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SOBOLEV SPACES ON LIPSCHITZ CURVES

MARIA CRISTINA PEREYRA

‘We study Sobolev spaces on Lipschitz graphs I', by means
of a square function of a geometric second difference. Given
a function in the Sobolev space W!P(I') we show that the
geometric square function is also in LP(I"). For p = 2 we prove
a dyadic analogue of this result, and a partial converse.

1. Introduction.

The Sobolev space on the real line, W?(R), is the set of functions in L?(R)
whose distributional derivatives are also functions in L?(R).

There are several characterizations of these spaces. In the early 80’s
Dorronsoro (see [Do]) gave a mean oscillation characterization of poten-
tial spaces, extending earlier results due to R.S. Stritchartz. In the late 80’s,
Semmes showed that the Sobolev spaces W'?(M) have many of the proper-
ties of Wh?(R") when M is a chord-arc surface (see [Se]). Dorronsoro and
Semmes used square functions closely related to the square functions we use.

There is a characterization, due to E. Stein (see [St1] Ch.V) that involves
the second differences of the given function. More precisely, let

Auf(z) = f(z+1) + f(z —t) - 2f(2),
and define the square function
oo dt\/?
s1) = ([ 18t @Pg)
Then the following result is true (see [St1]):

Theorem A [Stein]. For 1 <p < oo, f € W'?(R) if and only if f, Sf €
L?(R). Moreover |Sfl, ~ |f'],-

For p = 2 the proof of this theorem is just an application of Plancherel’s
theorem. In this case |Sf|. = |f'].-

It is important for applications (eg. boundary problems for PDE’s) to
obtain similar results when R is replaced by a curve I'. Smooth curves can
be treated reducing to the case I' = R after a suitable change of variables.
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Difficulties appear when the curve is merely Lipschitz, as it often happens
in harmonic analysis (eg. boundedness of the Cauchy integral on Lipschitz
curves, see [Ch], [M], [CJS]).

Let I' be a Lipschitz graph:

F'={z=z+iA(z): Ao < 0}.
We define the Sobolev space on the curve just pulling back to the line,
(1) W) ={feL’T): f(A) e WP(R), A(z)==z+iA(z)}.

We introduce a geometric second difference, to do it we must restrict our
attention to Lipschitz graphs with Lipschitz constant less than one. From
now on I is always a Lipschitz graph, with ||A'||.c < 1. For any z € T, let

(2) Auf(z) = f(zF) + f(z7) = 2/ (2),

where 2z are the unique points on T at distance ¢ from z. It is clear that one
point lies on the right and the other on the left of z, denoted respectively
2} and z;. Let us denote the corresponding z-coordinates z, =i, see figure
below,

We define the geometric square function, Sf, by analogy with Stein’s
square function Sf; just replacing the second difference by the geometric
one,

N oo _ 2dt 1/2
310 = ([ 1Bs@PE) . zer.
We can prove the following result,

Theorem 1. Let ' be a Lipschitz graph with Lipschitz constant less than
one. Assume f € WtP(T') then Sf € LP(T') for 1 < p < co. Moreover

1Sflzery < CIf Loy
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We can prove dyadic analogues of Theorem 1, and a partial converse. We
assume the reader is familiar with the dyadic intervals on the line, and with
the Haar basis (see definitions in Section 3).

Let us consider the case I' = R.

Denote by D the collection of dyadic intervals on the line. Let x; denote
the characteristic function of the interval [.

Define the dyadic square function by:

) 1/2
(3) Saf (x <Z 'Al;(;' ) :

1€D

where A;f denotes the second difference of f associated to the interval
I =[z;,z}] centered at z;, namely:

Arf = flaf) + flag) = 2f (z1).

The square function S, is a dyadic analogue of the square function defined
in the begining of the paper.

In this case, the analogue of Theorem 1 is very simple. The main ob-
servation being that the second difference A;f of an absolutely continuous
function f is, up to a scaling factor, the Haar coefficient of the derivative f’
corresponding to the interval I. More precisely:

AIf = <fla h1>|1‘1/21

where the Haar function h; is the step function supported on I that takes
the values £1/|I]*/2 on the right and left halves of I, respectively.

The Haar functions indexed on D form a basis of L?>(R). Hence if [ €
Wh2(R), an application of Plancherel’s Theorem for orthonormal systems
implies:
|ALfI?

1l

£ =S 102 =Y

1€D 1€D

The right hand side coincides with the L? norm of the dyadic square function,
hence:

Fe W R) = [Safllz = [1£]l2-
We also get a partial converse.
Define the dyadic derivative, Df, of f € L*>(R), as the L? limit (when it
exists) of the sequence:

Dof(z) = i@%ﬂi@ z€l€D,;
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where I = [z}, z]], and D, denotes the n**-generation of dyadic intervals.

In this case if f and S;f are in L?(R), then the limit exists, so Df
is in L?*(R). Moreover, ||Df|l = ||Saf|ls- This is another application of
Plancherel’s Theorem, once we observe that:

—y At Azf
&

We are ready now to describe the results for Lipschitz curves. We will
replace the dyadic square function S, by a geometric dyadic square function
Sy.

We construct a family F of intervals related to the geometry of the prob-
lem. F is what we call a reqular dyadic grid. It preserves the nesting prop-
erties of the standard dyadics, but the scaling is more involved. (For the
precise definitions see Section 3.2.)

Let T' be a Lipschitz graph with Lipschitz constant less than one. For a
function f on I" define the geometric second difference corresponding to the
interval I by: 3

Arf = f(zf) + f(z1) = 2f (21);
where zf are the points on the curve I' whose projections coincide with the
endpoints, z¥ of I. And z; is the unique point in T' which is equidistant to

both zF.
Define now the geometric dyadic square function:

AP v

where 7(z) is the X-coordinate of z.
We can then prove an analogue of Theorem 1 (for p = 2):

Theorem 1'. Let I' be a Lipschitz graph with Lipschitz constant smaller
than one. Assume f € WY2(T') then Syf € L*(T"). Moreover

NSafllz < ClF N2

We also get a partial converse, which is the main result of this paper.
Define the dyadic derivative of f associated to the grid F, Dxf, for f €
L%(T"), as the limit in L2(T") (when it exists) of the sequence:

Do) = LI syeres,

where F,, is the n*h-generation of F (see Section 3.2).



SOBOLEV SPACES ON LIPSCHITZ CURVES 557

Theorem 2. Let I' be a Lipschitz graph with Lipschitz constant smaller than
one. Assume both f and Suf are in L*(T'). Then Dxf ezists as a limit in
L*(T"). Moreover, ||Dxflls < C||S4ll2-

It should be clear that if we know a priori that f € W'?(T'), then f' =
Dxf, and hence [|f'lls < C||Saf2-

To prove these theorems we try to mimic the argument described in the
case I' = R. We build a Haar basis adjusted to the Lipschitz curve I’
and supported on the grid F which itself is related to the geometry of the
problem. This can be done without great difficulty, we will not get a basis but
a frame, exactly as in {CJS] for the study of Cauchy integrals on Lipschitz
curves.

In this setting the Haar coefficients of the derivative will not be exact
multiples of A, f- There will be an error that can be controlled by the
geometry of the problem.

The proof of Theorem 2 is not as straightforward as in the case of the
line. Surprisingly enough it is here where operators like the ones studied in
[P] appeared first. We will use the techniques developed there. For more
details see the introduction to the third section.

The norm ||Syf||2 = 32 IeF 1[3.'11{ L can be regarded as a Riemann sum for

[ [ 1A @R Gz =157
RJO

In the case I' = R we could use Theorem 2 to prove the full converse of Stein’s
theorem, averaging over translations and dilations of the dyadic intervals.
In the general case it is not clear how to do the averaging, since we no longer
have the group structure of the line available. (See [GJ] for examples on
how to go from dyadic to continuous situations.)

The paper is organized as follows: We will prove Theorem 1 in the next
section; we will use a result of Dorronsoro and some Carleson type estimates.
This proof, suggested by the referee, greatly simplifies the original proof of
the author. In Section 3 we will prove Theorems 1’ and 2, together with all
the discrete ingredients (see the introduction to Section 3 for more details).

Throughout this paper C is a constant that might change from line to
line. We will use the notation a ~ b, for positive numbers a and b, whenever
there exists a positive and finite constant C such that C~'b < a < Cb; we
will say, in that case, that a and b are comparable.

These results are part of my PhD thesis. I would like to thank my advisor
P.W. Jones for suggesting the problem and guiding me through the comple-
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tion of this work. I extend my warmest thanks to R.R. Coifman and Stephen
Semmes for very helpful conversations. Finally, I am grateful to the referee
who carefully read this paper, and made a lot of valuable suggestions.

2. Proof of Theorem 1.

We are going to prove in this section the necessity of the boundedness of the
geometric square function Sf for a function f to be in the Sobolev space of
a Lipschitz curve. The idea is to control the geometric square function by
Stein’s square function. There will be some left overs that can be controlled
in turn by Dorronsoro’s mixed norm estimate on the approximation of these
functions by affine functions. Further errors can be handled by Carleson-type
estimates given by the geometry of the curve.

Let us state some geometric lemmas that we will prove at the end of this
section.

Recall that i are the projections onto the real line of the points on the
curve I' which are at distance ¢ from a given point z € I" whose projection
is .

Lemma 1. Let u} (¢) := of —z := t}, for t > 0; then u} > 0 is an increasing
homeomorphism of t. Moreover it is uniformly bilipschitz on x, i.e.

+
¢~ dt

<C Vaz,t.

Similarly for u;(t) =z —z; =t >0.

Let us define the following quantities, as they are defined by Peter Jones
[J] in the Traveling Salesman Problem.
For a point z € K, K a subset of the plane; and ¢ > 0, let

B(z,t) =inf  sup t~! dist(w, L)
weK,|lw—z|<2t

where L is any line in the plane. This quantity measures how close is the
set K ({w: |w — z| < 2t} to a line.

In our case K =T and, since it is a graph, we will talk indistinctly about
z € I or its projection = € R.

In general t} # ¢;. This assymetry is what causes most of the problems.
Since the curve is flat enough, we can control the difference

Lemma 2. |t} —¢;| < CB(z,t)t.

We will prove Lemmata 1 and 2 at the end.
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Recall that p is a Carleson measure on the upper half plane if
/du(m,t) <clI] VICR
Ji
where I is any interval of the line and I is the cube lifted above I.
Finally we can control the #’s in the sense that

Lemma 3 (P. Jones’ Geometric Lemma). The measure given by

du(a 1) = F(o,1) S o

: 2
is a Carleson measure on the upper half plane R .

For a proof of this result see [J] and also [Do].
We will need the following facts concerning Carleson measures:

Carleson’s Lemma. Given a Carleson measure u in the upper half plane,
and a positive function F(z,t) then

// :z:t)”d,ua:t<0/ NPdz, 0<p<oo

where F*(z) = supt>01|y_m,<tF(y,t).

For a proof of this lemma and the next see [St2], Corollary 2.4 in Ch.II.

As an immediate consequence of Carleson’s Lemma and the Hardy-Little-
wood Maximal Theorem we conclude that for the case F(xz,t) = |m,f|,
where m, ,f = fIH f(y)dy the following inequality is true:

Lemma 4. Given a Carleson measure i in the upper half plane, and f €
L*(R) for 1 < p < oo, then:

./R /Ooo |mg o f1Pdu(z,t) < C/R \f (2)|Pda.

We can deduce from this lemma the following mixed norm estimate; here
the 0’s, are the ones given by the geometry, which in particular are bounded
by a constant.

Lemma 5. Given the Carleson measure in the upper half plane,

. dt
du(xa f) = /62 ("I:v t)7d$

and f € LP(R) for 1 < p < oo, then:

/R (/OOO }mz,tf’2ﬁ2(x,t)%>p/ dz < c/ 2)Pde.
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We will prove this result at the end of the section.
We are going to use the following result due to Dorronsoro:

Theorem [Dorronsoro]. Let f € W'P(R) be given, with 1 < p < co. Then
for each x € R and t > 0 there is an affine function a,, with the following
properties:

z+t

@ @<t [ wldy

z—t

2 p/2
“ dt o\l
(5) /R ( /O (t S | () —am,t(y)l> 7) dr < C /R If(z)|Pdz.

If we drop the condition (4) this is a special case of Theorem 6 (i) in [Do).
The affine function a, ; used by Dorronsoro is the unique one such that:

-+t
/ t [f(¥) — ase(W)ly*dy =0, k=0,1.
It can be computed explicitly. It is not hard to see that:

C

ot d < 5[4 [ 1)~ meuflay]

The following inequality is true for absolutely continuous functions:

1

z+t T+t
[t -masiay<c [ 11wy

(it is a calculus exercise to check it). Since functions f € W'?(R) are
absolutely continuous after modifications on a set of measure zero, we see
that condition (4) holds in Dorronsoro’s Theorem.

Proof of Theorem 1. We want to bound with a constant times the L? norm
of the derivative of a function f € W?(R) the following expression

(® ( ([ + 1) - 25r ) d:z) "

Recall that zf = x + t}. To get a symmetric second difference, add and
subtract f(z — t}), we can bound (6) by Minkowski’s inequality, up to a
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constant by:

" </R ([T1r@ s+ 5w - ) —20@p%) " da:) "

' </R (/m [fle—t;) = flz - t:)f%)p/z dz)l/p.

The first summand can be reduced to the euclidean case. Let us do the
change of variable s = tJ = u}(¢); by Lemma 1, s ~ ¢, ds ~ dt. We can
bound the first term by:

C (/R (/000 |f(z+s)+ f(z—s) —2f($)|2§)p/2dw>1/p,

which is bounded by C||f’||, by Theorem A.

We are left with the second integral in (7). This time we will add and
subtract a,:(z —t;) and a, ;(z —tJ); where a,; is the affine function given
in Dorronsoro’s theorem. Certainly:

1f(z —t5) — ag(z — t7)] < S |7 (y) — ase(w)].

We can then bound (7) by a constant times:

2 p/2
(8) /R ( /0 N (t‘l |,,S_'ilfgt|f (y) — az,t(y)|> %) dz
+ </R (/000 laz (z —1;) — @z, (z — t:)|2%>p/2 da:)

The first term is bounded by C||f’||, by Dorronsoro’s theorem. The second
can be rewritten as:

/p
'S} , B dt p/2 !
(/R(/ L Plt} 1 P ) dx> ;

and using Dorronsoro’s estimate (4) and Lemma 2, we can bound this by

2 p/2 1/p
(/R (/m 50 ﬁ?(at)?) / dx) ;

1/p

1/p
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which in turn is bounded by Carleson’s mixed norm lemma (Lemma 5), and
P. Jones geometric lemma (Lemma 3) by C||f’|l,-

This finishes the proof of Theorem 1 except for the geometric lemmas,
and Carleson’s mixed norm lemma. O

Proof of Lemma 1. We want to prove that u}(t) = ¢t = zf — z is an

increasing bilipschitz homeomorphism. Clearly u; is increasing (because I'
is a Lipschitz graph with Lipschitz constant less than one). The inverse of
this mapping is given by the distance between the images on the curve I' of
and y = z+s, namely (u})~!(s) = |A(z+s)— A(z)|, where A is the Lipschitz
map defining " and A(y) = y+iA(y). By hypothesis, |A(y+h) — A(y)| < nh
where n < 1.

Showing that u} is bilipschitz is equivalent to show that its inverse is
bilipschitz. To show this it is enough to show that there exists a constant C
such that Vz, s >0, h >0

1 _ @) (s h) — (@) (s)
c- h

We can assume without loss of generality that z = A(z) = 0. We want to
bound (|A(y + k)| — |A(y)|)/h, from above and below.

The upper bound is trivial by the triangle inequality and by the fact that
the map A is bilipschitz, since

h<|A(y+h) — A@y)] = |h +i(A(y + b) — A(y))] < BT+ 2.

<C.

Note that for all z and y,
|A(2)]? = |A@)* = 2° = * + (A4%(2) — A*(y)).
It is not hard to check that for every 0 <y < z
A (2) = A%(y) = —n*(2* — ),

therefore |~./1(z)|2 — AW > (1 - n?)(2% — ).
Since |A(z)| < |z|v/1 + 72, then

Ayl 1
[A(2)] +1A@w)| ~ VI+0®

hence, choosing z =y + h, h > 0 we get that

Ay +h) - 1Aw)| . 1-7°
ho AV
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which is certainly larger than zero, since n < 1.
This finishes the proof of the lemma. ]

Proof of Lemma 2. We want to show that there exists a constant C' inde-
pendent of z and ¢ such that

Ity =t < Ctp(z,1),
where the s were defined for z = A(z), by

B(z,t) =inf  sup t~* dist(w, L),
L wer, lw—z|<2t
and L is any line in the plane.

Notice that the height h of the isosceles triangle drawn through the images
on the curve of z, ;{7 = z + ¢t and z; = z — ¢, (which we will denote
respectively by z, z; and 2;) is certainly bounded by t8(z, t).

Therefore it is enough to show that |tf —t | < Ch.

Let o = a(z,t) be the common angle in the isosceles triangle. Let 6 =
6(z,t) be the angle between the horizontal and the chord through z; and z; .
We can assume without loss of generality that § > 0 and that argz > argz; .
Then high school geometry shows that

t; =tcos(a+6), h=tsing,

+
xt _.'L't ~ - —
Mo mg, = (e -

€T
Therefore t; = &, — hsinf. and t} = Z, + hsin6.
Hence

tcosacos O =

[tF —t.| = 2hsinf < 2h.

We can have a better bound if we notice that sinf < 1—4—275

This finishes the proof of Lemma 2.
L1

Proof of Lemma 5. The case p = 2 is an immediate consequence of Lemma 4.
We will get the inequality for 1 < p < 2 using the atomic decomposition of
the tent spaces T2 for ¢ < 1 (see [CMS)]), as suggested by the referee. For
2 < p < oo we will get the result interpolating between a mixed L? norm
space and the space of Carleson measures.

Case 1 < p < 2: Denote by I'(z) the standard cone whose vertex is z, i.e.,
I'(z) = {(y,t) : |y — z| < t}. For a function G on R?, define A, (G)(z) =

SUP(y yyer(z) |G (Y5 )]
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The tent space T2 consists of exactly those functions G' continuous in R2+,
so that A, (G) € LY(R), and for which G(z,t) has non-tangential limits at
the boundary almost everywhere. We define ||Gl|rs, = || 4o (G)ll-

A T%-atom is a function a(z,t) supported on a tent I, and such that
SUp(, ) |a(z,t)| < 1/|I|/%; where I is an interval centered at z;, and I =
{(z,t) e R2 : z € I,t < |I|/2 — |z — z(|}. Clearly |la|lrz, < 1. The atomic
decomposition for T2 when ¢ < 1 given in Proposition 5 on p. 326 of
[CMS], says that if G € T2, ¢ < 1, then G(z,t) = 3 \jaj(z,t), where a;
are T2 -atoms. Moreover ) |);|? < ||G’|| .

Let f € LP(R) be given and set =

F(z,t) = |mg . f|.

Then F lies in the tent space T of [CMS] with ¢ = p/2 < 1. Moreover, as

an application of the Hardy-Littlewood Theorem, ||F ”;{32 < Cliflls.

It is simple to check for T?/2-atoms, a(z,t), that the quantity:

(9) L ([ a0 ‘”)"/2 dz,

is bounded by a constant C independent of the atom a. More precisely, using
the support and size properties of the atom we see that (9) is bounded by:

1 |11/2 , dt p/2 1 111/2 , di p/2 .
m/I (/0 B (-’B,t)‘i‘) dz < (m/;/o B (.’I:,t)—-t—-d:z;> <C;

the first inequality by the Cauchy-Schwartz inequality with p’ = 2/p > 1,
the last one by P. Jones’ geometric lemma.

Finally, writing an atomic decomposition for F(z,t) = 3 \;a;(z,t), using
the above estimate for atoms, and the fact that p/2 < 1, we conclude that

) dit\?/?
S ([ Fanp@o®)” < T ox < cipig. < i

Case 2 < p < oo: Let us introduce the mixed norm spaces, 1 < p < oo

L = {f {RZ o R; | f 2 = ( o (s P‘”)m dz)l/p < oo} -

Define the Carleson measure space by:

\ 1 L AN
CM = g:R+—)R;||g||CM=sup—/ / 9 (z,t)— dx < o0 p.
R M1 /1 \Jo t
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These are Banach spaces with the corresponding norms. We can interpo-
late between mixed norm spaces and Carleson measure space. In the sense
that, given a linear operator T bounded simultaneously from L? into L??2,
and from L* into CM, it is also bounded from L? into L*?, for 2 < p < oo.
See [CMS] and [AM].

Define the linear operator T for integrable functions by:

Tf(Iat) = ﬂ(mat)mz,tf-

T is bounded from L? into L?*2, it only remains to check that is bounded
from L*™ into CM. We want to show that:

17 2

Certainly |m,.f| < ||fll; substituting it into the integral, applying the
Cauchy-Schwartz inequality, and using once more P. Jones’ geometric lemma
we get the desired inequality.

As it was pointed out by the referee, the result for p > 2 is related to
Remark b on p. 320 of [CMS]. This remark addresses essentially the same
point, but with integrals in ¢ replaced by integrals over cones.

This finishes the proof of the mixed norm Carleson’s lemma. (|

3. Dyadic Version.

3.1. Introduction. Let T" be a Lipschitz graph, I' = {z = z + iA(z) :
JA" oo < 00}. We will assume that ||A'|| < 1, as before.
When I' = R it is not difficult to see that

fe W (R) < f,S5f € L*(R).

As we pointed out in the introduction of the paper, in this case this result
can be regarded as a continuous version of Plancherel’s theorem for the Haar
basis. The key observation being that the Haar coefficients of the derivative
f' of an absolutely continuous function f are, up to a scaling factor, the
second difference of f at the corresponding interval.

We will take advantage of this natural dyadic interpretation in order to
develop a discrete approach to the problem.

In Section 3.2 we will introduce the regular dyadic grids (substitutes for
an ordinary dyadic grid). We will construct some Haar systems associated
to these grids and to a nice complex measure do (by nice we mean absolutely
continuous with respect to Lebesgue measure, and such that |o(I)| ~ |I| for
all intervals I in the grid, where o(I) = [, do).
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In Section 3.3 we will construct a regular dyadic grid F adjusted to the
geometry of the problem and the corresponding Haar system {h%};c, asso-
ciated to the measure do = (1 + 1A'(z))dz (this measure is certainly nice).
We will show that this particular Haar system is a frame, i.e. it behaves
almost like an orthonormal basis (see [CJS].) The deviation from the stan-
dard basis is controlled by a geometric quantity estimated in a Geometric
Lemma (dyadic version of P. Jones Geometric Lemma 3, which in this case
is very easy to prove; see [J]), and a discrete version of Carleson’s Lemma.

Define the geometric second difference associated to the interval I =
(z7,zF) by i

Arf = £) + (o) - 26 (a1),

where 2f = zf + iA(z}), and z; € T and is equidistant to zf.
Define the geometric dyadic square function

1/2
Sif (2 (Z | |II|];! w(z))) ;

IeF

where 7(2) is the X-coordinate of z.
We can prove the dyadic analogue of Theorem 1, for p = 2,

Theorem 1’. Given f € WH2(T') then

- A;fl2 ,
18 ey = 320 < o2,

e M

If we do not know a priori that f € W2(T') we can still show a partial
converse. Let F,, denotes the nth generation of the grid F. Define the dyadic
derivative of f associated to the grid F, Dxf, as the limit in L*(T"), when it
exists, of the sequence:

Dy f(z) = w; n(z) € I € Fi(J).

Theorem 2. Assume that f € L*(T') and that

IAsz
1|

1Safll3emy =D,

IeF

Then Dxf exists and is in L*>(T"). Moreover

ID# 2@y < CNSaf 32ay-
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It will be enough to prove local versions of these theorems. By this we
mean to replace R by an interval J and prove the corresponding statements
uniformly on J.

In Section 3.4 we will prove a local version of Theorem 1’. To do this
we will use the orthogonality of the Haar system constructed and Carleson’s
Lemma for regular dyadic grids.

In Section 3.5 we will prove a local version of Theorem 2. We will reduce
the problem to the boundedness of an operator, P, ,, that formally looks like
the operator defined in [P] by,

Pyg = ZOAng | Hl(l + A;b);
n= Jj=n+

where g is a square integrable function, b comes from the geometry and is
in the space of bounded mean oscillation functions (BMO), and A, f is the
projection onto the subspace generated by the Haar functions corresponding
to the n'* generation of the dyadics.

In Section 3.6 the operator P, , is analized. The strategy is the same
as in [P]. We can rewrite the paraseries P, in terms of the weight w =
[172,(1 + Ajb) (see p. 581). The necessary and sufficient conditions for
the boundedness of the operator P, in L? are described in [P], and they
reduce to a reverse Holder condition on the weight. In our case the grid will
be the regular dyadic grid F; the Haar functions will not be the standard
ones either. Nevertheless, we can mimic what we did in [P]. As we could
expect, the boundedness of the operator will depend upon the boundedness
of a weighted maximal operator, and this will be so provided the weight w
satisfies a Reverse Holder condition on the grid. The proof in this case is
simpler than in [P]; after a minute of reflexion we see that both the weight
and the grid come from the geometry and some of the difficulties are cancelled
out.

3.2. Dyadic grids and Haar functions. Consider a fix interval J. A
dyadic grid associated to J is a collection of nested intervals F(J) such
that F(J) = Usr, Fn(J). The generations F, are defined inductively by
For1(J) = Urer, oy F1(I), and given any interval I, its first generation
Fi(I) = {I,,I,} is a partition of I into two disjoint intervals that we will call
the children of I.

A regular dyadic grid associated to J is a dyadic grid such that there is a
constant 3 < C < 1, such that given any interval I € F(J) and I a child of

I then 5 B
Q-0 <1 < el
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IfC = % we get the ordinary dyadic decomposition of J. In this case

given any I € F,(J), |I| =27"|J|.
If C > ; then we can only say that for any I € F,(J)

1=y < <cnld).

This implies that given any point z € J, if I,, is the unique interval in the
nt® generation that contains z then

o0
I ={z} lim |L]=0.
n=0
It also implies that intervals of a given generation are comparable, but
the comparison bounds are not independent of the generation.

We say that F is a dyadic grid on R if there exists a sequence of intervals
{Jn}n>0 such that:
(i) Jn € }—I(Jn+1)7
(ii) R =Up>oJn;
in that case F = U,,>0F(J,). The generations can be defined by:

F, = Un>0Fnsk(Jn) for k>0
BT Un>—kFntk(Jn) for k < 0.

F is a regular dyadic grid on R if there exists a constant 1/2 < C' <1
such that (1 — C)|I| < |I| < C|I|, for all I € F, I parent of I.

Given any regular dyadic grid associated to an interval J, F(J), and an
absolutely continuous measure o, such that |o(I)| ~ |I|, for all I € F(J);
there is a Haar system associated to them. More precisely for each I € F(J),
let I,., I; be the right and left children of I respectively, define

10 r = (2B (@) - L) s

and
1
(11) hg(z) = WXJ(QC),

where x; is the characteristic function of I.

Clearly each hJ is supported on I and is constant on each child. Moreover
its mean value with respect to do is zero. Therefore, if we denote by (.,.),
the bilinear operation (f, g), = [ fgdo (notice that there is no conjugation),
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the system {h{},;c(s) behaves like an orthonormal system with respect to
this pseudo inner product, i.e. (hy,h9 ), is zero if I # I', and one if I = I'.
The function h? is certainly “orthogonal” with respect to the bilinear form
(.,.)s to all the h9’s and (hZ,hJ), = 1. Let us state this result as the first
part of the next lemma.

Lemma 6. The Haar system associated to the reqular dyadic grid F and
the measure o as defined above satisfies the following properties:
e “orthonormality” with respect to the bilinear form (.,.),.

e “reconstruction formula” for functions f € L? .(J,do):

(12) fl@)= 3 (f;hf).hi(2), o—aez

IeF!(J)

where F'(J) is the grid F(J) with a second copy J, of J and we agree
that b5 := hj.

The proof of this lemma is an standard application of Lebesgue’s Differen-
tiation Theorem (see for example [P] p. 631), replacing by the corresponding
expectation and difference operators as defined next.

Define E? the ezpectation operator with respect to do, associated to the
grid, by

1

(13) Eﬂm=aﬂﬂmww)zm5ﬂuy

Define the difference operator,

(14) Arf=E; . f—-E,f.
Observe that E? f(z) = (f, h9),h3(z), and for n > 0,

(15) Arf@ = 3. (f,h7)ohi(2).

IeF.(J)

We can use Plancherel’s Theorem for orthogonal systems if the measure
do is positive (in that case we have an honest inner product); to get that

“f"iz(J,da) = Z |<f7 h?)a{z‘

IeF'(J)

In particular, if do = dx we have the standard Haar basis associated to
the grid F, that we will denote by {h;};cx. for the record, note that,

(16) o) = (D)™ (L)~ o)
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We want to deal with complex measures, and we want to say something
about the function being in ordinary L?(J). That is we would like to know
under which conditions the system {h{} ;cx.s) is a frame in L?(J). By this
we mean that we can reconstruct the functions as in (12), and we can also
recover the L% norm. More precisely, there exists a constant C > 0 such that

A & X KRG < Il SC Y 1A

IeF!(J) IeF!(J)

In [CJS] a Haar system adjusted to a Lipschitz curve is built. There the
grid is the ordinary dyadic grid and the measure involved is do = 2'(z)dz,
where 2 is the arclength parametrization. It turns out that in this case the
system is a frame.

In the next section we will construct a Haar system associated to a regular
dyadic grid F and to a measure do related to the given Lipschitz curve. We
will show that this particular system is a frame.

Carleson’s lemma is still valid in this context. A Carleson sequence with
respect to F(J) is a sequence of complex numbers {b;};c#(s) such that there
exists a constant C' (Carleson’s constant) such that

> bl <CIL|, VI, € F(J).

IeF(l,)

Lemma 7 (Carleson’s Lemma). Given {br} a Carleson sequence with respect
to F(J) and any sequence of positive numbers {1} then

> Ml <€ [ X(@)de,
J

IeF(J)
where C is the Carleson constant of the {b;} and \*(z) = sup, ¢ ex() Ar-

A proof for the standard dyadic grid can be found in [M] p. 273. The
proof for regular dyadic grids is essentially the same.

3.3. Our Grid. Given the Lipschitz graph I' = {z = z + iA(z); | A|
n < oo}. We assume, as before, that n < 1.

Fix an interval J, let T'; = A(J), i.e. the piece of the graph I' whose
projection is J.

We will construct a Haar system, adjusted to the Lipschitz graph I';, but
also to the geometry of our problem. In general the supporting dyadic grid
will not be the ordinary dyadics (except in the trivial case when I'; is a line)
but it will be a regular dyadic grid. The measure will be

(18) do = (1+iA'(z))dz.
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To define the grid it is enough to indicate how to produce the children
of a given interval. Let I be any interval, let us denote its left and right
endpoints by z; and z] respectively. Let 2] = 2] + iA(z}) and similarly
z; . Let z; be the point on the curve I' which is equidistant from 2] and 2,
(it is well defined because ||A’||oc < 1). Let z; be the point in I such that
zr = z; + iA(zr). The children of I will then be

L = (z7,21), I = (z1,27).
Lemma 8. The grid F(J) defined by this procedure is a regqular dyadic grid.

Proof. Clearly, the vector zf — z; = [, do(z) = o(I).

Let 6; = argo(I). Notice that by construction, |o(f;)| = |o(I,)] = ;.
Therefore af := 6, — 0; = 0; — ;. (here o is the common angle in the
isosceles triangle defined by z;, z; and z;). Since the curve is a Lipschitz
graph, then certainly both #; and «; are bounded in absolute value by
0 := arctan |A'|. < w/4. In particular, since |I| = |o(I)|cos@; and by
construction |o(I)| = 2|o(I)| cos a; (where I is a kid of I) then

1+ n?

(1= <[ < CJJ; for C=—

Since 0 < n < 1clearly 1 <C < 1. O

The Haar system associated to F(J) and to do = (1+iA'(z))dz is, as we
can see by (10) and the fact that o(1,)/o(I;) = e**, given by:

(19) Kie) =~ (€. (2) = e (0)

Proposition 1. The Haar system defined above is a frame on L*(J).

Proof. The proof is essentially the same as the one in [CJS].
Let us compare the standard Haar basis, {h;};c#), associated to the
grid F(J) (sec (16)), and the new system. It is not hard to see that

hi(z) = erhr(z) + di| I Sinalxﬁélﬂy
1
where |c;| ~ 1, |d;| ~ 1, uniformly on I.
Therefore,

1
(f, h?)a = (,'[/fh]dO’ +d1|111/2 SinOé]]—I—I de'
/I
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Recall that do = (1 + iA'(z))dz and let us denote the mean value with
respect to the Lebesgue measure by m;g = ,—}—, J; gdz, and recall that (.,.)
denotes the ordinary inner product in L?. Then we can rewrite the right
hand side in the last equality as

er{f(1 + 34, hy) + d |12 sinaymy, f(1 +3A").
Also notice that,
<fa hg)c = Q;(f(l + iA’), ho)a

where |c;| ~ 1 as well.
Since |¢;| ~ 1 and |d;| ~ 1 independently of I; then

200 > [AADP<C S (FA+iA), R

IeF'(J) IeF'(J)
+C 2 || sin® oy |my, f(1 +3A")]2

IeF(J)

The first term on the right hand side of this inequality is clearly bounded by a
multiple of | f| 12, since {hr}rex () is a basis on L?>(J) and |1 +iA'|e < 2.

The second term can be controlled by Carleson’s Lemma on regular dyadic
grids, provided we can show that

Lemma 9 (Geometric Lemma). The sequence by = |I|sin’ oy, I € F(J)
satisfies Carleson’s condition with Carleson’s constant independent of the
base interval J.

We will prove this lemma at the end of the section. Assume it is true, and
let A\f = |my, f(1 +1A4')|%. Clearly

X (z) < CM?|f],

where M is the ordinary Hardy-Littlewood maximal operator.
By Carleson’s Lemma and the boundedness on L? of M, we get that

Z 7| sin” oy, f(1 4 3A")]? < CUf 12200y

IeF(J)

Therefore, for all f € L?(J)
(21) Y WERD < Clfliag)-

I€F!(J)

The converse now follows from a standard polarization argument (see
[CJS)).
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This finishes the proof of the proposition. O

We will say that a locally integrable function b is in BMO(F, o, J) if there
exists a constant C' such that

(22) > K. <CIL| VI, € F(J).

IeF, (I,)

Remark. Since the square of the absolute value of the sequence b; =
io'/?(I)sina; is a Carleson sequence with respect to do and F(J) (Geo-
metric Lemma 9), the function

be) = 3 bihi(a)

I€F(J)

is a well defined L?(J) function and is in BMO(o, F, J); moreover, there
exists constant 0 < e < 1 such that for all I, |b;hf(z)| <1 —e.

Proof of Lemma 9. This proof is the same as the proof of the Lipschitz case
in the Travelling Salesman Problem (see [J].)

Since |I| ~ |o(I)|, it is enough to show that the sequence |o(I)]sin® oy
satisfies Carleson’s condition.

Denote by I';, the image curve of the interval I,,.

Certainly the arclength of I';, is comparable to |I,|. We can compute this
length [(T'7,), by successive polygonal approximations to I'y,.

Let oy = {z = 2] +to(I) : 0 <t < 1}, be the chord built joining the
images of the endpoints of I on I'. Clearly, |o;| = |o(I)].

Let I'; = o5, and define for n > 0

IeFn(I,)

Clearly I',, — T'y, and I(T',,) — I(Ty,).
Therefore

UTs,) = 1T = 3 UTor) = 1T,

n=0

It is easy to compare the lengths of two succesive polygonals,

(Cos) =UTa) = D, (o) +lo(@)] = lo (D))

IeFn(1l,)

By definition of the grid, |o(I)| = 2|o(I)| cos az, for I parent of I; hence,
since T is Lipschitz, |o(I,)| + |o(L)| — |o(I)| ~ |o(I)| sin® ;.
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Therefore
UTy,) = UT.) ~ Y lo(I)|sin®a;.
IeFa(1,)
Finally since I(T',) = |o(1,)| ~ |L,| and I(T';,) ~ |I,| we see that for all
I, € F(J)
Z lo(I)]sin® a; < C|L,|.

IeFa.(1,)

This finishes the proof of Lemma 9. O

The bilinear form (.,.), is not an honest inner product. We would like
to study the boundedness in L? of certain operators and their adjoints with
respect to the bilinear form. Let us state here a lemma that we will use
later. The proof of the lemma is an exercise in functional analysis left to the
reader.

Lemma 10. Given T and T* linear operators in L?(J) such that

(Tf7g>0:<f’T*g>0'7 Vf’g€L2(J)’
then T is bounded in L*(J) if an only if T* is bounded in L?(J).

3.4. Proof of Theorem 1’. Suppose f € W'3(T'), where I = {z +1A(z) :
|40 =70 < 1}. Let A(z) = z +iA(x).

By definition of the Sobolev space on the curve, f(A) and (f(A)) are in
L*(R). We can assume that f(A) is absolutely continuous.

Let do = (1 + 1A'(z))dz, be the measure used in the previous section.
There we showed that given an interval I then (see (19))

B () = —

= ol/2(I) (e xr. (z) — e7 " xy, (2)) -

Clearly (f(A))' = f'(A)(1 + i4’), and by the fundamental theorem of
calculus,

A o 1 jog —iag -
(f (A)7h‘1>0=01/2(1) [6 f(z}l—)+e f(ZI)—2COSO!]f(ZI)],
where I, = [z, z}], I, = [z7,2;] and zF = A(zF).
The right hand side is almost the geometric second difference that we
associated to I, namely Arf = f(2F) + f(21) — 2f (21).
Let us introduce an adjusted geometric second difference

(23) Arf = e f(z}) + e f(z7) — 2cos ar f(zr).
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Observe that when I' = R, the two differences A;f and A;f coincide with
the ordinary second difference.

Remark. This adjusted second difference is, in some sense, a better behaved
object. If we define

Af(z) = e f(2}) + eV f(27) — 2cos alz, 1) f(2);

then A; will annihilate linear holomorphic functions. This is something that
an ordinary second difference does but ours does not!! The nonlinearity in-
troduced in the construction of zi° is compensated in A, by the introduction
of the correction factors e**(*t) and cos a(z, t).

Fix an interval J. We just showed that if f € W%(T') then for all I €
F(J),
yart o . Alf
(f'(A),hg)s = S 2(T)
Also recall that

~ 1 Z+ _ z—
(f'(A),h5)s = 0—,% [ 1A = %

Let I'; = A(J). Notice that | f'|r2r, s = [(f(A) |z200) ~ 1 (A2,
therefore by Proposition 1 it follows that

ALfP 1S (=) = fz)P
lo(D)] o (J)] '

(24) ||fl”iﬁ(m) ~ Z

IeF(J)

If we replace A; by A; we can still show a local version of Theorem 1'.
Since |I| ~ |o(I)], we can use either of them in the estimates.

Theorem 1’ (Local version). Given f € W'2(T'), then for every interval
JeF }
s AP G S

< Clf Bage,
(&, To(D) o ()] B

uniformly on J.

Remark. This local version implies Theorem 1'. Since it holds uniformly on
N —rz7)1? ' .

J, and clearly f € W12(T') implies that £ sz(j)(l E<r |72,y (more is ac-

tually true: f € W?Y*(T), f absolutely continuous, implies that

)—f(z7)]? ..
EAC sz(j)(l RN 0, as J — R, this is a consequence of the elementary fact
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that for any function f € L?(R), |17|(f1 f)? = 0 as |I| = o0.) Denote by
F = Up»oF(J,) where J,, € Fi(Jny1) and R = U,50J,, then certainly

1AL fI?
< CUF 132y
25 o] ®

which is the conclusion we were seeking.

Proof of Theorem 1' (Local version). After observation (24), we see that it

is enough to compare } ¢z IAIf|2/|0(I)| and ) rer () |ALf1?/lo (D).
In particular

(25) Arf =cosarArf +isinay (f(2F) — f(27)) -

Since f € W1’2(I‘), we can assume that f ( ~) is absolutely continuous; i.e.
f(A)(B) — f(A)(a) = f:(f(A) z)dr = f f'(A)do. Hence if we denote the

mean value of g with respect to o on I by m%g, then

ff) = f(21)

Therefore
|ALfI? |ALf)? g -
> <C > +C > |o(I)]sin® ajmg f/(A)[.
1€F () o (D) 1€F(J) ()] 1€F(J)

The second summand on the right hand side is bounded by |f'(4)[3 ~
17132 by Carleson’s Lemma and the same argument with the maximal
function that we used at the end of Proposition 1.

This finishes the proof of the local version of Theorem 1'. O

3.5. Proof of Theorem 2. If we do not know a prior: that f € Wh2(T)
but only that f € L*(T") and that for a fixed interval J,

|f (=) = £(=7))° |Arf]?
+ )
o] 2 o] <

we can still say something. Certainly (26) does not carry enough information
about the smoothness of f. for instance it only considers the values of f at a
countable number of points which is negligible. Nevertheless, if (26) is true
the sequence

(26)

+Y _ £(5T
pife) = {ELE) ae erenw)
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will converge to a function D7 f in L?(I';), that we will call the dyadic
deriwative of f on J with respect to the grid F(J) (clearly if we start with a
differentiable function f then the sequence converges pointwise to f’ in J).
More precisely, we can prove the following:

Theorem 2 (Local version). Let f € L*(I';) and assume (26). Then,
the sequence D] f defined above converges to a function D’f € L*(Ty).
Moreover,

|f(27) — f(27)
D’ f|%, ry<C
1D Iz ry = ( |0(J)| I€F(J) D) )

where the constant C is independent of the base interval J.

Remark. To get the global estimate, denote by F = U,>oFi(J,) where
Jyn € F(Jny1) and R = U,>0J,, as in the remark right after the local ver-
sion of Theorem 1'. Clearly, (J,) C F(Jp41) C ... C F, assume that

z,ef'lf—% < oo. This implies that (26) holds uniformly on J, (since

£(z5) = FEDP/No(D] < eZycrer |A1fIP/lo(D)])). Given f € L*(T), we
will get a sequence of functions D" f defined by D’» f on I';_ and zero other-

wise, uniformly bounded in L%. By construction D™ f|; = D™f|, , hence
D"f — Dxf in the L? sense as n — oo, and

A
1D 1oy < O3 | ’f '

IeF

Hence, Theorem 2 is proved, up to the local version.

Proof of Theorem 2 (Local version). Fix an interval J. Let us drop the
superscripts J in the notation for dyadic derivative (i.e. Dy and D will be
used instead of D] and D”).

We do not know a priori that f' exists, so we cannot use Carleson’s Lemma
straight away as we did in the previous section.

Nevertheless, notice that for every z; € I € F(J) we can write by (25)

(27) A;f =cosa;Af +io(I)sina Dy f(z5),

by an abuse of language, we are identifying Dy f with Dy f (A), and we are
writing Dy f(z) instead of Dy f(A(z)).
It is not hard to see that

Dys1f(z) — Dif(z) = f};(f;)hv( ), zeleF(J).
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Therefore, multiplying (27) by h¢/0*/?(I) and using the last equality we
get for every z € I € Fi(J)

(28)

Dy, f(z) = cos aloﬁé(fl) RS (z) + (1 4 i0*/?(I) sin ashd (z)) Dy f (z).

By hypothesis and Proposition 1, the function

(29) = Y cosor 1/2f hi(z),

I€F(J) (7)

is in L2(J).

Let b(z) = 3 ;¢ (s brh{(z), where by = ic'/?(I) sin a;. By the remark on
p. 573, b is in BMO(F, 0, J).

Moreover, with the notation of Section 3.2 p. 569,

Mg = & eosermtmg@, mro=o,
IeFy(J)

and similarly for A7b(z).
With this notation we can rewrite (28) for all k£ > 0 as

(30) Dy f(z) = Afg(z) + (L + A7b(z)) D f (2)-

This is the recurrence equation that we solved in [P] under some conditions
on b.

Let us replace Dy f by the corresponding sum and continue down until we
reach k = 0. We get

k—1 k k
(31) Dinf =A%+ A% [ (1+A%)+ Dof JJ(1 + AZb).
n=0 j=n+1 j=0

The last summand on the right hand side of this equation is a multiple of
D.f = f—(fll(jf)(—i— which is not necessarily zero.
Lemma 11. The sequence wy = H'?_O(l + AZb) converges in L*(J) and
a.e. to the function w = [[;2,(1 + A7b). Moreover |w|r=(s < 1.

We will prove this lemma at the end of the section. These products had
been studied in [FKP].

The first two summands in the right hand side of (31) look formally like
the finite sum operator P} in [P]. The only differences are that here the
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supporting grid is not the standard dyadic grid and the measure is do instead
of the Lebesgue measure. The function b comes from the geometry, just as
the measure do and the grid do. All the algebra is still valid, including the
algebra to pass to the corresponding finite paraseries.

Let us define the analogous finite sum operators, for b € BMO(o, F, J)
and g € L2(J,do) (the space of functions in L?(J) with mean value zero on
J with respect to do)

k

(32) Pfg:= Z Arg T] (1+ A%b) + Afg(a).

Jj=n+1
Proposition 2. The operators Py, converge to a bounded operator in L*(J).

To show the convergence of the martingale Dy f (see (31)), it is enough
to show that Py,g converges to a function in L?(J) since the other term
converges to wD, f, a multiple of w € L*(J) (by Lemma 11), where D, f =

JGEN-1G]) "
O As a consequence of Proposition 2,

Pkag 2 S C g 22 S C .
” b, ”LZ(J) || llL (J) Ie;(]) IU(I)I

It is clear that |wD, f[72(,) < C’f—(zﬁ& because by Lemma 11, |w| < 1.

Therefore, in the limit, the function D f = limy_,o, Dy f, will be in L*(J) and
moreover,

2 ArfP? zy) = fz)P
Dl <0 3 L oLl

IEF(J)

where C' is a constant independent of J. The local version of Theorem 2 is

proved up to the study of the operators Py, and the weight w (Lemma 11).
]

3.6. Convergence of the operators Pb’fa. Since formally the operators
P}, look exactly like the ones treated in [P], we want to analize them in a
similar way.

In this setting we can define the paraproduct

(33) Mg =>_ EJgATb

=0
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and its adjoint with respect to (.,.),
(34) (Ig)*g =) _ AJgATb.
=0

(It is easy to check that (IIfg, ), = (g, (II7)*f)5-)

For b € BMO(F, 0, J) the paraproduct is bounded in L?(J) by Carleson’s
Lemma and so is its adjoint by Lemma 10.

The basic product and composition rules for the expectation and difference
operators are true (see Definitions (13), (14), and see [P], and [Ga]), namely

A ifn>j
TAI = J 5
Ey A’ {0 otherwise ’

A7 f x Afg= A7 (f x A7g) when n > j.
Therefore for all 4; < i, < ... <iy and n < iy

(35) E; (A7 fi x ... x A fum) = 0;

1

and for all M > n
(36) ES > A7) =o0.
E>M

Let b= Y, z(s) brh§, where by = i0'/*(I) sin ;. By the remark on p. 573
b € BMO(F, 0, J).
We can now reproduce word by word what we did in [P], except for

Proposition 3. The operator

(37) Pig=3 Azg I[ 1+ A7),
n=0 j=n+1

is well defined and is bounded on L*(J).

Nevertheless we can do similar computations to the ones done in [P] to
prove the analogous result. Let us assume that it is true for a moment, and
let us go back to our problem. We want to study the convergence of P,,’fag
as k — co. Let b, = Y _, A2b.

Then clearly

Py g=P,g+(9—g)-

Therefore P}, g will converge simultaneously with Py g (since (g — gx) —

0). But reproducing the proof of the corresponding theorem in [P], we see
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that P g converges to Py g = (I—II7)~'g. Therefore P}, g converges to P/g,
which is a function in L%, by Proposition 3.

Proof of Proposition 3. As in the proof of the analogous result in [P], the
weight w (see Lemma 11) can be used to rewrite the operator so that it will
now look like the operators P, treated in [P].

Recall that

(38) w(z) = ﬁu + A%b(z)).

n=0

As a byproduct of the proof of Lemma 11 we will get (see (56)) that

n—1
(39) Ejw =[]+ A%b),
j=0
which is equivalent to
(40) miw = H(1+bph?,(x1)), zr € I.

o1
With this in mind we can rewrite the operator P/ as

o~ w(@)Ang(2)

Fglz) = 2:% E7w(z)
_ w(z)(g, h§)-hi(z)
(41) - 1o miw(1l + brhs(z))’

Written in this way the operator looks formally like what we called P, in
[P]. The main step over there was to study the boundedness of the adjoint

operator.
Let
42) Fyo) = ¥ | [ 125 do] b @)
mfw J 1+ brhg I

1€F(J)
It is easy to check that for all f,g € L*(J)
(B f,9)e = (f, (F)*9)e-

Therefore by Lemma 10 it is enough to show the boundedness of the
operator (P/)*. Since {hJ} is a frame, it is enough to show that there exists
a constant C such that for every g € L?(J)

(43) >

IeF(J)

1 wgh§

2
< Clgl?.
mfw J 1+ bshg < Clglz

do
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We can rewrite the operator in a simpler form.
Let I € F(J) be a child of I. Then by (40), for any z; € I,

(44) miw = miw(l + b;h(zy)).

Therefore, recalling that o (I;) = e**’ o(I)/2 cos oy and o(I,.) = e~ %15 (1}),
we get

1 wghg 1 [ e [, wgdo e [, wgdo ]

miw ) 1+bhg ™~ G2(D) | miw(l+ brh3(zr)  mgw(l+ brhd(zy,))

o a
my w my,w

m9 w m9 w
=2c0sa101/2(1)[ L®9 T g}'

Let dyu = wdo. With this notation (43) is equivalent to

(45) > le(D)llm} g — migl* < Clgl3,
IeF(J)

where m/g denotes the mean value of g on I with respect to pu.

Remark. The left hand side of (45) resembles the L?(do) norm of the
standard dyadic square function Sf(z) = (X c;(mr, f —mr, f)?)'/2, namely,

"Sf"L2(da) = Z o(l)lmy, f — mhf|2-

IeD

It is known that such an operator is bounded in L?(do) for do = vdz if and
only if the weight v is in the Muckenhoup class A, (see [GC-Rf] for the
general weight theory). There is a very nice proof of this result in [B]. Our
proof follows the ideas in that paper.

Lemma 12. The measure p restores dyadicity to F. More precisely, for
every I € F(J), I child of I, u(I) = 2u(I).

Proof. By definition and using (44) for any z; € I

W) _ oD e
D) (ﬁ1+bh(1»

It is not hard to see that for x € I

e*rcosa; z € I,

4 g .
(6) 1+bh { —Zafcosaim.e[l
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Also recall that o(I) = €e“r|o(I)|, 6;, = 6; — a;, 0;, = 0; + a; and
lo(I.)| = |o(L;)| = |o(I)|/2 cos ;. Therefore for z € I
o(l) 1

o(I) ~ 2(1+bshe(zr))’

~

This finishes the proof of the lemma. L]

It is not hard to see, after the last lemma, that

We recall that for all complex numbers z,w the following identity holds,

|z — w]? 2 2 ?
S = (e =[5 ) + (- [25):

Let z = mf g, w =m} g and (z + w)/2 = mfg. Then (45) is equal, up to
a constant, to

(47) > lo(D)l (imfal* — Imigl?).

I€F(J)

Z+w
2

z+w

Adding and subtracting 2|o(I)||m*g|? we get

(48)
> (loDl=2lo(Dl) Imfgl?+ 3> (2oDlimtgl* = lo(D)]Im4gl?) -

IeF(J) IeF(J)

The first summand in the last expression can be bounded by

(49) ¢ ) sin’arlo()llmigl,

1€F(J)

because [|o(D)| - 2o(1)|| = 2| cos s = 1lo(D)] < C'sin® aylo(D)].
This last expression can be bounded in turn using Carleson’s Lemma by

C’/ |M*g(z)|*dz,
where

(50) M*g(z) = sup |mfgl.
zeleF(J)
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Let

am =Y, 2lo(I)|lmfgl®
IEFm(J)

= Y lo(Dlimfgl.

I€Fm41(J)

Clearly the second term in (48) is a telescopic sum for this sequence, hence
it equals to Yo (G — Gm—1) = My 00 G — Go.
But

am < C/ g>.(z) dz;
J

where

gm(@) = D Imiglxi(a).

1€Fm(J)

Clearly for all m
gm(z) < M*g(z),

and therefore a,, < |[M*g|32 -

Finally we can bound (47) by a constant times the L? norm of M*“g,
and we will be done as soon as we can show that this maximal function is
bounded on L?(J).

Lemma 13. The mazimal operator M* is bounded on L*(J).

Proof. By definition
b [;wgdo
™19 Jywdo *

It is enough to show that w satisfies a weighted Reverse Holder (2 + €)
condition; namely, that there exists € > 0 such that for all I € F(J)

1 2t 1/2+6 1
51 -——/ w ‘dx) <C— /wdol.
&1 (/4 s
Let us assume that (51) is true. for I € F(J), g € L*(J), and by Holder’s
inequality with p =2 + ¢, ¢ = 3£ we get

2 1 1 "y 2/p /1 g 2/q
< g = — ,
Imil’ < (7o (7 ttrraet) ™ (7 | taviaol)

Since |do| ~ dz and by (51) we can bound this by

1 q 2 q 2/q
C[Tfn [ stz da] < CMlgl@), yel
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where M is now the ordinary Hardy-Littlewood maximal operator which is
bounded in L* for all s > 1. In particular, since g € L? then |g|? € L?/9,
where 2/q > 1 by hypothesis, and therefore,

[ wgfaz < ¢ [ 1M(gpPdz < ¢ [ lgPds.
J J J

This proves the lemma; the only missing step is (51). Il

It is enough to show that w satisfies (51) for € = 0. This resembles the
classical result of Gehring (see [Ge]), that says that if a weight satisfies a
Reverse Holder condition of order p, it does satisfy a condition of order p+¢
for some positive e.

Lemma 14. There exists a constant C such that

rh/]|w|2dm < Clmowl?, VIe F(J).

We will prove this lemma at the end, and as a corollary of it and of the
precise description of w, we will conclude that,

Lemma 15. There exist € > 0 such that (51) is true for all I € F(J).

Proof of Lemma 11: Let

(52) f[ II (1+bh5(x)).

n=0 I€F, (J)

Notice that by (46)

. k
(53) w(z) = €' 2ng S (@)an(@) H cos o, (),
n=0
where for z € T € F,(J) we define a,(z) = a1, 0,(z) = 0;, and s,(z) =
1 z€el,
-1z e Il

br+1(z) = 0n(z) — su(7)as(z) and En—o Sn0n = 0o — Opy1.
Hence

si(z) = . Recall that 6;, = 0; — ay, 6;, = 0; + ay; therefore

K
(54) wi(z) = =%+ TT cos an ().

n=0
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Clearly |wg(z)| < 1, therefore wy € L*(J) and |wi|r2sy < C|J[V/2, Vk.
Moreover, |wi+1| < |wk|, hence it is a decreasing sequence. Therefore there
is a subsequence convergent to a function w € L*(J).

We can also say something about a.e. convergence. Since I' is a Lipschitz
graph parametrized by A, then A is differentiable a.e. Let z € J be a point
where A'(z) exists. Clearly 6;(z) — arctan A’(z). On the other hand, the
infinite product [[o-, cos a,(z) converges for each fixed z simultaneously

with 3% (1 — cos ap(z)) ~ 32, sin® a, (x).

But
/ (Z sin’ an(a:)) dz = Z/ sin® a; x;(z) | dz
J \n=0 IEF.(J)
= Z || sin® ay;

IeF(J)

this last expression is bounded by C|J| by the geometric lemma (Lemma 9).
Therefore 3%, sin® o, (z) < oo for a.e. z € J.
Hence foraez € J

— oi(8y—arctan A'(z))
klggxo wr(z) =e J‘;‘E cos a, ().

In conclusion, w is well defined as the L? limit of the w; and also as a
pointwise limit; for a.e. x ,

(55) w(z) = e (1 +iA'(z))™! H oS ().
This finishes the proof of the lemma. |

We can safely write

)= B A
n=0
It is not hard to see that
j—1
(56) Ejw(z) = [[ (1 + A%b(2)),
n=0

which is equivalent for z; € I to

(57) miw = [ (1 + brhf(z1)).

I'DI
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To prove this last statement, observe that w = []7_{ (1 + A%b) [>> 1+
A7b). The first factor is constant for all z € I € F;(J) and the second factor
looks like 14 sums of products of A7b where k£ > 7. When we compute the
mean value on intervals I € F;(J) we pick the value of the first factor at a
point z; € I times the mean value of just the function f(z) = 1, because all
the other summands have mean value zero by (35).

Now (56) implies that 1 + A%b = EJ ,w/ESw, which in turn implies that

n
o o o
B w—Ew Alw

A%h = = )
" Erw Erw

Therefore

(w, hi)o
miw

(58) b= (b,15), =

Proof of Lemma 14. Because the system {h§};er (1, is a frame for L*(1,)
and w € L*(1,) for all I, € F(J) then

[ oldn~ S Yol s wl o (L)

Lo T€F (1)
But by (58), (w,h])s = bymiw.
Therefore to prove the lemma, it is enough to check that for every I, €

F(J)
Y bl miwl < Clmg,wl|L.
IeF(IL,)

But for I,I' € F(I,) and z; € I, by (57), and (54)

miw =mj w H (1 +bphp(zr) =miw e'(61,=01) H cos oy .
Icrci, Icrci,

Hence |m{w| < |mJ w| and since by = i0?/?(I) sincy then
Z br*[miw|® < |77’L‘I’owl2 Z |0’(I)|Sin2 aj.
1eF(1,) I€F(I,)

But the second factor on the right hand side is bounded by C|I,| by the
geometric lemma (Lemma 9.)

Notice that the constants involved are independent of the base interval J.

This finishes the proof of the lemma. [l

Proof of (51) (Lemma 15). We conclude immediately from Lemma 14 that
for all I € F(J),

(59) Imiw| ~ mr|w]|.
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This observation and Lemma 14 imply that the weight |w| satisfies a Re-
verse Holder condition of order two on the intervals of the grid. Namely, for
all I € F(J),

1 1/2
(60) (TI—I /I |w|2dx> < Cmulwl.

This is enough to ensure that the weight |w| satisfies a Reverse Holder
condition of order 2 + ¢, for some € > 0. Namely, for I € F(J),

1 1/24¢
(61) (ITI/!|w|2+‘dx) < Cmy|w|.

Since |mfw| ~ my|w| (see (59)), we then get the desired result.

That condition (60) implies condition (61) for some € > 0 is Gehring’s
Theorem. One can follow word by word the proof in [G] p. 260; you need
the RH, condition to be true on a lot of subintervals of the starting interval
J, enough so that a Calderon-Zygmund decomposition argument can be
used. Usually the intervals used are those that come from a standard dyadic
decomposition of J, but it is straightforward to check that it can also be
done if the intervals are given by a regular dyadic grid associated to J.

This finishes the proof of (51). O
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