (n — N)eu A2 — Aλ + (n — iV)e2, •••,
T4JV-I = A/v-2 + (n — N)ejsr-i. Define a rotation symmetry p of the graph
by p(Aj + Y^kCk^k) — Aj+ι 4- ZlfcC^e^+i, where the indices are in Z/NZ and
Ck G C. Note that ρN = id. The connection VF(see [3]) which is used to
embed a small algebra into a big one, is invariant under this action. The
vertices of An can be colored by N colors in Z/NZ = 0,1,..., N — 1 so that
the starting vertex has color 0 and each oriented edges goes from a color k
to a color k+1, k G Z/NZ. A™ is A subgraph which has vertices of colors r
and r + l , r G ZN. Let

O o , o (- ^ 0 , 1 ^- ^ 0 , 2 ••• *" ^ 0 , c o

n n n n
1,0 ^- ^ 1 , 1 ^- ^ 1 , 2 ••• ^ ^ l , o o

n n n n
C2,o C C/2,1 C C2,2 ••• ^ C2,oo

n n n n

be the double sequences constructed as in [4]. Since the connection is invari-
ant under the action of the center one can apply p to each Cj>m as a *-algebra
isomorphism and it is compatible with the inclusions of these algebras. Set
Dm,n to be the fixed point algebra C m > n of under p. We get another dou-
ble string algebras simply replacing Dm,n by C m > n . The double sequences
constructed here are a little different from that of [3]. The source of the
string is allowed to be any of the Aj j=0,l,2...N-l, where in [3] the source is
always Ao. However, the subfactor C0,oo C ClίOO is the same as the WezΓs
subfactor which is the subfactor constructed from similar double sequences
but restricts the source to be Ao. This is also clearly explained in [4], The
reason is the so-called relative Mcduίf properties of subfactors constructed
out of the commuting squares. If one takes the projection p corresponding
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to Ao, since p G C0,oo? the relative Mcduίf property implies C0,oo C CΊ>OO is
isomorphic to pCo,ooP C pCιiOOp which is the standard description of WenzΓs
subfactor in [3]. Set D Z o o to be the weak closure of UmA,m in its GNS-
representation with respect to the trace. The subfactor D0oo C DιiOO is
called orbifold subfactors. By [3], the question of determining the flat part
of the orbifold subfactor including finding those σ' G A,o such that they
commute with all σ G DQ^m. Since by the main result of [1], the connection
is flat when N is odd, but when N is even, the connection is flat iff 2N\K.
When the connection is flat, the higher relative commutants are simply given
by sequences of algebras .Dm,o> τn>0. If the connection is not flat, the higher
relative commutants are strictly smaller subalgebras of Dmj0,m > 0 which
commute with all σ G A),m. Hence our question is to determine the higher
relative commutants of the orbifold subfactor D0oo C DljOO in the case N is
a divisor of K but 2N is not and N is even. Since the orbifold connection in
this case is not flat, the orbifold subfactor is called a non-flat orbifold and
the question is to determine the higher relative commutants of this orbifold
subfactor. This is exactly the meaning of the title of this paper.

2. The higher relative commutants.

Now we are ready to compute the higher relative commutants. For the sake
of completeness, let us first state the theorem in its general form. Let G
be a connected, simply connected, compact simple lie group with nontriv-
ial center, i.e. G = SU{N),SO{2N + 1),SO{2N),SP{2N),E6,E7. Let Z
be a nontrivial subgroup of the center Z(G) of G. Let θz denote the set
of fundamental weights of G associated to Z, and (,) the killing form of
G. In [5], a coupling system associated to φ is constructed, denoted by
(gφ(K),hφ(K),B,τ). Here gφ(K) is the principal graph constructed out of
the fusion graph of φ,hφ(K) is its dual. If K is such that Z(0) G gφ

venΠhe

φ

ven,
since the connection is invariant under the action of the central element (see
2.12 of [1]), one can apply orbifold method with respect to Z to this coupling
system. Let φ be a finite dimensional representation of G. K G N is a fixed
integer (level).

Theorem. Let K,Z be as before. Let M be the least natural number such
that: l/2M(θz,θz) G Z,VΘZ G θz and let N be the least nature number such
that M\N x K. Let ZN be the abelian subgroup of Z generated zN for all
z G Z. Then the orbifold subfactor constructed out of the action of Z is the
same as the orbifold subfactor constructed out of the action of ZN which is
necessarily flat (hence the flat part is easy to determine).

As in Section 1, we are going to use orbifold subfactor of Wenzl's subfactor
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to explain and prove the theorem. The proof of the general case is exactly
the same except possible change of notations.

Let us assume we are given the conditions at the end of Section 1, namely,
N is a divisor of K but 2N is not and N is even. As explained in Section 1,
this is the only interesting case. In this case, the theorem says the orbifold
subfactor with respect to the cyclic group ZN is the same as new orbifold
subfactor with respect to the subgroup ZN/2 of Z^ which is flat by [1].

Let us first describe this new subfactor in a similar double sequences as
that of Section 1.

Let N = 2NU p the action of ZN as in Section 1. Then the ZN/2 action is
given by p2m

1 m=0,l... Nχ The orbit of distinguished vertex Ao under the
action of p 2 m , m=0,l... Nι are vertices A2rn, m=0,l... Nι Let

Co,o C Cô i C Co,2 ••• —^ Co,oo

n n n n
1 , 0 < - ^ 1 , 1 < - ^ 1 , 2 ••• * ^ l , o o

n n n n
(_̂ o o > -̂̂ 2 1 ^ -̂̂ 2 2 •*• ' ^^2 oo

n n n n

be the double sequences as in Section 1, except that the sources of the strings
are restricted to the vertices A2m, m=0,l... JVi. Denote by Z?0,oo C Di,oo
the orbifold subfactor under the action of p2. Since the orbifold connection
is flat, the higher relative commutants D'o ^ Π £>k,oo is given by Dk,o > k > 0.
Take paths α', β' with the same length on the graph ΛQ without orientation
and with s(a') = Λo, s(βf) = Aj, j is even, r(α') = r(β') = Co, where Co

is some vertex of A%. Let σ' = Σa^i^WifPψ))- N o t e t h a t σ " s o f

the above form with the length k span D'k 0 k > 0. Similarly another family

of higher relative commutants D[ ^ Π Dk,oo > k > 1, are spaned by similar
σns, except that one takes paths on the graph .A^-i which is dual to AQ.
We will show in the following that the higher relative commutants of the
orbifold subfactor with respect to the cyclic group Z^ are isomorphic to
that of l)o,oo C D\,oo which is of finite depth. Hence they are isomorphic
subfactors, thus completing the proof of the theorem.

Let us first determine D'0oo Π Dkoo. Since the connection is not flat, the
higher relative commutants are strictly smaller subalgebras of Dk,o, k = 0,1...
which commute with all σ G DOfk,k — 0,1.... Let α, β be paths with
the same length on Λn and with s(a) = Ao, s(β) = A,, r(a) = r(β) =
Bo, where Bo is some vertex of Λn. Set σ = Σ?Jo

ι(ρι{a), pι(β)). Note
that σ's of the above form span DOyk,k = 0,1.... Similarly take paths α',
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β' with the same length on the graph AQ without orientation and with
5(0:') = Ao, s(β') — Aj, r(a') = r(β') — Co, where C o is some vertex of
Aζ. Let σ'{a',β') = Σz^o V ( α ' ) , p W ) A general element σ' e Dkt0 may
be expressed as: σ' = Σ\a>\=\β>\=kλa' ,β> <?'(&', β') 1 where λα/^/'s are complex
numbers. We have to study under what conditions we get σσ' — σ'σ. As in
[4], it is equivalent to the following :

Where {a,β) are fixed paths on Λn,l £ ZN and

At > •

Xa'\β",η,η',l =

i 1
1

Γ i

j+fc
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We need the following Orthogonality lemma to simplyfy the above expres-
sions.

Orthogonality Lemma. Let xa>>β'\η,η>,ya,β,r),η' be as above. If(a\β") is
different from (a1, βι), Then:

Proof. We will use the notations from [5]. The lemma follows from the topo-

logical invariance. In fact, up to nozero constants, Σηη

ιXa",β"Mrfya',P',v,v'

is equal to the value of the following diagram (see [5] or [1]):

0

a"

':

β"

•
pi {a')

As in [5], the value of the diagram is invariant under regular isotopy, and

equal to the value of the diagram:

p>(0)

pk(Q)

a

β"
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If (α",/?") is different from (α', /?'), the coloring of the above diagram is not
admissible, hence the value is 0. The other two identities follow by the same
kind of argument. Q.E.D. D

Proof of the theorem. By this lemma, (1) can be simplified to be:

By Lemma 2.20 of [1],

\xoc"β"^η' ~ ya",β",η,ηΊ
2 = 2 ~ 2Re exp(2πikjhΛl).

Hence (1) is equvialent to : exp(2πikjhA1) = 1, for all j G Z^ and for all

(a',/?") such that |λα//^//| is not zero, Where KAX denotes the conformal

weight of A1(see [5]). Thus k is even.

To summarize, we have shown that D'o)OOΠl?m>oo is spaned by: σ'(α', β') =

ΣjIό^p'ίαOjP'ίβ'))? Here α', /?' are paths with the same length m on the

graph ΛQ and the source of β' is Ak with k even and the source of α' is

Ao. These algebras are clearly isomorphic to D'θΌO Π ΰ m ) O O as described

in the beginning of this section. In fact, let p be the projection in C0,oo

corresponding to those even vertices of the graph Λ^ then p commutes with

algebras D'0oo Π DmiOO and px ~ 0,x e D0jOO Π Dmoo iff x=0. Moreover,

p(D'0tOO Π DmtOO) = D'0tOO Π β m ι O o .

Similarly, one can show that D'lQQ Π ί?m,oo is isomorphic to -DijOO Π Dm,oo >
where m > 1. Q.E.D. ' D

We end this section with an example and a remark.

Example. Let G = SU(2), K=41+2, φ the spin 1/2 representation. Z =

Z2. We know that the orbifold is not flat. The theorem says the orbifold

subfactor is the same as the original subfactor, that is, the flat part of Dn

for odd n is A^n-s) subfactor.

Remark. Morally speaking, if one starts with G/Z , the question of finding
the flat part reduces G/Z to G/ZN which is the correct gauge group as far
as the Chern-Simons gauge theory is concerned([6]).
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