Vol. 172, No. 2, 1996

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Sobolev spaces on Lipschitz curves

María Cristina Pereyra

Vol. 172 (1996), No. 2, 553–589
Abstract

We study Sobolev spaces on Lipschitz graphs Γ, by means of a square function of a geometric second difference. Given a function in the Sobolev space W1,p(Γ) we show that the geometric square function is also in Lp(Γ). For p = 2 we prove a dyadic analogue of this result, and a partial converse.

Mathematical Subject Classification 2000
Primary: 42B25
Secondary: 46E35
Milestones
Received: 10 September 1993
Revised: 17 July 1995
Published: 1 February 1996
Authors
María Cristina Pereyra