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ON THE FAILURE CYCLES FOR THE QUADRATIC
NORMALITY OF A PROJECTIVE VARIETY

EDOARDO BALLICO

Let X be a smooth projective surface and L a very am-
ple line bundle on X which is not quadratically normal; set
r + 1 = h°(X,L). Here we give numerical conditions on X and
L which imply the existence of a finite subscheme T of X with
length(T) > 2s + 2 and contained in a dimension s < r — 2 linear
subspace of P(H°(X,L)) and such that L | T is not quadrati-
cally normal.

Introduction.

It is very classical the following problem (with several variations). Suppose
that a curve C c P r has some bad property, e.g. it is not projectively normal.
Show the existence of a finite subscheme SofC contained in a smaller linear
subspace such that S explains the failure of C to be projectively normal.
In modern times there is the important paper [4]. Here we consider the
corresponding problem when the scheme C has dim(C) > 1. We were also
motivated from the notion of k-ampleness and k-very ampleness introduced
in [2]. By definition these conditions fail for a scheme C if and only if there
is a zero dimensional subscheme 5 of C with a bad property. We were
interested (see e.g. [1]) in showing that under suitable conditions there are
many such subschemes. A natural question was if there is some bad positive
dimensional proper subscheme Y containing all of them for a natural reason
(for example if it were the union of them) or if there was some bad "free"
zero dimensional subscheme. Here we consider the condition of quadratic
normality and give a positive answer if dim(C) = 2 under suitable numerical
conditions. These numerical conditions are strange, far from optimal and
just come from the proof. We will state them below as Theorem 0.2. But
first and most important: the proofs are essentially technical variations on
an alternative proof ([5, §2.5]) of a theorem in [4]; hence the idea originates
ultimately with Robert Lazarsfeld. After the present results were proven, we
checked the references and found that exactly that subsection was deleted
in the printed version [6] of [5]. After a while we decided to rewrite a little
bit the paper, but to write it anyway.
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We fix an integral variety X and a very ample line bundle L o n l ; set
r + 1 := h°(X,L) and O := Ox; let φL : X -> P r be the embedding
associated to H°(X^L) into a projective space. Recall that a subvariety
U of P(V) is called quadratically normal if the restriction map V ® V ->
HQ(U) OC/(2)) is surjective. The pair (X, L) (or just L) is called quadratically
normal if ΦL(X) is quadratically normal.

Definition 0.1. If L is not quadratically normal, we will call amount
of failure of quadratic normality the integer dim(coker(ii0(L) ® H°(L) —>
#°(L2)).

Let C? = G(r + 1 — dim(X),r + 1) be the Grassmannian of codimension
diτa(X) linear subspaces of P r ; set

B ~ {U £ G : X Γ\ C/is not zero dimensional}.

Here is the main result proven in this paper.

Theorem 0.2. Assume dim(X) = 2 and that L is not quadratically nor-
mal Let f > 0 be the amount of failure of the quadratic normality of X. If
hι{Oχ) < f + codim(i?) — 1, then there is a codimension 2 linear subspace
[U] G G\B such that the scheme XΠU is 0-dimensional and is not quadrat-
ically normal with respect to L \ (XΠU). Furthermore, there is a an integer
s < r — 2j a linear subspace VofU with dim(VΓ) = s and a subscheme T of
UΠX contained in V with length(T) =25+2 such that T is not quadratically
normal with respect to L \T.

In particular Theorem 0.2 applies to all linearly normal but not quadrat-
ically normal embedded surfaces with ^ ( O j ) = 0.

For other related 1 results proven within the same framework, see 2.2 and
2.3. In §1 (after fixing the notations) we will give the framework and the
main ingredients for the proofs of all the results of this paper. In §2 we will
prove Theorem 0.2.

The author owes a huge debt to the referee for essential constructive crit-
icism and for fundamental mathematical contributions which improved the
original statement of 0.2.

The author was partially supported by MURST and GNSAGA of CNR
(Italy).

1. Preliminaries and general set up.

We work over an algebraically closed base field. We fix an integral variety X
and a very ample line bundle L on X\ set r + 1 := h°(X, L); let φι : X-»P r

the embedding associated to H°(X,L). If A is a sheaf on X, we will often
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write H*(A) or hl{A) for Hι(X,A) or h'{A). Set Y := φL{X). Let Ω be
the cotangent sheaf of P r . Set ML := 0L*(Ω(1)). By the dual of the Euler
sequence of T P r and the completeness of the embedding of X we obtain the
following exact sequence on X:

(1) 0-*ML-+H°(X, L) ® Ox->L->0

which contains a lot of informations on the cohomology of Iγ.

Now we generalize the Remark in [6] given at page 510 (between the

statement of [6], Prop. 1.3.3, and its proof).

Lemma 1.1. With the notations X,L,φL,ML, and so on introduced at the
beginning, we have:
(i) Fix an integer k > 0 and assume Hι(Lk) = 0; the multiplication map

H°(L)®H°(Lk)-+H°(Lk+1) is surjective if and only ifH^ML®^) =
0. In particular if hx(L8) = 0 for every s > 0, then L is normally
generated if and only if Hι(ML ® Lι) = 0 for every t > 0.

(ii) The amount of failure for the quadratic normality of L is

Hι{L))).

(iii) If Hι(L2) — 0 the amount of failure of quadratic normality is

hι{ML®L)-h\L)'hι{L).

Proof. Just use a twist of the exact sequence (1).
Let G := G(r — x + l,r + l) be the Grassmannian of codimension x linear

subspaces of P(#°(X, L)) and F ~ {(y, U) e X x G : y e U} C X x G be
the incidence variety. On G we have the exact sequence

(2) 0->S-+H°(X, L) (8) OG->Q->0

with Q tautological quotient bundle and S tautological rank x subbundle.
Let / : XxG-+G andp : XxG-ΛX be the projections. The incidence variety
F is defined by the vanishing of the induced morphism s : f*S-+p*L i.e., its
ideal sheaf I in X x G is the image of the associated map f*S®p*L*-*OXxG.
Note that this ideal sheaf I has a resolution:

On X x G there is an important commutative diagram. First, we will write
it as formula (4) in the particular case x = rank(S') = 2 needed in the proof
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Of 0.2.

(4) 0

0

i
f*A2S®p*L* -

1
rs

- > p *

-> iϊ°(L)

P

0

1
ML

i
® OxxG ^

i
*L —4

1
0

i
1
0

D

In the general case this commutative diagram has 3 columns. The first
column of this diagram is the resolution (3) of I (without I). The second
column of the diagram is the pull-back p* of the exact sequence (1) and
the third column is just the tautological surjection f*Q^p*L ® OF. These
columns are connected so that the only long row in the diagram is the pull-
back by /* of the exact sequence (1); just above this exact sequence there is
a map /*Λ2S ® p*L* —>p*Mi and just below the exact sequence there is the
surjection p*L-^p*L ® Op coming from the surjection Oχxo—>Op. Follow
the first column of the diagram till the term f*A2S ®p*L*; then go on the
right one step and find /*Q; then go down one step and find f*A2S ® p*L*.
In this way from this diagram we obtain an exact sequence obtained from
the exact sequence (3) substituting the last part f*S->l®p*L-^>0 with

Call (§§)(k) the exact sequence obtained twisting by p*Lk the sequence just
described. If x = 2 the complex (§§)(1) is the following exact sequence:

(5) 0-*/*Λ2S->p*(ML ® L)->f*Q ® p*L-+p*L2 ® OF->0.

Now we push-forward the complex (§§)(1) to the Grassmannian; since (§§)(1)
is exact, its higher pushforwards vanish and we obtain a spectral sequence
(call it (#)) converging to zero.

where
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is the complex

In Section 2 we will write the ϋ^-part of (#) as formulas (7), (8) and (9)
in the case dim(X) = x = rank(5f) = 2 we need for the proof of 0.2. Use
the projection formula i?7*(/*,4' <8>p*A) = H\X, A) ® A1 for all locally free
sheaves A on X. We normalize the indices of the complex (§§)(1) in such
a way that the term E^° of the spectral sequence (#) is H°(X, Ox) ® Λ 25.
With this normalization the term Ef of (#) is 0 if either t<0oτq<2 — x,
it is H^X.Ox) ® A~q+2S for 2 - x < q < 0,Hl(X,ML ® L) ® OG for
q = 1, #<(X, L) ® g for g - 2 and R'f^L2 ® OF) for 9 = 3.

Remark 1.2. Note that over G\£ we have JϊV ίp*^-7'® OF) = 0 for every j
and every i > x — 2 because the fibers of/ over G\i? have dimension < x — 2.
Fix a point [[/] G G\5 corresponding to a codimension x linear subspace U
of P r . Then for every integer k the fiber of the sheaf f*(p*Lk+ι ® OF) at [ί/]
is canonically isomorphic to the vector space H°(U, OunX(k + 1)) and fiber
over [U] of the homomorphism u := d\° : H°(X,L) ® Q^f*(p*L2 ® OF) in
the £?i-part of the spectral sequence (#) is identified at [[/] with the natural
multiplication map

(6) iϊ°(X, L) 0 F°(C7, O

2. Proof of Theorem 0.2.

Now we specialize the situation of §1 to the situation of Theorem 0.2, whose
proof will be given now.

Proof of Theorem 0.2. First, note that the "Furthermore part" of the state-
ment of 0.2 follows from the first part and [6, Lemma 2.4.4].

Now we will prove the first part of 0.2. We write as formulas (7), (8) and
(9) the 3 non trivial lines of the iϊ^-term of the spectral sequence (#) under
the assumptions of 0.2; in particular we have x — 2,rank(S') = 2,Λ25 =
O G ( - l ) , d i m ( X ) - 2 .

(7) H2{OX) ® OG(-1)->H2(ML ® L) (g> OG->H2(L) ® Q

(8)

H^Ox) ® OG(-1) Λ Hι(ML ® L) ® OG A H\L) ® Q-ϊR'f^L2 ® OF)

(9) H°{Oχ)®OG(-l)^H0(ML®L)®OG->H°(L)®Q Λ R°f*(p*L2®OF).
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Let a := d?1,/? := d\ι,u := dj° be the maps indicated above. By Remark
1.2 to prove 0.2 it is sufficient to prove that the map u is not surjective on
G\B. We use that the spectral sequence (#) converges to 0 because the
complex (§§)(1) is exact. We have coker(u) = Eψ. We divide the proof into
two parts.

(A) Here we assume hλ{L) = 0, hence β = 0 and coker(α) = E\ι. Since
the spectral sequence (#) abuts to 0, we have

0 = E% = El1 = ker(4x : E\ι-+E?).

Hence coker(α) injects onto coker(w). Hence it is sufficient to prove that the
codimension of the support of coker(α) is at most hλ{Oχ) — f + 1. Since a :
H1(Ox)®OG{-l)-^Oϊ

G and OG(1) is ample, this follows from [3, Th. l.l(a)].
(B) Now we make no assumption on Hι{L). As in the corresponding case

of [5], the exact sequence (1) gives a homomorphism

c : H\ML ® L)^H\L) ® H°(L)

and dim(ker(c)) is the amount of failure f of quadratic normality of L by
Lemma 1.1 (ii). On G there is an inclusion of sheaves (ker(c))(g)θG—>ker(/3).
Since ker(/3) is a subsheaf of a trivial sheaf, this inclusion is an isomorphism
of (ker(c)) ® OG onto a direct summand of keτ(β). Hence projecting keτ(β)
onto this summand we obtain a surjection from E\x = ker(/?)/im(α) onto
Q,dker(Hl(Ox) ® O G ( - 1 ) - * O ^ ) . We conclude as in part (A).

The proof of 0.2 is over. D

Remark 2.1. The proof of 0.2 depends only on άϊm{B). If we want to
exclude a bigger subset of G, then we obtain a corresponding result in a
suitable range. Viceversa, if we may control a dense part of B the corre-
sponding result is true in a larger range. The proof of Theorem 0.2 gives
with no change the following result.

Proposition 2.2. Fix an integer k > 1. Assume dim(Jf) = 2. Assume
the surjectiυity of the restriction map H°(P%OP(k))->H°(φL(X),O(k)) =
H°(Lh). Letf(k) be the dimension of the cokernel of the multiplication map
H°(L) ® H°(Lk)-^H°(Lk+1). Assume f(jfe) > 0 and

hι(Lh-1) < f (jb) + codim(S) - 1.

Then there is a codimension 2 linear subspace [U] G G\B such that the
scheme X ΠU is 0-dimensional and the multiplication map

H°{L) ® H°{X nu,(L\(xn u))k)-^H°{x nu,(L\(xn u))k+ι)
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is not surjectiυe.

Remark 2.3. Note that for a complete but not projectively normal em-
bedding the machine can start (and give informations on (X, L)) using the
proposition just given exactly at the first step, say the (k + l ) t h step, at
which the embedding is not (k + l)-normal. However, it can also be used at
an intermediate step with large /ι°(Lfc), obtaining a result of Castelnuovo -
Mumford type.

If we look at the proof of Theorem 0.2 when X is a smooth curve with
Hλ{L) < 1, we find exactly the proof of [5, §2.5]. In the statement we have
the small precision about the amount of failure of quadratic normality of L.
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ON THE MINIMAL FREE RESOLUTION OF GENERAL
EMBEDDINGS OF CURVES

EDOARDO BALLICO

Here we study the minimal free resolution of general em-
beddings in P n of genus g curves with general moduli. We
prove that if p is an integer with, roughly, g < n2 /{2p + 2), then
the embedding has the property JVp, i.e., the first p pieces of
the resolution are as simple as possible.

We work over an algebraically closed field. Let C be a smooth curve

embedded in P n . We are interested in the minimal free resolution of C.

Here we will consider the case in which the curve has general moduli and

the embedding is general. Recall the following definition ([5], [6]).

Definition 0.1. Let C C P n be a reduced curve; fix an integer p > 1;

C satisfies the property Np if C is arithmetically Cohen - Macaulay and for

every integer i with 1 < i < p the 2th-sheaf appearing in the minimal free

resolution of the homogeneus ideal of C is the direct sum of line bundles of

degree — i — 1.

For instance if we say that No means UC is arithmetically Cohen-Macau-

lay", then Nι means that the curve C is No and its homogeneous ideal is

generated by quadrics. Furthermore, if p > 0, then Np implies 7Vp_1.

In this paper, using degeneration techniques, we will prove the following

results (Theorems 0.2 and 0.3).

Theorem 0.2. Fix an integer p > 1. For every integer u, set:

(1) ap(u):=(u2)/(2p + 2)-(u/2).

Fix an integer n > 3 with n > p + \, and set:

(2) Gp(n):=αp((p+l)[n/(p + l)])

where [y] is the greatest integer < y. Then for every integer g < Gp(n)
the general linearly normal non special curve C C P n with pa{C) — g and
deg(C) = g + n satisfies the property Np.

Note that Gp(n) has order (n2)/(2p + 2) and hence d :— g + n is usually

much smaller than 2g -f p if n is much larger than p.

315
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In the case of special linearly normal embeddings we have the following
"conditional" result.

Theorem 0.3. Fix an integer p > 1 and an integer s > 2p. Assume that

a general canonical curve of genus 5 + 1 in P s has the property Np. Fix an

integer n > p + s; write n = s + a(p + 1) + b with α, b integers and 0 < b < p.

Set-

iS) Sp,s(n) := (a + l)s + l + a{a - l)(p + l)/2.

Then for every integer g with s + 1 < g < SPiS(n) a general linearly normal
curve C C P n with pa(C) = g and /ι1(C, Oc(l)) = 1 (hence of degree
g + n — 1) has the property Np.

Quoting existing references on Np for the canonical model of a curve, C,
with general moduli (e.g. [7], [3]), one obtains corresponding statements for
special embeddings of C. We stress that the proof of Theorems 0.2 and 0.3,
being a kind of induction on n using as inductive tool Lemma 1.2, may be
used to obtain many other cases not covered by the statements of 0.2 and
0.3; the proof of 0.2 should be helpful to the reader interested in other cases.

I want to thank the referee for several suggestions which improved very
much the readability of the paper;

The author was partially supported by MURST and GNSAGA of CNR
(Italy).

1. In this section we will prove Theorems 0.2 and 0.3. A key quotation
for the proofs here is the criterion for condition Np given in [6, Prop. 1.3.3];
the base field for all [6] was the complex number field, but the statement of
the quoted criterion 1.3.3 works in arbitrary characteristic because each of
the steps of its proof either works verbatim in positive characteristic or it is
known to hold in general; furthermore, [6, Prop. 1.3.3], although stated only
for smooth curves, works with the same proof for all reduced curves. It is
the use of this criterion for Np which gives the condition of linear normality
in the statements of 0.2, 0.3 and 1.3.

Fix an integer n > 3; following the notations of [6], Mn will denote the
rank n vector bundle on P n with Mn(—1) isomorphic to the cotangent bun-
dle.

The following result is well known (see e.g. [1, Lemma 1.3]):

L e m m a 1.1. Let D C P n be a rational normal curve. Then M \ D is the,
direct sum of n line bundles of degree —1.

L e m m a 1.2. Fix integers n,p,t,j and m with n > t > j > p > l and
m > 0. Let C C P n ~ J be a reduced curve satisfying condition Np. See P n ~ J
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05 a linear subspace V ofPn and let D be a smooth rational curve of degree t
in P n , D spanning a linear subspace W of dimension t, with άim(V OW) =
t—j and card(CίΊD) = t—j + l,D intersecting quasi transversally Cy (hence
CUD spanning P n ) ; assume that Hι(C, (Λ(ί>+1)Mn-j(l))(m) \ C) = 0; then

^ ) \ (CUD))=0.

Proof. Consider the following Mayer-Vietoris exact sequence:

0-KΛ0>+1)Mn(l))(m) I (CUD)
(4) ->(Λ^+1)Mn(l))(m) I C Θ (Λ^+1)Mn(l))(m) | D

^ ) I (Cn£>)->0.

Note that Mn\C= (Mn_ά \C)®Oj

c. Hence k^+ι>>Mn \ C is a direct sum of
trivial factors and factors isomorphic to AuMn_j \ C for some integer u <p.
Since Np implies Nu for every u < p we have

Note that Mn \ D is the direct sum of t line bundles of degree —1 and
n — t copies of OD. Hence (Λ^p+1^Mn(l))(m) | D is a direct sum of line
bundles of degree at least mt + t — p — 1. To conclude it is sufficient to
use (4) and to check (see below) the surjectivity of the restriction map
p : H°((Mp^Mn(l))(m) | D)-*H°{(A^Mn(l))(m) | (CΠD)). For the
surjectivity of p, note that, since deg(OD(—(C Π D))) — — card(CΓ)Z)) and
j > p, we have Hι(D, E(-(C Π D))) = 0 for every line bundle E on D with
deg(E) >t-p-l. D

Note that pa(CUD) =pa(C) + t- j and that CUD spans P n . An easy
Mayer-Vietoris exact sequence gives hι(C U D, OCUD{^)) — hι(C,Oc(ϊ))
and h°(C U D, O C UD(1)) = n + 1. Hence any smoothing of C U D will give
linearly normal smooth curves "near" C U D.

Proof of 0.2. We fix the integer p. First we will prove Np for the genus Gp(n)
and every integer n. Set n = α(p+1) H-r. As a starting point we assume the
property Np for the rational normal curve of P p + 1 . Of course, better results
and other example can be obtained using other curves in P p + 1 with property
JVp, e.g. the ones given by an important theorem of M. Green (proven in any
characteristic in [5, Prop. 3.2]) saying that a linearly normal embedding of
degree at least 2k + 1 4- p of any smooth curve of genus k has the property.
Np. The main property of the function Gp is the property Gp(m + p+l) =
Gp(m) + {p+ l)[m/(p + 1)]; its normalization Gp(p + 1) = 0 comes from the
choice we made for the starting point of the induction. Then we apply (a — I)
times Lemma 1.2, always with j — p + 1 and at each step with the maximal
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possible t\ in the &th-step we pass from a curve of genus Gp((k + l)(p+1)) in
p(*+i)(p+i) t o a c u r v e of arithmetic genus Gp((k + 2)(p + 1)) in p(*+2)(p+i)β

Then we apply Lemma 1.2 for the integers n, ί,j with t = n and j = r,
concluding the case # = Gp(n). Now we will check iVp in P n for any non
negative integer g < Gp(n) There is an integer x < n — p — 1, a; divisible by
p + 1, with Gp(x) < g < Gp(x + 1), say x = m(p + 1). We take a curve, C,
in P x with Np and genus Gp(a;) and we apply Lemma 1.2 for the integers
n, ίjj, with j = n — x and t — j = g — Gp(x).

At each step of the induction the possibility of deforming the reducible
curve to a smooth linearly normal curve (i.e., a smooth curve, T, with the
correct /^(T, O τ(l))) is proven (in a much stronger form than needed here
and for 0.3) independently in several papers: see for instance [BE, Lemma
1.2, (1)], or [4, Th.4.1], or [8, §5]; one can also see a discussion of the way
the smoothing concerns the moduli spaces in [8] and [2, §1, §2, §3]. D

Note that the bound (2) on the genus is just a byproduct of the inductive
proof.

Proof of 0.3. The proof of 0.2 works with the following modifications. In-
stead of quoting [6, Prop. 1.3.3], use Remark (2) after the proof of [6, Prop.
1.3.3]. The starting point of the induction is a general canonical curve in
P s which in the statement of 0.3 is assumed to have property Np. To check
the smoothability of reduced curves, use for instance [2, Lemma 1.2 (1)].
To check the condition uhx(T^ Oτ(l)) = 1", first (as remarked before the
proof of 0.2) use a Maver - Vietoris exact sequence to prove it for the re-
ducible curves; then use semicontinuity to obtain that /ix(T, O^(l)) < 1 if
T is general, while hλ(T, O τ(l)) > 1 by Riemann - Roch. D
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ON NORMALITY OF THE CLOSURE OF A GENERIC
TORUS ORBIT IN G/P

ROMUALD DABROWSKI

In this paper we consider generic orbits for the action of a
maximal torus T in a connected semisimple algebraic group
G on the generalized flag variety G/P, where P is a parabolic
subgroup of G containing T. The union of all generic T-orbits is
an open dense (possibly proper, if P is not a Borel subgroup)
subset of the intersection of the big cells in G/P. We prove that
the closure of a generic Γ-orbit in G/P is a normal equivariant
T-embedding (whose fan we explicitely describe). Moreover,
the closures of any two generic Γ-orbits are isomorphic as
equivariant T-embeddings.

1. Introduction.

Let G be a connected semisimple algebraic group over an algebraically closed
field k of arbitrary characteristic. As usual, let B+ denote a fixed Borel
subgroup of G, T a maximal torus in i?+, Γ(T) the character group of T, B
the opposite to £?+, Φ the corresponding root system in an euclidian space
(E, ( , )), Φ+ the set of positive roots relative to B+, Δ the set of simple
roots in Φ+, sa the reflection about the linear subspace of E perpendicular
to root α, W the Weyl group of Φ generated by the reflections saia G Φ+
(W can also be naturally identified with NG(T)/T), and R the root lattice
in E.

Let P be a fixed parabolic subgroup containing B. Let AP be the set of
simple roots a such that sa G WP — NP(T)/T. Then the map P —» AP

is a bijection between the set of all parabolic subgroups containing B and
the power set of Δ (see e.g. [B, Proposition 14.18]). We denote by Sp the
subsemigroup of the root lattice generated by all positive roots which are
not sums of simple roots in AP.

We will be concerned with T-orbits of points in the projective variety G/P.
Let λ be an integral dominant weight (with respect to Φ+) whose stabilizer
in W is Wp Then λ extends to a character of P (we will also call it λ),
inducing a line bundle Cχ on G/P. We let V(λ) denote the Weyl G-module

H°(G/P,Cχ) = {fe k[G]\f(xy) - \-1(y)f(x) for a l l xeG.ye P}

321
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of global sections of Cx (see e.g. [J, Sec. 5.8, p. 84]).
Let Πλ denote the set of weights of V(λ) for the action of T. Let Λ\ denote

the set of weights of V(λ) listed with multiplicity. For each μ G A\, we pick
a corresponding weight vector (function) fμ so that {fμ\μ G Λ\} is a basis
of V(X). Functions /μ,μ G A\, are called the Plύcker coordinates in G/P.
By abuse of language we use fμ to denote any Plϋcker coordinate of a given
weight μ. Let x = u.P be an element of G/P. We let Ux(x) denote the set of
weights μ G Πλ such that at least one of the Plύcker coordinates fμ does not
vanish at u. It is easy to see that Hχ(x) depends on x and λ only (not on the
choice of the Plϋcker coordinates). It turns out that λ — Πλ Q Sp. Hence
by VF-invariance of ΠΛ, λ - wΠχ(x) C 5 P , for any x G G/P and it; G W.
Intuitively, a torus orbit Tx C G/P can be called generic if sufficiently many
Plύcker coordinates of x do not vanish. The following definition makes this
requirement precise.

Definition 1.1. Let x be an element of G/P. Then the torus orbit
Tx C G/P is called generic if and only if {wλ\w G W} C Πλ(rr;), and for
each w G W, the semigroup generated by λ — wUx(x) is Sp (that is, the
maximal semigroup that λ — wΐlχ(x) can generate).

We will show that this definition does not depend on the choice of λ. It
turns out that Hχ(x) = Πλ implies Tx is generic. Therefore generic orbits
exist since there are points in G/P at which all Plύcker coordinates do not
vanish. We will also prove that in the case of G/B, Tx is generic if and only
if x belongs to Γ\wew/wP ™B+.P.

The aim of this note is to prove that the closure of a generic T-orbit in G/P
is a normal equivariant T-embedding. We can then use the general theory of
equivariant torus embeddings (see e.g. [K, Odal]) to show that the closures
of any two generic orbits are isomorphic (as equivariant T-embeddings). We
prove this by identifying the fan describing the isomorphism class of these
T-embeddings.

Remark. We point out that if P φ B, the definition of generic T-orbit
given here differs from the one used in [F-H, Remark 1, p. 257]. There, an
orbit Tx is called "generic" if and only if x belongs to the non-degenerate
stratum Z = f)weW/WpwB+.P in the stratification of G/P introduced in
[G-S] (note that in [F-H] B is the "positive" Borel subgroup, while here B
denotes the "negative" Borel subgroup). It is easy to see that the set of all
x G G/P with Tx generic in the sense of Definition 1.1 is an open subset of
Z. It is proved in [G-S, Section 5.1, Proposition 1] that if k is the field of
complex numbers then the image under the moment map of the closure of
each torus orbit contained in Z is the convex hull of {wλ\w G W}. In [F-H]
the general theory of torus embeddings is used to study the closure of Tx in
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G/P for x £ Z. It appears however that normality of these varieties, required
in the theory, has not been proved (as pointed out in [Oda2, Section 2.6]).
Also, contrary to what is claimed in [F-H], two T-orbits in Z may have
nonisomorphic closures in G/P (see the example below).

Example. Let C denote the field of complex numbers. Let q be a nonde-
generate quadratic form on V — C 5 , and let G — SO(q) be the subgroup of
determinant one linear transformations of V, preserving q. Then G is a con-
nected, semisimple, rank 2 algebraic group over C, and V is an irreducible
representation of G. Let L be a fixed isotropic line for q (that is q(v) = 0
for all v G ί ) , and let P C G be the stabilizer of L. Then P is a parabolic
subgroup of G, and G/P is naturally isomorphic to the smooth quadric
hypersurface Q in the complex projective space Proj(F) given by the homo-
geneous equation q(x) = 0. For brevity, we will equate G/P with Q. Let
{ei, e2, e3, e4, e4} be the standard basis oΐV and let q(x) — XιX3+x2xA — 2x\,
where [x3 ,x 2 ,^3^4, #5] are the coordinates of x G F relative to the stan-
dard basis. We let L = Cex. Then the maximal torus contained in P
is T = {diag(ti,t2,l/t l 3l/t2,l) |ίz G C \ {0},i = 1,2}. Here, the Plucker
coordinates in Q — G/P are just the standard homogeneous coordinates
in Proj(V). Clearly, Lλ = C[l, 1,-1,1,0] and L2 = C [ l , l , l , l , l ] are q-
isotropic. Also, the T-orbits of L1 and L2 are "generic" in the sense of
[F-H], but only TL2 is generic in the sense of the Definition 1.1. Also,
Π(Li) φ Π(L2) = Π, where Π denotes the set of weights of V. This directly
contradicts Lemma 13 in [F-H]. Let Xι = TZ^, i — 1,2, where the closure
is taken in Q (or in Proj(F), since Q is closed in Proj(V)). It is easy to see
that Xι is isomorphic to CP1 x CP1 . On the other hand X2 is the singular
closed subvariety of Proj(Vr) given by homogeneous equations XιX3 — x\,
x2xA = χ\ (the singular points of X2 are [1 : 1 : 0 : 0 : 0], [1 : 0 : 0 : 1 : 0],
[0 : 1 : 1 : 0 : 0], and [0 : 0 : 1 : 1 : 0]). Therefore, the example shows
that two T-orbits "generic" in the sense of [F-H] may not have isomorphic
closures in G/P.

2. Weights of Weyl G-modules.

We will need the following notation. For any additive set A of real numbers
and any subset Y of J5, let AY denote the set of all linear combinations of
elements in Y with coefficients in A. By definition, a semigroup S contained
in a lattice L in E is saturated in L if and only if

(see [K, Chapter 1, Section 1]). Equivalently, S is saturated in L if and only

if for any positive integer m, mμ E S and μ E L imply μ E S.
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Proposition 2.1. Sp is saturated in R.

Proof. Let Φp denote the set of positive roots which are not linear combina-
tions of roots in AP. Then Sp = Z+Φ+. Suppose that Sp is not saturated in
R. Let μ G R be an element of minimal height among the elements of Q+Φ+
which are not elements of Sp. Then μ = μx + μ2 , with

Mi = Σ mvP

where M C Φ+, niβ are positive integers, and

M2 =

where AT C Δp, and nα are positive integers. Prom the above decompositions
of μ we choose one with μ2 of minimal height. Since the sum of any two
roots with negative scalar product is again a root, minimality of μ2 implies
that

for all α G iV, β G M. Take any simple root a in iV, such that (μ2,αθ > 0.
Consider v = sα(μ) G i?. Since elements of Φ^ are permuted by sα, v belongs
to Q+Φ^ but not to Sp. This is a contradiction, since ht(ι/) < ht(μ) and
μ was assumed to be of minimal height among the root lattice elements in
Q+Φ£, not in Sp. D

Let V(λ), λ, Πλ be as in the introduction. The following proposition lists
some basic properties of Πλ.

Proposition 2.2.
(i) λ — Πλ coincides with the set of root lattice points in the convex hull

of{λ-w\\weW}.

(ii) Sp is generated by λ — Π λ. If P = B and λ is the sum of fundamental
weights then Sp is generated by {λ — w\,w G W}.

Remark. Part (i) is well known, but were not able to locate an appropriate
reference.

Proof We first observe that the weights of the Weyl module V(X) (λ integral
dominant) are independent of the characteristic of k. This follows from the-
fact that character formulas for Weyl modules are the same in each charac-
teristic. Therefore we can assume, that char(A ) = 0.

Part (i). Let C denote the convex hull of {w\\w G W} and we let Π =
(X+R)nC. We have to prove that Π = Πλ. It is a known fact that Πλ C λ + ϋ .
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Therefore it is enough to show that Π λ is contained in C. Suppose that this
is not the case, and let μ be a weight in Π λ , not in C. Assume also, that μ
is a maximal such weight in the usual order in E relative to Φ + . Since both
Π λ and C are W—invariant, we must have sa(μ) < μ for all positive roots
a. Hence μ is dominant. Since μ is not the highest weight λ, there must be
a positive root a and a positive integer m such that μγ — μ + ma E Π λ .
Then by maximality of μ, μλ (hence also sa(μι)) is in C. A straightforward
computation shows that μ belongs to the line segment connecting μλ and
5α(μi). This is a contradiction, since we have assumed that μ is not in C.

We are left with showing that Π is contained in ΠΛ An easy argument by
induction on the length function in W, shows that for any w E W, X — wX
is a sum of roots in Φ^. Therefore Π is contained in λ — Z + Φ + . It is proved
in [H, Proposition, p. 114] that the elements of Π λ are exactly the weights
whose PF-orbit is contained in λ — Z + Φ + . Hence Π C Π λ , as required.

Part (ii) We have observed in the proof of Part (i) that λ — C is contained
in convex cone spanned by Φ+. Therefore

λ - πλ - R n (λ - c) c sp

since Sp is saturated in R. The opposite inclusion holds since Φ^ C λ — Π λ .
This follows from the fact that weigths of irreducible G—representations (in
characteristic 0) satisfy the following property: for any positive root α, and
a positive integer n, if μ and μ — na are weights of the representation, so
are μ — qa for any g,0 < q < n (see e.g. [H, Sec. 21.3, Prop.]). One applies
this property to λ and sα(λ), where a £ Φp.

The second claim of Part(ii) follows since Δ C {λ — wλ\w E W} if λ is
the sum of fundamental weights. D

3. Generic orbits of T in G/P.

Let x E G/P and let X denote the the closure of Tx in G/P. For any
w E W, let

Yu, = {y.P\Uχ(y) Φ 0} = {y P\wλ e ux(y.P)}

and

It is well known that each Yw is an affine space which is open in G/P and
whose coordinate ring is generated by functions fμ/fw\,μ E Λ\. Moreover,
the union of Yw,w eW is G/P. Let Tx = {t E T\tx = x} and Tx = T/Tx.
We have the following proposition
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Proposition 3.1. Let x E G/P.
(i) Tx is open in X and it is isomorphic to Tx. Therefore, X is an equiv-

ariant Tx —embedding in the sense of [K].

(ii) {Xw\w E W,wλ E Tl\(x)} is a covering of X byT-invariant open affine
subsets of X. The coordinate ring of Xw,wλ G ΠΛ(#), is the subalgebra
ofk[Tx] = k[Γ{Tx)] generated by Ux{x) - wλ.

(iii) Let w eW be such that wλ E U(x). Then

Tx = {te T\μ(t) = 1 for all μ E wλ - Π(x)}>

Proof. The fist part of (i) follows from the fact the map t -> tx is a separable

morphism from T onto an open subvariety Tx of X whose fibers are the

cosets of Tx in T (the morphism is separable since it is the composition of

the inclusion of T in G with the quotient map from G to G/P).

Part (ii) follows, since for each w G W such that wλ E Πλ(a;), Xw can

be viewed as a closed T-invariant subvariety of the affine space Yw. Hence

the coordinate ring of Xw is generated by the restrictions to Xw of functions

fμ/fw\,μ eAx.
Part (iii). Suppose that w EW satisfies wλ E U(x). Then x E Xw- Clearly,

t E Tx if and only if t fixes all elements of Xw (or equivalently, t fixes all
regular functions on Xw). Therefore the desired formula for Tx follows from
the description of the coordinate ring of Xw given in (ii). D

Before we state a corollary of Proposition 3.1, we need to introduce the
following notation. Let Rp denote the subgroup of the root lattice generated
by Sp. One can show that Rp = R if Φ is an irreducible system. If Φ a union
of irreducible root systems Φ J 5 j E J, then Rp is the root lattice of the root
system

Let

T P = Γ| ker(i/).

Note that if Rp = R, then TP is coincides with the center of G.

Corollary. (Suggested by the referee.)
(i) The stabilizer of each generic torus orbit is TP. Moreover, TP it is the

smallest subgroup of T among the T-stabilizers of elements of G/P.

(ii) (Partial converse of (i)). If x E G/P is such that Tx is contained in
the nondegenerate stratum Z, Tx is normal and Tx = TP, then Tx is
generic.
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Proof. Part (i) follows from Proposition 3.1 (iii). Suppose that Tx satisfies
the assumptions of (ii). Let Sx denote the semigroup generated by λ — Tlχ(x).
We have to show that Sx — Sp'. Since Tx = TPi one has

ker(i/) =

by Proposition 3.1 (iii). Therefore Rp is generated by Sx as a subgroup of
Γ(T). Assumed normality of Tx implies that Sx is saturated in Rp. On the
other hand {λ — w\\w G W} C Sx since Γa: is assumed to be generic. Hence
Sx — Sp since both semigroups are saturated in Rp and Q+Sx = Q+Sp by
Proposition 2.2. D

From now on we assume for simplicity that Rp = R (equivalently, Sp

contains at least one root from each irreducible component of Φ). Let Wp C
W be a fixed set of representatives of W/Wp. Let D denote the fundamental
chamber [v G E\(μ,a) > 0 for all a G Δ}. We are now ready to state the
main result of this paper.

Theorem 3.2. Let x G G/P be such that Tx C G/P is generic. Let
X - Tx. Then:

(i) X is a normal variety (hence by [K, Theorem 14, page 52]; also Cohen-
Macaulay with rational singularities).

(ii) The fan corresponding to X consists of the cones

Cw = -w (J zD, weWp

zewp

together with their faces. In particular, the closures of any two generic

orbits in G/P are isomorphic as T-equiυariant embeddings.

Proof. Part (i). By [K, Theorem 6, p. 24] a general equivariant Γ-embedding
is a normal variety if and only if it admits a covering by open aίfine Γ-stable
subvarieties whose coordinate rings are generated by semigroups saturated
in Γ(T). Hence Part(ii) follows from Propositions 3.1 and 2.1.

Part(ii) follows, since the dual cone of Sp is \JzeWp zD , and by Proposi-
tion 3.1 (ii) the coordinate ring of Xw, w G VF, is k[—wSp]. D

The following theorem shows that Definition 1.1 of a generic torus orbit

does not depend on the choice of the Weyl module V(X).

Theorem 3.3. Let x G G/P. The following statements are equivalent.
(i) There exist an integral dominant weight λ whose stabilizer in W is

Wp, such that for any w G W, the semigroup generated by X — wllχ(x)
is Sp.
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(ii) For each integral dominant weight λ whose stabilizer in W is Wp, and
each w G W', the semigroup generated by λ — wllχ(x) is Sp.

(iii) There exists an integral dominant weight λ whose stabilizer in W is
WP, such that Ux(x) = Πλ.

Proof. Clearly, (ii) implies (i). Also, by Proposition 2.2, (iii) implies (i). We
have to prove that if (i) holds, so do (ii) and (iii). Let X = Tx and let
Xw, w G W be as in Theorem 3.1. Since the coordinate ring of Xw does not
depend on the choice of a Plϋcker embedding, Theorem 3.1(ii) implies that
(ii) follows from (i).

It remains to prove that (i) implies (iii). Let x G G/P and let λ be as in
(i). For any integral dominant weight μ whose stabilizer in W is WP, let Cμ

denote the corresponding line bundle on G/P. Let Cx denote the pullback
of Cμ to X = Tx. Since X contains an open, dense T-orbit, every weight of
H°(X, C^) under the natural T-action has multiplicity one. Therefore the
dimension of the image of the restriction map

is tJ(Πμ(#)). We observe that line bundle Cx is ample. This is because the
piecewise linear function on E corresponding to Cμ

x (see [F-H, Theorem 2])
is strictly upper convex. Then the description of the fan of X given in
Theorem 3.2(iii), [Odal, Theorem 2.13 and Corollary 2.9], and Proposition
2.2 (i) imply that

dim ifo(X,££)

Since Cx is ample there exists a positive integer q such that the restriction
map

H°(G/P,CqX) -> H°(X,C$)

is surjective. Hence Uqλ(x) = UqX as required. D

It is easy to see that Theorem 3.3 and Proposition 2.2 imply:

Corollary. Let x G G/B. Then Tx is generic if and only ifx G D^ew wB+ .B
{i.e. it is "generic" in the sense o/[F-H]). Moreover, if xT is generic then
X = Tx is smooth.

Remark. Smoothness of the closure of a generic torus orbit in G/B is well
known (we do not know however, to whom this fact should be attributed).

Final remarks and questions.

1. All results about closures of T-orbit in G/P stated in [F-H] hold for
generic orbits (in the sense of Definition 1.1) in any characteristic. This is
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because the arguments used in [P-H] are valid for normal equivariant T-
embeddings, and we have shown that the closure of a generic orbit is such
an embedding. We do not know however, if the results remain valid for all
T-orbits in the nondegenerate stratum if P φ B.

2. Let X denote the closure of a T-orbit of an element x E G/P. It is not
difficult to prove that if λ is an integral dominant weight whose stabilizer in
W is Wp, then the line bundle £χ is in fact very ample (one can use the crite-
rion for very ampleness given in [F, Lemma, p. 69] or [Odal, Corollary 2.9]).
Then it follows from [F, Exercise, p. 72] that the corresponding embedding
of X in Proj(i/°(X, C\)) is projectively normal and Cohen-Macaulay (that
is, the homogeneous coordinate ring of X in Proj(iϊ0(X, £χ)) is normal
and Cohen-Maculay). Therefore, the embedding X C Proj(i3Ό(C7,£'1)) is
also projectively normal and Cohen-Macaulay, if the restriction map from
H°(G/P,CX) to H°(X,CX

X) is surjective (equivalent^ Ux(x) = Πλ). We do
not know if this is so, if Tx is generic and Ii\(x) φ Πλ.

3. Since the closure of any T-orbit in an equivariant normal T-embedding
is normal (see [K, Proposition 2, p. 17]), X is normal if it is contained in
the closure of a generic T-orbit. In this situation, the fan corresponding to
X can be described explicitly in terms of the fan defined in Theorem 3.2 (iii)
(see e.g. [Oda2, Section 1.1]). Since there could be non-generic orbits of
maximal dimension (see the example in the introduction) not every T-orbit
is contained in the closure of a generic one. The structure of the orbit is not
clear. Does it have to be normal? If yes, what is its fan? Suppose that the
closures of all T-orbits in G/P are indeed normal. Then the Example and the
Corollary of Proposition 3.1, suggest the conjecture that the isomorphism
type of Tx (as a torus equivariant embedding) is determined by two pieces
of data: the stabilizer of x in T and the set {w E W/WP\x E B+w.P}.
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PARAGROUPE D'ADRIAN OCNEANU ET ALGEBRE DE
KAC

MARIE-CLAUDE DAVID

Dans ces quelques pages, nous reprenons Γessentiel des notes manuscrites
d'Adrian Ocneanu intitulees "A Galois theory for operator algebras" (1986).
Nous en precisons les definitions et demontrons les theoremes essentiels: les
proprietes fondamentales du paragroupe, le resultat de classification qui est
un corollaire du theoreme de classification de S. Popa et la caracterisation de
Γinclusion d'un facteur dans son produit croise par une algebre de Kac de di-
mension finie. II nous a paru important que le paragroupe soit explicitement
defini et que ces resultats admis par tous et souvent cites par F. Goodman,
P. de la Harpe, V. Jones dans leur livre [GHJ] et par S. Popa dans ses
article de classification [Popa, 1 et 2] reςoivent enfin une demonstraion ex-
haustive. Je me suis attachee a rediger les demonstrations qui auraient pu
etre donnees a Γepoque a deux exception pres:

Le caractere d'invariant complet du paragroupe est demontre grace aux
carres commutatifs de S. Popa.

La coassociativite du coproduit de Γalgebre de Kac (§5) etait verifiee
directement dans ma premiere version (Publications de ΓUniversite Paris-
Sud #93-06). Claire Anantharaman a attire mon attention sur Γarticle de
W. Szymanski [S], je Γen remercie: la dualite qu'il definit me permet de
donner une demonstration plus algebrique.

Parmi les developpements de la theorie qui pourraient fournir d'autres
demonstrations a ces resultats, on peut citer, par exemple, la theorie des
bimodules d'A. Ocneanu [O], la theorie des secteurs [LI, L2], [II, 12]...

Je remercie particulierement Vaughan Jones qui m'a encouragee a en-
treprendre ce travail et m'a guidee lors de nombreuses discussions. Je re-
mercie aussi Michel Enock pour ses conseils qui m'ont aidee a achever cet
article.

0. Introduction.

Soit N un sous-facteur d'indice fini dans M, un facteur de type 1^ dont tr est
la trace finie fidele normalisee. Soit Mi Γalgebre oblenue par construction de
base: Mλ est Γalgebre de von Neumann sur L2{M, tr) engendree par M et eN

la projection sur L2(N, tr) [VJ1]. Si J est Γinvolution standard de L2(M, tr),
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Mi est egal a JN'J. J permet done de definir un anti-automorphisme 70 de
ΛΓ'nAfi:

7o(a;) = Jx*J (xeN'ΠMJ.

Plus generalement, comme M. Pimsner et S. Popa ont montre que

N C Mn C M 2 n + 1

est isomorphe a la construction de base, on sera tente de definir, pour x
element de N' Π M2n+i, 7n(#) par Jnx*Jn oύ Jn est Γinvolution standard
de L2(Mn,tr). La premiere partie de cet article contient les verifications
necessaires a une definition coherente de 7n.

La deuxieme partie donne la definition et les proprietes fondamentales des

La troisieme partie contient la demonstration de ces proprietes et une
expression de 7n(y) quand y est un element de N' Π M2 n+i.

La quatrieme partie montre que le paragroupe (la tour derivee munie des
anti-automorphismes) est un invariant complet pour Γinclusion d'un sous-
facteur de profondeur finie dans le facteur hyperfini de type IIχ equivalent
a Γinvariant defini par S. Popa dans [Popal], a savoir le carre commutatif
canonique.

On rappelle que Γinclusion N C M est de profondeur finie si le graphe
principal est fini [GHJ, 4.1]; on obtient le graphe principal de N C M en
effaςant dans le diagramme de Bratteli de la tour derivee ce qui sObtient
par reflexion de l'etage precedent.

La cinquieme partie donne une caracterisation de Γinclusion d'un facteur
de type IIχ dans son produit croise par une algebre de Kac de dimension
finie:

Soient M un facteur de type Hi, tr sa trace normale finie fidele normalisee
et N un sous-facteur d'indice fini dans M. Les proposition suivantes sont
equivalentes:
(a) N est de profondeur au plus 2 dans M et N1 Π M est egal a C

(b) M est le produit croise de N par une action exterieure d'une algebre
de Kac de dimension finie K

(c) N est la sous-algebre des points fixes de M sous une action exterieure
d'une algebre de Kac de dimension finie K.

Une demonstration de ce resultat utilisant la methode des secteurs se
trouve dans [L2] (voir aussi [12]). Dans [II], on trouvera une caracterisation
d'une inclusion irreductible de profondeur 2 de facteurs proprement infinis.

Un resultat semblable dans le cas oύ l'indice est infini est montre dans
[EN]. D'autre part, si N'P\Mι est commutatif, Γalgebre de Kac est un groupe
fini.
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1. Representations des algebres de la tour obtenue en iterant la
construction de base.

1.1. Definitions [VJ1]. Soient M un facteur de type II l 5 tr sa trace nor-
male finie ίidele normalisee et N un sous-facteur d'indice fini dans M. On re-
garde M dans sa representation standard π0 sur L2(M, tr). L'esperance con-
ditionelle EN de M sur N definit le projecteur eN de L2(M, tr) sur L2(iV, tr):

Si ξ est le vecteur cyclique canonique donne par la trace, si x appartient
a M, on a:

) = EN(x)ξ.

La construction de base sur N C M est la definition de Γalgebre de von
Neumann Mx sur L2(M, tr) engendree par M et e^. On connaϊt done Mx

par sa representation fidele τr0 sur L2(M, tr) qui prolonge la representation
τr0 de M par multiplication a gauche, e'est-a-dire pour tout a de M et tout
x de M, on a:

πo(a)(xξ) = (ax)ξ et πo(eN)(xξ) = EN(x)ξ.

D'apres [VJ1, 3.1.7], la trace canonique Tr sur Mλ est une ([M : N]~ι,M)
trace, e'est-a-dire Tr etend tr et Ύr(eNx) est egal a [M : N]'1 tr(x) pour
tout x de M. On notera alors la trace sur Mi comme la trace sur M par tr.

1.2. La tour. D'apres [VJ1, 3.1.7], on peut recommencer la construction
de base a partir de Γinclusion M C Mλ et on obtient une algebre de von
Neumann M2 que Γon connait par sa representation TΓI sur L 2(M l 5tr). Les
restrictions de TΓI a Mλ ou M sont les representation de ces algebres qui
prolongent leur action par multiplication a gauche sur Miξi, oύ ξι est le
vecteur cyclique canonique.

La trace sur M2 prolonge celle de Mi et verifie la propriete de Markov,
on la notera encore tr et ainsi pour la trace de chaque algebre construite
par construction de base. En effet, en repetant la construction de base, on
obtient la tour d'algebres:

N C M C Mx C M2 C - - MnC Mn+1

On connait M n + 1 par sa representation πn sur L2(Mn, tr), M n + 1 est Γalgebre
de von Neumann engendree par Mn et en, la projection de L2(Mn, tr) sur
L2(Mn_!,tr).

1.3. La construction de base N C Mn C M2 n+i. Dans [PiPo2], M.
Pimsner et S. Popa remarquent qu'on peut definir abstraitement Γalgebre
de la construction de base sur N C M comme Γunique (a un isomorphisme
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pres) facteur fini M l 5 muni d'une trace r, qui contienne M et une projection
e et verifie

[Mi :M] = [M:N]

[e,y] = 0 (yGiV)

erre = EN{x)e (x G M)

r(ea ) - [Mx : M]" 1 tr(ar) (a; G M).

Us montrent alors que Γalgebre M 2 n + 1 est isomorphe a Γalgebre obtenue par
la construction de base sur N C Mn. II existe done une representation fidele
π n de M 2 n + 1 sur L2(Mn,tr). Le projecteur de la construction de base est
alors [PiPo2, 2.6].:

Z " 1 = [M : N ] Ί L J τ ± ~ ( e n e n - 1 . . . eo){en+1en . . . eλ)... ( e 2 n e 2 n - i - . . e n )

M 2 n + 1 est done le facteur engendre par Mn et Z^1.
Si ξn est le vecteur cyclique canonique de L2(Mn, tr) et xn un element de

Mn, on a:
πn{fnl)(Xnξn) = EN(xn)ξn

et la restriction de π n a Mn est la representation standard de Mn sur

1.4. D'autres representations. On pourrait aussi regarder la construc-
tion de base sur Mp C Mn, p < n, qui nous donne une representation τr£ de
M2n-P sur L2(Mn, tr); posons alors

fv = [M: N](n pK2 P 1 )(enen_1 ... ep +χ)(en + 1en ... e p + 2 ) . . . (e2n-P-i - - en).

M2 n_p est le facteur engendre par Mn et f% et, pour rcn dans Mn, ̂ (/nJί^n^n)
vaut EMp(α;n)^n.

La restriction de πn (definie en 3) a M2 n_p nous donne aussi une representa-
tion de M2n-P sur L2(Mn, t r ) . . . Nous allons voir dans le paragraphe suivant
que Έv

n et π n coincident sur M2n-P

1.5. Compatibilite des representations obtenues a partir de diffe-
rentes constructions de base. Nous commenςons par fixer les notations
et rappeler les regies de calcul dans les algebres de la tour.

1.5.1. Notations.

a) a = [M : TV], a est la partie entiere de a et a(n,p) = a 2 .

b) an est la partie entiere de αn, Γindice de Mn dans M 2 n.
c) 9n = enen«i...e fc+ie fc n G N,k £ N,n > A.
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d ) gk

n = e n e n + 1 . . . ek-λek neN.k E N, n <k
remarquons que g% = (g*)* pour tous n et A;.

e) f* = a(n,p)gPn+
1gp

nX
2

ι . . . ^ n _ p _ 1 n e N,p G N, n > p > - 1 .

1.5.2. Bases de Pimsner-Popa [PiPol, 1.3].
II existe une famille {λ ,̂ l < j < α + l} d'elements de M, appelee base de

Pimsner-Popa de M sur TV, telle que:
a) EN(λ*\k) = 0 si iφ k.

b) EN(λ*\j) — pj oύ Pj est un projecteur de TV de trace a — a si j = a + 1
et est Γidentite sinon.

Une telle famille verifie de plus:
c) λjβN est une isometrie partielle pour 1 < j < a + 1.

f) Tout y de M admet une unique decomposition y = Y^=\ ^jUj °ύ Vj e s ^

un element de pjN egal a EN(\*y). De meme y = Y^Zl EN(yλj)\*.

g) La famille {α1/2λ;eo, 1 < i < a + 1} est une base de Pimsner-Popa de
Mx sur M. Plus generalement, la famille { α ( p + 1 ) / 2 λ ^ , 1 < i < a + 1}
est une base de Pimsner-Popa de M p + 1 sur Mp. (Ceci resulte de la
demonstration de la proposition 1.5 de [PiPol].)

1.5.3. Regies de calcul. On rappelle que

a) ek appartient a Mk+λ.

b) ek commute avec les elements de Mk-i

c) ek commute avec eh si \k — h\ > 2.

d) ekek+ιek = a~ιek et ek+1ekek+1 = a~iek+1.

e) e^i^e^+i = EMk_1(x)ek+1 (x E M^).

f) EMk(ek)=a-\

g) /^ appartient a M2n-P et commute avec les elements de Mp.

h) π n ( / £ ) ( * n U = # M > n ) £ n

Lemme 1.5.4. fPf^=f-\

Demonstration. Pour montrer cette egalite, nous allons faire disparaitre un
a un les produits du type gζ^k

k de /£.

Voici un procede pour faire disparaitre un projecteur:

Lemme. gn

h

+k9k

n+k9nll+i = "-^ί+ife-iffr^^nΐUi «' h > n + k + 1 et
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k>0.

Demonstration.

en+k+ι en+k gk

n+k gk

nX\+1 (1.5.1c)

en+k+i en+k g ^ ^ en+k+1 ^ + 1 (1.5.1c)

en+k+1 en+k en+k+1 g ^ , gk

nXl+1 (1.5.2b)

gk

n

+

+\+1 (1.5.3d)

gk

nXl+1 (1.5.1c) et (1.5.3c)

— a 9n+k-l9h ff

Suite de la demonstration de 1.5.2.
Ce procede va nous premettre de faire disparaϊtre un a un les projecteurs de

92n-p-l

En appliquant le lemme une fois, nous obtenons d'abord:

En appliquant ce resultat (n — p — 2) fois de plus, nous faisons disparaϊtre

92n-p-l-

nn f-l _ / i\ ί -(n-p-2) 0 1 2

n—p—3 2n—p—2 n—p—2 λ n—p—1 n
92n-p-4 92n-p-l 92n-p-2 J 92n-p-l ' ' ' £/2n

= a(n, -1) (a-^-'-VgU g\... ̂ -V

= a(n, -1) ( α - ί - - 1 ^ β i . . . ί ^

Multiplions maintenant par g%n-P-2:

92n-p-292n-p-lJn ~ a\7h l ) a

(nn~λ n° n1

 Λ

n - P ~ 2 ^ ^ " P " 1

 π n
\92n-p-2 9n-\ 9n " * 92n-p-3J 92n-p-l ί/2n

Par le procede precedent applique (n — p — 2) fois, nous avons:

nn-l nn r-1 _ ( _Λ\rv-{n-p-l)
92n-p-292n-p-lJn ~ αVn? J-Ĵ

/ -(n-p-2) 0 /7n-P"3

 Λ2n-p-3 n-p-2 \ n-p~l n
^« yn_2 y2n-p-5 92n-p-2 92n-p-3 J 92n-p-\ ' ' ' 92n'

nn-l nn f-l __ ( _Λ\n/-(n-p-l)-(n-p-2)
92n-p-292n-p-lJn ~ αVn> l ) a

( 0 1 n—p—3 λ n—p—2 n—p—1 n

9n-29n-l ' ' 92n-p-δJ 92n-p-2 #2n-p-l 92n'
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Apres la disparition de gζX2

Xi c'est-a-dire apres (n—p — 1) absorptions, nous
obtenons

fUn1 = a(niP)a(n, - ^ - ( - ^ M - ^ ) . . . - ! ^

Comme (n - p - 1) + (n - p - 2). . . + 1 = ^ ^ ^ et gζ+1go

p+1 = g°n,
Γegalite est demontree.

Nous allons verifier maintenant que les representations πn, τr£, π^ coincident
sur M2n-P'

Proposition 1.5.5. Aυec les notations precedentes, πn/M2n-P

 = πn

Corollaire 1.5.6. Toutes representations de la meme algebre sur le meme
espace obtenues a partir de differentes constructions de base sont les memes.
Plus prέcisement, si p < k <n, alors les representations πn, πζ, τr£ coinci-
dent sur M2n-P

Demonstration de la proposition. On sait que πζ et π n ont meme restriction
a Mn, c'est la representation standard de Mn sur L2(Mn,tr); il reste done a
comparer <(/^) et πn{fp.

Si x, y et z sont des elements quelconques de Mn, xEN(yz) appartient Mn

et on peut ecrire:

= EMp(xEN(yz))ξn.

DΌύ:

<(fϋπn(xf^y)(zξn) = EMp(x)EN(yz)ξn = πn{EMp{x)f^y){zξn).

Nous avons done obtenu:

<(/ίK(*/»*y) = πn{EMv{χ)f^y) (x eMn,ye Mn).

D'autre part, calculons fζxf~ιy:

FnXfn'y = FnXfUn'y = EMp{x)rj-ιy = EMp(x)f^y (1.5.4).

De ces deux calculs, nous deduisons:

(*) KifZMxtfv) = vnif'xtfv) (x eMn,ye Mn).

L'egalite (*) nous permet d'ecrire:
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L'egalite des elements τr£(/£) et τrn(/£) decoule alors de la propriete de la
base de Pimsner-Popa (1.5.2d) qui donne Γexpression de l'identite de Mn:

La compatibility des differentes representations nous permet de definir
sans ambiguϊte les anti-automorphismes associes a la tour derivee.

2. Anti-automorphismes associes a la tour derivee.

2.1. Definitions et notations. On reprend ici [VJ1, 3] et on rappelle que
Jn est Γinvolution de Γespace de Hubert L 2(Mn,tr) deίinie par Jn(xnζn) —
x^ξn si xn est un element de Mn.

On notera Γn l'anti-automorphisme de Γalgebre Bn des operateurs bornes
de L 2(Mn, tr) defini par:

Γ » « n ) - Jnυ*Jn(xξn) (v EBn,xe Mn).

On sait que Γn(Mn) = M'n et Γn(πn(Λ/r)/) = τrn(M2 n +i) puisque N C Mn C

M 2 n + i est la construction de base; plus generalement, considerant Mp C

Mn C M2n_p, on obtient Γn(πn(Mp) ;) = π n (M 2 n _ p ) .

Definition. Soit Ak — N' Π M^, on note encore tr la restriction a Ak

de la trace de Mk. Γn envoie πn(A2 n+i) sur πn(A2rι+i) On appellera 7n

l'anti-automorphisme de A 2 n + 1 defini par:

ττn(7n(^)) = Γn(πn{x)) {x e A2n+ι).

Si 0 < p < n, 7n coincide sur M^ Π M2n-V avec Γanti-automorphisme con-
struit a partir de la tour Mp C Mn C M2n_p (1.5.6).

2.2. Proprietes fondamentales.

Theoreme 2.2.1. Pour tout n entier naturel, les anti-automorphismes 7n

satisfont les relations suivantes:

a) 7n+27n+lU2n+i = 7n+l7n

b) f-'jnix) = f-χχ (χeAn)

La demonstation de ce theoreme est Γobjet du paragraphe 3. Au cours
de cette demonstration, nous donnerons une formule pour jn(y) quand y
appartient a A2n+1.
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Proposition 2.2.2 ([Popa]). Si N est un sous-facteur de profondeur finie

dans un facteur M de type Π 1 ; les anti-automorphismes 7 n conservent la

trace tr de A2n+ι.

Demonstration. Soit . . . Np+1 C Np C . . . C Nλ C N C M un tunnel dans

N C M [GHJ, 4.7e]; en considerant la construction de base Np+λ C M C

M p + 2 , on peut definir 70 un anti-automorphisme de Np+1 Π Mp+2 par:

si x E Np+ι Π Mp+2 no(jo(x)) = Jo(πo(x)) Jo

oύ J o est Γinvolution canonique de L 2(M, Tr).

Comme TV est un sous-facteur de profondeur finie dans un facteur M de

type IIχ, on sait que

Grace a 4.5 de [PiPol], 3.1 et 3.2.ii de [PiPo2], cette derniere propriete est

suffisante pour affirmer que 70 conserve la trace de N^+ιΓ\M sur M ' Π M p + 2 .

La proposition annonce un resultat plus fort. S. Popa affirme que 70

conserve la trace de N'p+ι Π M p + 2 . Pour demontrer ce resultat, il utilise

Γhypotese de la profondeur finie. En effet, on va plonger N'p+1 Π M p + 2 dans

N'k+ι Π Mk+2 tel que k soit superieur a la profondeur du graphe principal. 70

s'etend a N'k+1 Π Mk+2 et conserve la trace de N'k+ι Π M sur M' Π Mk+2- Ce

choix de k permet d'affirmer que JV^+1nMi est Γespace vectoriel engendre par

7V~£+1 Π Me0N
f

k+ι Π M done 70 conserve la trace de Nk+1 Π Mλ sur N' Π M p + 2 ;

par recurrence, on montre ainsi que 70 conserve la trace de Λ^+1 Π Mp+2.

De la meme faςon, ηn conserve la trace sur A2n+X, il suffit, pour le de-

montrer, d'operer une translation des indices sur la suite d'algebres formee

du tunnel et de la tour derivee.

R e m a r q u e . La relation (a) du theoreme 2.2.1 permet de definir un iso-

morphisme T de la tour derivee de Γinclusion TV C M sur la tour derivee de

Mi C M 3 :

Soient Ap = N' Π Mp et Bp = M[Π Mp,

T est egal a 7 n + i7 n sur A2 n+i e t T(A2n+1) = B2n+1.

D'apres (2.2.1a), T est bien defini, c'est un isomorphisme des tours derivees

conservant la trace (2.2.2) et les anti-isomorphismes, c'est un isomorphisme

de paragroupe (voir 4) qui opere une translation de 2 sur les indices des

projecteurs de V. Jones.
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3. Demonstration du theoreme 2.2.1.

3.1. Lemmes.

Lemme 3.1.1.
a)

fZ = cx{n-p-1)gp

n

+1fζXl(gp

n

+1y et

^n+lUnJ — a 9n π n + l W n+1 J V#n )

(#n+X? Element de Mn+ι, agit par multiplication a gauche sur
L2(Mn+1,tτ)).

b) /^i=α»+

Demonstration.
a)

= a(n,p)gp

n

+1ep+1g
p

n+\ep+2 . . . gp

n

+

+

k

kt\ep+k ... g^lp^en.

Grace aux regies de commutation des projecteurs (1.5.3c), on obtient:

SI = a(n,p)gp

n

+1gp

nXl... gp

nXt+_\ ... g^l^e^e^ ... ep+k ...en.

Comme fiXl =
o(p,n) = α^-P-^αίn + l,p + 2), /» vaut
(a) est demontre.

b)

S~l, = α(n + 1, -l)g°n+1 g\+2 ... *£&

= α ( n + 1, -\)en+1g°n en+2 gι

n+1... e 2 n + 1 ί?2ne2n+2 p2τί+2 (1.5.1c)

= a{n + 1, -l)ff^t2 g°n gi+ι... g»n g^2 (1.5.3b)

— α flVι+1 /n

Lemme 3.1.2. (dit du tour de passe-passe)
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Demonstration.

9k+3

= (ek+3ek+2ek+3)ek+1 (1.5.3c)

= ek+3(aek+ι) (1.5.3e)

= ek+3(ek+1ek+2ek+i) (1.5.3e)

= ek+1(ek+3ek+2ek+1) (1.5.3c).

Lemme 3.1.3. Si 0 < k < n, e2n_rf~x = erf-1.

Demonstration.

e2n-kfή1 = e2n-kθt{n, - 1 ) # X + 1 . . . g2n

= α(n, - 1 ) 9 ^ . . . 9^k-2^n-k9^k-i - 9Ϊn (

Nous avons e2n-k devant g2~^klx et nous voudrions ek devant g^.

lέre etape: transformons e2n-k en e2n-fc-2 devant g%n-k-i- D'ctbord nous
faisons disparaίtre e2n_k:

_n—k — 1 n—k n—k — 1 n—k
e 2 n - k 9 2 n - k - l 9 2 n - k ~ e 2 ^ g e g

2n-fc 92n-k-l 92n-k ~ e2n-k €>2n-k-l ^2n-k 92n-k-2 92n-k-l

Comme e2n-/fc et g2n-k-2 commutent [(1.5.3a) et (1.5.3b)],

e2n_fc 92"-_\-! (1.5.3d)

Ensuite nous faisons apparaitre e2n_k-2:

92n-k
(1.5.3d)

2n-k 92n-k-l 92n-k = «e2n-A:-2 92n-k-3 92n-k

= e
2
n-fc-2ί/2n-fc-l?2n-fc (1.5.lc).

2 έ m e eίαpe; nous avons maintenant e2n_jfc_2 entre g2~*kl2 et gZΰ-k-n
a n — A; — 1 tours de passe-passe (3.1.2), nous allons obtenir ek devant g°:

l e r tour de passe-passe:

g2n-k-2 e2n-k-2 = ^2n-k-2 ^2n-k-3 ^2n-k-4 ^2n-k-2 g2n-k-5 (l 5.3c)

= C2n-k-4 ^2n-k-2 ^2n-k-3 ^2n-k-4 92n-k-5 (3.1.2)

__ n-k-2

eg
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Apres p tours de passe-passe, nous avons e2n-k-2{P+i) devant 9%n-k^)
apres n — k — 1 tours de passe-passe, nous obtenons ek devant g£ et la relation
annoncee est verifϊee.

Lemme 3.1.4. Si x E An,xn E Mn,πn(^n(x))(xnξn) = xnxξn.

Demonstration.

Comme x est un element de M n , τrn(7n(rr))(xnξn) est done egal a Jn(x*x^ξn)^
soit xnxξn. Ainsi 7 n(^), element de M'n, agit par multiplication a droite sur
L 2 (M,tr) .

L e m m e 3.1.5. Si la famille {mJ? 1 < j < an + 1} est une base de Pimsner-
Popa de Mn_χ sur N, alors la famille {α n / / 2 λ^Q~ l m ^ 1 ^ J ^ α n + 1,1 <
i < a + 1} es£ tme frα^e de Pimsner-Popa de Mn sur N.

Demonstration. Verifions (a) est (b) de (1.5.2):

EN

(l 5.1c,d et 3d)

Quand l'indice α de N dans M est entier, on peut facilement donner une

base de Pimsner-Popa de Mn sur N:

Proposition 3.1.6. On suppose que Vindice a de N dans M est entier.

On note Jn le produit de n copies de {0,1,2,... ,α} et si I = (i0, ii,
i2τ •> in) est un element de Jn+ι, on pose

m r — n/n^n+1)/4 \ nn~1\ nn~~2 \ n1 \ f> \
mj — a Λin9o Λin-i9o Λί29oΛiieoΛi0

Alors la famille {m/,/ E v7n+i} ^t une base de Pimsner-Popa de Mn sur
N.

Ceci resulte par recurrence de (1.5.2g) et du Lemme 3.1.5.

3.2. Une formule pour jn(y) quand y appartient a A2n+i Nous allons
maintenant donner Γexpression de 7n(y) quand y appartient a A2n+i Cette
formule nous permettra d'etablir 2.2.1 (a) et nous sera tres utile dans la
partie 5. Quand l'indice est entier, elle coincide, grace a la proposition 3.1.6,
avec celle annoncee par A. Ocneanu.
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Proposition 3.2.1. Si {m ί 71 < i < α n + i + l} est une base de Pimsner-Popa

de Mn sur N, alors pour tout y de A2n+i, on a:

k=l

Demonstration. D'apres 1.5.2, la famille {a^n+1^2rriif~ι ^ 1 < i < an+1 + 1}

est une base de Pimsner-Popa de M 2 n + i sur Mn et

Si EN(m*hmh) — qh, tout element de Mn s'ecrit Σ ^ 1 + zhV^κ °^ zh e s ^
un element de Nqh, il suffit done de connaϊtre πn(7n(y)) sur les vecteurs
de L 2 (M n , tr) de la forme zm*hξn ou z appartient a Nqh. J'omets π n quand
Γelement de Mn agit par multiplication a gauche.

ίrn(j/ )Jn(zm*hξn) = an+ι "

= an+1 Σ ^Mn(i/*m i/-1)EJV(m:m fc)(ir'en). (1.5.3h)

Or

EN(m*mh)z* = (Ji.fĉ ^* = (5i>h2* (1.5.2a,b),

d'oύ

πn(ί/

et

7r n (

Comme z commute a EMn et f~ι et que zrrCh se decompose en

Jfe = l

on obtient:

7rn(ln(y))(zmlξn) = an+1
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Comme Γelement y de A2n+i commute a EN(m*kzm*h), on obtient:

= an+1

αn+i+l

= an+1 ]Γ EuMή^kVfrΛfn^rnUzmlξn). (1.5.3h)
k=l

Et la for mule est demontree.

3.3. 7n+27n+l U2»+i = 7n+l7n

Lemme 3.3.1. Si x G M n ; EMl(g?xgl

n) = a~nEM(x).

Demonstration.

. . . e n xe n . . . e2eλ)

. . . en_ιEMn_1 (x)enen^1... e2e1).

Comme EMι est egal a EMlEMni Γegalite devient:

EMi (9Ϊ^9n) = θί~ιEMl (e1e2 . . . en^1EMn_1 (x)en^1 . . . e2ex).

Apres n — 1 manoeuvres de ce type, on obtient:

P r o p o s i t i o n 3.3.2. 5^ p o w l < f c < α + l , μ j b = Q f ( 2 n + 2 ) / 2 λ A ; ^
n + 1 et si y

est un element de A2n+ij olors 7n +i(y) est Γelement Σ Λ =

deM[ΠM2n+3.

Demonstration. Comme {α(n+1^/2λi^Q, i = 1,... , n} est une base de Pimsner-

Popa de M n + i sur Mn (1.5.2), il suffit de calculer πn+ι{yn+ι(y)) sur les

vecteurs de L 2(Mn + 1, tr) de la forme \jgQzξn+ι oύ Pj est le projecteur

EN(X^XJ) et z un element de PjMn.

π n + 1 (y*) J n

Comme Z"1 = αn^/,t+ 1(gn)* et π n + 1(/^+ 1) = E M l (1.5.3h), on a:

αn+i + 1
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Done

+

= a2n+1 Σ EMl (Xj9Zzmig

0

n) gZEMn {f^m'y) ξn+1
2 = 1

= a2n+1 nΣ
2 = 1

Appliquons le lemme 3.3.1 a zrrii et nous obtenons:

7Γn+l(7nH

2 = 1

2 = 1

Comme EN(zrrii) commute a g£, a jBMn et a Z^1 et que Σ^ϊ" 1 + 1 EN(zrrii)m*
vaut 2, on peut ecrire:

On utilise maintenant la decomposition de ξ sur la base rrii (1.5.2f):

pour faire commuter z avec y, element de A2n+i et le sortir de EMn:

=an+1

δkd\kgϊEMΛ (f-'rmy) EN{m*Pjz)ξn+1.
i=l,jfc=l

Comme ^^p^ = α(n+1)£MJ#nλfcλ7#o)> 7Γn+i(7n+i(y))(λ^o^n+i) est egal a

l

λfc5o"EMn (f-'rmy) EN {m*EMn{9lK\9o)z) ί»+i
i=l,Jb=l

SEMn (f-'rmy) EN {m\go

n\\\jg^z) ξn+1.
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Or πn+Λfn+i)(x)ξn+i = EN(x)ξn+1 si x G M n + 1 (1.5.3h), done

i=l,Jfe=l

Comme /"+! est egal a α ^ ^ ^ f / n " 1 ? ? ^ (3.1.1), en utilisant les regies de
commutation, on ecrit:

α+l

Λ2n+2

o u Tn+lVy; — α 2̂ Jfc=:

Si, pour 1 < A; < α + 1, on note μk Γelement α 2 ( n + 1 ) / 2 λ ^ o + 1 de la base de
M 2 n + 2 sur M 2 n + i , ce resultat s'ecrit:

α+l

7n+i(y) =

Corollaire 3.3.3. Si, pour 1 < k < a + 1, μk = α^ 2 n + 2 )/ 2 λ f c ^ n + 1 eί si y

?/n element de ̂ 2n+ii alors

α+l

7n+l(7n(y)) = Σ
fc=l

Proposition 3.3.4. 7n+27n+i U 2 n + 1 = 7n+i7n (n G N).

Demonstration. Ecrivons la formule du corollaire 3.3.3 pour n + 1: Si y est

un element de A2n+3,

α+l

Mais si, de plus, y est dans i42n+ij la formule se simplifie car

2) = ΊJ

On obtient alors:

7n+2(7n+l(y)) = 7n+l(7n(y))
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3.4. f~l/yn(x) et f~λ sont egaux si x est un element de An.

Proposition 3.4. Pour tout x de An, /77
17n(^;) — fΰlχ

Demonstration. II suffit de demontrer la relation pour les unitaires de An.
Soient u un unitaire de An et z un element de Mn,

^n{f-lΊn(u)){zin) = πn{f-ι){zuξn) (3.1.4).

Alors par definition de /~\ πn{f~ιηn(u)){zξn) = EN(zu)ξn. Comme u
normalise TV, pour tout x de Mn, EN(uxu*) — uEN(x)u*, on obtient done:

πn{fnlΊn{u))(zξn) = EN(zu)ξn = u*EN(uz)uξn = EN(uz)ξn

car u commute a N. Cela s'ecrit aussi:

La relation est demontree.

3.5. Si 0 < k < n, Γimage de ek par l'anti-automorphisme 7n est
e2n-k-

Proposition 3.5. jn(ek) = e2n-λ; (0 < fc < n).

l e r cas: k — n.

en est la projection de L2(Mn, tr) sur L2(Mn_u tr), aussi J n et en commutent
et 7n(en) = en.
2 έ m e cαs: 0 < k < n.

Soient x,y,z des elements de Mn. Calculons d'abord ^(e^xf^y:

^n(ln{ek)xf~ly)(zξn) = Kn{jn(ek)) {xEN(yz)ξn) = xEN(yz)ekξn (3.1.4).

Comme ek commute a Mk_ι done a TV,

^n(ln(ek)xf~1y)(zξn) = xekEN(yz)ξn.

On obtient done ηn{ek)xS~ιy = xekf~
ιy.

Calculons maintenant e2n-k%fn1y:

Comme A: < n, e2n_fc commute a Mn, done

e2n-kxfή1y = xe2n-kf~
ιy = xekf~

ιy (3.1.3).

Soient α n + i la partie entiere de α n + 1 , Γindice de iV dans Mn et

{πijj = l , . . .α n + i +1}
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une base de Pimsner-Popa de Mn sur N. Comme Σ*ZV+1 mjfnlrnj e s t

Γidentite (1.5.2d) et, pour tous x et y elements de Mn, Ίn{e>k)xfΰly e t

e2n^kxf~1y coincident, on peut ecrire:

c'est-a-dire 7n(e*) = e2n-*.

4. Le paragroupe, invariant complet pour Γinclusion d'un
sous-facteur de profondeur finie dans le facteur hyperfini de

type Hi.

4.1. Paragroupe ou carre commutatif. Popa a montre que Γinclusion
d'un sous-facteur de profondeur finie dans le facteur hyperfini de type IIχ est
determinee par son carre commutatif canonique [Popal, 6.6]. Le paragroupe
est une autre version de cet invariant.

Definition. Le paragroupe de Γinclusion N C M est la tour derivee
(Ak)k>o de N C M munie de ses anti-automorphismes canoniques ηk.

Remarque. La donnee du graphe principal equivaut a celle de la tour
derivee [GHJ, 4.6.5].

Theoreme 4.1.1. Soient N (resp. N) un sous-facteur de profondeur finie
dans lejacteur hyperfini de type ϊlx M (resp. M). Si les couples N C M et
N C M ont meme paragroupe, Us sont isomorphes.

Demonstration. On suppose qu'il existe un isomorphisme β des tours derivees
conservant la trace tel que β(Ak) — Ak et ηk — β~1;γkβ.

Si N C M est de profondeur finie p, Nι C N est de profondeur finie pi,
alors si 2j est superieur k p — 1 et pi, le carre commutatif

M'ΠM2j C N'ΠM2j

(C) n n
M' n M 2 j + 1 cN'n M2j+i

est le carre canonique de JVΊ C N. Pour montrer que les^leux couples sont
isomorphes, il suίfit de montrer que Nλ C N et Nx C N ont meme carre
canonique [Popal, 6.6].

Montrons que (C) et (C) sont isomorphes: _ ^
Nous savons deja que Γisomorphime β envoie N' Π M2j sur N' Π M2j et
N' Π M2j+ι sur N* Π M 2 j +i en conservant la trace.
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Comme M' Γ\M2j est Γintersection de (N'Γ\M2j) et ( M Ί Ί M 2 j + 1 ) , il nous
suffit de demontrer que

β(M' ΓΊ M2j+1) = M'Γ) M2j+1.

Or

M'ΠM2j+1=Ίj(N'ΠM2j),

done _____

M1 n M2j+1 = 7,-(Ar' n M2j) = ^ ( W n M2j)

et comme 7̂  = β-1ηjβ,

M n M 2 i + 1 - βΊj{N' n M2 i) = β(M' n M 2 j + 1 ) .

Les deux carres sont isomorphes.

5. Produit croise par une algebre de Kac de dimension finie.

Dans cette partie, nous donnons une caracterisation de Γinclusion d'un fac-

teur de type IIχ dans son produit croise par une algebre de Kac de dimension

finie:

Theoreme 5.0. Soient M un facteur de type Π 1 ; tr sa trace normale finie

fidele normalisee et N un sous-facteur d'indice fini dans M. Les propositions

suivantes sont equivalentes:

(a) N est de profondeur au plus 2 dans M et N' Π M est έgal a C.

(b) M est le produit croise de N par une action extέrieure d'une algebre

de Kac de dimension finie K.

(c) N est la sous-algebre des point fixes de M sous une action exterieure

d'une algebre de Kac de dimension finie K.

Inequivalence entre (b) est (c) est un resultat de M. Enock et J.-M.

Schwartz [ES2]; dans [EN], on trouvera la demonstration de (b)=Φ-(a) dans

le cas le plus general. Nous nous attacherons ici a construire une algebre

de Kac de dimension finie a partir de Γinclusion d'un sous-facteur dans un

facteur de type II 1 ? e'est-a-dire a montrer (a)=^(c).

Soient M un facteur de type IIχ, tr sa trace normale finie fidele normalisee

et N un sous-facteur d'indice fini n et de profondeur 2 dans M. Par con-

struction de base, on obtient la tour de facteurs

N C M c Mi C M2 c . . . Mp C M p + 1

la suite des projecteurs de V. Jones et les anti-automorphismes j p definie en

2.2.1. On s'interessera plus particulierement a la tour derivee de Γinclusion

M C Mi, aussi on notera Bp — M' Π Mp. On supposera, de plus, que

N'ΠM = C.
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5.1. La tour derivee de l'inclusion M C Mλ. Comme N' Π M = C,

Comme Γinclusion de N dans M est de profondeur 2, JV7 ΠM2 est obtenue
par construction de base sur Γinclusion Nf Π M C N' Π Mλ [GHJ, 2.4.1 ou
4.6.3], done N'ΠM2 est un facteur de dimension finie puisque [M : N] est fini,
soit Mn(C) oh n = [M : N] qui est done entier. Alors i?3 = 7i(iV Π M2) est
aussi isomorphe au facteur Mn(C), plus precisement e'est le facteur B(Hφ),
si (B2,Hφ,Jφ,φ) est la forme standard de 2?2

Alors B2 est une algebre de dimension finie n, soit I?2 = Θig/Mn. (C) oύ /
est un ensemble fini et Σ i € / n? = n. On notera Mni (C) le sous-facteur Cβi
de 5 2 (done nx = 1) et pi le projecteur central de B2 tel que B2p{ = Mn. (C).
La trace de Markov normalisee sur B2, notee φ, est la restriction de la trace
de M2, sa valeur sur le projecteur minimal du facteur B2pι est ̂ ±.

Nous allons montrer que (^25727i,7i,^^) est une algebre de Kac qui agit
sur M en laissant fixes les elements de N.

Nous utiliserons seulement deux reflexions de la tour derivee:
i) 7<p, Γanti-automorphisme de l'algebre J53 defini par

Jφ(a) = Jφa*Jφ (a £ B3)

ηφ envoie B2 dans B2.

ϋ) ΊHΨ defini de la meme faςon a partir de JHφ Γinvolution standard de
i?3, e'est un anti-automorphisme de l'algebre B^OB^ qui envoie B2Γ\Bs
sur B'3 ΠB4.

Comme nous ne considerons que des constructions de base a un etage,
il n'y a aucun probleme de compatibilite de representations, de plus les
formules de la partie 3 sont encore valables; on peut verifier directement que
ces reflexions conservent le trace de Markov de la tour derivee.
5.2. Bases de Pimsner-Popa et unites matricielles. Pour appliquer les
formules de 3, nous allons choisir des bases de Pimsner-Popa particulieres.
La proposition suivante motive ce choix.

Proposition 5.2.1. Soit N un sous-facteur d'indice fini n du facteur M,
tr la trace normale finie fidele normalisee sur M et N C M C Mx la con-
struction de base.

Si N est de profondeur au plus 2 dans M et que Nf DM est egal a C, on
pose:

N'ΠMx = θiG/Mni(C) et J = {K = (k,kuk2),k e /, 1 <kuk2 <nk}-

Soit \fklyk2 — fκ->K E j \ une famille d'unites matricielles de N' Π M1 ? oύ

fi,i — /o — eo; o>lors la famille I *P^fκ,K G J > est une base de Pimsner-



PARAGROUPE ET ALGEBRE DE KAC 351

Popa de Mx sur M ainsi qu'une base de Pimsner-Popa de Nf Π Mλ sur C;

de meme pour < *Γ^-(fκy,K G J \.

Demonstration. On verifie facilement les proprieties de 3.1.5 car, comme

Nf Π M = C, sur Nf Π Mu Γesperance conditionelle sur M est la trace.

Definitions.
1. On choisira pour base de Pimsner-Popa de Mλ sur M la base de

Pimsner-Popa associee a une famille d'unites matricielles de N' Π Mλ

comme dans la proposition 5.2.1 et on la notera pour simplifier {λ5,1 <
s < n}, oύ λi = e0. On ne souviendra que Σ™=1 tr(λ r)λ* = 1 et que
{λ*, 1 < s < n} est aussi une base de Pimsner-Popa de Mλ sur M.

On rappelle que {n1//2λ sei, 1 < s < n} est alors une base de M2 sur
Mi (1.5.2g).

2. Si B2 = ΘιeIMnι(C) et J = {K = (k,kuΛ2),k E /, 1 <kuk2 <nk},

on choisit une famille d'unites matricielles de J525 \ fkuk2 ~ fκ->K ^ j \

oύ f®λ — βi. La proposition 5.2.1 permet alors d'affirmer que la famille

i v^"/^5 K ^ ^ ί e s ^ u n e ^ a s e ̂ e P i m s n e r ~ P ° P a de M 2 sur C ainsi

qui une base de Pimsner-Popa de B2 sur C; de meme pour la famille

On voudrait voir 7271 comme un co-produit sur J52, or 7271 est un iso-
morphisme de B2 sur M2 Π M 4 qui est contenu dans B2 Π B 4; il reste a
mettre Γalgebre B'2 Π J54 dans le produit tensoriel B2 ® i?2, c'est l'objet de
la proposition suivante qui fixe les notations.

Proposition et Definitions 5.2.2.
a) L 'application 7^71 es£ un isomorphisme de B2 sur B'2 Π .83 qui conserve
la trace.

Posons f'κ =Ύφηfi{fκ)'
La famille {f'KlK G J} est une famille d'unites matricielles de B'2 Π B3.

b) L 'application j H φ est un isomorphisme de B2 sur B'3 Π J34 qui conserve

la trace.

Posons Fκ = ΊHφΊφ{fκ).
La famille {FK,K G J} est une famille d'unites matricielles de B'3Π B4.

c) La famille {f'HFκ,H G J,K E J} est une base de Br

2Π B4. L'algebre
B2 Π J34 est isomorphe a B2® B2 par I'isomorphisme θ:

θ(fΉFκ) = fH® fκ

d) L'application 7271 est un isomorphisme de B2 sur M2 Π M 4 qui envoie

B2 dans B2 Π 5 4 en conservant la trace.
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Posons gκ =
Alors gκ — Σ P J Q G J Zp&fpFQ oύ les XpQ sont des nombres complexes.

On posera Γ = Θj27i

La demonstration de cette proposition est laissee au lecteur.

On peut appliquer les resultats du 3 et obtenir les formules suivantes:

Proposition 5.2.3.

VK 6 J, 7i(/x) =n
s=l

9κ =

Demonstration.
a) C'est la formule (3.2.1) pour jι l'anti-automorphisme de B2.

b) C'est la formule (3.2.1) pour j φ l'anti-automorphisme de B2 qui se
simplifie:

PEJ

(c) et (d) cf. formule (3.3.3).

5.3. Definition d'un coproduit sur 5 2 . Nous allons preciser les com-
posantes de gκ sur la base {f'HFK,H G J,K E <7}, connaisant Γexpression
de Γ(fκ), nous pourrons verifier que Γ est un co-produit co-associatif.

Proposition 5.3.1. gκ = Σp,Qejxp.QfpFQ> c'est-ά-dire

Γ(fκ)=

ou
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En particulier e3 = Γ(ei) = ΣPeJ ~Ίι{fp) ® fp-

Demonstration.

S i P = (p;pi,p2) et Q = (g;gi,g2),

et en passant a la trace, on obtient XpQ — ~~- tr (gκf'pFQ)

Calculons done tΐ(gκf'pFQ).

'£«
car < χfiffc, C e J \ est une base de Pimsner-Popa [1.5.2a]. Done

tΐ(gκf'pFQ) =

= n3tr

n2tr

*,, —fBJi(fp)) e2

—fBΊι{fp) e2fQe3e2J—fBnb J V nb

— fBJi{fp))
nb J

—fB .n J

Utilisons la propriete de commutation de la trace et sa propriete de Markov
[VJ1, 3.1.7]: on a

ntr ί Ϋ] e 2 ί \ — fβχsei ) e2fκEMl (e1X*sJ—fB'y1(fp)) fQ
Vβ€7ί=i ^ n b ' \ Ίnb J J

= ntr EMl (^ΓBXseλ e2fκE
Ml

fQ

= tr ^fBKeλ fκEMl
n y
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Ecrivons EMl sur la base {λr,r = 1 a n}:

= ΣEM (EMI ^K^JBΊIUP

E
Mι

Comme fκ commute a M, on en deduit:

tr (gκfpFQ) =

= tr
iBeJ,r,s=l

= tr
i

Comme on a:

on en deduit:

Et comme ^fB = n (1.5.3e), on peut ecrire:

tτ(9κf'PFQ) = tr

Simplifions EMl (7i(/p)λrβi) en remplaςant 71 (/P) par

On obtient alors
-.2

K

) SKKSQ

K (l 5.2f),

X p /~t — tr
npnq

pnq

tr KrP) fκKfo
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On notera jκ{fp) — n Σr=i ^MΎ ieiKfp) fκK (Cette notation est coherente
puisque 71 (/p) = ^ Σ s = i EMι {eiλsfp)e1\*s). On peut alors ecrire

n

En particulier:

n

Comme < χΓ^-fBlB £ j \ est une base de Pimsner-Popa de B2 sur C et que

I V n b J
71 conserve la trace, on peut ecrire

PG^ ^ PG^ ^

5.4. Dualite entre Ai et B2. Dans [S], W. Szymanski definit une dualite

entre les espaces vectoriels Aλ etB2.

Definition et Proposition 5.4.1. (W. Szymanski) La forme lineaire

definie sur Aλ x B2 par

(α,6) = n 2 tr(ae1eob) (a e A1,b G B2)

etablit une dualite entre Aλ et B2.

Demonstration.

Rappelons d'abord que A1e0 = Ce0 et exB2 = Ce x. Alors si, pour b donne

dans B2, n2 tΐ(aeιeob) est nul pour tout a de A1: n2 tr(αeiα/e06) est nul pour

tous a et a' de Aλ.

Comme A2 — A1e1Aϊ et que eob est un element de A2, nous concluons a

la nullite de tr(eoW>*eo).

Or comme EMl(bb*) appartient a Γalgebre M' Π Mx qui vaut C, on peut

ecrire:

0 - tr{eobb*eo) = ti{bb*e0) - tr(£;Ml(66*)eo) - n~1tr(66*).

La fidelite de la trace permet de conclure a la nullite de b.

Nous demontrons de meme que, pour a donne dans A l 5 la nullite de (α, b)

pour tout b de B2 implique la nullite de a.
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La proposition suivante nous assure la co-associativite de Γ.

Proposition 5.4.2. Γ, le coproduit de B2, est le dual du produit de Valgebre
Ax.

Demonstration.
L'algebre A\ (resp. B2) est engendree par {λ5,1 < s < n} (resp.
{fκ,K e J}). Nous allons done calculer (λ^ ® λs, ,Γ(/^)). D'apres 5.4.1 et
5.3.1, nous avons

(λΛ ® λ5J, Γ(fκ)) = n4 Σ x$i

Lemme 1.

e0EMl (eiλr/p) = ne0EM (eoeiλr/p) = ne0 tr

Demonstration.
La premiere egalite est une application directe de [PiPol, lemma 1.2].
Comme eoeiλr/p appartient a A2, EM (βoβiλr/p) appartient a N1 Π M

done vaut tr (eoeiλr/p).

Lemme 2. L'element Jκ(fp) = n Σ r = i EMλ (eiKfp) SKK appartient a B2

Demonstration.
Soit y un element de M, X*y = Σr=i ^M(A^A 5 )A*, alors comme /^, fp

et ei commutent a M, on peut ecrire:

r = l

r = l

r = l

r = l

donc-yκ(fP) €M'ΠM2.
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Lemme 3.

QeJ nP r=i

Demonstration.

Σ XP,Q t r(λ sei6
QeJ 'O/Q) wh

tr [ t r

Puisque < Λ/^/A r est une base de B2 sur C, le Lemme 2 nous permet
^ y nq v j

d'affirmer:

On simplifie alors l'expression:

Σ ^pQtr(λ5eie0/Q) = — tr

En remplaςant jxifp) par son expression, on obtient:

XP,Q tr(λseieo/Q) = — ̂  tr {e0EMl {e1λrfp
nP,Q
nP r=ι

Le l̂ emrne 1 nous permet d'ecrire:

2 n

n
= — ̂  tr (e0

n
r = i

On en deduit Γacilement le resultat annonce.

5wiίe de demonstration de la proposition. D'apres le Lemme 3, on peut

ecrire:

r = l

3n3

— tr(neotr(eoeiλr/p)/pλ/ιei)
n

r=i PeJ
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Comme < . / ^ / P , P G J \ est une base de Pimsner-Popa de M2 sur M1 (5.2),

on peut simplifier Γexpression:

n

= n 2
(λΛ ® λs, T(fκ)) = n2 2^(A*AS, fκ) tr

Grace a 1.5.2a et b et a definition de λs (5,2), on arrive au resultat espere.

(λh ® λs, T(fκ)) = n2(λh\s, fκ) tr(eoei) = (λΛλβ, fκ).

Corollaire 5.4.3. Γ = #7271 est un coproduit co-associatif sur B2.

5.5. 71 est une co-involution sur (£?2,Γ). ηλ est, par definition, une in-
volution sur j?2> pour montrer qu'avec Γ, elle munit B2 d'une structure
d'algebre de Hopf-Von Neumann co-involutive, nous avons besoin d'en savoir
plus sur ηHφ.

Lemme 5.5.1.

a)

VP G 3\VQ G 3-)θ^fHφθ
 1(/p ® /Q) — 7 I ( / Q ) ® 7i(/p)5

c'est-ά-dire que modulo Γidentification θ entre B2 Π B± et B2 ® B2,

oώ σ esί Γautomorphisme de B2 ® .62 de/ϊm par σ(# ® y) = σ(y ® x)

[ESI, 1.2.5].

b) Ίs{a) =-γHφ(a) (aeBf

2ΠB4).

Demonstration.

a) 7 ^ ( / ^ Q ) =

= ΊHΨ {ΊHΨΊΨUQ)) ΊHΨ (ΊφΊΛfp)) = 7̂ 71 (7I(/Q)) 7/fv7v (7I(/P))

b) D'apres la formule 3.2.1, | - ^ = / P e 2 , P E J^j etant une base de Pimsner-

Popa de M3 sur M2, si a G 5^ Π B4,

73 (a) =nΣ EM3 [e3——fPe2a\ e3e2——fp.
n J n

Comme (es~^=fpe2a) appartient a B4, EM3 [e3-ϊ=fpe2a) commute a M

done vaut EB* [e3-^=fpe2oΛ^ on a alors
V v n p /

73(α) = n Σ EB3 I e3——fPe2 a I e 3 e 2 — = / p .
n J VU
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C'est la formule 3.2.1 pour ηHφ defini sur B'2P\BA, ainsi 73 et j H coincident
sm B'2ΠB4.

Proposition 5.5.2. Le triplet (J92,Γ,7]) est une algebre de Hopf-Von Neu-
mann co-involutive.

Demonstration.

D'apres 5.5.1a, (j± <8> jijσΓ^ = θjHφj2\B2- Comme 72(£?2) est contenu

dans B'2 Π β 4 , d'apres 5.5.1b, 7# V ,7 2 | J B 2 = 7372|#2- La propriete (2.2.1a) des

anti-automorphismes nous permet alors d'ecrire:

(71 ® 7i)σΓ7i = 6>727! - Γ.

Le triplet (# 2 ,Γ,7i) est une algebre de Hopf-Von Neumann co-involutive

[ESI, 1.2.5].

R e m a r q u e . On peut verifier facilement que 71 est la co-involution definie

par la dualite entre Aλ et B2

Proposition 5.5.3. 71 ? la co-involution sur B2, est le dual de I'involution

de Ax.

Demonstration.

Pour λ r dans Ax et fκ dans I?2, on a

= n 3 ] Γ tr [\rEM {e0EMl

s=l

Comme eo^Mi(eiλs/i<:) appartient a Nf Π Λίi, on a

5=1
n

3= n 3 Σ t r (χreι tr (/^eoe!Ae) λ*)

Comme {λs, 1 < s < n} est une base de Pimsner-Popa de Aλ sur C, on peut

ecrire:

= n2tΐ{XrEMl

On en deduit que

(λΓ j 7 l(6)) =n2tτ(fκe0e1\r) = (λ*rJ*κ)
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5.6. (J?2,Γ,7i,n^) est une algebre de Kac. Nous allons montrer que nφ
est un poids de Haar sur (52,Γ,7i) en utilisant le theoreme 6.3.5 de [ES2].

Lemme 5.6.1. VK G J', gκ^\ — eιFκ, c'est-ά-dire

Vα G B2, T(a)(eι ® 1) = eλ ® α.

Nous utilisons la formule de la Proposition 5.3.1 et la notation deja utilisee
Ίκ(fp) = nΣr=i EM1 {eArfp) fκK> e n particulier

r = l

Comme gκ =

Lemme 5.6.2. VϋΓ G <7, θ(gκ)(l ® ex) = /^ ® e1 ; c'est-ά-dire

Mae 5 2 , Γ(α)(l®ei) = α®βi-

Comme β(fflf) = ΣP,Q 6 I 7 i t r (Σr=i ^ (eiλP/^) /*λ /5) fP ® / 0 , on a:

P€J
 nP \ r=l

Or, puisque {n1//2λre!, 1 < r < n} est une base de Pimsner-Popa de M2 sur
Mi,

* = fκ
r=l r=l

Alors,

Σ -trfnΣJ5M1(/ιrλ;e1)e1λr/;>)/p= Σ -ti(fKft) fP = fκ
n \ /r = l

et l'egalite est demontree.

Proposition 5.6.3. (B2yT,jι,nφ) est une algebre de Kac de dimension
finie.
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Demonstration.

On a vu dans la Proposition 5.3.1 que le projecteur central de B2, βi, verifier

Le Theoreme 6.3.5. de [ES2] et les Lemmes 5.6.1 et 2 permettent de conclure.

Remarque. L'algebre Aλ munie du co-produit dual du produit de Γalgebre

J32, de la co-involution duale de Γinvolution de B2 et du poids n t r est

l'algebre de Kac duale de l'algebre (B2,Γ,<yunφ) [ESI, 6.9.9].

5.7. Une action de (B2, Γ, 71, nφ) sur M. II nous reste a faire agir l'algebre

de Kac sur M.

Proposition 5.7.1.
a) Si Nι est la premiere algebre d'un tunnel construit dans N C M, c'est-

ά-dire que N\ C N C M est la construction de base, soit v = 7o7i

Visomorphisme de B2 sur N[ Π M, {u(fκ)^K G J} est une famille

d'unites matricielles de N[ΠM et, a une constante multiplicative pres,

une base de Pimsner-Popa de M sur N.

b) Soit β le morphisme de M dans M ® B2 defini par:

siyeN etKeJ, β(y u(fκ)) = (y ® 1)(^ ® i)Γ(fκ)

β est une action de B2 sur M dont Valgebre des point fixes est N'.

c) v se prolonge en un morphisme normal de B2 dans M qui verifie:

i/(l) = 1 et βv= (ί/®i)Γ.

Demonstration.

a) C'est la Proposition 5.2.1.

b) β est une action car c'est un morphisme injective de M dans M ® B2

qui verifie

= 1 et (β ® ϊ)β = (i ® Γ)β. [El, 1.1]

En effet si y E N,

(i ® T)β{yv(ίκ)) - (y ® 1 ® l)(ϊ ® Γ)(

= (y ® 1 ® l)(i/ ® i ®

= (y ® 1 ® l)(i/ 0 i ®
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= Σ

Comme 1 = ΣKeJ /K, β laisse fixe les elements de N. D'autre part, comme
[M : N] = n = [M : N% Γinclusion Nβ C N implique Γegalite.

c) resulte de la definition de v et β.
La Proposition 5.7.1 et le Theoreme 5.2 de [ES2] permettent de conclure:

Theoreme 5.7.2. Soient M un facteur de type Πi7 tr sa trace normale
finie fidele normalisee et N un sous-facteur d'indice fini dans M. Si N est
de profondeur au plus 2 dans M et N' Π M est έgal a C, N est la sous-
algebre des points fixes de M sous Vaction exterieure β de Valgebre de Kac
de dimension finie (Mf Π M2, #7271,7i, nφ).

L'action β est exterieure puisque Nf Π M = C.

5.8. Remarque: cas d'un groupe fini. Le cas oύ N'ΠM1 est abelien peut
se traiter directement, en effet le groupe G apparaίt comme le quotient du
normalisateur de N par le groupe unitaire de N. Un resultat de Sutherland
repris dans la these de V. Jones permet de conclure [these VJ, 4.1.7].
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IRREDUCIBILITY AND DIMENSION THEOREMS FOR
FAMILIES OF HEIGHT 3 GORENSTEIN ALGEBRAS

SUSAN J. DIESEL

We show that the family of graded Gorenstein Artin alge-
bras of height 3 with a fixed Hubert function is irreducible,
and we prove some dimension theorems about these families.

0. Introduction.

In Chapter 1 we show that when a set D — (Q, P) of generator and relation
degrees is given, Q = {q1:... , qu} and P = {px,... ,pw}, the family GorD of
Gorenstein algebras A = R/J with J having this set of generator and relation
degrees is irreducible. We show that GorD is the image of an algebraic
map from a dense open set in a product of affine spaces. This depends on
Buchsbaum and Eisenbud's structure theorem for height 3 Gorenstein ideals
[BE1], which is discussed in Chapter 2.

In Chapter 2 we show that when T is fixed, the family Gorτ of all Goren-
stein algebras with Hubert function T is irreducible. We show this by giving
an explicit deformation of an ideal with degree set D to an ideal with a
smaller degree set D' consistent with T. The minimal set Z}mjn of gener-
ator and relation degrees given T is unique, and we conclude in Theorem
2.7 that GorD D GorDι for D' D D, and therefore Gorτ — GorDτnin, the
Zariski closure of GorDmin inside Gorτ. We give a method for determining
the alternating matrix whose pfaίfians generate the ideal with the smaller
degree set, and show that it is Gorenstein of height 3. We conclude that
whenever an ideal J determining T is generated by more than the minimum
number needed for T, it can be deformed to an ideal with fewer generators.

We again work from the perspective of a fixed Hubert function T in Chap-
ter 3 to determine the maximum number of generators an ideal determining
T may have. This uses the combinatorial data described in [BE1] and [Stl],
specifically the conditions on a sequence {ri,r2, -,ru} of integers, which
we call diagonal degrees, that can occur as the differences in a degree set
D defining a Gorenstein algebra with Hubert function T. We determine
the maximum number of generators possible for a ideal determining a given
Hubert function, and we give an explicit example of a matrix whose pfaffians
generate this number for any given Γ. There is a lattice structure we can

365
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give to the degree sets that determine T, where a vertex of the lattice is a se-
quence of diagonal degrees that is consistent with T, and where two vertices
are connected if the sequence at one vertex is a subsequence of the other.
There is a unique minimum vertex, corresponding to the difference sequence
of Dmin and a unique maximum vertex, corresponding to the saturated se-
quence of diagonal degrees defining T. We also prove in Proposition 3.12 that
there is a one to one correspondence between permissible Hubert functions
T of socle degree n and order k(T) and self-complementary subpartitions of
rectangular blocks of size 2k by n — 2k + 2.

Chapter 4 investigates various methods for determining the dimension of
Gorτ by studying the ranks of the Catalecticant matrices associated to a
dual form /. For certain Hubert functions of socle degree n, order k(T) = d,
and bounded by £, we make a conjecture for the dimension of the family
Gorτ, and we show the conjecture to be true for approximately two thirds
of the possible cases. We determine the dimension of Gor(T) for certain
other T.

0.1. Notation and definitions. We will use the following notation and
definitions throughout this paper.

• R is the ring k[x,y,z], where k is an algebraically closed field. The
maximal ideal of R is m = (x, y, z).

• A is a graded, height 3 Gorenstein algebra quotient of k[x,y,z].
• Ri is the space of forms of homogeneous degree i in R. R is a graded

ring and can be expressed as Θi>o^ή with Ro = k.
• Rd{9i) is the subspace (xdgi, xd~ιygi,... , zdg^) of forms of degree d +

deg Qi in R generated by the homogeneous polynomial g^
• We let T = T(A) = (ΛOϊ hu ... , Λn, 0,...) be the Hubert function of

a Gorenstein Art in algebra A = RjfJr, where J is a homogeneous ideal in
k[x,y,z], J therefore has a grading J = ®i>oJi. The nonnegative integer hi
is the dimension of Ri/ Ji as a A -vector space.

• The socle of R/J in the set {a G R/J \a> h E J Vh G m}. We call
R/J a Gorenstein ring and J a Gorenstein ideal if the dimension of the socle
of R/ J as a A;-vector space is 1.

• D = ({?»}, {Pi}) is a set of generator degrees and relation degrees for
an ideal J in R corresponding to a given Hubert function T.

• 1Z = Homfc(iϊ, k) is the ring dual to R. R acts on TZ by contraction;
if X*γc+dZe e ^ t h e n χayd Q χaγc+dZe = y c ^

• We denote by / a homogeneous polynomial in Έ, whose annihilator
in R is J.

• It(M) is the ideal of t + 1 by t + 1 minors of an n by m matrix M. If
ί > min{ra,n}, then It(M) is defined to be the zero ideal (0).
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1. Variety structure on GorD.

We assume in this chapter that k is an algebraically closed field, R — k[x, y, z]
is a ring, and J is a homogeneous ideal in R.

Let A = R/J be a Gorenstein algebra. The set D = D(J) — ({qi,Pi}), i =
1... u of generator and relation degrees of J determines the Hubert func-
tion of R/J. Buchsbaum and Eisenbud's structure theorem for height 3
Gorenstein ideals proves that all such ideals can be obtained as pfaffians of
a suitable alternating matrix M with entries in R. The degree matrix EM of
the entries of M is determined by D (see Chapter 2). Denote by E — E(D)
the set of entry degrees in EM The degree matrix determines the number
of ways of filling in M with entries chosen generally from R. This number
h(EM) is a polynomial in the entry degrees E.

Let π be the map from the family Ah^EM^ of all alternating matrices with
degree matrix equal to EM to the family of algebras A — R/J having the set
D(J) of generator and relation degrees, determined by EM. We will show
that when we restrict to a single D and EM, the matrices whose pfaffians
form a height 3 ideal is a nonempty dense open set UEM in khi"EM\ We
say a degree matrix EM is permissible if UEM is nonempty. We discuss the
conditions for UEM to be nonempty in Chapter 3.

1.1. Definition and parametrization of GorD. Let GorD be the family
of Gorenstein algebras having the set D of generator and relation degrees. D
determines the Hubert function of any Artin algebra R/J with D = D(J).
We define Gorτ to be the union of all families of Gorenstein algebras GorDι

associated to Hubert function T. Gorτ is a locally closed subset of GT-> the
family of all graded algebras R/I with Hubert function equal to T. The ideal
/ has a grading / — ®t>olt GT is embedded in a product of Grassmannians
l\Grass(dt,Rt), with dt = |/t|, the size of It as a A -vector space. We give
Gorτ the reduced subscheme structure coming from this product.

Define π to be the map from an open set UΈM in Ah^EM>> to the Gorenstein
algebra GorD whose degree set D is determined by the degree matrix EM.

Theorem 1.1. GOTD is the image of UEM under the algebraic map π, and
is therefore irreducible.

Proof. Let D be given and let M be an alternating uby u matrix with degree
matrix EM such that the set of pfaffians of M generates a height 3 Gorenstein
ideal J. Let Mi denote the submatrix of M obtained by eliminating row i and
column i. The image π(M) is the algebra R/J where J = (g1 ?... ,gu) A
generator g{ of J is the square root of the determinant of M{. This generator
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can also be computed by the formula

(1.1) Λ/diO^ = PfiMJ = ]Γ(-1)* mrk Pf(Mikr),

where r is a row by which to expand, mrk is the (r, k) entry of Mi,Mikr is
the submatrix of M with rows and columns i, k and r eliminated [Sa, p. 71].
This expresses the generators (51,52, ,gu) of J as polynomials in the en-
tries of M, so π is an map from UEM to GorD. UEM is an open set in A / I ^ M )

since an ideal has height 3 when the determinant of a certain matrix does
not vanish (see proof of Theorem 2.3 in Section 2.3). Consequently UβM is
irreducible, and so is its image GorD. D

Remark. The fiber π " 1 over a point pj parametrizing J includes a prod-
uct of general linear groups parametrizing different choices of generators for
J. We get an upper bound for the dimension of Gor^ by subtracting the
dimension of this product from the dimension of Ah^EMK We will use this
fact in Chapter 4 in the proof of Theorem 4.4.

If we look at all degree sets D 1 ? D2,... of ideals J 1 ? J 2 , . . . in R such
that the Hubert function of R/Ji equals T for each z, then each GorDi is
irreducible by Theorem 1.1. There are a finite number of different degree
sets Di for a given Hubert function, a result of the structure theorem, and we
will show in Chapter 2 that the entire family Gorτ of all algebras A = R/J
with Hubert function T is irreducible.

We parametrize the family GorD by the product Π Grass(td, Rd) of Grass-
mannians, which embeds Gor^ as a subspace of a product of projective
spaces Π ^ whose coordinates depend polynomially on (51,... ,pw).

2. Irreducibility of Gorτ.

As a result of Theorem 1.1 in the previous chapter, we know that given T
and a set of generator and relation degrees D, the family GorD is irreducible.
However, T may have several different degree sets that correspond to the
same Hubert function.

2.1. Definition of Gorτ. We have defined GOTT to be the family of all
algebras with Hubert function T. Gorτ is the finite union \Ji Gor^ over all
degree sets Di = D(Jι) consistent with T.

2.2. Structure theorem for Gorenstein ideals of height 3. The fol-
lowing is the statement of Buchsbaum and Eisenbud's structure theorem for
Gorenstein ideals of height 3 in a local noetherian ring [BE1, p. 456].

Theorem 2.1. Let R be a noetherian local ring with maximal ideal m.
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1) Let n > 3 be an odd integer, and let F be a free R-module of rank
n. Let f : F* *-+ F be an alternating map whose image is contained in
mF. Suppose P/n_χ(/) has grade 3. Then Pfn_ι(f) is a Gorenstein ideal,
minimally generated by n elements.

2) Every Gorenstein ideal of grade 3 arises as in 1).

Buchsbaum and Eisenbud develop the machinery in [BEl] to prove the
above theorem. If J is a homogeneous Gorenstein ideal of grade 3 in R =
k[x0 ... xm], then a free resolution of R/J has the form

(2.1) E : 0 —> R(s) A ]Γ R(Pι) -A £ R(Qi) -^. R(0)

where the maps / and g are homogeneous of degree 0, the socle of R/J is
in degree 5 — 3, the integers {^} are the degrees of the generators of J and
integers {pi} are the degrees of the relations among the generators.

Buchsbaum and Eisenbud prove that the matrix representing / in the
resolution of R/J will be skew-symmetric, and the matrix representing g
(resp. g*) will be the column (resp. row) matrix of pfaffians of the matrix
representing /. The degree of the (i,j) entry of this middle matrix is pj —
qι. We will always consider the sequence {^} to be nondecreasing and the
sequence {pi} to be nonincreasing. This defines a new sequence {r^}, where
^i — Pi — Qi With this ordering on the degrees, Pi + qi — s. The integers {r̂ }
are all even or all odd, since the degree of the (i,j) entry of the alternating
matrix representing / is also expressed as (r̂  + Tj)/2. We have the further
relation that s = Σri. Therefore the sequence of integers {r{} completely
determines the socle degree, generator and relation degrees, and the Hubert
function. We will discuss which sequences of {r̂ } can occur in Chapter 3.
It follows from (2.1) that the Hubert function (/ι0, /ii,...) of R/J equals

(2.2) Λ*

Here the binomial coefficient (£) equals zero if a is less than b.
Example 2.2. Let D = ({3, 5, 6}, {11, 9, 8}) be the set of generator and
relation degrees of a Gorenstein ideal. The {r̂ } are equal to {8,4,2}. We
get s = 8 4- 4 + 2 = 14, so the socle degree is 11 and the Hubert function is

(1,3,6,9,12,14,14,12,9,6,3,1,0,...).

This Hubert function can also be determined by the sequence

D' = ({3,5,6,6,8}, {11,9,8,8,6}).
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2.3. Deformation theorem. We will now show that when the ideal of
pfaffians of the matrix representing / has height 3 and is Gorenstein, and
the matrix contains non-diagonal degree zero entries, we can allow a pair of
these entries to be nonzero constants c, — c. The resulting ideal of pfaffians
will be Gorenstein, height 3, minimally generated by n — 2 elements. We
start with an existing resolution of a Gorenstein ideal which satisfies all the
conditions of the structure theorem. Since R is a polynomial ring it is Cohen-
Macaulay, so depth(/) =height (/) for every ideal / C R. A homogeneous
ideal I in R is also perfect, so all height 3 ideals have projective resolutions
of length 3.

Let J be a Gorenstein ideal of height 3 generated by v + 2 elements,
v odd, with the Hubert function of R/J equal to T. Assume a minimal
free resolution of R/J has the form in (2.1). Let the alternating matrix
representing the map / be

0 ral52 rn<i,3

—m12 0 m2 3

M =

0 j

Assume that the set D(J) requires that M contain two non-diagonal degree
zero entries, which we may assume to be the (υ + 1, v + 2) and (υ + 2, υ + 1)
entries of M. Under the conditions of the structure theorem these must
equal zero in order for the image of / to be contained in mRv+2. Because
the degrees of entries of M are determined by the values of the diagonal
degrees {rj, we have rυ+ι = -rυ+2.

Let M'(c) be the matrix obtained from M by letting τn'υ+lv+2 and m'v+2υ+ι

be nonzero elements c and — c G k in a neighborhood of zero, and all other
entries m ^ of M'(c) equal to ra^. Let π(Mf(c)) — J'(c) be the ideal of
pfaffians of M'(c).

Theorem 2.3. Let J be a Gorenstein ideal of height 3 with Hilbert function
T and minimal free resolution

υ+2 υ+2υ+2 υ+2

E . o - 4 R(s) A Σ R(Pi) A Σ R(Qi)
2 = 1 2 = 1

where f is represented by the v + 2 by υ + 2 alternating matrix M, υ + 2
odd. Let Mf(c) and J\c) be the matrix and ideal of pfaffians described above.
Then:
(i) J'(c) has height 3 for all but finitely many c, and is generated by v

elements;
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(ii) R/ J'{c) has a resolution E1 obtained from E by replacing M by M'(c),
g by g' and g* by g'*;

(iii) J'(c) is Gorenstein, and R/J'(c) has a minimal resolution explicitly

determined by M and c;

(iv) the Hilbert function of R/J'(c) is T'.

We will need the following lemma, which we use without proof:

L e m m a 2.4. Let T = (Λo, /ii,... , hn, 0,...) be the Hilbert function of a
Gorenstein algebra A = R/J and let Q — {qt} and P = {ft}, i = 1 . . . u, be
the sequences of generator and relation degrees of J satisfying

Let I be another ideal which defines the same Hilbert function T, and Q' =

{qj} and P' = {p3} its generator and relation degrees, j — 1. . . u + d, such

that Pf contains P and Q' contains Q as subsequences. If we let P" and Q"

be the sequences P' \P and Q' \ Q, both arranged in increasing order, then

Pk = Qk for pk e P" and qk e Q"', k = 1. . . d.

Proof of Theorem 2.3. Let {gι ...gv+2} be the pfaffians of M. These are
a minimal set of generators for J under the assumptions of Theorem 2.2.
The ideal J'(c) will be generated by homogeneous polynomials {g[ . . . g'υ+2}i
where g[ = g{ + c ht(x, y, z). Let q{ = degft = degg'{.

i). Assume J has height 3. We will show that the vector space J'n+ι of
forms of degree n + 1 in J'(c) has dimension ( n J 3 ), and therefore contains
everything in degree n + 1.

Since J is a Gorenstein ideal whose socle is in degree n, the vector space
J n + 1 has dimension ( n J 3 ) . The set of forms in the vector space

span J n + 1 and form the row space of a matrix N of size G by ( n ^ 2 ), where
G > (nJ3) is the sum of the dimensions of the vector spaces Rn+i-qi(9i)
Each element of J n + 1 is expressed in terms of the standard basis of Rn+ι
of monomials {rrn+1,a;ny,... ,zn+1}. N has entries in &, and the ideal of
maximal minors of N must contain at least one nonzero constant δ G k.

In the same way we take the generators {g[} of J'(c) and look at the matrix
N(c) whose rows are spanned by the forms in the vector spaces i?n +i_^(<^).
Since each g\ — g{ + c hi(x,y,z), N(0) = N, and the ideal of maximal
minors of N(c) contains an element δ(c) such that δ(0) — δ.
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Since δ(c) is a polynomial function of the entries of N(c), there are finitely
many values of c for which δ(c) equals zero. Since k is algebraically closed
and therefore infinite, we can choose a Zariski open set U containing zero so
that when c G ί7, δ(c) is nonzero. Since N(c) contains at least one nonzero
maximal minor, it has rank (n^3), and therefore the dimension of J'n+1 is

(T)
To see that J'{c) is minimally generated by v elements, note that when we

multiply row i of M' (c) by the column matrix g1 we get the sum ΣJί 1 AT (c) ̂
g'j = 0. If i = υ + 2, this becomes Σjtl M'(c)v+2j 9j = -C9'v+2i which for
nonzero c allows g'υ+2 to be expressed in terms of previous entries of g'. We
can express gv+ι in the same way in terms of previous generators.

ii). The following is a resolution for J'{c):

E> . o —> R(s) A Σ R(Pi) -£+ Σ R^i) " ^ Λ(°)

where /' is represented by M'(c) and the pfaffian map g' is represented by
J'{c). Note that E' is not a minimal resolution, because the image of /' is
no longer contained in mRv+2.

To show that E1 is a resolution of J ;(c), we must show that E1 is a complex
and that it is exact. Since the matrices representing the maps g* and g' are
1 by v + 2 and υ + 2 by 1 matrices of pfaffians of M'{c), the compositions
g* - f and /' g' = 0, so E' is a complex. For any complex of free i?-modules

A: 0 —> F n - ± * Fn_i —> ^ x - ^ F o

let J(φk) the ideal of minors of size A; of the matrix representing φk, where
k is the size of the largest nonvanishing minor. To show that A is exact, it
is enough to show the following [BE2]:

a) rank φk+i+ rank φk = rank Fk;
b) grade J(φk) > k or J(φk) = R.
a). We need to show rankg' + rank/' = rankg'* + rank/' = υ + 2.

We know rankg' = rankg * = 1, so we need to show rank/' = υ + 1.
Since JE is a resolution, we know rank/ = v + 1, so M contains a v + 1 by
v + 1 submatrix whose determinant is nonzero; in particular, the submatrix
obtained by eliminating the last row and column has nonzero determinant,
since its square root is one of the υ + 2 generators of J. This same submatrix
occurs in M'(c), so /' > υ + 1. On the other hand, M'(c) is skew-symmetric
and v+2 odd, implying that the determinant of M'(c) equals zero. Therefore
rank /' = v + 1.

b). We already know height J(g'*) = height J(g') = 3. The ideal of v + 1
by v + 1 minors of M'{c) contains J(g')^ therefore J{M'(c)) has height > 3.



FAMILIES OF HEIGHT 3 GORENSTEIN ALGEBRAS 373

iii). To show J'(c) is Gorenstein we will exhibit a minimal resolution for
J'(c) of the form

(2.3) 0 R Rυ Rυ ^ R

where φ is represented by a v by v alternating matrix Yφ whose pfaffians
generate Jf(c).

Let W be the upper triangular v + 2 by v 4- 2 matrix

fcOOO ... 0 — m l j U + 2 m l j l l +

0 c 0 0 . . . 0 — m2, t,+2 rn2,v+

0 0 0 0 . . . c - m V ) V + 2 m υ i U +

0 0 0 0 . . . 0 1 0

\0 0 0 0 . . . 0 0 1 )

The product \{W • Λf'(c)

U Cfϊl\ 2 ~~

.2+ A 2 0

is the matrix Y =

1,3 — Di3 . . . cmi > n — Din 0 0\

cm2,3 - A3 cm2,n - An 0 0

—crrii n

0
0

-Dln
CTΠ2 n

0
0

D2ncrr ι3,n -

0
0

D3n ...

. . .

. . .

0
0
0

0
0

- 1

0
1

0)

where the term A? is equal to m i j V + 1 mjjV+2 ~ mi,v+2 ' w^n+i The pfaίfians
of this product generate J'(c), and in particular the minors obtained by
omitting rows and columns v + 1 or υ + 2 are equal to zero.

We define the matrix Yφ representing φ in (2.3) to be Y with rows and
columns v + 1 and v + 2 removed. When j < v, Pf(Yj) = Pf((Yψ)j), so
the pfaffians of Yψ generate J'{c). The map φ now satisfies the condition of
the structure theorem that its image is contained in mRv. Since J'(c) has
height 3 it is Gorenstein, minimally generated by v elements.

iv). The complex given in (2.3) is exact, since it satisfies the criteria a) and
b), so the Hubert function of R/J'(c) can be computed by (2.2); by Lemma
2.4, this will be the same as the Hubert function of R/J. This completes
the proof. D

When we work in 3 variables, the third difference sequence (do5di? >
du...) of T gives the net difference between the number of relations and
the number of generators in each degree t. We denote by the odd number
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μ(T) the minimum number of generators determined by the third difference
sequence.

Corollary 2.6. For a Hilbert function T = (h0, hu ... , Λn, 0,...) of a height
3 Gorenstein algebra R/J, the integer

μ(T) = 2

can be realized as the minimum number of generators for J.

Proof This follows from repeated application of Theorem 2.3, since if an ideal
defining T has more generators than μ(T), then it has generators and rela-
tions in the same degree, and its alternating matrix has degree zero entries
occuring in pairs. Each pair of entries may be deformed to nonzero constants,
causing the number of generators in the ideal to drop by 2. D

Remark. When the socle degree n is odd, adding up the negative terms
in the third difference sequence may not indicate a minimum number of
generators. For example, T = (1,3,6,6,3,1) has for its third differences the
sequence

1,0,0,-4,0,4,0,0,-1,

which indicates at least four generators in degree 3 for an ideal which deter-
mines T. Since μ(T) must be odd, we need at least 5 generators. T can be
generated by the ideal (x3,y3,xz2,yz2,x2y2 — z4), and it is Gorenstein, with
dual polynomial equal to x2y2z + z5. The extra generator and relation must
be in degree 23τp to preserve the symmetry of the sums Pi + qι = n + 3. The
degree matrix determined by these generator and relation degrees will have
no nonzero degree 0 entries, since the only entry whose degree is 0 is on the
diagonal, in which case it must be equal to zero.

Remark. The entry degrees E(D) of the degree matrix determined by the
degree set D need not all be positive. The Hilbert function (1,3,6,6,6,3,1)
has for its third differences the sequence

1,0,0,-4,3,-3,4,0,0,-1,

indicating row degrees {3,3,3,3,5,5,5} and column degree {6,6,6,6,4,4,4}.
This means the 7 by 7 degree matrix will have a 3 by 3 block of degree -1
entries, which must be zeros.

Theorem 2.3 and Corollary 2.6 give us the result we want:

Theorem 2.7. Gorτ is irreducible.

Proof. The family of Gorenstein algebras Gorτ with Hilbert function equal
to T is equal to the closure GorDrntn — ΌGorD> for all D' D D by Theo-
rem 2.3, since ideals with degree sets D' can be deformed to the minimal
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degree set Dmin. Since GorDmin is irreducible by Theorem 1.1, Gorτ is irre-
ducible. •

3. Number of generators of height 3 Gorenstein ideals.

We have seen in Corollary 2.6 that when we fix the Hubert function T of
a Gorenstein algebra A — R/ J we can determine the minimum number of
generators needed for J by taking the third differences of the sequence of
integers in T. We proved in Theorem 2.3 in the previous chapter that if J
has more than μ(T) generators, we can deform the entries of an alternating
matrix whose pfaffians generate J so that J needs two fewer generators.

The degrees of the generators and relations of a height 3 Gorenstein ideal
J can be described completely by the integers {r^} defined in Section 2.2 as
the differences Pi — qι of relation and generator degrees of J when arranged
in decreasing and increasing order, respectively. These integers can be used
to determine the maximum number of generators possible for an ideal J
defining a given Hubert function T.

3.1. Saturated sequences of integers {r^}. Recall that an alternating
matrix M can be assigned row degrees {^} and column degrees {pi} such
that the {^} are nondecreasing and the {pi} are nonincreasing, with integers
{vi} defined by r{ — p{ — q{. In order for M to have pfaffians that satisfy
Theorem 2.1, the diagonal degrees {r^} of M must satisfy the following
conditions:

Proposition 3.1. Let M be an u by u alternating matrix with generic en-
tries, u odd, whose diagonal degrees {r^} are arranged in nonincreasing order.
A necessary and sufficient condition for M to have u nonzero pfaffians is

the integers rτ are all even or all odd;

(3.1) rγ > 0;

ri + rM_,+2 > 0 for i - 2 . . . ^ .

Proof. If the condition r{ + r u _ ί + 2 > 0 is not satisfied, M will contain zeros
in all entries (i,j) with i:j > 1£γ-. The submatrix obtained by eliminating
row and column I not passing through this block of zeros will have the shape

/ D D A \
Mt= \ Π D zeros

\ AT zeros zeros /
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where D indicates a block containing nonzero entries. A will be size i — 2 by
i — 1, so the determinant of Mi will be zero, contradicting the conditions of
the structure theorem that M have u independent pfaffians.

To show that these conditions are sufficient, we exhibit a u by u matrix
whose pfaffians generate a Gorenstein ideal with u generators:

(3.2)

The integers a^βi <

( °
0
0

0

\ - z Λ

0
0
0

\

-zβ2 -
-xai

...

-zP*
-x°2

0

are defined

0
0

y 7 3

-a : " 3

0
0

as

0
y72

Zβ3

0
0
0

yΊx zp

γOC2 Γ

... 0

... 0

... 0

7 < = (r< + rtt_<)/2.

If the diagonal degrees satisfy (3.1), the ideal of pfaffians of this matrix
contains χjL,ai,yλ^Ίi and z^Pi+ other terms, so it clearly contains pure
powers of #, y, and z and therefore has height 3. Finally, since the ideal of
pfaffians satisfies the conditions of Theorem 2.1 it is Gorenstein, minimally
generated by u elements. D

We have learned that J. Herzog, N.V. Trung and G. Valla have arrived
independently at the conditions of Proposition 3.1 and give matrix (3.2) as
an example for the sufficiency of the conditions.

We say a sequence of integers R = {r̂ } occuring as the sequence of diag-
onal degrees of an alternating matrix is saturated if it satisfies (3.1) and it
is impossible to lengthen the sequence by adding a pair of integers cί, — d to
R and still satisfy (3.1) without changing the Hubert function determined
by R. A sequence R has a unique saturation if whenever R' and R" are
two saturations of R with lengths υ and w respectively, we have υ = w and

Theorem 3.2.
(i) A sequence R = , i — 1 . . . u is saturated if

(3.3) Ti ^ ^i+i /or i = 1 . . . TX — 1,

and Γi + r u _ i + 2 = 2 /or all i = 2 . . .
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(ii) Every sequence of integers {r^} arising from the generator and relation
degrees of a Gorenstein ideal has a unique saturation.

Proof. Let R = {r 1 } r 2 , . . . ,r u } be given and let R! be a saturation of R.
Denote by Q,P and Q',P' the ordered sequences of generator and relation
degrees whose differences are the two sequences R and R'. Let n be the socle
degree of all ideals defined by these sequences. We will show R' is unique.

As we saw in Chapter 2, the minimum number of generators of a Goren-
stein ideal J defining T is μ{T). Any other ideal J ' with a larger number
of generators determining the same Hubert function as J must have addi-
tional generators and relations occuring in the same degrees. This implies
that Σri = n + 3 is constant, since adding dι and d2 to the sequences {^}
and {pi} will add dλ — d2 and d2 — d\ to the sequence {r^}, leaving Σri
unchanged.

The sequences must satisfy pi + q{ = p\ + q[ — n + 3. Since the sequences
determine the same Hubert function, the smallest generator degree in the
ideals they define must be the same; therefore qx — q[ and pi — p\, so
ri =r[.
Proof of i). To saturate i?, we begin by adding a pair d, — d to R. Clearly d
must be less than rλ, otherwise we would be adding a generator in degree qλ

to the ideal, which would change the Hubert function. We reorder RU{d, —d}
so that the new sequence is nonincreasing, and continue adding pairs until
r\ + r'υ_i+2 — 2 for i > 2 in a larger sequence R' = {r[,... , r'υ}. R' will be of
the form

ί r 1 ? . . . positive integers , {l's}, negative integers j

when the integers are all odd, or

( r i , . . . positive integers , {2;s}, {O's}, negative integers j

when the integers are all even. Once we reach the point where r\+r'v_i+2 — 2
we cannot lengthen R', since the insertion of <i, — d into a sequence of length
v forces a sum r[ + r^+ 2_ i + 2 = 0, where r\ = d and r'v+2_i+2 = — d.

If not all sums in R1 satisfy r\ + r(,_ i + 2 = 2, there must exist a sum
r'k + rv+2-fc — 4 We can insert the pair d, —cί where d = r'k — 2 to get a new
sequence J2' U {d, —d} of the form

y r u . . . , < , d , . . . , < _ f c + 2 , - d , . . . J .

This new sequence satisfies (3.1).
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Proof of ii). Now assume R has two different saturations, R' and R"', of
lengths v and w respectively. Since ]Γ r̂  — r^ + 2 ^ ^ must equal X] r" =
r" + 2 ^—^ and r[ = r", it follows that ?; is equal to w.

Let A; be first position for which r'k Φ rk\ we may assume r'k < rk. There-
fore there is at least one more occurrence of the pair rj.', —rk in R". Since
R" and Rf agree in position 1 through k — 1 and they are both saturated
sequences, they must also agree in position u — k + 3 through u. Suppose
—rk occurs in position p in R". We must have p>v — k + 2to satisfy
(3.1). But now p is in the range where both saturations agree, contradicting
the fact that R1 doesn't contain this occurrence of — rk. Therefore the two
saturations must agree everywhere. D

3.2. Maximum number of generators of a Gorenstein ideal. Let T =
(/i0, Λi, , hn, 0,...) be given, where T is the Hilbert function of R/J. Let
k be the first position in which hk < {k^2) We call k = k(T) the order ofT,
and it is equal to the smallest degree of the generators of J for any graded
ideal J which determines T. Clearly, k depends only on T.

Theorem 3.3. Let a Hilbert function T of order k(T) be given. The max-
imum number of generators of a Gorenstein ideal J which determines T is
2 k(T) + 1, and it occurs if and only if the sequence of diagonal degrees
determined by J is saturated.

Proof Let R = {ri, r 2 , . . . ,r u } b e a saturated sequence of diagonal degrees
which satisfies (3.3). Since J^=i rΐ ~ n + 3 = s, and we assume r i -fr u + 2 _ ί = 2
for i — 2... (u + l)/2, we know s — rλ + u — 1, and from the definitions of
s and {ΓJ}, the smallest generator degree equals k = (s — Γχ)/2 = (u — l)/2,
so u = 2k + 1.

Conversely, if the smallest degree is k and R has length 2 A;-hi, we get 2k =
s-rλ = Σ i = 2 r i = (̂ 2 + r 2 f c + 1) + ( r ( 2 f c + 1 + 1 ) / 2 + r ( 2 f c + 1 + 3 ) / 2 ) , which must all
be positive. Therefore they must all be equal to 2, so R is saturated. D

If we set all α^ equal to 1 in the matrix (3.2), we are working with a

saturated sequence of {r^}. The smallest degree generator is x^at = xk,

and u = 2k + 1.

Corollary 3.4. Given a permissible Hilbert function T, all values between
μ(T) and 2 k(T) + 1 can occur as the number of generators of an ideal
defining T.

Proof. This follows from Theorem 2.3 and Proposition 3.1. Πl

Stanley has shown [Stl] that a sequence T = (Λ0,/ι1 ?... ,/ιn) of non-
negative integers with hi < 3 occurs as the Hilbert function of a Goren-
stein algebra if and only if it is symmetric and the first difference sequence
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(/i0, hi — /ι0, h2 — hi,... , hs — Λs_i) is a permissible Hubert function, where
s=[n/2\.

Suppose T is a permissible Hubert function of some graded Gorenstein
quotient of R. We will consider the family Gorτ of all graded Gorenstein
algebra quotients A — RjJ having Hubert function T.
Example 3.5. Γ = (1,3,4,4,... , 4,4,3,1). The third differences of T are

1,0,-2,0,1,0,0,... ,0,0,-1,0,2,0,-1.

The ideals having this Hubert function have at least two generators of degree
2 and one generator of degree n — 1.

The third difference sequence of T determines diagonal degrees {n — 1, n —
1,5 — n}. The sequence is not saturated, so we can lengthen it by adding
at least one pair of integers. Since k(T) = 2, the only pair we can add
is n — 3,3 — n, getting a new sequence {n — 1, n — 1, n — 3,5 — n, 3 — n}.
This sequence is saturated, so the maximum number of generators of an
ideal determining T is 5. Γ can be generated by three generators in degrees
2,2 and n — 1, for example J = (x2,y2

: zn~γ), or five generators in degrees
2, 2, 3,n — 1 and n, for example J — (x2,xy,yz2,yn~~1, zn).
Example 3.6. Let Γ = (1,3, 6, 7, 6, 3,1). The third differences of Γ indicate
at least 3 generators of degree 3. Since k(T) = 3, the maximum number
of generators an ideal J determining T can have is 7. A 5-generator ideal
having Hubert function T is J5 = (x3,x2z,xy2 — z3,y3z,y5), corresponding to
i? = {3,3,3,l,-l}, and a 3-generator ideal is J 3 = (x3, y3, z3), corresponding
to {3,3,3}. The 7-generator ideal

J 7 = (x2y, x2z, xyz, y3z - xz\xy3 - yz3, x5 - z5,y* - z5)

corresponding to the saturated sequence {3,3,3,1,1,-1,-1}, determines
the same Hubert function. The Hubert function of R/Jγ was computed
using Macaulay.

In summary, if a Hubert function T with socle in degree n is given, and
an ideal J determining T has k for its smallest generator degree, then the
upper bound on the number of generators that can generate J is 2k + 1.
This upper bound can be achieved for all permissible Hubert functions in 3
variables.

3.3. The lattice £(T) of T. Define C(T) to be a lattice associated to the
Hubert function T. Its vertices are all the sequences of integers {r{} satis-
fying (3.1) which determine T. Two vertices are connected if the sequence
at one vertex is a subsequence of the vertex below it. We call the vertex
corresponding to the smallest subset the minimal vertex.
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Example 3.7. Let T = (1,3,6,10,12,12,10,6,3,1). The minimum and
maximum number of generators for ideals which determine T are 3 and 9,
respectively.

Number of generators

(3) {4,4,4}

(5) {4,4,4,2,-2} {4,4,4,0,0}

(7) {4,4,4,2,2,-2,-2} {4,4,4,2,0,0,-2}

(9) {4,4,4,2,2,0,0,-2,-2}

The sequence at the bottom level is saturated.
We have seen that if Hubert function T is fixed, we can exhibit ideals

which achieve the minimum and maximum number of generators possible
among all ideals which determine T. By Theorem 2.3, we can deform an
ideal with v + 2 generators into one with v generators without changing T
as long as v is at least μ(T). We are able to deform an ideal with v + 2
generators into one with v generators only when the matrix M contains
degree zero entries, which happens only when the sequence of integers {r;}
for M contains a pair r; and r,, iφ j such that Ti + r, = 0. Therefore there
is a one to one correspondence between degree sets D = ({Qi},{Pi}) for
ideals defining T and the sequence of diagonal degrees for the corresponding
alternating matrix.

The lattice structure associated to T illustrates the irreducibility of certain
subfamilies of Gorτ. A vertex V in the lattice represents a family GorD, with
the degree sets D specified by V. C(T) is a geometric lattice, since any two
vertices Vi and V2 representing Gor^ and Gor£>2 determine unique vertices
corresponding to Dλ Π D2 and Dλ U JD2. GorDmin corresponds to the minimal
vertex of £(T).
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Theorem 3.8. The closure GorD is equal to (J GorD> for all Df D D and is
irreducible.

Proof. As seen in Chapter 2, ideals with degree sets D' can be deformed
to an ideal with degree set D when D' D D. This shows in the lattice
representation as V = sublattice descending from V. The minimal vertex
is unique as a result of the unique third difference sequence of T. Thus
Gorτ = Gor£>min, where Dmin is the degree set specified by the minimal
vertex. D

3.4. Saturated sequences of {rj and partitions. There is a convenient
pairing between saturated sequences of {r^} and partitions as follows. Let
the socle degree n of a Gorenstein ideal J and the order k(T) of the Hubert
function it defines be given. We will look at all possible sequences {r^} of
diagonal degrees for J .

The maximum number of generators for J is 2 k(T) + 1. Construct a
partition of a rectangle of size 2k + 1 by s — n + 3 by dividing the s blocks
of row i into q{ and pi blocks, such that Pi — qi = ri. Eliminate the first row,
k columns from the left and k + 1 columns from the right to get a 2k by
n — 2k + 2 rectangle. The resulting partition of this rectangle will be self-
complementary, and it retains the original information needed to reconstruct
the ideal and the Hubert function it determines.

Proposition 3.9. When the socle degree n of a height 3 Gorenstein ideal

J is fixed and the order k = k(T) of the Hilbert function defined by J is

given, there is a one to one correspondence between Hilbert functions T and

self-complementary partitions of 2k by n — 2k + 2 blocks.

Proof. The partition constructed above for any given Hilbert function will
be self-complementary, since the n — 2k + 2 blocks of row i are partitioned
into g i + 1 — k and pi+1 — k — 1 blocks, whose difference is ri+ϊ — 1. If j =
2k + 1 — z, the blocks of row j are partitioned into two parts whose difference
is r J + 1 — 1. Since ri+x + r J + 1 = 2, we know r i + i = — r̂  +i, so rows i and j are
complementary.

If we are given a self-complementary partition of a 2k by n — 2k + 2
rectangle, where row % is divided into a{ and b{ blocks, α̂  + bι = n — 2k + 2,
then we can recover the saturated sequence of diagonal degrees from the
partition by letting rx = n + 3 — 2k and r i + 1 = bi — α̂  + 1 for 2 = 1 . . . 2k.
Since a partition defines a unique sequence of diagonal degrees, it defines a
unique Hilbert function. D

Example 3.10. Let n = 6 and k(T) = 2. There are 6 self-complementary
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partitions of a 4 by 4 rectangle, corresponding to the 6 different Hubert
functions with order 2 and socle degree 6:

partition generator colength
degrees

1 3 5 7 5 3 1

1 3 5 6 5 3 1

5 1 1 1 1 2 4 4 4 4 25

5 3 1 1 - 1 2 3 4 4 5 24

1 3 5 5 5 3 1 5 3 3 - 1 - 1 2 3 3 5 5 23

1 3 4 5 4 3 1 5 5 1 1 - 3 2 2 4 4 6 21

1 3 4 4 4 3 1 5 5 3 - 1 - 3 2 2 3 5 6 20

1 3 3 3 3 3 1 I M W I 5 5 5 - 3 - 3 2 2 2 6 6 17

Obviously T is no longer fixed; the constants are now the socle degree
and the order k. By counting the number of self-complementary partitions
of a given size we are counting the number of Hubert functions with the-
given socle degree and order. Since the partition is self-complementary, it
is determined by the partition of a subrectangle with k rows and [n/2\ —
k + 1 columns into nondecreasing rows. There are (^n^+1) such partitions.
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Therefore the number of permissible Hubert functions of a given socle degree

equals

Σ ί [n/2\ + ! I = 2L«/2j+iβ

k=0 \ k J

See [St2] for a more general discussion of generating functions for plane
partitions with varying degrees of symmetry.

4. Dimension of Gorτ.

We define a different parametrization in Section 4.2 for Gorτ than that used
in earlier chapters. With this parametrization the closure Gorτ includes
Gorenstein algebras with different Hubert functions.

4.1. Matlis Duality and the dual polynomial /. Let k be an alge-
braically closed field of characteristic zero, R — k[x, y, z] with maximal ideal
m — (x,y,z). Emsalem [Em] states that the dual A = HomΛ(A, k) of a
Gorenstein algebra A — R/J with socle in degree n can be obtained by the
procedure of taking the vector space generated by a homogeneous degree n
polynomial / and its partial derivatives of all orders. We use the divided

powers of the derivatives of / and write / = J2^=i bax
a, ba E fc, where the

multi-index α = (αi, 0^,0:3) satisfies |α| = n.
An isomorphism exists between i?-closed subspaces

J CTZ and RomR(R/J, E),

where J is an ideal of R and E is the injective envelope of R/m. This
isomorphism is shown in the theorem proved by Matlis [Ma] and discussed
by Miri [Mi]. We assume R is a commutative, Noetherian, complete local
ring, with E — 1Z. From the exact sequence

0 —>J —>R —> R/J —> 0

we derive the commutative diagram

0 > RomR(R/J,E)

I-
0 • J > E

Since E is injective, the top row is exact. The bottom row is clearly exact,

and the vertical map φ is an isomorphism defined as follows [Ma, p. 526]:

Let R/J be generated by the element e, so that g G J if and only if

ge = 0. Let h e EomR{R/J,E) and define φ : RomR{R/J,E) -> J by
φ(h) — (h e). Clearly φ is a well-defined i?-homomorphism. If φ(h) — 0,
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then he — 0, so h = 0. This shows φ is one-to-one. If we let x £ J, define
h : R/J —> E by he = x. Then φ(h) = x, so φ is onto, and therefore
Homiι(R/ J, E) = J. Since the first two vertical maps are isomorphisms, so
is the third, so RomR(J,E) ^ E/J.
4.2. Catalecticant matrices associated to /. We parametrize Gorτ by
using the coefficients of the dual polynomial / described by Emsalem up to
nonzero constant multiple. To specify a Hubert function (h0, /iχ,... , /ιn), we
require that a degree n polynomial / have hd linearly independent partial
derivatives of order d. The permissible Hubert functions are those for which
such a polynomial exists. This is the intersection of an open and closed
condition on the (n+2) coefficients of /.

When / is a homogeneous polynomial in 3 variables, the rth partial deriva-
tives of / form the row space of a (Γ+2) by (n~2+2) matrix. We denote this
matrix MΓ ) n_ r(/), called the rth Catalecticant matrix associated to /. When
n = 2d is even, the Catalecticant Mdid(f) is square and symmetric.

Let Λ = k[{ba}][x,y,z]/J, where J is the annihilator of / in the Matlis
duality. Let It(Mdjd(f)) be the ideal in &[{&<*}] = k[B] of all determinantal
minors of size ί + 1 of Md4(f). When ί = (d+2) we set It(Md4{f)) = (0), the
zero ideal. For each t from 0 to (d*2) we get a different Hubert function T,
equal to (1,3,6,... , t, t , . . . , ί,... , 6,3,1), the largest possible given t. The
codimension in k[B] of It(Md,d(f)) will be the dimension of k[B]/ It(Md^d{f)).

4.3. Codimension of It(M2,2{f))

Example 4.1. The Hubert functions of k[B]/It{M2^{f)) were computed for
values of t from 0 to 6 using the commutative algebra computer program
Macaulay. In the case n = 4 the results are summarized below, where H
denotes the Hubert function of a minimal reduction of k[B]/It(M2i2(f))'

t codimension dimension H degree

0
1
2
3
4
5
6

15
12
9
6
3
1
0

0
3
6
9
12
14
15

1
1 12 3
1 9 45 17 3
1 6 21 56 21 6 1
1 3 6 10 15
1 1 1 1 1 1
0

1
16
75
112
35
6
1

This information was computed using the commutative algebra computer program Macau-

lay.

All values of t can occur in the 3-variable case [BE1], and in the general
case for any number of variables [II].
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The pattern of codimensions of It{M2^U)) a t first exhibits behavior sim-
ilar to that of a generic symmetric matrix: the codimensions follow the
pattern 1,3,6, for corank 1,2,3; after that corank they jump by 3's. This
suggests examining other even values of n to see if this pattern is sustained.
When n = 3, M3)3(/) will be size 10 by 10. If the same pattern evolves, we
expect to see the values in the following table.

t
1
2
3
4
5
6
7
8
9
10

Table 4.2

codimension
of/t(M3,3(/))

25
22

(19)
(16)
(13)
(10)

6
3
1

0

dimension
of/ t(M3,3(/))

3
6

>9
>12

>15
>18
22
25
27
28

Numbers in () have not been verified. Dimension and codimension for t = 7, 8 and 9

follow from Theorem 4.4. Dimension for t = 1 and 10 have been shown independently.

The dimension for t = 2 has been verified by Macaulay. The lower bounds of dimension

of Jt(M3,3(/)) for 3 < t < 6 follow from Lemmas 4.8 and 4.9 below.

4.4. Codimension of It(Md4(f)). Let / = £&ααΛ \a\ = 2d = n. The
dimension of k[B] equals (nJ2). The size of the matrix Md4(f) is (d+2) by
(d^2). Let t equal the rank of Md ) d(/), determined by the vanishing of the
minors of size t+1 of Md ) d(/), and let a equal (d^2) —t, the corank of Mdid(f).

Conjecture 4.3. The codimension of It(Mdd(f)) in k[B] is (α+1) if t >
{dV),or{^)-Ztift<{dγ).
Remark. This pattern is numerically consistent. Suppose the sequence of
codimensions of It(Mdid(f)) is 0,1,3,6,10,... for a — 0,1,2,..., and persists
to the jth term. We find that the equation (n+2) = (j+1) 4- 3 ((d^2) - j ) has
solution j = d + 1 for each d.

If X — {xij} is a symmetric (d*2) by (d*2) matrix of indeterminants in S =
k[xij), then It(X) will have codimension (d+2) - (*^1) in S. The resolution
structure for ideals It(X) is given in [JPW]. We obtain It(Mdid(f)) by a
change of rings, defining φ : S -> R by φ(xij) = the (z,j) entry of Mdid(f).
Since the ideals It(X) are generically perfect [EN], if F is a resolution of
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It(X), then F ® 5 R will be a resolution of It(Mdtd{f)). It follows from [EN]
that the codimension of It(Md,d(f)) in k[B] is less than or equal to the
codimension of It{X) in S. Conjecture 4.3 says that this is an equality for
(dY) < t < (d+2), or equivalent^ for 0 < a < d + 1.

To verify Conjecture 4.3 for large values of £, we will use Theorem 2.1 to
determine an upper bound for the dimension of the family of algebras having
a given Hubert function. In part 2 of the proof of the theorem, Buchsbaum
and Eisenbud show that if a Gorenstein ideal / has a resolution

then f2 may be chosen to be an alternating map for any appropriate map
/i, so that all sets of generators for / occur as pfaffians of an alternating
matrix.

In the discussion that follows we add 1 to the computation of the projective
dimension of Ah^EM^ in order to compare it with the affine count for the
dimension of GorD.

Let / be a degree n = 2d homogeneous polynomial in x,y and z. Let
It(Mdid(f))be the ideal of size ί + 1 minors of M d ) d (/) , imposing the condition
that the rank of Md j r f(/) is less than or equal to t = (d^2) — a. If we restrict
a so that a < d + 1, then we determine the Hubert function

(4.1) T= 1,3,6,10,... ,«, . . . , 10,6,3,1,

where all the matrices M r ? n _ r (/) have maximal rank except M r f j d (/). The

third difference sequence of T is

1,0,0,... ,0, - α , 3α - 3 - n, -3a + 3 + n, α, 0,... ,0,0, —1.

Theorem 4.4. If 3a < n + 3, then there is an irreducible component Gor(T)
/n+2N _ /α+l\
V 2 / V 2 / 'of It(Mdid(f)) with codimension equal to (nJ 2)

Proof. We can break up the proof into 2 cases:

Case 1. 3a = n + 3. The sequence of third differences is

1,0,0,... , 0 , - α , 0 , 0 , - α , 0 , . . . , 0 , 0 , - 1 .

We get a generators in degree d and a relations in degree d + 3 in the ideal
J with the smallest possible number of generators defining a Gorenstein
algebra A with Hubert function T. All entries in the a by a alternating
matrix M will have degree 3, meaning a choice of 10 coefficients possible for
each, since we are choosing generic entries, so h(EM) = 10(2). For J , there
are α generators to choose, each of which is a linear combination of a fixed set
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of a forms in J of degree d, giving dimension a2. We subtract this from the
number of parameters we found for M, since each of these ideals determines
the same algebra. Therefore, the maximum dimension of the family equals

10 ί a ] + 1 - a2 = 4α2 - 5α + 1.

Since the codimension of the family cannot be larger than that for a generic
symmetric matrix, this dimension is also a minimum, so it is equal to the
dimension given in the conjecture.

Case 2. 3α < n + 3. This gives a generators in degree d and —3α + 3 + n
generators in degree cf+1, — 3α-h3 + n relations in degree d+2 and a relations
in degree d + 3. The alternating matrix M will have this shape:

/ 0 Degree 3 entries Degree 2 entries
Degree 3 entries 0 Degree 1 entries

Y Degree 2 entries Degree 1 entries 0

The maximum affine dimension of the family equals

- (a2 + (2n + 3)(-3α + 3 + n))

- 6da + 6d2 - 19^ + 15rf + 10 )

- (a2 - 6αd + 12d + 4d2 - 9α + 9)
2

and this is equal to (n^~2) — i^1) as claimed. D

Remark. This Gor(T) is not in the closure of another, larger Gor(T'),

because T is maximal given t, and by Theorem 3.8.

R e m a r k . When 3α > n + 3, the third differences of (4.1) show that an
ideal with this Hubert function needs a minimum of a generators in degree
d and 3α — 3 — n generators in degree 3,1, and —1 in the following shapes

/ 0 Degree 3 entries Degree 1 entries
Degree 3 entries 0 Degree -1 entries

I Degree 1 entries Degree -1 entries 0
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If we assume the degree —1 entries are all zeros, we get

1 0 1 " ) + 3α(3α - 3 - n) - (a2 + (4d + 6)(3α - 3 - n))

= 13α2 - 32a + Ada + 24d + 8d2 + 19

for the maximum dimension of Gorτ and

for the conjectured dimension. The difference between these is

which is three times the number of -l's in the degree matrix. This suggests
that the fiber π " 1 over an ideal is larger than we have accounted for. It
remains an interesting problem to justify subtracting 3(3α~2

3~n) from our
count of the dimension of UEM by explaining this difference.

Since we have shown the result for a < 2d/3 + 1, and the only values of a
that are possible are 0 < α < cf + 1, we have proven the conjecture true for
roughly two thirds of the range where we expect codimension It(Mdid(f)) to
be the same as codimension It(X)

Example 4.5. Let us look at the Hubert function Γ = (1,3,4,3,1). We get
the sequence of third differences 1,0, —2, — 1,1,2,0, — 1, indicating a smallest
possible minimal resolution of 2 generators in degree 2, one generator in
degree 3, one relation in degree 4, and two relations in degree 5. This
translates to the following alternating matrix pattern:

When we count dimensions for the entries we get 1-10 + 2-6 + 1 = 22 + 1 =
23. There are 2-2 + 1-7= 11 choice of generators for the ideal. Therefore the
maximum dimension of the family is 23 — 11 = 12. The conjecture predicts
12 as well, and this information is shown in Example 4.1.

One such matrix M is

It can be easily checked that the ideal of pfaffians (z3, y2, x2) determines the
Hubert function (1,3,4,3,1).
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Remark. We can also use this same method of counting to find the di-
mension of a variety in some cases when the Hubert function of an algebra is
determined by a rank condition on one of the nonsquare Catalecticant ma-
trices. The result is that when a corank 1 condition is imposed on M r > n_ r(/),
the codimension of I t(M r,n_ r(/)) for t = (r+2) - 1 is \{n + 3)(π - 2r) + 2,
the same as the codimension of It(G) when G is a generic (r^2) by {n~r

2

+2)
matrix. This is the case no matter how "nonsquare" M r > n_ r(/) is.
4.5. A lower bound for the dimension of GOT-?. We can determine a
lower bound on the dimension of Md^d(f) by looking at sums of powers of
linear forms. Let Z l 5 . . . ,/5 be linear forms in the variables x,y and z. We
look at the tangent space of the image of the map P : (k3)8 to kN

which we denote Tn(P)>
Example 4.6. Take Zi = ax + by + cz and l2 = dx + ey + fz, n~\.

lt + % = (ax)4 + 4(ax)3by + + (cz)A

so the points (α, &, c) and (d, e, /) get mapped to

(α4,4α36,4α3c,... ,c4) + (d4

?4d3e,4d3/,. . , / 4 ) ,

a 15-dimensional space. If we let (a!,b',d) and (d!\e'',/') be tangent vectors
at the points (a^b^c) and (d, e,/), then 7l(P) is

{{a + a'YA{a + a'Y{b + b'),... , ( c + c ' ) 4 )

-(α4,4α3&,... ,c4)

If we choose a',... ,/' small, then the quadratic terms and those of higher
degree are approximately zero, so we only need to look at the linear terms
i n α ' , . . . , / ' .

The dimension of Ti(P) will be equal to the rank of the following 15 by 6
matrix:

/ 4α3 0 0 4d3 0 0 \
12a2b 4α3 0 1 2 ^ 4d3 0
12α2c 0 4α3 12d2/ 0 4d3

YΣab2 12a2b 0 12de2 12d2e 0
24α6c 12α2c 12α26 24de/ 12d2/ 12d2e

V 0 0 4c3 0 4 / 3
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This matrix has rank 6, computed by Macaulay.

When we add more linear forms we add columns to this matrix. Let
Z3 = gx + hy + zi, Z4 = jx + ky + Iz, Z5 = mx + ny + oz. The dimension of
71{P) is equal to the rank of the 15 by 15 matrix

/ 4α3 0 0 . . . 4m3 0 0 '
12α26 4α3 0 . . . 12m2n 4m3 0
12α2c 0 4α3 . . . 12m2o 0 4m3

12α62 12α26 0 . . . 12mn2 12m2n 0
24αfec 12α2c 12α26 . . . 24rano 12m2o 12m2n

V 0 0 4c3 . . . 0 0 4o3 /

which has rank 14, not 15 as we might expect. This information is con-
tained in the table in Example 4.1, and is a classical result by Sylvester
[El, pp. 293-295].

We would like to be able to say that when n > 4 we can find r linear
forms so that the dimension of Tn(P) is 3r, providing 3r < ( n ^ 2 ). Since
the dimension of the tangent space is given by the condition that a certain
matrix has maximal rank, which is an open condition, we will be assured of
being able to find r linear forms whenever the matrix has maximal rank.

Conjecture 4.7. When n > A, there exist s = ^-j-1 linear forms

Zi,... , ί5 in x,y,z which the map P injectiυe (that is, for which the tangent
map Tn(P) has rank 3s).

L e m m a 4 . 8 . 7 / Z χ , . . . ,/s ι-> Z™ + + I™ i s i n j e c t i υ e , t h e n Z i , . . . ,/s M

I™ H + I™ is injectiυe for m>n.

Proof. Assume Zi,... , Zs ι-> Iψ + + Z^ is not injective; then there exist
coefficients Ci,... ,c s in R not all equal to zero such that Σ Q Z T 1 " 1 = 0.
If we differentiate this sum m — n times, we will get a nontrivial linear
relation Y^c^lf'1 = 0. But this gives a nontrivial linear relation among
the Z™, which means the map lu... ,ZS H-> I™ + + I™ is not injective, a
contradiction. D

L e m m a 4.9. Conjecture 4.7 is true for n — 5.

Proof. Choose linear forms lλ = #, Z2 = y, Z3 = z, Z4 = αrc+y, Z5 = dx+z, Z6 ~
y + cz, and Z7 = x + y + z, and look at the tangent space of the image of
these forms under the map P at the tangent vectors

( α χ , 6 i , C i ) , (α2,&2jC2)j - , ( α 7 , 6 7 , c 7 ) .
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The dimension of T$(P) is the rank of this 21 by 21 matrix:

/5
0
0

0

0

Ko

0 0 . .
5 0 . .
0 5 . .

0 0 . .
0 0 . .
0 0 . .

. 5GΓ

. 0

. 0

. 0

. 0

. 0

0
5d4

0

0
20

0

0
0

5d4

0

0
5

0
0
0

0
0

0

0
0
0

20c3

5c4

0

0
0

0

30c2

20c3

5c4

5
20

20

0
0

0

0
5

0

20

5
0

o^
0
5

30
20

The determinant was computed to be nonzero using Macaulay. D

The following table shows the degree n, value of v ^ J , and number s

of forms such that the dimension of Tn(P) — 3s. Unverified values are in

parentheses.

n
1
2

3
4

5

6
7

8

9

Table

\ 2 /

3

6

10

15
21

28

36
45

55

4.10.

S~ ί 31
1

3
4

7

(9)
(12)

(15)

(18)

Verifying Conjecture 4.7 for n > 5 requires finding s linear forms so
that the dimension of Tn(P) is 3s. Once we have s linear forms where
the dimension of Tn(P) is 3s, by Lemma 4.8 those forms will still "spread
out" to fill up dimension 3s when we increase n. Since computing de-
terminants of large matrices is cumbersome, it would be nice to be able
to choose the s simplest linear forms and show that they give dimension
Tn{P) = 3s, but this is not always possible. For the proof of Lemma 4.9
we could not have chosen l7 — ex + fz instead of l7 = x + y + z. The
linear forms x,y and z will have nonzero coefficients on the 9 monomials
Xn,xn~1y:x

n~1z1xyn~1

:y
n,yn~1z,xzn~1, yzn~ι, and zn. The image of ax + y

will be nonzero on monomials with power of z at most one. The image of
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dx + z will have nonzero coefficients on 2n + 1 monomials whose power of
y is at most one; the same for ex + fz. However, when n = 5 this means
the 4 linear forms £, z, ax + y, and dx + z are nonzero on the 11 monomials
whose power of y is at most one; therefore the dimension of %(P) < 20 for
this choice of 7 forms.

4.6. Dimension of a family of complete intersections. A height 3
Gorenstein ideal / defines a complete intersection when it can be generated

by 3 elements. For example, the Hubert function

(1,3,6,7,6,3,1)

can be determined by 3 generators in degree 3.
If an ideal / defines a complete intersection with the Hubert function of

R/I equal to T = (ho,hi,... ,/i*,. . .), the dimension of Gorτ = ^ e ^ ,
where ê  is the number of generators in degree i in a minimal generating
set for / [12]. We can also give the protective dimension of a complete
intersection ideal strictly in terms of the generator degrees by using the
pfaffian method of Section 4.4. There are several cases to consider when all
generator degrees are less than all relation degrees:
Case 1. qι φ q2 φ q$. In degree qι the size of the remaining space is 1, in
degree q2 it is 1 + {92~Q

2

1+2), and in degree q3 it is 1 + (g3~*1+2) + {Q3~9

2

2+2)
The sum equals the number of ways of choosing the generators for J . By
subtracting the sum from the number of choices for M, we find the dimension
of the complete intersection to be

Case 2. qι = q2 φ #3. The dimension of the complete intersection will be

Case 3. qx φ q2 = #3. The dimension is

Case 4. qλ = q2 = #3. The size of the remaining space is (qi£2) — 3, so the
dimension of the complete intersection is
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Note that the projective dimension of the complete intersection above is
computed to be 21 using this formula, which agrees with the affine dimension
22 shown in Table 4.2.

When a relation occurs between the two generators of degrees qx and q2

before the generator in degree g3, the size of the remaining space in degree q3

is independent of g3, so it doesn't appear in the formula for the dimension.
Case 5. qλ Φ q2^p3 < #3. The dimension is

qλq2 - 2.

Case 6. qλ — q2,p3 < 93. We get

2q2 + 3gi - 3.

4.7. Dimensions of Gorτ(1^n),Gorτ(2,k,n),Gorτ(3)kίn).
Let T(2,&,n) denote the symmetric Hubert function with socle in degree n
which follows this pattern:

An ideal determining this Hubert function has 2 generators in degree k with
a relation in degree k -f 1, and no further generators until degree
assume k < [f J

Proposition 4.11. The projective dimension of

Jc2 4- b _1_ 9
^^^T(2,A;,n) =

Proo/. Denote by #i and ^2 the two generators of J that occur in degree k.
Since they have a linear relation in degree k + 1, they must share a common
degree k — 1 factor; denote this by g. Then we can express the generators as
Si = 9'h and #2 — g-l2, where /i and Z2 span a 2-dimensional subspace V of
the vector space with basis (x, y, z). The number of parameters for gλ and g2

is counted by first choosing g in dim Grass ί 1, ( ^ H ways, then choosing

V in dim Grαss(l,3) = 2 ways, giving a total of k +

2

fc+2 parameters for the
generators.

If we let J stand for the ideal generated by gλ and g2, then the dimension
of Jn as a vector space equals (n~2+3) — 1, so that the dual form in degree n
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must be chosen from the (n+2) - (n~2+3) + 1 forms in P( J n ) x . Therefore the
number of parameters for a dual form / up to nonzero multiple equals

The projective dimension of the variety equals (n+2) - (n~2+3) + fe2+

2

fc+2 =

fc(n + 3 ) - ( n + l). D

Example 4.12. Consider the variety GorT(2,3,8) of Gorenstein algebras having
Hubert function

T(2,3,8) = (1,3,6,8,10,8,6,3,1).

This can be determined by requiring M 3 j 5 (/) to have rank 8 and making

no additional conditions on M 4 4 ( / ) , allowing it to have the largest rank

possible. The projective dimension of / 9 (M 3 ? 5 (/)), the ideal of 9 by 9 minors

of M 3 > 5 (/), is therefore 3 (8 + 3) - (8 + 1) = 24.

In the same way we define GorT(3,k,n) to be the variety of Gorenstein
algebras where ideals determining Gσrτ(3,k,n) have 3 generators in degree fc,
2 relations in degree fc + 1 and no further generators until degree f 1 ^ ] .
We define GorT(ιtkin) to be the variety of algebras whose ideals have one
generator in degree k and no further generators until degree Γ^y l̂

Proposition 4.13. The projective dimension of Gorτ(3,k,n) is k(n + 3) —
(2n — 2). The projective dimension of GorT( l j A. j n) is k(n -\- 3) — 1.

Proof. We get these formulas by following the same arguments as in Propo-
sition 4.11. D

The dimension of Gσrτ(i,k,ή) ι s the same as the dimension of the generic
and Catalecticant matrices of size (fc^2) by (n~2+2) with corank 1.

The following is a table of dimensions for Hubert functions with socle in
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degree 6 and order 2.

Table 4.14
T projectiυe comments

dimension
(1, 3, 5, 7, 5, 3, 1) 17 corank 1 condition on

6 by 15 catalecticant
matrix

(1, 3, 5, 6, 5, 3, 1) 16 complete intersection
(1, 3, 5, 5, 5, 3, 1) 14 sum of 5 powers of lin-

ear forms
(1, 3, 4, 5, 4, 3, 1) 11 T(2, 2, 6)
(1, 3, 4, 4, 4, 3, 1) 11 sum of 4 powers of

linear forms; complete
intersection

(1, 3, 3, 3, 3, 3, 1) 8 sum of 3 powers of lin-
ear forms; T(3, 2, 6)

The above dimensions are for Gor(Γ), not necessarily for the subset
prametrizing ideals needing 5 generators. For example, the dimension of the
5-generator subsets (1,3,4,4,4,3,1) and (1,3,5,6,5,3,1) will be less than
the dimension of Gor(T). When fixing the rank of Catalecticant matrices
does not uniquely specify T, then the determinantal variety defined by these
ranks may be reducible.
Example 4.15. Let n = 8 and consider the determinantal variety V associated
to a dual form / such that the rank of M3 > 5(/) equals 7. The valid Hubert
functions satisfying rank M3 > 5(/) = 7 with socle in degree 8 are

Γx = (1,3, 6, 7,8, 7,6, 3,1)

T2 = (1,3,6, 7, 7, 7,6, 3,1)

Γ3 = (1,3, 5, 7, 7, 7, 5, 3,1)

T4 = (1,3,5,7,8, 7,5,3,1)

T5 = (1,3,5, 7, 9, 7, 5, 3,1)

V = UGorTι and each GorTι is an irreducible subvariety of V. We cannot
specialize Gorτλ to Gorτ2, since the projective dimension of GOT T2 is 20, while
the dimension of GorTl is 19. We also cannot specialize GorT2 to GorTl,
since GorT2 requires generators in degree 6 but GorTl does not. Therefore
GorTl /zGorT2 and GorT2 jdGorTi, so V is not irreducible.
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Remark. If we let n vary and parametrize V by a dual polynomial / where
the rank of M2)Tl_2(/) = 3, we do get an irreducible variety, since we have
fixed the Hubert function to be (1,3,3,... , 3,3,1). In general, whenever the
parametrization of / is a rank condition on catalecticant which fixes all the
other ranks, it fixes T. Since It(Md^(f)) fixes a Hubert function, it is an
irreducible ideal.
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ON THE COHOMOLOGY OF THE LIE ALGEBRA L2

ALICE FIALOWSKI

We compute the 0-, 1-, and 2-dimensional homology of the
vector field Lie algebra L2 with coefficients in the modules
JFλ μ, and conjecture that the higher dimensional homology
for any λ and μ is zero. We completely compute the 0- and
1-dimensional homology with coefficients in the more compli-
cated modules F\^μ. We also give a conjecture on this homol-
ogy in any dimension for generic λ and μ.

Introduction.

Let us consider the infinite dimensional Lie algebra Wι°ι of polynomial vector
fields f(x)d/dx on C. It is a dense subalgebra of VFi, the Lie algebra of
formal vector fields on C. We will compute the homology of the polynomial
Lie algebra, and will use the notation Wfoλ = Wι. The Lie algebra W\ has
an additive algebraic basis consisting of the vector fields ek — xk+ιd/dx,
k > — 1, in which the bracket is described by

ht,e,] = (/ -k)ek+ι.

Consider the subalgebras Lk, k > 0 of Wγ, consisting of the fields such
that they and their first k derivatives vanish at the origin. The Lie algebra
Lk is generated by the basis elements {efc, e^+i,... } . The algebras W\ and
Lk are naturally graded by dege^ = i. Obviously the infinite dimensional
subalgebras Lk of W\ are nilpotent for k > 1.

The cohomology rings H* {Lk), k > 0 with trivial coefficients are known,
there exist several different methods for the computation (see [G, GFF,
FF2, FR, V]). The result is the following:

Not much is known about the cohomology with nontrivial coefficients for the
Lie algebra Lk, k > 1. Among the known results, we mention the results on
Lki k > 1 on the cohomology H* (Lk\ Ls) with any 5 > 1, see [F], and on Lk,
k < 3 on the cohomology with coefficients in highest weight modules over
the Virasoro algebra, see [FF2] and [FF3].

399
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Let Fx denote the ̂ -module of the tensor fields of the form f(z)dz~x,
where f(z) is a polynomial in z and λ is a complex number; the action of
Wι on Fχ is given by the formula

-\(gd/dx)fdx~x = (gf - \fg')dχ

The module Fλ has an additive basis {/,; j = 0,1,... } where fj = xjdx~x

and the action on the basis elements is

Denote by T\ the W\-module which is defined in the same way, except
that the index j runs over all integers. The Wi-modules F\ with λ φ 0
are irreducible, but as L0-modules, they are reducible. For getting an Lo-
submodule of F λ , it is enough to take its subspace, generated by /,, j > μ,
where μ is a positive integer. Denote the obtained L0Ίaodnle by F\iμ.

More general, let us define the L0-module FXyμ for arbitrary complex num-
ber μ, as the space, generated - like F\ - by the elements fj, j = 0,1,... ,
on which Lo acts by

Finally define the modules T\,μ over Wλ as F λ > μ above, without requiring
the positivity of j .

The homology of the Lie algebra L\ with coefficients in T\^μ and Fχtβ are
computed in [FF1]. We consider everywhere homology rather than coho-
mology, but the calculations are more or less equivalent. In the case of T\%μ

one can use the equality

which implies that

In the case of Fχ,μ one can use the equality

(see [FF1] for details).
Let us recall the results of [FP1]. Set e(t) = (3ί2 + £)/2 and define the

fc-th parabola (k = 0,1,2,...) as a curve on the complex plane with the
parametric equation

λ = e{t) - 1
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m-k = e(t) + e(t + k) - 1.

For kι, fc2 G Z we set

P(*i,*2) = (e(fci) - 1, e(fcθ +e(fc1) - 1)

and let P = {P (ki,k2) : klΊk2 € Z}. For a point P of P let us introduce

and

I f P E P , then ίΓ(P) > k{P),K[P) = fc(P) mod 2 and P lies in the k(P)-
th parabola. For fc Φ 0 all the points of the A -th parabola with integer
coefficients belong to P. On the 0-th parabola there is one point from P
with K — 0, and two points with K — 2, two points with K = 4, and
in general, two points with every even number K. For k > 0 on the A -th
parabola lie 2A;+2 points from P with K — k and four points with ϋf = fc + 2,
four with k + 4, and in general, four with K = k + 2i.

Theorem [FF1, Theorem 4.1].

{2 i/ (λ,μ + ra) E P andK{\,μ + m) <q

1 i/ (λ,μ + m) GPαnoίίί(λ,μ + m) =q

0 otherwise.

Corollary. // λ is not of the form e(k) — 1 with k G Z and i/μ G Z, ίften

The homology Hq(Lι;F\iμ) is also computed in [FF1], We will not for-
mulate the result in details, only some important for us facts.

Theorem (Modification of Theorem 4.2, [FF1]).
1) // (λ, μ) is a generic point so that (λ, μ + m) does not lie on any of the

parabolas for any integer m, then

2) If (λ,μ + j) lies on the parabola for some j , then Hq(Li;FXjfl) is bigger
than Hι(L2) at least for some q.
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3) In all cases

Hq{L2) =2q+l< di

and the boundaries are reached.

The next problem is to compute homology of L2 with coefficients in the
modules T\φ and Fχ^μ. That is the aim of this paper. The results are the
following.

Theorem 1.

Am)
rC if λ = —1,7Π + μ — —1

0 otherwise.

Theorem 2.

m)

2 if \ = rn + μ — — 1

1 i/ λ = - l , m + μ = 1,2,3

or λ = 0 and m + μ = 0

or λ = 1 anc? m + μ = 1

0 otherwise.

These results are analogous to the ones in [FFl] and one can expect that
the picture will be similar for higher homology as well. With this in mind,
the following result is a surprise.

Theorem 3.

m)

1 if λ = - l , m + μ =-1,1,2,3

or λ = 0 and m + μ = 0

or λ = 1 and m + μ = 1

0 otherwise.

That means that the singular values of the parameters for the two-dimen-
sional homology are the same, as the ones for the one-dimensional homology,
which is not the case for the homology of Lλ. Moreover, some partial com-
putational results make the following conjecture plausible.

Conjecture 1. Hq (L2\ = 0 for every λ, μ for q > 2.

Let us try to explain the behavior of this homology. The main difference
of the L2 case from the Lx case is that Hq (L1;J

Γ

x,μ) = 0 for generic λ and μ,
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while Hq (L2; T\,μ) — 0 for all λ and μ (if q > 2). This might have the follow-
ing explanation. By the Shapiro Lemma (see [CE, Ch. XIII/4, Prop. 4.2]),

nq \L2,j-\,μ) — ϊiq

and Ind^^λ,μ m^y be regarded as a limit case of the tensor product of
modules of the type F\>y ®T\,μ. Namely, Ind^^λ,μ — F ®T\^μ where F is
the Li-module spanned by gj,j > 0, with the Inaction βiQj — g^+i, β^j = 0
for i > 1; the isomorphism is defined by the formula

m = 0

ion the left hand side e\fj means the action of eλ in

right hand side eι~πιfj means the action of eλ in T\Λ. On the other hand,

F = limλ^oo Fχ,aX for any aφ2\ put

ft.(λ) = (o - 2)λ((α - 2)λ + 1)... ((α - 2)λ + j

then
) ^ ( )

which tends to the action of Lλ in F when λ —)* oo.
Perhaps the homology

depending not on two but on four parameters, has singular values for some
λ, μ, λ;, μ' for each q. The problem of computing the cohomology Hq[L2\ ^λ,μ)
is the two-parameter limit version of the previous problem, and it is not sur-
prising that the singular solutions of the first problem have effect on the
second problem only for small q values.

Our calculation yields also some results for H*(L2] F\tμ). We will formulate
them in Section 3, Theorem 4 and 5.

From Theorem 4 it follows that for generic λ, μ,

dimHo {L2 FKμ) - 2 ,

and for singular values of λ, μ, dimίfo {L2] F\^μ) > 2.
From Theorem 5 it follows that for generic λ,μ,

dimJϊ 1 (L 2 ; J P λ ι μ )=8,
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and for singular values of λ, μ, dim Hi (L2; i*λ,μ) > 8.

Conjecture 2. For generic λ, μ,

or in more details,

H™ (L2;FKμ) ~ H [ ^

This conjecture is motivated by the following observation. By the Shapiro
Lemma,

The module Ind^ C is spanned by hj (j > 0) with L2-action e2hj — hj+1,
dhj = 0 for i > 2; the grading in this module is deghj — 2j. Hence

HM(L3) = HM (L2; Ίndίl C + Σ Ind^ c)

where Σ stands for the shift of grading by one. On other words,

2; F)

where F is spanned by Qj, j > 0, with the L2-action e2gj = 9j+2i ̂ %9j — 0
for % > 2. As above, F = limλ->oo Fχ,a\ (now a φ 3), which suggests that

for generic λ, μ.
Similarly one can expect that for generic λ, μ

Fx,μ) = H£»\Lk+1) θ H^(Lk+1) φ φ H^

Remark, that if it is true that generically Hq(L2;J
:χ,μ) = 0 then generically

«{L2]FXφ) = Hq{L2;F Kμ) = HάWiΓ-i-x^lF-^-r), and the homol-

ogy exact sequence associated with the short coefficient exact sequence

provides the above isomorphism]. In particular, if the L2-module L'2 =

F_2,_3 is "generic", then Conjecture 2 implies

dimH2{L2;L2) = dim#1(L2;F_2,_3) = 8.



COHOMOLOGY OF THE LIE ALGEBRA L2 405

Similarly for Lk we have the hypothetical result

The paper by Yu. Kochetkov and G. Post [KP] contains the announce-
ment of the equality

as well as some further computations, including explicit formulas for 8 gen-
erating cocycles, which imply the description of infinitesimal deformations
of the Lie algebra L2.

I. Spectral sequence.

Let us compute the homology H^(L2; ^λ,μ) Define a spectral sequence
with respect to the filtration in the cochain complex C[m\L2\J::x^). The
space C^n){L2'1T\^μ) is generated by the chains

eh Λ . . . Λ eiq ® j ά

where 2 < iλ < ... < iq, j G Z and iλ + . . . iq +j — m. Define the filtration by

iχ + m.m + iq = p . Denote by FpC
{

q

m) (L2-, fXifl) the subspace of C<m>(£2; T\ , μ ) ,

generated by monomials of the above form with i\ + . . . + iq < p. Obviously,

JFpC^m )(L2;^ :λ,μ)} is an increasing filtration in the chain complex. The

differential acts by the rule

d {eh Λ . . . Λ e i q ® fά)
q

= d {eh Λ . . . Λ eiq) ® /,- - ^ ( - l ) s

e i l Λ . . . eis A ... Λ . . . eiq <g> eimfj.
s=l

As m is fixed, the filtration in bounded.
Denote the spectral sequence, corresponding to this filtration by i£(λ, μ, m).

Then we have

and dp

0 is the differential δp : Cip)(L2;C) -> C*_i(L2;C). The first term of

the spectral sequence is

The homology of L2 with trivial coefficients is known (see [G]):

C i f ^

0 otherwise.



406 ALICE FIALOWSKI

Hence the E\ term of our spectral sequence looks as follows:

Λ2) H ( 3 ) AS) A9) Ail) Hi15* Hi

where all the spaces H^ shown in this diagram are one dimensional.
The spaces Ep do not depend on λ and μ, but the differentials of the

spectral sequence do. Let us introduce the notation

The differentials

_ r : Eζ_r Eτ

p_r < p

form a partial multi-valued mapping δq : Hq(L2) —> Hq_ι(L2). We shall
define a usual linear operator δq : Hq(L2) —> Hq_ι(L2) such that (1) if
δq(a) is defined for some a G Hq(L2) then δq(a) G δq(a); (2) $9_i o δq — 0.
(Certainly, the mapping Jg will depend on λ,μ,ra.) Then the limit term of
the spectral sequence £?(λ,μ,ra), that is H^m\L2;T\^μ) will coincide with
the homology of the complex

To define £i,<$2> we fix for any q and any p, E+ < p < e~+1, a cycle
c£ G (7^(L 2 ) which represents the generator of H^(L2).

It is evident that for each cp there exist chains

v < eq-l

such that

< - i

where αP ) Γ are complex numbers depending on λ, μ, m. These numbers com-
pose the matrix of some linear mapping Hq(L2) —> ί ί α _i(L 2 ) , and this map-
ping is our δq.
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The chains b^u and gv

q_ι may be chosen in the following way. Since

dcp

q = 0, the differential d (cp

q ® /m_p) has the form Σw<p K-ι ® fm-w with

/ι̂ _! E ^ { ( L a ) . Here the leading term hv~_\ is a cycle, dhPqZ\ = 0. Since

Hp

qZl(L2) = 0, we have ΛjlJ - d^" 1 with 6J-1 e C^(L2). Now, the

leading term of d (cp

q ® /m_p - b^Γ1 ® / m _ p +i) . belongs to C^\L2) and it

is again a cycle. We apply to it the same procedure and do it until the lead-

ing term of d (cp

q ® /m_p - Σ &P ® /m-P+<) belongs to c J V ^ L a ) . This is

still a cycle, but it is not necessarily a boundary, for Hq

q_γ (L2) φ 0. Now

we choose be

q

q G Cq q {L2) such that dbe

q

q is our leading term up to

some multiple of cq_λ . Then we do the same for GqJΊ \L2), and so on
e+_ - 1

until we reach Cq

q_ι (L2)
The matrix |ap, r | depends on the choice of the cycles cv

q. It depends also
on the particular choice of the chains bP~u, but only up to a triangular
transformation. In particular, the kernels and the images of the mappings
δq, and hence the homology Ker^/Im5 ί + 1 , are determined by the cycles cv

q.
Remark that dimHq(L2) = 2q + 1 and hence the matrix of δq is a (2q —

1) x (2q + l)-matrix depending on \μ,m. We get

(*) άimH{

q

m\L2',Tx^) = 2ρ + 1 - rankί, - rank^_i

II. Computations of iϊ^m )(L2; J ^ ) .

1. The space ^ m ) ( L 2 ; ^ μ ) .

As the action of W\ on T\φ is

βi ® /j -^ [i + μ - λ(i + l ) ]/ i + i

and the nontrivial cycles of Hγ(L2) are c\ = e2, ĉ  = e3, ĉ  — e4, the
differentials are the following:

e2 ® /m-2 -> (m - 2 + /i - 3λ)/m,

e3 ® /m-3 -> (m - 3 + μ - 4λ)/m,

e4 ® /m-4 - ^ ( m - 4 + μ - 5λ)/m.

The coefficients in the right hand sides depend on λ and m + μ, which is
natural, because the whole complex C(frl\L2]Tx^) depends only on λ and
m + μ. On the other hand, there is an isomorphism T\^μ = ^λ,μ+iί f3 ~+ fj+\
with the shift of grading by 1. Therefore we may put m = 0 and the
differential matrix δι : Hι(L2) -> H0(L2) has the form

( μ - 2 - 3 λ | μ - 3 - 4 λ | μ - 4 - 5λ).



408 ALICE FIALOWSKI

The rank of the matrix is 0 if λ = ra = — 1 and 1 in all the other cases. From
this it follows

Theorem 1.

[θ otherwise.

2. The space #ί m ) (L 2 ; .F λ ι μ ) .

The nontrivial cycles of C2(L2; C) are

4 = e 2 Λ 65 - 3 e 3 Λ e 4

c\ = e 2 Λ e 6 — 2 e 3 Λ e 5

C2 = 3 e 2 Λ e 7 - 5 e 3 Λ e 6

c^0 = e 2 Λ e§ — 3 e 4 Λ e^

4 1 = ^e2 Λ e 9 - 7e3 Λ e8

of weight 7,8,9,10,11.
Let us put μ — A λ — 1 = 4(A;, 1). Direct calculation shows that

d ((e2 Λ e5 - 3e3 Λ e4) ® /_7 - A(3,7)e2 Λ e3 ® /

= -3i4(4,7)e4 ® f-4

+ [3A(5,7) - A(3,7)A(3,5)]e3 0 /- 3

+ [-^1(6,7) + i4(3,7)4(4,5)]e2 ® /_

hence

δ2 (d) = [-A(6,7) + 4(3,7)4(4,5)]Cl I
2

+ [34(5,7) - 4(3,7)4(3,5)]c? - 34(4,7)cJ.

Thus we have

α7,2 = -4(6,7)+4(3,7)4(4,5)

α 7 , 3 =34(5,7)-4(3,7)4(3,5)

In the same way we calculate aPiΓ for p — 8,9,10,11 and r = 2,3,4. We get
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the following 5 x 3-matrix:

Λ(3,7)Λ(4,5)
-Λ(6,7)

1/2.4(3,8)4(5,6)
-24(4,8)4(4,5)

-4(7,8)

-5/24(4,9)4(5,6)
-34(8,9)

-1/24(3,10)4(4,8)4(4,5)
-3/24(5,10)4(5,6)

-4(9,10)

7/24(4,11)4(4,8)4(4,5)
+4(3,11)4(8,9)

-54(10,11)

-4(3,7)4(3,5)
+34(5,7)

24(4,8)4(3,5)
+24(6,8)

34(3,9)4(5,7)
+54(7,9)

1/24(3,10)4(4,8)4(3,5)
+1/24(3,10)4(6,8)

-Λ(3,11)A(3,9)A(5,7)
-7/2A(4,11)A(4,8)Λ(3,5)

-7/2^(4,11)^(6,8)
4-7^(9,11)

-3A(4,7)

-1/2A(3,8)Λ(3,6)

-3Λ(3,9)A(4,7)
+5/2A(4,9)Λ(3,6)

3/2A(5,10)A(3,6)
+3A(7,10)

A(3,11)A(3,9)A(4,7)

We have to compute the rank of the matrix ( ί 2 ) . It is clear that the rank

can not be bigger than 2. Direct computation shows that rk(52) — 1 if and

only if λ = —1, μ = —1,1,2,3; λ = μ = 0;λ = μ = l. From this, using

formula (*), it follows

Theorem 2.

2 if \ — m-\- μ = — 1

1 i/ λ = - 1 , m + μ = 1,2,3

or λ = 0 and m + μ = 0

or λ = 1 αncί m + // = 1

0 otherwise.

3. The spaces H(m)(L2; Fχ,μ) for q > 2.

The next differential £3 is a 5 x 7-matrix. Its rank can not be bigger than

3 for any λ and μ. On the other hand, computation shows that rk(<53) = 3

for every λ, μ; namely, the first three rows of the matrix are linearly inde-

pendent for every λ, μ. From this it follows that the dimension of the space

H2 (L2;FχΛμ) drops only if the rank of the previous matrix (δ2) does. This

proves
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Theorem 3.

1 if λ = - l , m + μ = -l,1,2,3

or λ = 1 and m + μ — 1

0 otherwise.

By this theorem, for generic λ,μ, dimJEΓ^ {L2\TXφ) = 0.
It seems very likely that the next differential matrices (δk), k > 4, have

the same rank for every λ and μ (rk(<$*.) = q) which would imply our

Conjecture 1. Hq (L2]J7χtμ) = 0 for every λ, μ for q > 2.

III. Computations of H^{L2\TXiμ).

Recall that the L0-modules Fx^μ differ from the W^-modules JF\^μ only in
requiring the non-negativity of j for the generators fj. Consequently the
spectral sequence is basically the same, only it is truncated as follows:

££(λ,μ,m)=0 if m-p<0.

The space C^m\L2\ Fχ^μ) is generated by the chains

eh A ... Λ eiq ® /̂

with 2 < iι < ... < iq, j > 0 and iι 4-... + iq = m. This way, for computing
homology, we have to compute the rank of truncated matrices, consisting of
some of the upper rows of the previous matrices.

Let us compute the space H0(L2]F\,μ). Obviously,

For m = 2 the differential is the following:

e2®fo-*{μ- 3λ)/2

which shows that if μ = 3λ, then dimiϊ^2) = 1, otherwise H^2\L2; FKμ) = 0.
For m > 2

( m )

ί l ifλ = - l a n d m + /i = -

0 otherwise.

So we get
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Theorem 4.

C ifm = 0,1

or m = 2 and μ = 3λ

or λ — —1 and ra + μ

0 otherwise.

Corollary. For generic X,μ H0(L2; Fχφ) = 2.

Direct computation proves the result for the space H{

Theorem 5.

Ί ifμ = 3λ

1

dimi/1

(2)(L2;Fλ,μ) =

(3)dimiϊ1

( 3 )(L2;Fλ,μ) =

0 otherwise,

1 otherwise,

= -4,λ = - 1

2 otherwise,

2 ifμ = -8,λ = -1 orμ - 0, λ = 0

1 otherwise,

2 ΐ//i = -9,λ = - l

1 /or λ and μ /ying on the curve

-36λ + 147λ2 - 27λ3 + 8μ - 72λμ + 27λ2μ

+9μ 2 - 9λμ2 + μ3 = 0

0 otherwise-,

for m>8, dimH[m)(L2;FXiμ) - dimH[m)(L2\Tχtμ) (see Theorem 2).

Corollary. For generic X,μ, άiτn.Hλ(L2] FXμ) — 8.

Conjecture 2. For generic λ,μ,

or, in more details,
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GENERIC DIFFERENTIABILITY OF CONVEX FUNCTIONS
ON THE DUAL OF A BANACH SPACE

J.R. GILES, P.S. KENDEROV, W.B. MOORS AND S.D. SCIFFER

We study a class of Banach spaces which have the prop-
erty that every continuous convex function on an open convex
subset of the dual possessing a weak * continuous subgradi-
ent at points of a dense G§ subset of its domain, is Frechet
differentiate on a dense G$ subset of its domain. A smaller
more amenable class consists of Banach spaces where every
minimal weak * cusco from a complete metric space into sub-
sets of the second dual which intersect the embedding from a
residual subset of the domain is single-valued and norm up-
per semi-continuous at the points of a residual subset of the
domain. It is known that all Banach spaces with the Radon-
Nikodym property belong to these classes as do all with equiv-
alent locally uniformly rotund norm. We show that all with
an equivalent weakly locally uniformly rotund norm belong
to these classes. The condition closest to a characterisation is
that the Banach space have its weak topology fragmentable
by a metric whose topology on bounded sets is stronger than
the weak topology. We show that the space ôo(Γ), where Γ is
uncountable, does not belong to our special classes.

We say that a Banach space is a dual differentiability space (DD space)
if every continuous convex function on an open convex subset of the dual
possessing a weak * continuous subgradient at points of a dense Gs subset
of its domain, is Frechet differentiable on a dense Gs subset of its domain.
Spaces of this class include those with the Radon-Nikodym property, and all
those which can be equivalently renormed to be locally uniformly rotund. In
the paper [K-G, p. 472] it was shown that spaces which can be equivalently
renormed to have every point of the unit sphere a denting point of the
closed unit ball are spaces of this class, and in the paper [G-Ml, p. 264]
it was shown that spaces which can be equivalently renormed to have every
point of the unit sphere an a denting point of the closed unit ball, (a is
Kuratowski's index of non-compactness), are spaces of this class; Troyanski
[Tl, p. 306] and [T2, p. 179] has shown that spaces with either of these
properties can be equivalently renormed to be locally uniformly rotund. In
paper [G-M2, p. Ill], the denting point property was weakened using an
index of non-WCG.

413
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Information about the class of DD spaces is more easily obtained through
the study of a subclass defined by certain set-valued mappings having special
continuity properties. A set-valued mapping Φ from a topological space A
into subsets of a topological space X is upper semi-continuous at t G A if
given an open subset W where Φ(t) C W there exists an open neighbourhood
U of t such that Φ(U) C W. If X is a linear topological space and Φ(t) is non-
empty compact and convex for each t E A and Φ is upper semi-continuous
on A we call Φ a cusco on A. A cusco Φ on A is said to be a minimal cusco
if its graph does not contain the graph of any other cusco on A.

We say that a Banach space X is a generic continuity space (GC space) if
every minimal weak * cusco Φ from a complete metric space A into subsets
of the second dual X** for which the set It G A : Φ(t) Π X Φ 0 j is residual
in A, is single-valued and norm upper semi-continuous at the points of a
residual subset of A.

An open subset of a complete metric space is itself completely metrisable
and a continuous convex function φ on an open convex subset of a Banach
space generates a subdifferential mapping x ι-> dφ(x) which is a minimal
weak * cusco. The subdifferential mapping being single-valued and norm
upper semi-continuous at a point is equivalent to the convex function being
Frechet differentiable at the point . So the class of GC spaces is contained
in the class of DD spaces.

In Section 1 we show that for any Banach space X, minimal weak * cuscos
from a complete metric space A into subsets of the second dual X** which
satisfy a certain generic property are always single-valued and norm upper
semi-continuous at the points of a residual subset of A. We use this general
result to show that Banach spaces which satisfy certain geometrical proper-
ties are GC spaces. In particular, we show that those Banach spaces which
have an equivalent weakly locally uniformly rotund norm are GC spaces. In
Section 2 we show that a Banach space is a GC space if its weak topology is
fragmentable by a metric whose topology on bounded sets is stronger than
the weak topology. We conclude in Section 3 by showing that the Banach
space ^oo(Γ), where Γ is an uncountable set, is not a GC space.

1. A general property implying geometrical conditions for
membership of the class of GC spaces.

For our general result we need the following characterisations of a minimal
cusco.

Lemma 1.1. [G-Ml, Lemma 2.5]. Consider a cusco Φ from a topological
space A into subsets of a separated locally convex space X. The following are
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equivalent
(i) Φ is a minimal cusco on A,

(ii) given any open set U in A and closed convex set K in X where Φ{U) ^
K there exists a non-empty open set V C U such that Φ(V) Π K = 0,

(iii) given any open set U in A and open half-space W in X where Φ(U) Π
W Φ 0 there exists a non-empty open set V C U such that Φ(V) C W.

We also use a continuity condition defined in terms of Kuratowski's index
of non-compactness. Given a bounded set E in a metric space X such an
index is

a(E) = inf{r : E is covered

by a finite family of sets of diameter less than r}.

Given a set-valued mapping Φ from a topological space A into subsets of a
metric space X we say that Φ is a upper semi-continuous at t E A if given
e > 0 there exits an open neighbourhood U of t such that a(Φ(U)) < e. Such
a upper semi-continuous mappings have single-valued properties.

L e m m a 1.2. [G-Ml, p. 253]. Consider a minimal weak * cusco Φ from a
Baire space A into subsets of the second dual X** of a Banach space X. If
Φ is a upper semi-continuous on a dense subset of A then Φ is single-valued
and norm upper semi-continuous at the points of a residual subset of A.

The proof of our general theorem follows a similar method of proof as
was used to prove Lemma 1.2 which is similar to a theorem of Christensen,
[Chr, p. 651].

Theorem 1.3. A minimal weak * cusco Φ from a complete metric space
A into subsets of the second dual X** of a Banach space X where the set

( —w*Λ

E= it£A:Φ(t) CΦ(t)ΠX \

is residual in A, is single-valued and norm upper semi-continuous at the
points of a residual subset of A.

Proof. Given e > 0 consider the open set Oe = (J{open sets U in A : a(Φ(U))
< 2e}. Suppose that Oe is not dense in A. Then there exists a non-empty
open set Vo in A such that Vo Π O€ = 0. Consider a dense G$ subset JD.of
A contained in E. Now D is completely metrisable and we consider it with
such a metric d.

We proceed by induction. Consider tx E Vo Π D and xλ E Φ(ίi) Π X.
Now Φ(Vί)) $£ x\ + eB(X**) for otherwise V0Πθe φ 0. Since Φ is a minimal
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weak * cusco, by Lemma 1.1, there exists a non-empty open set Vi such
that Vι C VQ and Φ(Vi) Π (xx + eB(X**)) = 0. We may assume that the
d-diam(Vi Γ)D) < 1.

Suppose that the first n iterations of this procedure have been completed.
Then we have a non-empty open set Vn such that Vn C Vn~ι and Φ(V^) Π
(co{xux2,... ,xn} + eB(X**)) = 0 where x4 G Φ(ί<) Π X and U G ΐ^_i H P
for i G {1,2,... ,n}. Now consider ίn+1 G F n Π D and ϊ n + 1 G Φ ( ί n + 1 ) Π X.
Again Φ(Fn) £ co{£ l 5 z 2 , , ̂ n+i} + eS(X**) for otherwise Vo ΠO€ D Vn φ
0. Since Φ is a minimal weak * cusco, by Lemma 1.1 there exists a non-
empty open set Vn+ι with cί-diam(Vr

n+i Π D) < ^ such that F n + i C Vn and
Φ(Kι+i) Π (co{2i, x2,.. , ί n + i } + e5(X**)) = 0. Continuing in this way we
form a Cauchy sequence {tn} in D which converges to some t^ G Π

w

n€N

Then for each n G N, Φ ^ ) Π (co{ί1 ? ί2, , Sn} + e5(X**)) = 0 and so

Π ( U Cθ{ί!, ί2, . . . , $ „ } + €JB(X**) ) = 0.
VnGN /

So there exists an / G X*, which strongly separates Φ(too)ΠX and cδ \J {xn}
new

and so there is a weak * open half space W generated by / containing

) Π X and disjoint from co \J {xn}. Since t^ G £?, we have
n6N

PF. Since Φ is weak * upper semi-continuous at t^ there exists an open
neighbourhood U of t ^ such that Φ(E/) C W. However, for n G M sufficiently
large, tn G U and then xn e Φ(tn) Π X C W contradicting the separation by
/. We conclude that O€ is dense in A and that Φ is a upper semi-continuous
at the points of f| Oi. a dense G$ subset of A. Our result now follows from

Lemma 1.2. D

We can now make the following deductions from Theorem 1.3.

Corollary 1.4. A minimal weak * cusco Φ from a complete metric space

A into subsets of the second dual X** of a Banach space X where the set

It G A : Φ(t) C X\ is residual in A, is single-valued and norm upper semi-

continuous at the points of a residual subset of A.

A special case of a theorem of Namioka [N, p. 525] can be deduced from
Theorem 1.3.
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Corollary 1.5. A weakly continuous single-valued mapping from a complete
metric space A into a Banach space X is norm continuous at the points of
a residual subset of A.

A Banach space X is weak Asplund if every continuous convex function
on an open convex subset A of X is Gateaux differentiable on a residual
subset of A. A Banach space X belongs to StegalΓs class S if and only if
every minimal weak * cusco Φ from a Baire space A into subsets of X* is
single-valued on a residual subset of A. It has been shown [K-O, Corol. 4.5]
that a Banach space X belongs to StegalΓs class S if and only if every
minimal weak * cusco Φ from a complete metric space A into subsets of X*
is single-valued on a residual subset of A.

Corollary 1.6. A Banach space X is
(i) a DD space if its dual X* is weak Asplund,

(ii) a GC space if its dual X* belongs to StegalVs class S.

Proof. We consider only the proof of (ii). A minimal weak * cusco Φ

from a complete metric space A into subsets of X** has the set {t E A :

Φ(t) is singleton} residual in A. So if the set IteA: Φ(t) Π X φ 0 J is resid-

ual in A then the set 11 e A : Φ(£) C X i is residual in A and we deduce from

Corollary 1.4 that X is a GC space. D

We should note the Banach space ίλ has dual ί^ which is not weak As-
plund, [P, p. 13]. However ίx has the Radon-Nikodym property and so the
property given in Corollary 1.6 is a sufficient but not necessary condition for
a Banach space to be a DD space or a GC space.

It has recently been proved, that a Banach space belongs to StegalΓs class

S if it has an equivalent norm Gateaux differentiable away from the origin,

[P-P-N].

Corollary 1.7. A Banach space X is a GC space if the dual X* has an

equivalent norm Gateaux differentiable away from the origin.

We note that the equivalent norm on X* need not be a dual norm.

Corollary 1.8. A Banach space X is a GC space if it can be mapped into

a GC space Y, by a continuous linear mapping T whose conjugate T" has a

dense range.

Proof. Consider a minimal weak * cusco Φ from a complete metric space A

into subsets of X** where the set IteA: Φ(ί) Π X Φ 0 j is residual in A. As
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a conjugate, T" is continuous when X** and Y** have their weak * topologies
so T" o φ is a minimal weak * cusco from A into subsets of Y**. Since Y is a
GC space and the set | t G A : T'Ό Φ(t) Π Ϋ φ 0J is residual in A, so T" o Φ
is single-valued on a residual subset A. Since T" has dense range then T" is
one-to-one, so Φ is single-valued on a residual subset of A and we have by
Theorem 1.3 that Φ is single-valued and norm upper semi-continuous at the
points of a residual subset of A. D

It is well known that a closed linear subspace of a Banach space with the
Radon-Nikodym property has the Radon-Nikodym property. The following
is an extension of this result.

Theorem 1.9. If a Banach space X is a GC space then every closed linear

subspace Y of X is a GC space.

Proof. The conjugate of the inclusion mapping maps X* onto Y* and so the
result follows from Corollary 1.8. D

This subspace property holds for the larger class of DD spaces, but the
proof uses a different technique.

Theorem 1.10. // a Banach space X is a DD space then every closed
linear subspace Y of X is a DD space.

Proof. Consider φ a continuous convex function on an open convex subset
B of F* where the set [g e B : dφ(g) Π Ϋ φ 0} D E a dense Gδ subset of
B. Consider T the inclusion mapping of Y into X. The conjugate T" maps
X* onto Y*. Further, φ o T" is a continuous convex function on the open
convex set A = (T')~ι(B) in X*. Since T" is onto it is an open mapping and
therefore D = {T')~ι(E) is a dense Gδ subset of A. But further, if f0 G D
then exists a y0 G Y such that y0 G dφ(T'f0). Then

yo(T'f) - yo(T7o) < Φ{Tf) - φ(T'f0) for all / G A

so

Vo(ί) ~ Vo(fo) < (φoT')(f) - (φoT)(fQ) for all / G A;

that is, y0ed{φoT'){f0).

Then {/ G A : d(φ o T')(/) n ί ^ J D f l a dense G<5 subset of A. Since
X is a DZ) space there exists a dense G$ subset G of A where φoT' is Frechet
differentiate. That is, for / G G,
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exists and is approached uniformly for all g G X*, \\g\\ — 1. Using the fact
the T" is the restriction of each element of X* to Y and that each restriction
has a norm preserving extension on X then

λ

exists and is approached uniformly for all T'g G Y*, \\T'g\\ = 1. So φ is
Frechet differentiable on T'(G) which is a dense subset of B. Since the set of
points where a continuous convex function is Frechet differentiable is always
a Gs subset, [P, p. 15], φ is Frechet differentiable on a dense G$ subset of
B. We conclude that Y is a DD space. D

A Banach space X is said to be weakly locally uniformly rotund if for
each x0 G X, | |#o| | — 1? given e > 0 and / G X*, | | / | | = 1 there exists
a δ(e1x0:f) > 0 such that \f(x — xo)\ < e for all x G X, \\x\\ < 1 when

\\x + xo\\ > 2 — δ. A weakly locally uniformly rotund space is rotund but not
necessarily locally uniformly rotund. However, such a geometrical property
on a Banach space does have rotundity implications for the second dual
space.

L e m m a 1.11. Consider a weakly locally uniformly rotund Banach space

X. Given x0 G X, | |xo | | = 1, for every F G X**, | | F | | = 1, F φ ί0, we have

\\F + xo\\<2.

Proof Suppose that there exists an F G X**, | | F | | = 1, F φ x0, such that

IIF + Soll = 2. Since F φ x0 there exists an / 0 G X*, | |/o| | = 1 and an r > 0

such that |(JP — ϊo)(/o)| > r Since X is weakly locally uniformly rotund,

given 0 < 6 < I there exists a δ(e:xo^fo) > 0 such that \fo(x — rzro)| < e f° r

all x G X, \\x\\ < 1 when ||x + ^o|| > 2 — ί. Since the norm on X** is weak *

lower semi-continuous the set {G G X** : | |G + ί o | | > 2 — ί} is weak *open

in X** and contains F. By Goldstine's Theorem B (Xj is weak * dense in

i?(X**) so there exists some x G B [Xj such that ||x + 2 0 | | > 2 — δ and

\(F - x)(fo)\ < e. Then for such a n ί G f i (X) we have \fo(x — xo)\ < e and
therefore

\{F - x o )(/o) | < \{F - x)(fo)\ + \fo(x ~ xo)\ < 26 < r

which contradicts the initial separation property. D

We need the following property of minimimal weak * cuscos.

Lemma 1.12. [K-G, p. 471]. Given a minimal weak * cusco Φ from a
Baire space A into subsets of the dual X* of a Banach space X, there exists
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a residual subset of A at each point t of which, Φ(t) lies in the face of a
sphere of X*.

Theorem 1.13. A Banach space X is a GC space if it can be equivalently
renormed to be weakly locally uniformly rotund.

Proof. Consider X so renormed. Then since Φ is a minimal weak * cusco

on A we have by Lemma 1.12 that there exists a residual subset D of A at

each point t of which, Φ(t) lies in the face of a sphere of X**. So if the set

G = It E A : Φ(t) Π X Φ 0 j is residual in A then G Π D is residual in A.

But by Lemma 1.11, Φ is single-valued on G Π D and so Φ(GΓ\D) C X and

we deduce from Theorem 1.3 that X is a GC space. D

We do not need so strong a geometrical condition as weak local uniform
rotundity. To be a GC space it would be sufficient for the space X to
have an equivalent norm such that given x0 £ X, \\xo\\ = 1, ΐoτ every F G
X** \ X, | | F | | = 1 we have \\F + xo\\ < 2. Such an equivalent norm is not
necessarily rotund. However, it is difficult to find a characterisation of this
property on X.

2. Fragmentability conditions for membership of the class of GC
spaces.

We aim to find fragmentability conditions which imply that a Banach space
is a GC space.

Consider a bounded subset E in a Banach space X. Given / G X*, | | / | | =
1 and δ > 0, a slice of E defined by / and δ is the subset

S(E,f,δ) = {xeE: f(x) > sup f(E) - δ}.

A slice of a bounded set E in the dual X* defined by a weak * continuous

linear functional on X* is called a weak * slice of E.

We need the following local boundedness property of minimal weak *

cuscos.

Lemma 2.1. A minimal weak * cusco Φ from a Baire space A into subsets

of the dual X* of a Banach space X is locally bounded on a dense open subset

of A.

Proof. It is sufficient to show that there exists an open subset of A on which

Φ is bounded. For each n G N, consider the set

En = {teA: Φ{t) C nB{X*)}.



GENERIC DIFFERENTIABILITY OF CONVEX FUNCTIONS 421

Clearly, [JneNEn — A. Since A is Baire there exists an n0 G N such that
inti5n o φ 0. Consider an open set U C Eno. Suppose for some t0 e U \ Eno

there exists an / 0 G Φ(ίo)\ΉoS(-X"*). Then / 0 can be strongly separated from
n0B(X*) by a weak * continuous linear functional on X* which generates a
weak * open half space W containing f0 and n0B(X*) C C(W). Then since
Φ is a minimal weak * cusco, by Lemma 1.1 there exists a non-empty open
set V C U such that Φ(V) C W. But this contradicts the fact that there are
points of Eno in V which map into n0B(X*). D

The following characterisation of the class of GC spaces simplifies our
computation.

T h e o r e m 2.2. A Banach space X is a GC space if and only if every
minimal weak * cusco Φ from a complete metric space A into subsets of
X** where Φ(t) Π X φ 0 for all t G A is single-valued and norm upper
semi-continuous at the points of a residual subset of A.

Proof. Consider a minimal weak * cusco Φ from a complete metric space A

into subsets of X** where It G A : Φ(<) Π X Φ 0 j 2 Aλ a dense Gδ subset of

A. Then Aλ is completely metrisable, [K-N, p. 96]. Consider the set-valued

mapping Φx the restriction of Φ to i ^ Now Φx is also a minimal weak *

cusco on A\ and Φι(t)ΠX Φ 0 for all t G Aλ. So Φi is single-valued and norm

upper semi-continuous at the points of a dense G$ subset D of A± which is

also a dense G$ subset of A.

Consider t 0 G D. Since Φx is norm upper semi-continuous at t 0 there exists
an open neighbourhood U of ί0 such that Φi(ϊ7 Π Λi) C JB[Φ(ί0); e]. We will
show that Φ(Ϊ7) C B[Φ(to)\ e]. Suppose not, then since Φ is a minimal weak
* cusco, by Lemma 1.1 there exists a non-empty open set V C U such that
Φ(V) Π B[Φ(to);e] — 0. But this contradicts the fact that Aλ is dense in A
and Φi is norm upper semi-continuous at t0.

The converse is obvious. D

The following norm fragmenting theorem generalises a characterisation of

Banach spaces with the Radon-Nikodym property.

T h e o r e m 2.3. A Banach space X is a GC space if there exists a weak

* lower semi-continuous norm | | | | | | on X** and every non-empty bounded
subset of X has slices of arbitrarily small | | | \\\-diameter.

Proof. Consider a minimal weak * cusco Φ from a complete metric space A
into subsets of X** where Φ(t) Π X Φ 0 for alH G A. Consider the mapping
Φ from A into subsets of X defined by
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Given e > 0, consider the set

Oe = (J jopen sets V such that | | | | | | - diam Φ(V) < e | .

Now Oe is open; we show that it is dense in A. By Lemma 2.1 we may assume
that Φ is locally bounded. Consider any non-empty open set U in A where
Φ(U) is bounded. Then there is a weak * slice of Φ(U) with | | | |||-diameter
less than e. Since Φ is a minimal weak * cusco, by Lemma 1.1 there exists
a non-empty open set V C U such that Φ(V) lies inside this slice and so
HI |||-diam Φ(V) < e. So O€ is dense in A. Then D = ΠneN Ox is a dense Gδ

of A and Φ is single-valued and || | |||-upper semi-continuous at the points
oϊD.

Consider t0 G D. Suppose that there exists an Fo G Φ(£o) \ X- F° r r =
| | 11Fo—x0111, consider B\j1.111[x0 r]. Since 111 11 is weak * lower semi-continuous,
J5|||.|||[2o;r] is weak * closed. So Fo and J3|||.|||[2o; r] can be strongly separated
by a weak * continuous linear functional which generates a weak * open
half-space W containing Fo and 2?m.|||[a;0;r] C C(W). Since Φ is | | | |||-upper
semi-continuous at t0, there exists an open neighbourhood U of t0, such that
Φ(U Π D) C B|||.|||[ϊo;r]. Now Φ(U) Π VF φ 0 and since Φ is a minimal
weak * cusco, by Lemma 1.1 there exists a non-empty open set V C [/ such
that Φ(V) C VF. But this contradicts the fact that Φ(t) Π C(VF) 7̂  0 for
each t G F Π JD. So we conclude that Φ is single-valued on D and maps
into X. It follows from Theorem 1.3 that Φ is single-valued and norm upper
semi-continuous at the points of a residual subset of A. D

We note that the weak * lower semi-continuous norm || | | | on X** need
not be an equivalent norm for X**,

A Banach space has the Radon-Nikodym property if and only if every non-
empty bounded subset has slices of arbitrarily small diameter, [P, p. 72]. So
we could deduce the following known result from Theorem 2.3.

Corollary 2.4. A Banach space with the Radon-Nikodym property is a GC
space.

It is possible to give a characterisation for GC spaces in terms of the
behavior of set-valued mappings from a complete metric space into subsets
of the original space. To do this we generalise the idea of minimality for
set-valued mappings from the characterisation of minimal cuscos given in
Lemma 1.1.

We say that a set-valued mapping Φ from a topological space A into
subsets of a separated locally convex space X is minimal if for any open
half-space W in X and open subset U in A where Φ(J7) Π W Φ 0 there exists
a non-empty open set V C U such that Φ(V) C W.
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We use the following selection property of minimal set-valued mappings.

Lemma 2.5. Consider a Banach space X with a separated locally convex
topology τ where the norm closed balls are also τ-closed and a r-minimal
set-valued mapping Φ from a topological space A into subsets of X. If there
exists a selection Φ on a dense set D in A which is norm continuous on D
then Φ is single-valued and norm upper semi-continuous at the points of D.

Proof. Suppose that at t0 G D, Φ is not single-valued and norm upper

semi-continuous. Then there exists an r > 0 and in every neighbour-

hood U of t 0 there exists a tx G U such that Φ(£i) ^ B (φ(to);rj . Now

X\ E Φ{tλ)\B ί φ ( t o ) ; r j can be strongly separated from B Φ(£o); §] by a

r-continuous linear functional which generates a r-open half-space W con-

taining Xι and B Φ(t0); § C C(W). Since Φ is norm continuous at t0 there

exists an open neighbourhood U of ί0, such that Φ(U Π D) C B ί Φ(ί0); §)

But Φ is r-minimal and Φ(U) Π W Φ 0. So there exists a non-empty open

set V C U such that Φ(V) C W. But this contradicts Φ(VΠD) C C(W). So

we conclude that Φ is single-valued and norm upper semi-continuous at the

points of D. D

The following theorem characterises a GC space X by the behavior of

weakly minimal mappings into X.

Theorem 2.6. For a Banach space X the following are equivalent

(i) X is a GC space,

(ii) every weakly minimal locally bounded set-valued mapping Φ from, a
complete metric space A into subsets of X is single-valued and norm
upper semi-continuous at the points of a residual subset of A,

(iii) every weakly minimal locally bounded single-valued mapping φ from a
complete metric space A into X is norm continuous at the points of a
residual subset of A.

Proof, (i) => (ii). Consider a weakly minimal locally bounded set-valued

mapping Φ from A into subsets of X, and weak * cusco Φ from A into

subsets of X** generated by Φ where

φ(t) = p | {cόw*Φ(U) where U is a neighbourhood of ί} , [B-F-K, p. 472].

Since Φ is weakly minimal then from Lemma 1.1 we see that Φ is minimal
weak * cusco. But also Φ(t) Π X Φ 0 for all t E A. Since X is a GC space
we deduce that Φ is single-valued and norm upper semi-continuous at the
points of a residual subset of A, and then so is Φ also.
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(ii) =Φ> (iii) Obvious.
(iii) =Φ> (i) Consider a minimal weak * cusco Φ from a complete metric

space A into subsets of X** where Φ(t) Π X φ 0 for all t £ A. By Lemma
2.1, we may suppose that Φ is locally bounded on A. Consider a selection Φ
from A into X. Now Φ is a weakly minimal, locally bounded single-valued
mapping from A into X so is norm-continuous at the points of a residual
subset D of A. It follows from Lemma 2.5 that Φ is single-valued and norm
upper semi-continuous at the points of D. D

Although this characterisation enables our computation, it is somewhat
unsatisfactory in that it does not give us significant information about the
specific properties which identity GC spaces. When looking for a charac-
terisation of GC spaces, it is logical to look for a condition which includes
the sufficiency conditions which we have already given. A unifying condi-
tion can be found in the concept of fragmentability and its generalisation,
[Rl, p. 247].

Given a topological space X we say that a function λ : X x I - > R i s a
premetric on X if

(i) λ(x, y) > 0 for all x, y G X and
(ii) λ(x, y) = 0 if and only if x = y, [Sc, p. 225].
We define what we will call the λ-topology on X as follows. A subset U

of X is said to be λ-open if for every x0 G U there exists an r > 0 such that
{x G X : λ(x,x0) < r} C U. Given x0 G X and e > 0, a subset of the form
{x G X : λ(x,x0) < e} is fundamental in defining the λ-topology but it is
not necessarily λ-open. We say that λ fragments X if, given e > 0, for every
non-empty subset E of X there exists a relatively open subset U of E such
that

λ — diam([/) = sup{λ(:r, y) : x,y E U} < e.

We note that the λ-topology on a subset E of X is stronger than the

relative topology on E if for every x0 G E and open set W containing x0

there exists a δ > 0 such that {# G E : λ(α;, x0) < ^} Q W.
If a topological space X has a fragmenting premetric then there exists

a fragmenting metric on X, [Rl, p. 246]. A Banach space which has an
equivalent rotund norm has a fragmenting metric for its weak topology, [R2].
We recall that ^oo(N) can be equivalently renormed to be rotund but ^oo(Γ),
where Γ is uncountable, cannot, [D, p. 120; 123].

Theorem 2.7. A Banach space X is a GC space if it possesses a pre-
metric λ where every non-empty bounded set has slices of arbitrarily small
X-diameter, and where the X-topology on bounded sets is stronger than the
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weak topology.

Proof. Consider a weakly minimal locally bounded set-valued mapping Φ
from a complete metric space A into subsets of X. Given e > 0, consider the
set Oe = U{open sets V in A such that λ-diam Φ(V') < e}. Now Oe is open
in A] we show that it is dense in A. Consider any non-empty open set U in A
where Φ(U) is bounded. Then there is a slice of Φ{U) with λ-diameter less
than e. Since Φ is weakly minimal, there exists a non-empty open set V C U
such that Φ{V) lies inside this slice and so λ-diam Φ(V) < e. So Oe is dense
in A. Then D = f| Ox is a dense Gδ subset of A where Φ is single-valued.

nGN n

Since the λ-topology is stronger than the weak topology on bounded set, Φ
is single-valued and weakly continuous at the points of D. Now D is a dense
Gδ subset of the complete metric space A so D is completely metrisable,
[K-N, p. 96]. Then by Corollary 1.5 there exists a dense G$ subset E of D
and so of A where Φ|D is norm continuous . We conclude from Lemma 2.5
that Φ is single-valued and norm upper semi-continuous at the points of E,
Our result now follows from Theorem 2.6. D

We show that Theorem 2.7 includes Theorem 1.13. We do this using the
following premetric. Given a rotund normed linear space X and using the
notation [x,y] = {ax + (1 — a)y : 0 < a < 1}, we define the function
λ:IxI->Eby

\(x,y) = max{\\[x,y]\\} - min{||[z, j/]||},[Sc, p. 226].

Clearly, \(x,x) — 0. If x ψ y then by rotundity \(x,y) > max{||[,y]||} -
| | | x + y\\ > 0. So λ is a premetric on X.

We need the following properties of this premetric. Given x0 G X and
r > 0 we use the notation

Bx(x0',r) = {x E X : λ(x,x0) < r}.

Lemma 2.8. Given a rotund normed linear space X,

(i) \(Kx,y) < λ ( z , y ) + 2 | l - ί Γ H | 2 ; | | for all K φ 0 and x,y e X,

(ii) Bx(x; r) C (||x|| + r)B(X) for all x G X,

(iii) given x G X, for K > 1 and 0 < r < (K - l)| |x| |,

Bχ(x', r) C Bx(Kχ r + 2|1 - K| ||χ||) Π K\\x\\B(X).

Proof, (i) ForO < α < 1, ||aXa; + (l-a)i/|| < \\ax + (l-a)y\\+a\l-K\\\x\\,
< max{||[α;,y]||}+|l—iC| \\x\\. But also, | | α x + ( l - α ) y | | <

-K\\\x\l so min{\\[x,y}\\} < mm{\\[Kx,y]\\} + \l-
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HI Therefore, max{| |[i^,y] | |} - mm{\\[Kx,y)\\} < max{||[α;,y]||} -
{||[a:,y]||} + 2 | l - A Ί | | x | | .

(ii) and (iii) come directly from the definition of λ and (i). D

We notice that if X is a weakly locally uniformly rotund normed linear
space then given x0 G X, x0 φ 0 and e > 0 and / G X*, \\f\\ = 1, there
exists δ(e,x0,/) > 0 such that \f(xo — x)\ < \\xo\\e when x e \\xo\\B(X) and
||a; + zo|| > | |&o | | (2- ί ) . So if \(x,x0) < ||rco | |f and x G \\xo\\B(X) then

- | | x + xo|| > min{||[^,xo]||} > max{||[a;,a;o]||} - \\xo\\^

> IMI (i - ί )

so \\x + xo\\ > ||xo||(2 — δ) and it follows that \f(x0 — x)\ < H^olk

Propos i t ion 2.9. A Banach space X which has an equivalent weakly
locally uniformly rotund norm has a premetric λ where every non-empty
bounded subset of X has slices of arbitrarily small X-diameter and where the
λ-topology is stronger than the weak topology.

Proof. Consider X so renormed and the premetric λ defined above. Consider
a non-empty bounded subset A of X and write 5 = sup{||x| | : x G A}. If
s = 0 then it is trivially true. If s φ 0 then given e > 0 there exists an
/ e Γ , 11/11 = 1 such that the set E ΞΞ AnS{sB(X)J,e) φφ. For x,y G E
and writing r = max{||a;||, \\y\\} < s we note that x,y G S{rB(X), f,e+r — s)
and so λ-diami£ < e.

To show that the λ-topology is stronger than the weak topology it is
sufficient to show that each subbasic weak open set is λ-open. At 0 the norm
and λ-topologies agree so we consider neighbourhoods of x0 G X, Xo φ 0.
Given e > 0 consider the weak open subbasic set

W = {x E X : |/(a:) - f(xo)\ < 3e\\xo\\} where / € X*, \\f\\ = 1.

Now we have that there exists a δ(e,xo,f) > 0 such that \f(x0 — x)\ <
\\xo\\e when λ(x,a;o) < IWIf and x € ||α;o||-B(X). Choose 1 < K <

2 such that K — 1 < min< - , , i and then choose 0 < r <
18 |/(:roj| + l j

min {||aτo||f, (K — 1) | (rrr011} From Lemma 2.8(iii) we have that

Bχ(xo;r) C Bχ(Kx0;r + 2(K - l)\\xo\\) Π K\\xo\\B(X)

C Bx (Kxo;\\xo\\^\ Π K\\xo\\B(X)
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by the choice of K and r.

So Bχ(x0; r) C Bx(Kx0;K\\x0\\l)nK\\x0\\B(X). Therefore \f(Kxo-x)\ <
K\\xo\\e when x G Bx(x0]r). But then

- f(x)\ < \Hxo) - Kf(xo)\ + \f(Kx0) - f(x)\

<(K-l)\f(xo)\ + K\\xo\\e

<3e\\xo\\-

So Bχ(x0; r) C W and we conclude that the λ-topology is stronger than the

weak topology on X. D

It is straight forward to show that Theorem 2.7 includes Theorem 2.3.

This follows directly from the following lemma.

L e m m a 2.10. A Banach space X where there exists a weak * lower semi-
continuous norm | | | | | | on X** has the | | | \\\~topology stronger than the weak
topology on bounded subsets of X.

Proof. Consider a bounded subset A of X, x0 G A and a subbasic weak open

neighbourhood of x0 in A, W = {x G A : \f(x) — /(#o)| < e} for 6 > 0 and

/ G Γ , | | / | | = 1. Given r > 0 the closed ball J5|**.|||[xo;^] i s weak * closed

so Bj jf.mβo r] Π (A \ W) is weak * compact. If B^JXQ] %\n(A\W) φti

for all n G N then there exists an F G f| β m || |[ so; ~] ΓΊ (A \ W). But this

would contradict the fact that F φ x0. So there exists an r > 0 such that
B?njn(xo;r) C M7 and we conclude that the | | | |||-topology is stronger than
the weak topology on A. D

3. A Banach space which is not a GC space.

The Banach space ^ ( Γ ) , where Γ is uncountable, is not a GC space. To
show this we exhibit a complete metric space P and a weakly minimal, locally
bounded set-valued mapping Φ from P into subsets of ^ ( Γ ) where for each
p G P, Φ(p) is not singleton. Our argument is completed by an appeal to
the characterisation given in Theorem 2.6. The construction is based on an
example of Talagrand [Ta].

We denote by X the set of characteristic functions of countable subsets
of Γ with the topology of uniform convergence on countable subsets of Γ. A
base of neighbourhoods for x0 G X is given by sets of the form U{XQ, J) =
{x G X : x\j — XQ\J} where J is a countable subset of Γ.
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We use the technique of the Banach-Mazur game played on the topological
space X, [C, p. 115]. This is a game between two players a and β where
each player chooses alternately a non-empty open set contained in the other's
previously chosen set. Player β begins by choosing Uι. When β chooses Un

then a chooses Vn where Un D Vn\ when a chooses Vn then β chooses ί7n+i
where Vn D E/n+i. The sequence of open sets

Uλ D Vi D U2 2 V2 D • D Un 2 Vn 2

is called a play. The player a wins this play if f| Vn φ 0. The game is said

to be a-favourable if there exists a winning tactic by which a chooses Vn

dependent only on how β chooses Un so that α always wins.
Although the following lemma was proved in [Ta, p. 160], we will subse-

quently need to refer to the α-winning tactic used in our proof.

Lemma 3 1. The topological space X is a-favourable.

Proof. We define an α-tactic as follows:
For each open set U in X choose a point x E U and a basic neighbourhood

V = U{x, J) C U.

Each play, UΊ 2 Vi 2 U2 2 V2 2 * * • Ώ Un D Vn 2 generates a decreasing
sequence of basic neighbourhoods

Vi = U{xuΛ) 2 V2 = U(x2, J2)D-- Vn = U(xn, Jn) D • • • .

Clearly, Jn C J n + 1 for each n € N and each xn+i is an extension of xn\jn to
Jn+i So we can define a function x* on Γ as an extension of xn\jn for each
n G N on J Ξ |J Jn and zero on Γ \ J. Since J is countable, x* G X. But

also x* E Π U(xn, Jn) so we have an α-winning tactic. D

We note that U{x*,J) C p| U(xn,Jn) and C/(a:*, J) has infinitely many
nGN

elements.
In Lemma 3.1 we produced an α-winning tactic. We now consider the set

V of all plays

p = (Un,Vn) = U1DV1DU2DV2D"-DUnDVnD'-

which follow such an α-winning tactic, with metric p defined by

tP) — 0 f°r each p G ? and

P(P\P") — — where n is the first integer where U'n
Tί



GENERIC DIFFERENTIABILITY OF CONVEX FUNCTIONS 429

If for some n G N, U'n = U[[ then from the definition of the play for such an
a-winning tactic, V'n = V^'.

L e m m a 3.2. The metric space V is complete.

Proof. Consider a Cauchy sequence {pk = (£/"*, V^fe)} in V. Then for every
n G N there exists some kn > n such that £/*Λ — U^V^n = Vf whenever
1 < i < n and k > kn. So we can define a new play p* G V by

p* = (UΪr,Vf) and p(pk,p*) -> 0 as k -> oc.

D

A similar metric space was studied in [K-O, Prop. 2.1].
We now consider the natural embedding π of the topological space X into

the Banach space ^ ( Γ ) . For X\,X2 £ X-, X\ φ x2 we have that ||τr(xi) —
^(^2) I loo — 1 and so it is clear that this embedding is nowhere norm contin-
uous on X. However, the natural embedding π of X into ί^ (Γ) with its weak
topology is continuous at every point of X. We will establish this through
two preliminary lemmas.

Given x G X, we denote by s(x) the support of x\ that is, s(x) = {t G Γ :
x(t) — 1}. Our first result follows from Zorn's lemma.

L e m m a 3.3. Given f G ̂ ( Γ ) which is not identically zero on τr(X)

there exists a non-empty subset A of X which is maximal with respect to the

properties

(i) {s(x) : x G A} is disjoint family in Γ; that is, for Xι,x2 G A, X\ Φ x2

we have s(xι) Π s(x2) = 0, and

(ii) f{π(x)) Φ 0 for each x G A.

L e m m a 3.4. The set A is countable.

Proof. Given e > 0, consider the set Ae = {x G A : |/(π(α;))| > e}. Now
A = U Ax so it is sufficient to prove that for every e > 0, Ae is finite.

n<ΞN n

Suppose that for some r > 0, Ar is infinite. Then one of the sets A+ = {x G
A : f(π(x)) > r} oτ A~ = {x e A : f(π(x)) < —r} will be infinite. We may
suppose that A* is infinite. For any finite subset A' of A+ we have from
property (i) of Lemma 3.3 that ΣxeA' π(x) belongs to the closed unit ball
£(4o(Γ)). But f(ΣxeΛ'Φ)) = ΣxeA'f(Φ)) > \A'\r where \A'\ denotes
the number of elements in the finite set A'. But this implies that / is not
bounded on ̂ ( ^ ( Γ ) ) which contradicts the continuity of /. D

We are now in a position to establish our continuity property.
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Lemma 3.5. The natural embedding π of the topological space X into
^oo(Γ) with its weak topology is continuous at every point of X.

Proof. Consider / E ^ ( Γ ) . If / is identically zero on π(X) then the result is
obvious. Suppose / is not identically zero on ττ(X). Then from Lemma 3.4,

J* = [J{s(x) : x E A} is a countable subset of Γ.

Denote by x* the characteristic function of J* on Γ. For every x E X we
have x = x.x* + x.(l - x*), so f{π(x)) = f(π(x.x*)) + f{π{x.(l - x*))).
But s(x.(l - x*)) C s(x) Π (Γ \ J*) so x.(l - x*) E X \ A. Since A is
maximal with respect to properties (i) and (ii) of Lemma 3.3, we deduce that
f(π(x.(l - x*))) = 0. Therefore, f(π(x)) = f(π(x.x*)) for all x E X. Now
consider x0 E X and a basic neighbourhood U(xo, J*) For any # E U(x0^ J*)
we have x|j* = XO|J* sind so x.x* = x$.x*. Then f(π(x)) = f(π(x.x*)) =
f(π(xo.x*)) — f(π(x0)). This implies the required continuity of the natural
embedding π. D

We now consider the set-valued mapping Φ from P into subsets of ^oo(Γ)
defined for the play p = (Un,Vn) e V by

Φ(p) = Π π(ε/ n ) = Π π(Vn).
nGN nGN

It is this set-valued mapping which establishes that ^ ( Γ ) is not a GC space.

Theorem 3.6. The set-valued mapping Φ from V into subsets of ί^Y) is
weakly minimal, locally bounded and for each p £V, Φ(p) is not singleton.

Proof. Clearly, for each p£V, Φ(p) C ^ ( ^ ( Γ ) ) . For each play p=(Un,Vn)
we note from Lemma 3.1 that the set Ep = f| Un — f) Vn is a subset of X

n<ΞN nGN

which contains more than one point. So for each p G P , Φ(p) — Π π{Un) is
nGN

not singleton.
Consider / E ^o(Γ) generating a weak open half-space W in ^ ( Γ ) and

play p° = (U°, Vn°) E P such that x° E Φ(p°) Π W. Now by Lemma 3.5, the
natural embedding π of X into ^oo(Γ) is weakly continuous so π~1(W) is a
non-empty open subset of X. Given δ > 0 and n 0 E N such that n 0 > |
consider any play p' = (C/;, KJ E P such that C// - ί/̂ , V( = V;° for all
1 < i < n 0 and U'no+ι = i7^o+1 Π π " 1 ^ ) . Now ρ{p',p°) < ± < δ. But since
π (^n 0 +i) Q Ŵ  we have Φ(p') C VF. So Φ is weakly minimal. tH

Note added in proof
Professor Isaac Namioka has recently given an example to show that ί^ (N)
is not a GC space.
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MOON HYPERSURFACES AND SOME RELATED
EXISTENCE RESULTS OF CAPILLARY HYPERSURFACES
WITHOUT GRAVITY AND OF ROTATIONAL SYMMETRY

FEI-TSEN LIANG

Let Ω*(iϊ) be a domain in W1 bounded by two spherical caps
Ύl — 1 . ΐl — 1

Σi and Σ2 of respective radii and R, with < R < 1.
n n

(cf. Figure 1 for n = 3). We consider the vertical cylinder Z
over dΩ*(R) and seek a hypersurface UR(XI, ... ,xn) over Ω*(i?)
of constant mean curvature H = 1 which meets Z in the angle
π (vertically downward) over Σχ(R) and the angle 0 (vertically
upward) over Σ2(iί); intuitively and essentially, this amounts
to seeking a solution to the problem

(01) {.. „.. j - l on
on

v being outward unit normal.

0. Introduction.

In view of the shape of the base domain Ω*(iϊ), we shall, as in [FG] for n — 2,
refer to Ω*(i?) as n-dimensional moon domains and as in [F2], refer to the
solution of (0.1) as moon {hyper)-surfaces. Such a moon surface (n = 2) is
chosen to majorize the gradient of solution u{x) of

(0.2) divTu = 2

in BR,RQ < R < 1, with RQ = 0.565406... being the unique value of
R for which Σχ(i?) passes through the center of the circle including Σ2(iϊ).
This enables us to show the existence of apriori gradient bounds for solution
of the equation (0.2) in BR, R^ < R < 1, in [FG].

0.1. We note that, an integration of (0.1) over the section Ω*(i?) yields

(0.3) |

Thus, the condition (0.3) is necessary for existence of the moon hypersurfaces

433
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In §3 and §5.1 of this paper, the existence of n-dimensional moon domains

Ω*(i2), 1 > R > , characterized by the condition (0.3), will be verified,
n

for n = 3 and n > 3, respectively. The existence of moon hypersurfaces, for
n = 3 and n > 3, will be proved in §1 and §5.2, respectively. These results
may help us to extend the above-mentioned apriori gradient estimates to
higher dimensions.

0.2. As in [F2] and §3 of [LI] for n = 2, we shall, in §2 and §5.3, for n = 3
and n > 3, respectively, in a suitable sense indicated there, construct the
moon (hyper)-surface as a limit of solutions ue to (1.2) defined throughout
the sphere BR including Σ2(i?) This result will also be applied in [L2] to
show that absolute gradient estimates cannot hold for solutions of

(0.4) divTu = n

in BR, R < Ron\ R^ being the unique value of R for which Σx(i?) passes

through the center of the sphere including Σ2(iί). As calculated in the ending

of §4, we have

2 + 2N/Ϊ9 = 0 7 4 6 4 2 1 9 8 7 . . . ( c f ( 4

For n > 3, RQ1^ is determined as in §5.1.1.

Σ2(R)

Figure 1. (n=3)

0.3. The proof of the existence of the moon hypersurfaces uR and the exis-
tence of that sequence of solutions converging to it are reduced to the general
existence results in Finn [Fl]. That is, in §1, we shall verify, for n = 3,

(0.5.1)
φ[Ω°] = |dΩ°nΩ<t | + | < 9 Ω o n Σ 1 | - | d Ω ° n Σ 2 | + n | Ω o | > 0
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(0.5.2)

ΞΞ |<9Ω° Π Ω*| - \dtt° Π Σ i | + |<9Ω Π Σ 2 | - n | Ω | > 0

for every Caccioppoli set Ω° C Ω*, Ω° φ φ, Ω*; in §2, we shall verify, for
n — 3, for e sufficiently small

(0.6.1)

φ[Ω°] ΞΞ \dΩ° Π Ω*| - (1 - e)|dΩ° Π Σ 2 | - βe dΩ° Π Σ + n|Ω°| > 0,

(0.6.2)

Π Ω*| + (1 - e)|3Ω° Π Σ 2 | + βe \dΩ° Π Si - n|Ω°| > 0,

for every Caccioppoli set Ω° C BR, 1 > R > 2/3, Ω° / 0, £ Λ where Σ =
dBR — Σ 2 and βe{R) is a constant depending on i?, and defined by the
equation (2.1); - 1 < βe < 1 for 1 > R > 2/3 and - 1 < βe < 0 for
1 > R > R{

0

3). The verification of (0.5.1), (0.5.2), (0.6.1) and (0.6.2), however,
is not a straightforward generalization of that of the two dimensional case,
due to the fact that the hyper surfaces of constant mean curvature are in
general not spherical. A new approach is inexcusably required. We will
draw on the technique of the rearrangement of level curves. The rotational
symmetry of both the boundary surface dBR and the boundary data will
therefore play a crucial role in our investigation. Also, in this connection,
we find that, in both cases of §1 and §2, it is more easy and natural to discuss
^[Ω0] than 0[Ω0]; thus because of the respective equivalence of (0.5.1), (0.6.1)
and (0.5.2), (0.6.2), we will restrict our attention to (0.5.2) and (0.6.2). In
either case, a minimizing body for ^[Ω0] exists and, using our new technique,
the only possible non-empty minimizing body for ψ[Ω°] is shown to have a
spherical cap of radius 2/3 and passing through dΣi as its boundary in
the sphere BR (obtained by completing Σ 2 ) . This only possible non-empty
minimizing body includes or is included in a hemisphere in the case of §1
or §2, respectively, and has φ > 0 in either case, thereby proving that the
empty set is the one and only minimizing body for ^[Ω0]. (0.5.2) and (0.6.2)
are immediate consequences of this.

The main tool used in this case of §1 is, what is known as the classical
isoperimetric inequality. We, however, find difficulties in applying this tech-
nique to the case of §2, mainly due to the boundary data 1 — e being unequal
to 1. Steiner symmetrization is suitably modified to prove that the minimiz-
ing body for φ[Ω°] in (0.6.2) is a surface of revolution, with the extremely
useful help of the analyticity of the boundary surface in BR of a minimizing
body for ^[Ω] and n — 3, (which is provided by Massari [Ma]).
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0.4. For simplicity of writing and convenience of visualization, we deal ex-
clusively with the case of three dimensional domains in §1, §2, §3 and §4.
In the chapter §5, we will extend the results in these chapters to domains
of dimension higher than three. We note that, for n > 7, Massari's Theo-
rem [Ma] does not yield the analyticity of the boundary surface in BR of a
minimizing body for ψ[Ω]. This difficulty of extension, however, as we shall
observe in §5.3, is insubstantial. Reviewing the argument used in §2 and
§5.3, incidentally, will enable us to formulate in §6 some existence results of
capillary hypersurfaces whose domain of definition and boundary data are
of rotational symmetry about the same axis.

1. Existence of the Moon Hypersurfaces for n — 3.

In this section, we shall prove.

Theorem 1.1. Let Ω* C R3 be a "moon domain7\ bounded by two spherical
caps Σi and Σ 2 with the respective radii § and iϊ, 1 > R > §, which satisfies
the condition

(1.1) |Σ3i|-|Σ32 |

Then the problem

(1.2)divΓti = 3 in Ω*,

/ (wPiζi + 3η) dx + [ ηdσ- ί ηdσ = 0 for all η G Hlfl(Ωx)

where ζi = ηXi, w = yj\ + \p\2, p = (puP2,Ps), Pi = vXi

has a solution u(x), unique up to an additive constant.

1.1. Background information. As in §2 of [LI], we reduce the proof of
Theorem 1.1 to the general existence results in Finn [PI], which, although
have been formulated for two dimensional domains, can be easily extended
to higher dimensions by the same argument.

As in [Fl], the capillary problem in the absence of gravity can be reduced
to the variational problem for a functional

ζ[u] = / Λ/1 + \Du\2 + nH ί udx- ί β{s)udσ,
Jn v Jn JdΩ

with β(s), — 1 < β(s) < 1, being piecewise Lipschitz continuous on the
boundary c?Ω of a bounded domain ΩCR n, and H being a constant. As in
§2 of [LI], for future reference we formulate
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Proposition 1. If, for a piecewise Lipschitz domain Ω, both the conditions

(1.3) φ[Ω°] = | 0 Ω o Π Ω | - / βds + nH\ίl°\ >0

and

(1.4) φ [Ω°] = IdΩ0 Π Ω| + ί βds-nH |Ω°| > 0

hold for every Caccioppoli set Ω° Φ φ, Ω (Ω° C Ω). Then there is a minimiz-
ing function u(x) G BV\oc(ft) for ξ[u]. Furthermore, the minimizing function
is unique up to an additive constant, is regular and locally bounded in Ω,
satisfies in Ω the Eq. (0.1) and the variational condition

nHη) dx [
JdΩ

1.2. The Proof of Theorem 1.1. In view of Proposition 1, it suffices to

show (0.5.1) and (0.5.2) for every Caccioppoli set Ω° C Ω*, Ω° φ ^,Ω#.

To show this, we first observe that if Ω cΩ*, then

(1.6) φ [Ω°] = |5Ω° Π Ω| + 3 [Ω°| > 0

V>[Ω°] = |aΩ°ΠΩ|-3[Ω°| > 0

where the last inequality is an immediate consequence of the following Propo-
sition. (Henceforth, we denote the characteristic function of a Caccioppoli
set E as ΨEΊ and the integral JB \DφE\, denoted as the perimeter of E in
BR, is defined by JBR \DφE\ = sup/ B β φEdivg among all vector functions
g G CQ(BR), \g\ < 1. This integral equals the surface area of dE in BR

whenever this boundary is smooth.)

Proposition 2. If A is a Caccioppoli set with A C BR: 0 < R < 1, then

ί \DφΛ\-3 f ψAdx>0.
JBR JBR

Proof. Let v(x), defined on J3 l5 describe the lower unit hemisphere, then

(1.7)
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If A C BR, 0 < R < 1, we can integrate the Eq. (1.7) in A, obtaining

3 / φΛdx = / divT-ucte = -(DφA,Tv),
JBR JA
/

and hence, as |Γv| < 1 in ψAdx < JBR \DφA\. D

(We note that this result is alternatively obtained in Giusti [Gl], pages
114 and 115.)

Thus it now suffices to consider all those sets intersecting dΩ* with a set
of positive area. We shall show that (0.5.2) holds for all those Ω° ^ Ω* which
have either or both of |<9Ω° Π Σχ| and |9Ω° Π Σ 2 | > 0. Once we show this,
since, for all the Caccioppoli sets Ω° C Ω*,

(1.8) Π Ω| + |<9Ω° n Σχ| - |<9Ω° n Σ 2 | + 3

+ | Σ 2 Π 0 (Ω, - Ω°) I - 3 |Ω - *Ω°|,

= φ [Ω, ~ Ω°] ,

(by (1.1))

(0.5.2) implies that there also holds (0.5.1) for all the Caccioppoli sets Ω° C
Ω#, Ω° φ φ, Ω*. The proof of Theorem 1.1 can thus be completed.

To show this, we first observe that if Ω° has |<9Ω° Π Σ i | = 0, then
° Π Ω»| + |dΩ° Π Σ 2 | - 3|Ω0 | > 0, again due to Proposition 2.

Ω

Σ 2 C dBR

Figure 2.

Thus, it suffices to consider all those Caccioppoli sets Ω° with |5Ω°ΠΣi| >
0 and |<9Ω° Π (Ω* U Σ 2 ) | being connected. We observe also that, for all such
sets we can always assume that dΩ° Π Σi = Σi, for otherwise we could add
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to Ω° and e- neighbour hood of Σi and then pass to limit as e —» 0+ . (Here
we note that the boundary data βe being = — 1 on Σx enables us to do so.)
We call the collection of these sets as S. For sets in 5, we have

(1.9)

to minimize this expression (1.9) among all these sets in 5, however, is

equivalent to minimizing

(1.10) ψ* 3|Ω°UΩ**|

in the same collection of sets, where Ω** is that part of BR — Ω* lying above
the unique plane P passing through the circle Γ — 9Σχ (see Figure 2). Here
and in the following, we assume BR to be the sphere that is obtained by
completing Σ 2 , P to be the x,y plane and that side of P containing the
center of BR to be "above" P.

As in §2 of [LI], we consider a minimizing sequence \ Ω^ \ for the functional

^*[Ω°] in (1.10), and use the same argument to conclude from Theorem 1.19

in Giusti [G2] that there is a subsequence of {φno} that converges in LX(Ω)

to φ-ζi' and that setting Σ = <9Ω Π Ω*

DφΩo
3

Further, we have

ψ* [Ω] < inf

by a reasoning similar to that used for the proof of Lemma 6.3 in Finn [Fl].
We proceed to characterize the geometry of Σ.

Proposition 3. φ, then Σ must be a spherical cap passing through

Figure 3.
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Proof of Proposition 3. We consider an arbitrary body F in Ω* U Ω** U Σ 2 (cf.
Figure 3), passing through Γ = 9Σ l 5 and bounded below by the disk PΓ\BR.
Prom the discussion below Figure 2 and above (1.9), we may, without loss of
generality, assume that F\Ω** is in the collection S. Now that ψ*[FΓ)Ω*\ =
\dF Π (Ω* U Σ 2 ) | — 3|F|, we shall prove Proposition 3 by constructing a body
F such that F \ Ω** is in the collection 5, and that

F\ = m
\dFn (Ω, u Σ2)| > \dFn (Ω* u Σ2)|,

where the last equality holds only when dF Π (Ω* U Σ2) is a spherical cap
passing through Γ.

We observe first that, for each value V with

<V

a spherical cap passing through Γ and situating above P exists, the volume
enclosed by which and disk P Π BR is equal to V. (Cf. Figure 4).

Figure 4.

Now that

a body with

= \F\

exists which has a spherical cap Σ as its boundary in Ω*. Obviously, F \ Ω**.
is in the collection S. Furthermore, we may extend the spherical cap Σ to a
full sphere Σ which is the boundary of a ball 5 . Then

B-F = 1*1.
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and the isoperimetric inequality for three dimensions (Cf. [MM], p. 92)
asserts that

| & F Π ( Ω , U Σ 2 ) |

that is,

|&Fn(Ω*UΣ 2 ) | > Σ

and equality holds only when F = F. D

Also, by the analyticity of Σ (see [Ma]), we may use an argument similar
to that one used to prove Lemma 6.4 in page 148 of [Fl] to conclude.

Lemma 1. // Σ φ φ then Σ must consist of surfaces of constant mean
curvature 3/2 and Ω lies on the side of Σ into which the curvature vector
points.

Putting Proposition 3 and Lemma 1 together, we see that a non-empty Σ
must be a spherical cap of radius 2/3, which can possibly occur only when Σi
is a subset of a hemisphere of radius 2/3 and Σ strictly includes a hemisphere
of radius 2/3. In case that Σx is included in a hemisphere, denting Σ o as the
spherical cap of radius 2/3, included in Ω* and Ωo as the body enclosed by
Σ o and Σ l 5 we shall show

ψ* [ Ω 0 U Ω++] - ψ* [Ω*,] > 0, where V* [Ω«] = |Σχ | - 3 |Ω*,|

and hence

<ψ [Ωo] = ψ* [Ωo U Ω « ] - | Σ X | + 3 | Ω M |

= 0,

thereby proving (0.5.2), as minimizing ψ and φ* are one and the same matter.
In fact, adopting spherical coordinates with origin at the center 0 of B2/3

including Σo, we choose θx < τr/2 so that the equation r = is
o

that for the circle Γ (= dΈx). Thus, (cf. Figure 5) as calculated in (3.7) and
(3.8) for R = § (cf. (3.1), (3.3))

φ* [Ω0 U Ω,.] - φ* [Ω..] = (A π + JLπ cos3 θ^j-^n-^π cos

1 6 3/,

= ^ T C O S θ1

as desired.
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Figure 5.

2. Moon Hypersurfaces constructed as a generalized solution
over BR in the sense of Miranda for n = 3.

As in Sec. 7.11 of Finn [Fl], II of Finn [F2], or §3 of [LI], let us extend the
spherical cap Σ 2 to a full sphere ΘBR, and write Σ — dBR — Σ 2 (cf. Figure
6). Then if e is small enough, it will be verified in §5 that there is unique
β€(R), - 1 < βe < 1 for 1 > R > 2/3 and - 1 < βe < 0 for 1 > R > R{Q\
such that data

satisfies

(2.1)

the necessary

1
e ~ 1

condition

( l - β ) | Σ

1 -

y +

6

K Σ

on

on

=

Σ2

Σ,

3|i

for the existence of a minimizing function u€(x) £ BV\0C (BR), which mini-
mizing the functional

ξ€[u]= ί Λ/I + IVu\2 4- 3 / udx- ί βe(s)uds,
JBR

 V JBR JdBR

/ I \ /
BR

 V JBR

and thus (cf. Proposition 1) satisfies

div Tu€ = 3

in BR] here (2.1) is necessary because substituting η(x) = 1 (in BR) into the
variational condition (1.5) for this particular function ξe[u] yields (2.1).

We shall show that (a) this minimizing function u€(x) indeed exists if e is
small enough, and (b) as e -> 0, \Vue\ cannot be bounded in e for any subset
o / | Σ i | of positive area.
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Σ = dBR\Σ2

Figure 6.

2.1. To prove (a), in view of Proposition 1, it suffices to show that, for
sufficiently small e, (0.6.1) and (0.6.2) hold for every Caccioppoli set Ω° C
BR, Ω° φ φ, BR. TO show this, as in §1, we first observe that, if Ω° C BRl

then

where the last inequality readily follows from Proposition 2 in §1. Thus,

it suffices to consider all those sets whose intersection with dBR is a set

of positive area. We shall show that (0.6.2) for n = 3 holds for all those

Ω° C Ω* which have |<9Ω° Π Σ 2 | > 0 or dΩ°ΠΣ > 0. As in §1, we note that

proof of (a) will be completed once we verify the truth of (0.6.2), because

there holds by virtue o/(2.1),

φ [Ω°] =φ[BR- Ω°],

for each Caccioppoli set Ω° C BR.
To show (0.6.2) for n = 3, we first observe that if e is small enough,

<ψ [Ω°] = [dΩ° Π BR] + (1 - e) |aΩ° Π Σ 2 | - 3 0

= 0. This follows from Propd-for all the Caccioppoli sets Ωo with dΩ° Π Σ

sition 2 and Giusti [Gl], Lemma 1.

Thus it suffices to consider all those Caccioppoli sets Ω° with

0 and <9Ω° Π (BR U Σ 2) being connected.

<9Ω°ΠΣ
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As in §1, we may try to minimize φ [Ω°] among all the Caccioppoli sets

Ω and consider a minimizing sequence \ ΩJ \ for φ [Ω°] the same reasoning

concludes that there exists a subsequence of the \ ΨQO \ converging in
to ΨQ such that

φ [fί] < inf φ [Ω°] .

Set Σ = Ω Π BR. If Σ φ φ, we have shown that
Due to the very fact that β€ Φ 1, it seems infeasible to proceed further as

in §1. We may, however, take a different approach and arrive at the same
conclusion. The main idea of the following discussion is provided by Steiner's
solution to the two dimensional isoperimetric problem.

Our main aim is to show

Proposition 4. The only non-empty candidate for Σ is the spherical cap
Σi. In other words, the only non-empty candidate for Ω is BR — Ω*.

We again let P to be the unique plane passing through the circle Γ =
dΈi Π dBR and designate P as the x, y plane so that the center of BR has
the ^-coordinate z > 0.

To prove Proposition 4, we shall proceed to verify

Proposition 3*. If Σ φ φ, then Σ is made up of surfaces of revolution
about the Z-axis.

We will reduce the proof of Proposition 3* to that of the following

Proposition 3**. If Σ φ φ, then at each point of Σ, the tangent of the
horizontal cross-section of Σ through this point is the normal of the unique
vertical plane ax + by = 0, α, 6 : constants, passing through this point (and
the origin).

The equivalence of Proposition 3* and Proposition 3** is obvious; in fact,
at each height zOi Proposition 3** yields that

xx + yy — 0

for each connected subarc (x(t),y(t),zo) of the horizontal cross-section of Σ,
which holds if and only if

x2 + y2 = constant,

i.e., (x(t),y(t),Zo) describes a circle with the center on the z-axis. This
amounts to Proposition 3*.



MOON HYPERSURFACES AND EXISTENCE RESULTS 445

We thus proceed to give a

Proof of Proposition 3**. Consider a vertical plane P : ax + by — 0, α, b :
constants, which divides Ω into two non-empty parts Ωx and Ω2 (and of
course passes through a great circle of dBR). We can assume ?/>[Ωχ] < V>PVI-
Reflecting the body Ωx in the plane P, we obtain a body Ω'χ on the opposite
side of the plane P such that

Ωx U Ωx C BR.

Then

U Ω'J = ^[Ωi] + ψ[Ω[] - 2 <9Ω2

- aΩi n P - <9Ω2 n p

since ^[Ω'J = φ[ςiλ] < φ[ς\2] (cf. Remark 1 below) and d^ΠP =

c?Ω2 Π P , by construction. The minimizing property of Ω yields ^[Ωx U

Ωi] = ψ ί l (and hence φ[Ωχ] — /0[Ω2]). The body Ωx U Ωi is therefore an-

other minimizing body for ψ[Ω] and the theorem of Massari [Ma] thus yields

the analyticity of the boundary surface of Ωi U Ωi in BR. In other words,

Σx U Σi is an analytic surface in BR, where Σx = 9Ωχ Π BR and Σ'χ is the

reflection of Σx in the plane P. In particular, each horizontal cross-section

of Σx U Σi must consist of smooth arcs, which is possible only if Proposition

3** holds, (for otherwise a cusp would have appeared at a certain horizontal

cross-section of Σx U Σi). D

Remark 1. We note that φ[Ω[] — φ[Ωχ] because of the rotational symme-
try of both the boundary surface dBR and the boundary data βe.

In Proposition 3 * , we know t h a t <9Σ Π d B R C Σ U OΈχ b y t h e f a c t t h a t e
can be arbitrarily small and the reasoning used in the proof of Proposition 3
in §1. Thus, (0.6.2) yields that <9Σ Π dBR must be a connected subset of Σ,
for otherwise replacing a part of Σ below 9Σχ by that part of Σ surrounding
it yields a smaller value for φ. Thus, the reasoning used in the proof of
Proposition 3 yields that Σ must be spherical. Also, the reasoning following
the proof of Proposition 3 excludes that spherical cap situated above Σ x and
passing through <9Σχ.

Furthermore, in Proposition 3*, were Σ situating below Σ l 5 then a rigid
motion of it would result in a body meeting Σ with the same surface area and
therefore yielding the same value for φ (cf. Figure 7), which, however, would
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by no means be symmetric with respect to the 2-axis, violating Proposition
3*. We thus precluded the occurence of Σ being a spherical cap other than
Σi. Proposition 4 is finally proved.

small congruent to Σ
and yet asymmetric -
with respect to the z-axis

a surface of revolution
of constant mean curvature

Figure 7.

Now that Proposition 4 has been proved, our proof of (a) is complete by
observing that

by (0.3)= e |Σ 2 | ,

2.2. Next, to prove (b), we note that a proof for (b) given in §3.2 of [LI]
for the two dimensional domains extends in an obvious may to arbitrary
dimensional domains and we do not repeat it here.

We, however, recall that, in the course of our proof, we have incidentally
proved

Proposition 5.

and Tue(x)

L v-Tueds —> - | Σ i | , as e-> 0

as e —> 0, uniformly for x0 G Σ 2 .

We therefore gain the rough impression that the solution of (0.6) in Ω* has
been constructed as a limit of solutions ue defined throughout BR, as stated
in §0.0.2. We may proceed to gain a rigid and precise understanding on this.
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As in §3.3.3 of [LI], according to a theorem of Miranda [M], we know that
a subsequence of {u€} can be found which converges in BR to a generalized
solution u(x) of the equation (0.4), n = 3, in L\OC{BR). Set P and N and
normalize the solutions ue in essentially the same way as we have done in
§3.3.3 of [LI]. We again have

Proposition 6. Both the sets N and BR — P minimize the functional

(2.3) ^[Ω°] = |<9Ω° Π BR\ + β0 |<9Ω° Π Σ + |<9Ω° Π Σ 2 | -

among all the Caccioppoli sets Ω° C BR, Ω° φ φ or BR, where

Repeating our reasoning for proving Proposition 4, we again know that
the minimizing body for (2.3) must be either empty or else BR — Ω*. In
consideration of our normalization, the results in (b) and the reasoning used
in §3.3.4 of [LI] therefore again yield that P = φ and N = BR - Ω*. We thus
prove that the regularity domain of u coincides with Ω*. Also, the reasoning
used in the ending of §3.3.3 of [LI] or Theorem 7.8 in [F3] again yields
the identity of the function u and the solution to (1.2) (or (0.1)) in Ω*. We
therefore arrive at an accurate interpretation of what we asserted.

3. The Existence of Three Dimensional Moon Domains Ω*(i?) for
1 > R > 2/3.

Consider the function

(3.1) f(riθ) = σΘ{r)-3υθ(r)

where σθ(x) is the area of the spherical cap Dp(θ^) whose boundary dDp(θ^r)
is a circle of radius p = r sin# on dBr and V#(r) is the volume enclosed by
the spherical cap £>p(6>,r) and the plane passing through the circle dDp(Θir)
(cf. Figure 8). We readily see that, if Ω#(i2), 1 > R > 2/3, exists, the
equation of the circle Γ = dΣλ(R) is p — | sin#i(i?) where θχ(R) is the root
of the equation

(3.2) /(i?;7Γ-V(0))-/(2/3;0) = O (cf. (1.1) or (0.3)),

with

(3.3) φ(θ) = sin' 1
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Figure 8.

We shall justify, for 1 > R > 2/3, the existence of Ω*(i?) by showing the
existence of a root θ = θλ (R) for the equation

with

(3.4) g(R θ) = f(R;π- φ{θ)) - f(2/3;θ).

We have

(3.5)

and

rθ

σθ(x) = 2πr2 / sin0d0 = 2πr 2(l - cos0),
Jo

(3.6) Vθ{r) = π Γ (r2 - z2) d^ = πr3(2/3 - cos0 + 1/3cos3

«/r cos θ

Hence, by (3.1),

(3.7) / ( | ; θj = y (1 - cos θ) - A π ( 2 - 3 cos θ + cos3

8 8

and

(3.8) f(R,π-φ(θ))

= 2πR2{l + cosφ(θ)) - πR3(2 + 3cosφ(θ) - cos3
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with

(3.9)
COSφ{θ) =

By (3.4), (3.7), (3.8) and (3.9), we have

(3.10)

and

(3.11)

9(R,0) =
=0, iίR=l,

Γ
<0, if 1 >R>2/3.

The existence of a root θ — Θ1(R), 0 < θλ(R) < π, for the equation g(R; θ) —
0 readily follows from (3.10) and (3.11).

4. In (4.1), if e is sufficiently small, -1 < βt(R) < 1 for 1 > R > 2/3
and -1 < β€(R) < 0 for 1 > R > R^3).

In (2.1), we have to set

3 | B Λ | - ( l - e ) | Σ 2 |

It follows at once that βe(R) < 1 for e sufficiently small, since 3|2?R| =

4τri?3 < 4πR2 = |Σ 2 | + Σ , for 1 > JR > 2/3. On the other hand, using (0.3),

(4.1) βt{R) =

To show that — 1 < βe(R) for sufficiently small e we only need verify

(4.2) <

To do so, we, as in §1, denote P as the plane passing through the circle dΈi
and denote Ω** as the body enclosed by PΠBR and Στ (cf. Figure 2). Then,
we have

(4.3) Σ > I the planar disk PΓ\BR\,
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and

(4.4) |Σ 1 |

However, the inequality

(4.5) \PnBR\>\Σ1\-3\Ω..\

follows immediately from the fact proved in §1 that Ω** strictly minimizes
ψ*[Ω°] (cf. (1.10) and (1.12)) among all the Caccioppoli sets passing through
the circle 9Σχ and situating entirely at one side of the plane P (including
P). The inequality (4.2) is thus proved.

We note that, alternatively, (4.5) can be proved by a direct calculation.
Namely, using the notations in §3,

\PΠBR\ = -πsin2

and

Hence

(cf. (3.7)).

= ^-π(3 sin2 θ - 2 + 2 cos3 θx)
Δ t

for all θ.
We now proceed to prove βe{R) < 0 for 1 > R > RQ '. We have, as

| S Λ - Ω . | <2|Ω,,|, that

>

— 7r(l-cos^1)(2cos2(91
Δ ί

1 f\
= — π ( l — cos θi)

Δ i
cos#! -f

y/3 Λ / 3 - 1
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In view of (2.1), we therefore only need verify

(4.6) θλ(R) < cos- 1 (3)
for 1 > R>R[

o

ό).

To do so, we may observe that, there holds the following

Proposition 7. Θ^RJ > θλ(R2), if Ri % R2-

Proof. This is an immediate consequence of (0.5.2). In fact, if R1 <z R2

and θι(Rι) < Bι(R2), then after a rigid motion, Σχ(i?i) C H1(R2) and
Ω*(i?!) C Ω*{R2) with

ψ[ΩΛRι)} = |Σ2(/2i)| - \Vi(Ri)\ - 3|Ω,(i2i)| > 0,

in accordance with (0.5.2) and yet contradicting our original definition (0.3)of
fi.(i20. D

Figure 9.

Thus, to verify (4.6), it suffices to show that

(4.7) < COS

To do so, we may observe that, as Σ x (RO) passes though the center of

BR(3), we have, using the notation as in §3,

(4.8) φ (θ,

that is,

?(3)

(cf. Figure 10),

i?i3) cos
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and hence

which yields

(4.10)

Substituting (4.8) into (3.2) or (3.4), we shall obtain R^3) as the root of the
equation

or, using (3.1), (3.7) and (3.8),

3sin

or, using (4.9) and (4.10)

cos3

that is,

or,



MOON HYPERSURFACES AND EXISTENCE RESULTS 453

Hence,

(4.11) = 0.746421987.

Figure 10.

Thus, using (4.10) and (4.11)

= cos

As > ^ Ί Γ 1 ' ( 4 7 ) ( a n d h e n c e ( 4 6 )) follows.

5. On Still Higher Dimensional Cases.

5.1. We first verify the existence of the n-dimensional moon domain
n — 1

1 > R > , characterized by the equation
n

(5.1)

where <9Ω« = Σ2UΣX, Σ 2 and Hi being spherical caps in R™ of the respective

radii Rι = and R. As in §2, we set
n

(5.2) /(, = σθ(r) ~nvθ(r).

where the definition for σθ(r) and υθ(r) in the beginning of §3 extends to
the present setting in an obvious way. If Ω*(i?) exists, the equation of the

n — 1
(n — l)-dimensional sphere Γ = dΈι(R) is p = sin^i where θx is the

root of the equation n
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with
-l ( n ~ l)sin0

S m nR '

Denoting ω^ as the volume of the TV-dimensional sphere and setting,
again,

(5.3) g(R; θ) = f(R; π - φ{θ)) - f

we have

(5.4) g(R O) = f(R π)

= 2(n - lJω^iiΓ" 1 - 2(n - l)ωn_!.Rn

> 0, i f i?<l,

and

(5.5)

I \ n / \ n
n - 1

ifi? =
n -

if 1 > Λ > n '

n 1
since r = is the zero of the derivative of the concave function h(r) =

n
r n-i _ r n F r o m (54) a n d (55) follows the existence of a root θ = 0i(Λ), 0 <
0i OR) < π

? f°r th e equation (̂-R π) = 0, of which the existence of Ω*(iϊ) is
an immediate consequence.

5.1.1. Using the above notation, we may here describe a procedure for de-

termining the value RQU\ n > 3. Indeed, since R^ is the unique value of

R for which Σ ( i ? o j passes through the center of BR(n), we may, as in §4,

obtain RQ^ as the root of the equation

with

. 0i n
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and

2 2 ( n - l ) 2 '

here f(r;θ) is defined by (5.2).
The number Rj1 \ as mentioned of in the end of 0.2 is of significance once

we place it into perspective in the context of the results in [L2].
5.2. Having verified the eistence of Ω*(R) for n > 3, we proceed to prove

n — 1
the existence of comparison hypersurfaces in Ω*(i2), 1 > R > , which

n
is the solution to the problem (0.4) and (1.5), setting H — 1 and β — —1, +1
on Σ l 5 Σ 2 , respectively. We again, using Proposition 2, reduce this to the
proof of the ineq.
(5.6) ψ*[Ω°] = \dΩ° Π Ω| + \dΩ° Π Σ 2 | - n|Ω° U Ω**|

for all Ω° passing through Γ = <9Σl7 with the whole Σ2 as a part of its
boundary and situating entirely in one of the two half spaces provided by
the hyperplane passing through Γ; here Ω** is the region bounded by Σi and
this hyperplane. Repeating the variational procedure indicated in §1, we
again justify the existence of a minimizing body for /0*[Ω0]. Set Σ = <9ΩίΊΩ*.
We readily see that Proposition 3 holds here; that is, nonempty Σ must be
a spherical cap passing through Γ, which as Lemma 1 can also be extended,

f2 1

must be a spherical cap of radius strictly including a hemisphere andn.
can possibly occur only when Σx is included in a hemisphere. However, if
Σi is included in a hemisphere, denoting Ωo as the body enclosed by Σi and

n — 1
that spherical cap of radius included in Ω*, we have, adopting the

n
notation in §5.1,

; π - ^(2/3)) - /(2/3; 0i(2/3))

= (σπ_, l(2/3)(2/3) - σM3/2)(2/3)) - K_, l ( 2 / 3 )(2/3) - ^ l

p2/Scosθ\ / ̂

-ωn^ / - - Z\
J2/3cos(π-θ1) \y

JΘ sinθdθ-ω^ ^-J ^ smnθdθ

> 0, obviously.

We therefore prove (5.6) and the existence of the comparison hypersurfaces
for n > 3.
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5.3. A careful examination of the work of §5 tells us that; in order to
construct such a sequence of solutions to (0.4) in BR C Rn, n > 3, whose
limit, in the sense indicated in 2.2 is our moon hypersurface in Ω*(I?) C Mn,

we only need to (1) verify that — 1 < β€(R) < 1, for 1 > R > and e

sufficiently small, where

n n\BR\-(l-e)\Σ2(R)\
p€(R) = Γ

Σ = dBR — Σ 2, the full sphere dBR being obtained by extending Σ2(i2).
(2) Prove the statement of Proposition 3** and Proposition 4 in spite of

the difficulty arised by the possible existence of singular subsets ofΣΠ BR in
the case ofn>7. The fact that βe < 1 readily follows from the inequality

n\BR\ = nωnR
n < nωnR

n-χ = \dBR\ = | Σ 2 |

The fact βe > —1, by (5.1), amounts to the fact that

> | Σ 1 | - n | B r - Ω , |

which is a consequence of the inequality

Σ .

(see the beginning of §3 for notation) obtained immediately from the fact
that Ω** minimizing φ*[Ω] (cf. (5.6)) among all sets indicated below (5.6).

As of (2), we may, first of all, put Proposition 4, 3* and 3** in a precise
form in the higher dimensional setting. In fact, to extend the existence
results in §2 to the case where n > 3, it suffices to verify that (0.6.2) holds

ΎΊ —— 1

for every Caccioppoli set Ω° C BR, Ω° φ φ,BR, 1 > R > . To do so,
IV

as in §2, we may observe that it suffices to consider those Caccioppoli sets

with |<9Ω° Π Σ > 0 and <9Ω° Π (BR U Σ2(i?)) being connected. Thus, as in

§2, we may try to minimize ^[Ω°] in (0.6.2) among all the Caccioppoli sets

Ω C BR and the same reasoning concludes that a subsequence of minimizing

sequence {Ω°} for V{Ω0}, Ω* C BR, exists such that {^ΩP} converges in

L1 (Ω) to ΨQ such that

ψ [Ω] < infψ[ίή].

Set Σ = dΩ Π BR. If Σ φ φ, we have observed that | Σ Π Σ1 > 0, and we may

assume 9Ω° Π (BR U Σ2(iϊ)) to be connected.
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For our present purpose, we only have to show, as in §2.1.

Proposition 4. The only non-empty candidate for Σ is the spherical cap
Σi. In other words, the only non-empty candidate for Ω is BR — Ω*.

We again let P to be the unique plane passing through the (n — 2)-
dimensional sphere Γ = <9Σχ Π ΘBR and designate P as the xλ, x2,... , xn-i
plane so that the center of BR has the xn-coordinate xn > 0.

To prove Proposition 4, we shall also proceed to verify

Proposition 3*. // Σ φ φ, then Σ is of rotational symmetry about the

xn-axis.

In §2.1, Proposition 3* is proved with the aid of a theorem of Massari [Ma],
which, as mentioned above, does not exclude the possibility of existence of
singular points of a minimizing body in the case that n > 7; however, it gives
an estimate for the dimension of singular parts, which has been improved by
Federer. Their results yields

Theorem Of Massari And Federer. IfΈ^φ, then the reduced boundary

9*Ω of Ω is an analytic manifold of dimension n — 1 and

Hs [(Σ \ d*Ω) Π JBΛ] - 0, V 5 > n - 7, s e K,

where Hs denotes the Hausdorίf s-measure.
To prove Proposition 3*, as in §2.1, we consider a vertical plane P : aλx

ι +
a2x

2 + + αn_ 1xn~ 1 = 0 , α l 5 . . . , αn_i : constants, which divides Ω into
two non-empty parts Ωx and Ω2. We may assume, without loss of generality,
that ΨlΩx] < φ[Ω2]. Reflecting the body Ωx in the opposite side of the plane
P, then

ΩX u Ω; C BR,

and, as in §2.1, we have ^[Ωi U Ω[] < ψ [Ω] and hence φ[ftλ U Ω'J = ψ [Ω] ,

in view of the minimizing property of Ω. Thus, we have

Proposition 3**. // Σ φ φ, then at each regular point of Σ, the nor-

mal of the horizontal cross-section of Σ through this point is orthogonal to

the normal of the unique vertical plane aλx
ι + a2x

2 + • + an_ιxn~ι =

0, α i , α 2 , . . . ,α n _i : constants, passing though this point (and the origin).

At height x%, if the horizontal cross-section includes regular points of Σ,
we may choose a regular point (a J , . . . , xj) °f ^? then, for each connected
curve (as1 (£),... ,xn~ ι(t),x%) through this point and included in a regular
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part of the horizontal cross-section of Σ at the height x%, Proposition 3**

yields that

£ V + £ V + • + xn~ιxn~ι = 0,

which holds if and only if

(x1)2 + (x2)2 + -" + {xn~ιf = constant,

i.e. (xι{t),... ,xn~ι•(£),XQ) lies on a sphere with its center at (0, . . . , 0 , ^ ) .

Thus, each regular point of this horizontal cross-section of Σ must be in-

cluded in a region on an (n — 2)-dimensional sphere with its center at

(0,0,.. . ,#0) and, furthermore, denoting C as the component of this hor-

izontal cross-section including this spherical cap, we note that C must be

a whole closed sphere; indeed, were C bounding a region in the hyperplane

xn — x% and C includes only a portion of and not the whole sphere, then

C would have to include at least two disjoint spherical regions and the di-

mension of singular parts of this cross-section would be n — 2, contradicting

above-mentioned regularity result of Massari and Federer; however, were C

bounding no region then a portion of Σ with positive (n — l)-dimensional

Hausdorff measure would not be a portion of the boundary of any compo-

nent of Ω (with positive n-dimensional Hausdorίf measure) and removing

this portion of Σ would result in a smaller value of φ, contradicting the

minimality of Ω and Σ. Thus, the proof of Proposition 3* is complete. The

argument following the proof of Proposition 3** in §2.1 again applies in our

present setting and enables us to prove Proposition 1, from which, as indi-

cated above, follows (0.6.2) and the existence of that sequence of solutions

to (0.4) in BR CRn, described in §0.0.2 and beginning of this section.

6. Some existence Results of Capillary Hypersurfaces without
Gravity and of Rotational Symmetry.

As in Finn [Fl] and quoted in Proposition §1 of this paper, we may reduce

the capillary problem in the absence of grativity to the variational problem

(6.1) ξ[u]= ί Jl + \Vu\2+nH ί udx- [ β(s)uds,
JΩ V JΩ JΘΩ

with /3(s), — 1 < β(s) < 1, being piecewise Lipschitz on the boundary of a

piecewise Lipschitz domain Ω C Rn, and H being a constant. As quoted

in Proposition 1, a necessary and sufficient condition for the existence of a

minimizing function u{x) G BV\OC{Ω) for the functional (6.1) is that both the

conditions (1.3) and (1.4) hold for every Caccioppoli set Ω° φ φ, Ω (Ω° C

Ω). Furthermore, since H is constant, the conditions (1.3) and (1.4) are

equivalent. Thus, in §1, §2, §5.1 and §5.3 of this work, we have restricted
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our attention to verifying (1.4); the argument used in §2 and §5.3 yields the
existence of a minimizing body Ω for ψ[Ω°] and setting Σ = <9Ω Π Ω, the
argument used to verify Proposition 3* yields.

Proposition 3***. Suppose Ω and β(s) are rotational symmetry of the
same axis. If Σ φ φ then Σ is of rotational symmetry about this axis.

We may, without loss of generality assume that this axis of symmetry is
the £n-axis. Suppose, in addition, that β(s) is piecewise constant; i.e., there
exist relatively open subsets Σ* of <9Ω, such that, if i < j , Σ* is "below" Σ 7

(in the sense that, for two arbitrarily chosen points xι G Σ* and x3 E Σ 7,
then xn component of xι is less than that of x3), and,

(6.2) β{s)\Σi = constant ci: UΣ* = <9Ω.

Then, the argument used in §2.1 to exclude those Σ situating below Σi
can be applied to yield

Corollary 1. Suppose, in addition to the hypothesis of Proposition 3***,
β(s) is piecewise constant, as indicated in (6.2). Then, if Ω φ φ or Ω, there
occurs at least one of the following possibilities:

Possibility 1. <9Σ Π Σ1 = φ or Σ1.

Possibility 2. There exists at least one i, i > 1, such that

<9Σ* \ dΈi+ι C <9Ω.

Possibility 3. In (6.2), U Σ ι = dft for some integer k < oo and

dΩΓ)Σk = φov Σ,k.

Σ1

Figure 11.



460 FEI-TSEN LIANG

Indeed, Σ* being open, were Corollary 1 false, a rigid motion of Ω would
result in a body meeting Σ J, for each j , with the same area as Ω and is
therefore another minimizing body for the functional Φ, which, however,
would not be of rotational symmetry of the axis indicated in Proposition
3***.
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STABLE RELATIONS II:
CORONA SEMIPROJECTIVITY AND DIMENSION-DROP

C*-ALGEBRAS

TERRY A. LORING

We prove that the relations in any presentation of the
dimension-drop interval are stable, meaning there is a per-
turbation of all approximate representations into exact rep-
resentations. The dimension-drop interval is the algebra of all
Mn-valued continuous function on the interval that are zero at
one end-point and scalar at the other. This has applications
to mod-p if-theory, lifting problems and classification prob-
lems in C*-algebras. For many applications, the perturbation
must respect precise functorial conditions. To make this pos-
sible, we develop a matricial version of Kasparov's technical
theorem.

1. Introduction.

Suppose Ίl is a finite set of relations on a finite set G of generators so that

C*(G\1Z) is isomorphic to the dimension-drop interval

ίn={/eC[θ,i]|/(θ),/(i)eCί}.

For simplicity, we assume the relations are of the form p(gι,>- ,gn) — 0
for some *-polynomial p. Weak stability means that an approximate rep-
resentation ( # ! , . . . , £ n ) , meaning an n-tuple of elements in a C*-algebra A
such that each p(xι,... , # n ) is close zero, can be perturbed slightly within
A to an actual representation (x1,... , έ n ) . That this (and a little more)
can be done was shown in [8], but only for one specific set of relations.
The relations 71 are stable if the pertubation can be done so that whenever
there is a *-homomorphism φ : A -» B which sends (xu . . . , xn) to an exact
representation, then φ(ϊj) = φ{xj)>

There are several advantages to stability over weak stability. It is far more
useful when dealing with extensions of C*-algebras and it depends only on
the universal C*-algebra, not the choice of relations for that C*-algebra.
The reason for our focus on the dimension-drop interval is primarily that
this is the most complicated building block used in the inductive limits,
called AD algebras, that appeared in Elliott's first classification paper [7].

461
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See [5] for an application of stable relations to the extension problem for AD
algebras. See [4] for a discussion of the role of the dimension-drop interval
in mod-p K-theory. Our results will be stated in the more general context
of dimension-drop graphs, but certainly the dimension-drop interval is the
most important case.

In §2 we give a characterization, in terms of lifting properties, of the uni-
versal C*-algebras for stable relations. Since this property, called semipro-
jectivity, depends only on the C*-algebra, this frees us from having to specify
generators and relations in many cases. We have a third, equivalent prop-
erty involving corona algebras. This characterization formalizes some of the
ideas used by Olsen and Pedersen [11] to show that nilpotents always lift.

For any C*-algebra A we let M(A) denote the multiplier algebra of A and
C(A) denote the corona algebra M(A)/A.

By a dimension-drop graph, we mean a C*-algebra of the form

{/ e C{X:Mn) I f(υ) e CI for all vertices υ}

where X is the underlying topological space for a graph and n is a positive
integer. We call this a dimension-drop interval in the special case where X
is the unit interval with 0 and 1 as vertices.

To handle these algebras we need several generalizations of Kasparov's
Technical Theorem. The purpose of these results is to show that, inside
of a corona algebra, one can find good substitutes for elements that would
exist if only the corona algebra were a von Neumann algebra. For example,
there is an acceptable substitute for the logarithm of a unitary with full
spectrum. Also, if Mn(A) sits inside the corona algebra, there are elements
that function just like matrix units in the way they multiply against Mn(A),
even if A is not unital but only σ-unital.

These technical lemmas are very similar to the second splitting lemma in
BDF [3, Lemma 7.3]. The basic form of these results is to show that every
φ : A -> C{E) factors through some injection A -> Aλ. In the BDF case, A
and Aι are commutative and C(E) is the Calkin algebra.

Once we have shown that a dimension-drop graph is universal for a stable
set of relations, a host of perturbation, lifting and homotopy results follow
regarding homomorphisms (and asymptotic morphisms) out of dimension-
drop C*-algebras. For most of these we refer the reader to [8] but we will
mention one of these, [8, Theorem 3.8]. If a separable C*-algebra A has the
property that any finite set of its elements can be approximated by elements
of a C*-subalgebra isomorphic to a quotient of a dimension-drop graph, then
A is the inductive limit of dimension-drop graphs.

A C*-algebra that will figure prominently in all this the cone CMn =
Mn(Co(0,1]). By [8, Theorem 4.9] we know that CMn is projective. This is



STABLE RELATIONS FOR C*-ALGEBRAS 463

a very useful fact as there are many copies of C Mn inside of a dimension-drop
graph.

The author is grateful to Gert Pedersen for discussions which lead to much
simplified proofs in Section four.

2. A characterizat ion of stability.

We begin with a characterization of projectivity in terms of corona algebras
that is suggested by [11]. This then generalizes to give a characterization of
semiprojectivity and of stability for relations. One consequence is that two
finite sets of relations that determine isomorphic universal C*-algebras are
either both stable, or both not.

All our definitions are with respect to the full category of not-necessarily-
unital C*-algebras and *-homomorphisms.

Definition 2.1. A C*-algebra A is projectiυe if, for every surjection
π : B —» C and every *-homomorphism ψ : A —>• C, there exists a *-
homomorphism φ : A —>> B such that π o φ = ψ. We call A corona projectiυe
if this holds only in the special case where C — C{E) for some σ-unital
C*-algebra E.

Theorem 2.2. Let A be a separable C* -algebra. Then A is projectiυe if and

only if A is corona projectiυe.

Proof. The forward implication is trivial. Suppose that A is corona projec-

tive and that φ : A -> C and a surjection π : B —>• C are given. Replacing B,

if necessary, by the closed span of a lift of a dense sequence in φ(A) reduces

the problem to the case where B is separable.

Let / = ker(π) and let IL denote the annihilator of / in B. As IΠ I1^ — 0

and / + I1- is an essential ideal in β, we have the following commutative

diagram with the left square a pull-back.

B > B/I1- —^->

A —φ—+ B/I

By the corona projectivity of A, we have

which is a lift of the composition of the bottom row:

We now claim that π2"
1(im(^2)) <Ξ im(^x). Suppose b G π^1(im(^2)) Thus

π2(b) — L2(c) for some c. But c = π3 (a) for some α, so

) = L2(C) = π2(6).
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This implies

ιλ(a) -be ker(π2) = ±

and hence b G Ίm(iι).

By the claim, we may regard φ as a map into B/I^. The pull-back
property now shows that φ and φ together determine the desired lifting
to B. D

Following Blackadar [1] we define semiprojectivity as a lifting property.
This turns out to have better closure properties than the version of semipro-
jectivity due to Effros and Kaminker [6], which is better suited to some
homotopy calculations.

Definition 2.3. A C*-algebra A is called semiprojectiυe if, for every *-homo-
morphism ψ : A -+ B/\J Jn, where the In are increasing ideals in J5, and with
π m : B/Im —> B/\J In the natural quotient map, there exists, for some ra, a
*-homomorphism φ : A —> B/Im such that π m o φ = φ. We call A corona
semiprojective if this holds only in the special case where B/[j In = C(E)
for some σ-unital C*-algebra E. D

Theorem 2.4. Let A be a separable C* -algebra. Then A is semiprojectiυe
if and only if A is corona semiprojectiυe.

Proof. The proof is similar to that of Theorem 2.2 except that one uses the
following diagram, with / = (J In.

B/In

I-
B/I

Notice that (J In + IL — I + / x , so corona semiprojectivity applies, and the
left square is still a pull-back since / Π (In + I2-) = In. D

If A is unital, then it is easy to see that one need only check the corona
semiprojectivity condition in the special case φ(l) = 1.

We now recall the definition of stability from [8]. We shall assume that
G — {pi,... , gι} is a finite set of generators and ΊZ = {pu . . . ,p&} is a finite
set of *-polynomials with zero constant terms. By C*(<7|7£), we denote the
universal (not-necessarily-unital) C*-algebra generated by ^i, . . . ,#/ subject
to

llg ll < 1 and Pi(gu... ,gι) = 0 .
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By C*(G\TZ), we denote the universal unital C*-algebra generated by gu ... ,gt

subject to

\\gά\\<l + e a n d \\pi(gu... ,<?/) | | < e.

Sometimes, to be more explicit, we will denote the generators of C*(G\7Z)
by g\,... ,g\. We let Pe denote the surjection

Pe :C:(

which sends g^ to g^.

If, for every η > 0, there exists e > 0 and a *-homomorphism

σe :C*(G\π) ->CΪ(G\π)

such that

I k ( f t ) - 5 ] | | < ί 7 , j = i,...,ι

and Peo σe — id, then R is stable.

Theorem 2.5. For α finitely presented C*-algebra C*(G\1Z), the following
conditions are equivalent:

(1) U is stable.

(2) C*(G\R) is semiprojectiυe.

(3) C*(G\R) is corona semiprojective.

Proof. The implication (1) => (2) follows from [8, Theorem 3.2] while (2) O
(3) is a special case of Theorem 2.4. For (2) => (1), applying semiprojectivity
to the identity map immediately gives a map σ> : C*(G\1Z) —>C?(G\TZ) with
P- o σ f = id. Let σe equal the composition of σz with the natural surjection
of Ce*(G|π) onto C*(G\7i) for e sufficiently small, 0 < e < e. D

3. Generalizations of Kasparov's Technical Theorem.

Using the techniques of [8] and [11] we derive several generalizations of
Kasparov's Technical Theorem (KTT). Our goal is to find the closest possible
thing to matrix units inside a corona algebra for C*-subalgebras of the form
A ® F where A is σ-unital and F is finite-dimensional.

All our theorems involve a subset D with which these ersatz matrix units
are to commute. Easier proofs exist if one ignores D and sticks with the
separable case. Indeed, one may use the projectivity of C M n , or 0 Co(0,1],
and [12, Proposition 3.12.1] along the lines of an observation of Cuntz de-
scribed in [2, §12.4]. We will discuss this further in recent joint work with
Gert Pedersen [10].
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In this section, E will always denote a σ-unital C*-algebra and C(E) its
corona algebra.

Theorem 3.1. Suppose -Ai,... ,An are σ-unital C*-subalgebras of C(E).
Let D be a separable, unital C*-subalgebra of C(E) such that

AjDAk = 0, jφ k.

There exist # i , . . . ,gn in C(E) Π D' such that

0<gά<l, j = l , . . . , n ,

9j9k = 0, j φ k,

= agj = α, Vα G A.

Proof. For n = 2 this is equivalent to KTT. Indeed, it is very close to

the equivalent result [11, Theorem 3.7]. An induction argument gives the

general case. D

Notice that AχA2 = 0 implies that the C*-algebra generated by A± U A2

is isomorphic to Aλ φ i 2 . Therefore, Kasparov's Technical Theorem implic-
itly involves a *-homomorphism Aγ Θ A2 —> C{E). A natural setting for
generalization is Mn(A) -> C(E).

Theorem 3.2. Suppose A is a σ-unital C*-algebra, φ is a *-homomorphism

ψ : Mn(A) -+ C(E)

and Ίm(φ) commutes with a separable subset D of C(E). There exists a *-

homomorphism

such that, setting q^ —^{t® e^ ),

{a ® ekι) = δjkφ(a <8>eu), \/a e A.

Proof. Without loss of generality, D may be assumed to be a unital C*-

algebra. Applying Theorem 3.1 to

D, φ(A ® e n ) , . . . , φ(A ® enn)

we obtain g 1 } . . . , # n in C(E) Π Df such that
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gjφ(a®en) = φ{a®ejj).

Let / i b e a completely positive element of A. Since, for any a in A,

giψ(hah ® ejk) = gιgjψ{h ® ejj)φ(ah ® ejk)

— δijψ(hah ® ejk)

we conclude

(1) g{φ{a ® ejk) = δτjφ(a ® e i Λ)

for all i , j , A; and all a E A.

Let x = φ(h <S> w) where

0
1 0

w — 1 ' • •

• . o

1 0

Since x is normal and both x and \x\ = φ(h ® /) commute with J9, we may
apply [11, Theorem 4.4]. Thus, there exists u in C(E) Π D', with ||ix|| < 1,
such that x = u\x\ and x* — u*\x\*

Multiplying x — u\x\ by φ(ah ® e^ ) yields

uφ(hah ® e^ ) = φ(hah ® e i + 1 j ) .

(Addition taken mod n.) Therefore, by this and a similar calculation based

on x* = u*\x\,

(2) uφ(a ® e^ ) = </?(α ® e ί + l j ) and u*φ(a ® ei<7 ) = <p(α ® ez_1>i7-),

for all j , A: and all a £ A.
We now make a first approximation on what shall be the images, under

Ψ, of the generators t® βjλ of C Mn. Let

fln = gnu
n~lgu

and then for j = n — 1,... ,2,

Clearly a3 £ D' and

(3) < |α 3 | < < | α n | <
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By induction, α, E gjC(E)gχ. This forces some of the relations determining
C M n (as in [8, Proposition 2.7]) to hold, namely

= 0 , j,k = 2,... ,n,

(4) α>=0, jφk.

We claim that, for all b G A and all i, j , fc,

(5) α^(6 ® ejΊb) = ̂ -^(6 ® eik) and α*<̂ (& ® e ifc) = £#

For i = n this follows directly from (1) and (2). But then

\an\φ(b ® eiJk) = δlάφ(b ® eiJb)

so one may handle the case i = n — 1, et cetera.

As done in the proof of [8, Lemma 4.8], for j = 2,... , n we define

By the calculations done in the proof of [8, Lemma 4.8] we conclude that
setting ψ(t ® en) = ά{ defines a homomorphism

ψ:CMn-+C(E)nD'.

For every b £ A, (5) implies

(6) άiψ(b ® eifc) = iijv(6 ® e iΛ) and αj^(6 ® ejk) = ί<j^(6 ® eljfe)

whence

^ ( * ® eij)<p(6 ® ekl) = δjkφ(b ® e^).

D

4. Interval stretching in corona algebras.

We continue in this section to assume C(E) is the corona algebra of some

σ-unital C*-algebra.

Let us consider a simple case of Kasparov's Technical Theorem. Given

Λi,/*2 in C(E) such that

(7) 0 < hi < 1 (t = 1,2) and hxh2 = 0,
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the conclusion is there exists an additional element so that now

0 < z< 1, 0 < hi < 1 (ί = 1,2),

(8) hxz = 0, h2z = h2 and /ii/z2 = 0.

The universal C*-algebra for these relations are as follows:

C*{huh2 I (7) holds ) £* C0([-1,0) U (0,1])

and
C*(huh2iz I (8) holds ) ^C 0([-1,0) U(0,2]).

For this reason, we think of Kasparov's Technical Theorem as a device for
stretching an interval algebra at a point.

We introduce some notation to be used for the rest of this section.
Let X C C denote the union of the unit circle and the interval [—2, — 1],

Let
An = {/ € C(X,Mn) I / ( -2 ) is scalar}

and let a : Mn(Co(0,1))~ -» An denote the inclusion of the subalgebra of
functions in C(X, Mn) that are constant and scalar on [—2, —1].

Lemma 4.1. Let B denote any separable, unital C*-algebra. Given a *-
homomorphism

whose image commutes with a separable subset D C C(E), there exists *-
homomorphism

φ:An®B^ C(E)

such that φ o (a <8> Ίdβ) = φ and whose image commutes with D.

Proof. Since An and Mn(Co(0,1))~ are nuclear there is no ambiguity in the
tensor product. As the tensor products involve unital C*-algebras they are
characterized as the universal C*-algebras containing commuting copies of
the two factors. By altering the subset D one easily shows that it suffices to
prove this result only when B — C.

Proposition 2.8 of [8] shows that Mn(Co(0,1))~ is the universal unital
C*-algebra generated by x, α2, α 3 , . . . , an subject to the relations

dk =0, 2<j,k< n ,

a*ak = 0 , j Φ fc,
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CLjdj — X X,

χ*χ = xx* = —x —

Similarly, one may show that An is the universal unital C*-algebra generated
by x, &2, &3, , K subject to the relations

(b*jbj-l)(xx*+x*x)=09

/ y o r * •••••• ιι Ύ * O / * »••'•••• ^ ^ ^ ' Ύ * i O / *

and the inclusion a corresponds to the *-homomorphism determined by the
assignment x κ->* X^CLJ I-> 6J |^ | . Working with the same relations, but in
nonunital category, one sees that this is a special case of Theorem 3.2.

D

Lemma 4.2. Suppose J is an ideal in A and A is a sub-C*-algebra of B.
Let Jβ denote the ideal of B generated by J. There is an isomorphism

Φ : B/JB -> B *A (A/J)

defined by Φ(b + JB) = b.

We will need to prove technical results regarding maps from general di-
mension-drop graphs into corona algebras. For clarity we will concentrate
on the most important case, that of the dimension-drop intervals, ϊ n . Recall

this being the unital version of the dimension-drop interval.
Although isomorphic to ϊ n we also consider

Jn = {/ e C[-l,2] I / ( - I ) and /(2) are scalar}.

Let i : ln -> J n denote the inclusion that extends a function to be constant
on [-1,0] and on [1,2].

Theorem 4.3. Suppose ψ : ϊ n —> C(E) is a *-homomorphism whose image
commutes with a separable subset D. Then there exists a *-homomorphism
φ : Sn -> C(E) Π D' such that φ o ι — φ.
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Proof. Consider Mn(Co(0,1))~ ® C[0,1] which we identify with

Cn = {/ 6 C([0,l]2,Mn) I /(0,t) - /(l,ί) E CJ, Vt}.

Restriction to the diagonal gives us a surjection

p:Mn(Co(0,l))~®C[0,l]^ίn.

One can check that by the last lemma we have the commutative diagram

(An ® C[0,1]) * C n ln -^-+ Sn

T t
(α<g)id)*id t

Cn *C n ίn —^-> In

and so this result thus follows from Lemma 4.1. D

Remark. The generalization of Theorem 4.3 to the case of extending maps
of dimension-drop graphs into corona algebras follows by the same methods,
but the notation is significantly worse.

5. Stability for dimension-drop graphs.

Suppose X is a graph. We denote the associated dimension-drop C*-algebra

by

Cv ert(^,Mn) = {/ E C(X,Mn) I f(v) e CI for all vertices v}.

Theorem 5.1. For every graph X, and every positive integer n, the C*-
algebra Cvert(X, Mn) is universal for a stable set of relations.

Proof. We may reduce to the case of X connected using Proposition 3.10
and [8, Theorem 5.1]. For connected graphs, the proof is by induction on
the number of vertices. If there is but one vertex then

Cveτt(X,Mn)^ ίφMn(C0(0,l))

where J is the number of edges. This has stable relations by [8, Theorem 5.1].
Now suppose X has at least two vertices, v0 and vλ. We will need an

auxiliary space, X, which is obtained from X by stretching all edges attached
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to v0 or Vι. Topologically, X will be a copy of X. We shall use v0 and υλ to
denote the appropriate vertices in X.

Choose a function
ho : X-+[-1,2]

such that h>Ql([-~ 1,0]) consists of the union of half-closed subintervals, con-
taining υ0, of each edge adjacent to v0. We may assume a similar statement

holds for / ^ ( [ M ] ) a n d υ i
We will identify X with the quotient of X obtained by collapsing

/ι̂ "1([—1,0]) to a point and /ι^"1([l,2]) to a different point. We will also
consider two copies of the graph obtained from X by collapsing the two des-
ignated vertices together. We let Ϋ denote the quotient of X obtained by
identifying v0 with V\ and Y denote the quotient of X obtained by collapsing
h^d-l.O]) U h^([1,2]) to a point.

Accordingly, we will be making identifications of the various dimension-
drop algebras with subalgebras of C(X, Mn). Of course, Cvert(^> Mn) is de-
fined as such a subalgebra. The remaining identifications are:

Cvert(X,Mn) = {/ I /Or) = /K) if ho(x) < 0

and f(x) = f(Vl) if ho(x) > 1},

Cveτt(Y,Mn) = {/ I f(x) = f(υ0) if ho(x) < 0 or ho(x) > 1}

Cvert(Ϋ,Mn) = {f \ f(v0) =

Our strategy is based on the observation that Cvert(X,Mn) is generated
by the subalgebra Cveτt(Y,Mn) and the element

h = hi ® / where hι(x) — max(min(/ιo(^), l)?0).

A way to express the relation between h and Cvert(i^ Mn) is that

By Theorem 2.6, our task is reduced to proving corona semiprojectivity
for Cvert(X, Mn) while assuming it for Cveτt(Ϋ, Mn). So suppose that we are
given a unital *-homomorphism

ψ : Cv e r t(X,Mn) -

By Theorem 4.3 and the remark following, there is an extension of ψ to

φ:Cveτt(X,Mn)->C(E).

By the induction hypothesis, the restriction of φ to Cvertί^j^π) can be
lifted to
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for some m. This leads to the following commutative diagram:

C v e r t(Ϋ,M n) B/In

Cvett(X,Mn) C(E)

Let H be any lift of φ(h) to B/Im such that 0 < H < 1. Now define

H = φ(l(h0) <g> /) + φ{m{h0f'
2 ® I)Hψ{m{hQy'* ® I)

where Z and m are the functions

( 0, ί < 0 , Γ -ί, ί < 0 ,

ΐ, 0 < t < 1, m(ί) = < 0, 0 < t < 1,
2 - ί , l < ΐ < 2 , [ ί - 1 , l < ί < 2 .

These are denned so that I + mh2 = h2 where h2 is the function
fθ, ί<0,

h2(t) = < t, 0 < < < 1,

[l, 1 <t<2.
Notice also that h2(h0) = hi.

Clearly H is selfadjoint. In fact, it is also a lift of φ{h) since

= φ(l(h0) ® /) + φ(m{h0) ® I)φ(h2(h0) ® J)

For any / ® T € Cvert(y, Mn)

T)H = Hψ{f

By replacing H by h2(H), we have found a lift of < (̂/ι), with 0 < H < 1, and
a lift of ^Ίcvert(v,Mn) that commute.

Expressing this conclusion differently, we have shown that given a unital
map
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we can find an m and a map making the diagram commute where D is the
universal unital C*-algebra generated by a copy of Cveτt(Y, Mn) and a central
element h such that 0 < h < 1. I.e.,

We have no further need for X so v0 and vλ again denote the specified
vertices in X. We regard Y as the quotient of X, with quotient map η : X ->
Y which collapses v0 and vλ to a single vertex we call w0.

Let us identify D with

{g e C{Y x [0,1], Mn) I ρ(w,t) G d for all vertices}.

The copy of CveTt(Y,Mn) and the extra element h appear as functions in D
constant in one variable or the other. There is a sort of diagonal map

Δ : X -> Y x [0,1], A(x) = {η(x), hλ (x))

which induces a surjection β : D -» CVert(X5 Λίn).
We need also a quotient of D where the relation (9) holds approximately.

Consider

Zδ - {(τ/(x),t) G r x [0,1] I |e 2 π ί / l l ( a ; ) - e 2 π ί ί | < δ},

where δ is a small number to be named later, and let

Dδ = {g e C(Z,Mn) I g(υ,t) G C/ for all vertices}.

Since Δ maps into Z it induces

By increasing m we may assume that the map D —> B/Im factors through
ZV Therefore, we are done if we exhibit a right-inverse to β0. This exists
because there is a retraction of Zδ onto im(Δ) which sends {v,t) to {v,t')
for every vertex v. To be able to describe this retraction we break up Zδ as
Zδ = Zi U Z2 U Z3 where

,t) I |Λχ(x) - ί| < 1/4,0 < t < 1},

The retraction sends Z2 to (wo,l) and Z3 to (wo,0). Each point (r (a ), ί)
in Z\ is sent to (η(x),s) where 5 is the unique number in (0,1) such that
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e2ms _ e2πι/ii(x) gy choosing δ sufficiently small, we ensure that (y,t) g

Z2 U Z3 for any vertex υ except for v = w0. Therefore this is the desired

retraction. •
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SINGULAR MODULI SPACES OF STABLE VECTOR
BUNDLES ON P 3

ROSA M. MIRO-ROIG

The goal of this paper is to give an example of singular
moduli space of rank 3 stable vector bundles on P3.

Introduction.

In 1977/78, M. Maruyama proved the existence of a moduli scheme
MPn (r; cx,..., cmin(r)n)) parametrizing isomorphic classes of rank r stable vec-
tor bundles on P n with given Chern classes c l r . . , cmin(n)Γ) (cf. [Ml, M2]).
The goal of this note is to give, to the best of my knowledge, the first ex-
ample of singular moduli space of stable vector bundles on P 3 . It has been
motivated by a recent work of Ancona and Ottaviani where they show that
the moduli space Mips (k) of stable instanton bundles on P 5 with quan-
tum number k=3 or 4 is singular. Moreover they claim that Mips (3) and
Mips (4) are the first examples of singular moduli spaces of stable vector
bundles on projective spaces (cf. [AO]). Ancona-Ottaviani's result together
with the well known fact that Mp2(r; cx,c2) is a smooth quasi-projective va-
riety of dimension 2rc2 — (r — \)c\ + 1 — r2 gives rise the following question:

Is there any example of singular moduli space of stable vector bundles on

As I pointed out before my aim is to give an affirmative answer to this
question (cf. Theorem 2.10).

1. Preliminaries.

In this section we recall some well known results needed later on.

1.1. Let H(18, 39) be the open subscheme of HilbP\ parametrizing smooth
connected curves C C P 3 of degree 18 and genus 39. (See [EF] for a precise
description of H(18, 39).) Let Hλ C iϊ(18,39) be the 72-dimensional irre-
ducible, generically smooth component whose general point parametrizes an
arithmetically Cohen-Macaulay curve I c P 3 having a locally free resolu-
tion of the following type:

(1) 0 -> O(-7)4 -> (9(-6)4 Θ 0(-4) ->/*->().

477
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Let H2 C iϊ(18,39) be the 72-dimensional irreducible, generically smooth
component whose general point parametrizes an arithmetically Cohen-Ma-
caulay curve 7 c P 3 having a locally free resolution of the following type:

(2) 0 -> O ( - 6 ) 2 Θ 0 ( - 8 ) -> O ( - 5 ) 4 -> Iγ -> 0.

It is well known that there exits an irreducible subset H = Hλ Π H2 C

iϊ(18,39) of dimension 71 whose general point parametrizes an arithmeti-

cally Buchsbaum curve C c P 3 having a locally free resolution of the fol-

lowing type:

(3) 0 -> C?(-8) -> O(-7)4 Θ O(-8) -> <9(-6)4 ® O(-4) -> Ic -> 0.

1.2. Remark. For all curve Z e H1 U H2, ωz(2) is globally generated.
Prom now on, for all curve Z G Hi U H2, we set α — dimH°(ωz(2)) (=74;
by Riemann-Roch's Theorem).

1.3. Fact. Let O — ^ J E - ^ F - ^ G — > > 0 b e a n exact sequence of vector

bundles. Then, we have the following exact sequence involving alternating

and symmetric powers:

0 -> SqE -> Sq~ιE ® F -+ .... -^ E ® Λ 9 - 1 ^ -> Λ 9 F -> Λ9G -> 0.

1.4. Hoppe's criterion for the stability of a vector bundle. Let X be a

projective manifold with Pic(X) = Z and let E be a, vector bundle on X.

If H°(X, {AqE)norm) = 0ΐoτl<q< rk(E) - 1, then E is stable. As usual,

given a vector bundle E on X, we denote by i2norm the twist of E whose first

Chern class cγ verifies — rk{E) + 1 < cλ < 0.

2. Main results.

2.1. Let us call £ x the irreducible family of sheaves E on P 3 constructed as

an extension:

σ = [σu ...,σβ) : 0 -> 0 * -> JB(1) -^ Iχ(2) -> 0

where X G # i and σχ,...,σα E H°(ωx(2)) ^ Eα;t1(/χ(2),(9) are general
global sections which generate the sheaf ωz (2) everywhere.

It is easy to see that E is a vector bundle on P 3 of rank α + 1.
2.2. Let us call C2 the irreducible family of sheaves F on P 3 constructed as
an extension:

λ = (λx,.., λα) : 0 -> O α -> F ( l ) -> /y(2) -> 0

where Y G H2 and λχ,...,λα G H°(ωγ{2)) = Extι(Iγ(2),O) are general
global sections which generate the sheaf ωz (2) everywhere.
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Again it is easy to see that F is a vector bundle on P 3 of rank a + 1.
2.3. And let C C Cλ Π C2 be the irreducible family of sheaves G on P 3

constructed as an extension:

μ = ( μ i , ...,μα) : 0 -> Oa -> G(l) -> J c (2) -> 0

where C E H C Hλ Π H2 <xnd μu...,μa G iϊo(α;c(2)) = Ext1(Ic(2),O) are
general global sections which generate the sheaf α;̂  (2) everywhere.

Again it is easy to see that G is a vector bundle on P 3 of rank a -f 1.

Proposition 2.4.
(1) 4̂ general vector bundle E G A /ms α locally free resolution of the

following type:

0 -> 0(-5) 4 -> O(-4)4 θ O(-2) Θ O M £7(1) -> 0.

(2) yl general vector bundle F G £2 ^ ^ ^ locally free resolution of the
following type:

0 -> O(-6) 0 O(-4)2 -* O(-3)4 Θ O M F(l) -> 0.

(3) A general vector bundle G £ £ has a locally free resolution of the
following type:

0 -» O(-6) -> O(-6)θO(-5) 4 -> O ( - 4 ) 4 θ σ ( - 2 ) θ O α ^ G(l) -> 0.

Proof. (1) From the exact sequence:

and the locally free resolution of Iχ{2) (See 1.1):

0 -> O ( - 5 ) 4 ->• £>(-4)4 Θ O(-2) -> 7X(2) -> 0

we get the following commutative diagram:

0 0

1 i
O(-5)4 = O(-5)4

I i

0 > Oa > E(l) • Iχ{2)

1 1
o o
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which gives what we want.

(2) and (3) Analogous. D

Corollary 2.5. Given a vector bundle E G C1UC2, E(t) is globally generated
for all t > 5.

2.6. Let T\ be the irreducible family of rank 3 vector bundles P on P 3

defined as the cokernel:

0 -> 0 ( - 5 ) α " 2 > E-+P-+0
S l , . . . , 5 2

where E G Cλ and sf £ H°(E(5)) are general global sections of E(5).

2.7. Let T2 be the irreducible family of rank 3 vector bundles Q on P 3

defined as the cokernel:

0 -> O(-5)a~2 > F-^Q-^0

where F 6 C2 and fi G H°(F(5)) are general global sections of ̂ (5).
2.8. Let T C L\ Π £ 2 be the irreducible family of rank 3 vector bundles R
on P 3 defined as the cokernel:

0 -» 0 ( - 5 ) * - 2 > G->R^0
91, -,92

where G 6 C and ̂  G H°(G(5)) are general global sections of G(5).

Proposition 2.9.
(1) A general vector bundle P of T\ is a rank 3 stable vector bundle on P 3

with Chern classes (287,42065,4195775).

(2) A general vector bundle Q of J°2 is a rank ^stable vector bundle on P 3

with Chern classes (287,42065,4195775).

(3) A general vector bundle R of T is a rank 3 stable vector bundle on P 3

with Chern classes (287,42065,4195775).

Proof (1) Using the exact sequence:

(*) 0 -> e>(-5)α-2 -> E -> p ^ 0

and the locally free resolution of E given in Proposition 2.4(1) we get:

ct(P) = (1 - 3ί)(l - *) 7 7 ((1 - 6ί)4(l - 5ί) 6 8 ).

Hence d(P) = 287, c2(P) = 42065 and c3(P) = 4195775.
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Let us see that P is stable. Using Hoppe's criterion we need to prove that
H°(P)noτm = #°(Λ 2 P) n o r m - 0. Since Cl(P) > 0 and C l(Λ2P) > 0, we have
(P)norm = P(λ) and (Λ2P)n o r m - (Λ2P)(p) for some p, λ < - 1 . So it siffices
to prove that H°{P){-1) = F°(Λ2P)(-1) = 0.

Using the exact sequence (*) and the locally free resolution of E given
in Proposition 2.4(1) we easily get that H°E(-1) = H°P(-1) = 0. Again
using the exact sequence (*) and taking wedge powers we get the exact
sequence

0 -> 5 2 O(-5) α " 2 -> O{-5)a~2 ®E-+ A2E -> Λ2P -> 0

cutting in short exact sequences we get #°(Λ2P)(-1) = H°(A2E)(-1) = 0
where the last equality follows from the locally free resolution of E given in
Proposition 2.4(1) taking wedge powers and cutting in short exact sequences.

(2) and (3) are analogous. D

Theorem 2.10. The moduli space M p 3 (3;-1,14609,1917791) is singular.

Proof. We have constructed two irreducible families T\ and T2 of rank 3
stable vector bundles on P 3 with Chern classes (287,42065,4195775) which
meets along an irreducible family T. Hence in order to see that M :=
Mp3(-1,14609,1917791) ^ Mp3(-287,42065,4195775) is singular it is
enough to prove that T\ and T2 belongs to two different components of
M. Using proposition 2.9 and 2.4 we get:
(1) If P is a general vector bundle of T\ then:

H\P = H3P(3) - 0

h°P(3) = 1 + 10a, /ι2P(3) - 0.

(2) If Q is a general vector bundle of Ti then:

H\Q = #3Q(3) - 0

Λ°Q(3) - 10a, h2Q{3) = 1.

Therefore, by semicontinuity T\ and T2 are contained in different compo-
nents of M which gives what we want. D
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THE GODBILLON-VEY CYCLIC COCYCLE AND

LONGITUDINAL DIRAC OPERATORS

HlTOSHI MORIYOSHI AND TOSHIKAZU NATSUME

The goal of this paper is to prove the index theorem for
the pairing of the Godbillon-Vey cyclic cocycle with the index
class of the longitudinal Dirac operator for a codimension one
foliation. Let {X,T) be a foliated S^-bundle over an arbitrary
spin manifold M. The Dirac operator on M lifts to a longi-
tudinal elliptic operator D, the longitudinal Dirac operator,
on (X, T). The index class of D is an element of the i^o-group
of the foliation C*-algebra C*(X,!F). A densely defined cyclic
even-cocycle on C*(X, T), the Godbillon-Vey cyclic cocycle, is
constructed. The main result gives a topological formula for
the pairing of the Godbillon-Vey cyclic cocycle with the in-
dex class of D. The proof of the main theorem uses a new
technique, the pairing with the graph projections.

1. Introduction.

Over the past decade ϋΓ-theory has come to play significant roles in the study

of C*-algebras. One such role is as a receptor of indices of pseudodifferential

operators on foliated manifolds. If P is a longitudinal elliptic operator on a

foliated manifold (X, T), then the index of P is an element of the jFί0-group of

the foliation C*-algebra C*(X: J
7) [10]. A transverse invariant measure v for

the foliation generates a trace on the C*-algebra C*(X, T\ This trace defines

an additive map φv from the ϋo-group into the scalars. Evaluating φv on the

index of an operator, we obtain a numerical invariant (an analytic index),

which depends on the transverse invariant measure v. The index theorem

of A. Connes [6] describes the analytic index in terms of the symbol of the

operator and the foliation cycle corresponding to the transverse invariant

measure.

For many interesting foliations, e.g. Anosov foliations, there does not

exist a nontrivial transverse invariant measure. Thus, in order to obtain

numerical invariants of operators on such foliations, we need an alternative.

A natural candidate is the pairing between iί-group and cyclic cohomology.

In fact, a trace on a (7*-algebra may be regarded as a densely defined cyclic

0-cocycle. Our aim is to give an index formula for higher dimensional cyclic

483
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cocycles. In this direction several authors have obtained results for certain
cocycles, see for example [11]. Connes and H. Moscovici [9] studied the
pairing between cyclic cocycles associated with group cocycles and Dirac
operators on a Golois covering. In order to compute the pairing they use
idempotents constructed by A. Wasserman. Our arguments use graph pro-
jections associated with the operators; the advantage is that they provide a
direct construction and result in a simple argument.

We focus on a particular cyclic cocycle for a special class of foliations. Let
Γ be a discrete group acting freely on a manifold M so that M/Γ is a closed
manifold. Suppose that a Γ-action on the circle 5fl

uby orientation preserving
diffeomorphisms, is given. The Sι-bundle over M/Γ associated with the
action is equipped with a foliation J1', whose leaves are transverse to the
fiber of the bundle. The ^-bundle X with T is called a foliated S^-bundle.
When the action satisfies a certain condition (Condition 2.2), the foliation
C*-algebra C*(X, T) is strongly Morita equivalent to the reduced crossed
product C{Sι) x Γ. The foliation T is of codimension one, and transversely
orientable. To such a foliation, is assigned a characteristic class, called the
Godbillon-Vey class [13]. It is a 3-dimensional de Rham cohomology class of
X. For foliated S^-bundles, this characteristic class is interpreted as a group
2-cocycle with values in the space of 1-forms on S1 [5]. Based on this picture,
A. Connes studied an analytical interpretation of the Godbillon-Vey class
[8]. He constructed a densely defined cyclic 2-cocycle r on the C*-algebra
C(S1) xi Γ and showed that the additive map, induced by r, coincides with
the map, which the Godbillon-Vey class induces on the geometric group
K°(S\Γ), via the index map K°{S\Γ) -> KoiCiS1) x Γ).

If P is a longitudinal elliptic operator on a foliated S^-bundle {X,F),
its index ind(P) is regarded as a class in KQ(C(SX) K Γ) via the strong
Morita equaivalence. We will explicitly compute the value of the additive
map mentioned above on the indices of longitudinal Dirac operators. More
precisely, we will consider the case where an even-dimensional manifold M
is endowed with a Γ-invariant metric and a Γ-invariant spin structure. We
will study the index of the associated Dirac operator D. In order to carry
out an explicit computation, the following points have to be taken care of.
(1) Since ind(jD) is defined to be a class in the ίίo-group of the foliation C*
algebra, we have to obtain a formula for a densely defined cyclic cocycle on
C*(X, T) (Section 6). The strong Morita equivalence between C*(X, T) and
C{Sι) xi Γ yields a homomorphism from C{Sι) xi Γ into C*(X, T). Thus, once
we obtain a densely defined cyclic cocycle on C*(X, T), we can compare this
cocycle with Connes's cocycle (Section 9). (2) The index mά(D) is described
in terms of a parametrix of D [10], [9], and there is not a canonical choice
of a parametrix. Thus it seems infeasible to compute the evaluation on
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such an element. Hence we need a projection "canonically" attached to the
operator. The operator extends to a closed operator T; the graph of T is a
closed subspace, and the associated orthogonal projection is called the graph
projection of T. It will be shown that the graph projection represents ind(D).
A disadvantage of using graph projections is that they lack the regularity
which idempotents in [9], [10] can enjoy. Thus it has to be verified that the
graph projection does indeed belong to the domain of the cyclic cocycle.

A use of graph projections in the index problem is a new idea. Once
(1) and (2) above are done, the proof of the actual computation of the
evaluation (Theorem 8.10) will be straightforward by employing Getzler's
symbolic calculus method [12].

This work grew out of a study of the K0-group of the C*-algebras of
Anosov foliations on the unit circle bundle TXΣ of a closed Riemann surface
Σ of genus g > 1 furnished with a metric of constant negative curvature.
Those C*-algebras are strongly Morita equivalent to crossed product C*-
algebras C(SX) x TΓL(Σ), where π^Σ) acts on C(S1) through linear fractional
transformations. Since Anosov foliations on 7\Σ have nonzero Godbillon-
Vey classes, there must be a class in Ko on which the cyclic cocycle attains
a nonzero value. Our motivation was to describe this class as clearly as
possible. This matter will be discussed in Section 10.

2. Foliated Bundles and Its C*-algebras.

In this section we study the properties of C*-algebras associated with foli-
ated bundles. On these C*-algebras we will construct densely defined cyclic
cocycles in Section 6.

Let M be a closed Riemannian manifold, and let M —» M be a Galois
covering with deck transformation group Γ. Given a right Γ-action on a closed
manifold V by diffeomorphisms, we can construct a fibre bundle X —> M
with fibre V. This is the associated bundle

p:X = MxΓV ^ M/V = M,

where the right Γ-action on M x V is diagonal. The product foliation on
M x V with leaves M x {x},x £ V, descends to a foliation T on X. The
projection p restricted to any leaf of T is a covering map. We call the
F-bundle X —> M together with T a foliated V-bundle.

Condition 2.1. Through the paper we assume that a Γ-action on V
satisfies the condition: for g G Γ, if there exists an open set U in V such
that xg = x for all x G Z7, then g is the identity element of Γ.

The Condition 2.1 guarantees that the holonomy groupoid G of T is a
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Hausdorff space, and that

G**(M xMx V)/Γ,

where Γ acts by (m,n,x)g = (mg,ng,xg), (ra,n,x) G M x M x V, # £ Γ.
The groupoid structure of (M x M x V)/Γ is described as follows. Denote
by [ra, n, #] the class of (m, n,x) £ M x M x V. The source map 5 and the
range map r are given by

r{[m,n,x\) = [m,x],

s([m,n,x]) = [n,x].

Two elements [m',n\x'] and [m,n,x] are composable if and only if there
exists a g E Γ such that n' = mg, x' — xg. In this case,

[m',n',x'][m,n,x] = [m'g""1,?!,^].

The lifting to M of the Riemannian metric on M induces a leafwise Rie-
mannian metric. The latter gives rise to a left Haar system {vx} of the
groupoid G [18].

We recall the definition of foliation (7*-algebras with coefficient [11]. Let
E be a Hermitian vector bundle over X. Denote by C™(G,E) the space of
all compactly supported smooth sections of the bundle (s*(E))* ®r*(£>). So,
if/GCc°°(G,£), then

/ ( 7 ) G H o m ( % , % ) , 7 EG.

The space C£°(G,E) has a *-algebra stucture:

(Λ * /2X7) = / fι(Ί')f2h'-1Ί) dvr^{Ί'),

where /i(7/)/2(7~17) is the composition of maps, and

is the adjoint of /(7"1) E Hom(J5'r(7),£'s(7)).
Let f, s be the lifting of r, 5 to M x M x V -> M x V, respectively. Thus

r(ra, n,#) = (m,x) and s(m,n,x) = (n,x).

Denote by E the lifting to Mx F of E. It is easy to see that CC°°(G, E) is iden-
tified with the space /Cc of those Γ-invariant smooth sections of (s*(E))* ®
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r*(E) which have Γ-compact supports. Here we say that a subset of M x
M x V is Γ-compact, if its image in (M x M x V)/Γ is compact (Definition
8.3 of [3]). _

Let Mx — M x {#}, x G V, and let μx be the strictly positive smooth den-
sity on Mx corresponding to the Γ-invariant smooth density on M through
the canonical identification of Mx and M. Set

where Ex is the restriction of E to Mx. Then the collection Ή — (Hx)xeV

together with the space CC(E), of compactly supported continuous sections
of the bundle E over MxV, defines a continuous field of Hubert spaces over
V. The Γ-action o n M x V and E gives rise to an action on H. We denote this
action by ξ -> gξ, for g £ Γ, and a section ξ of W. The space EndΓ(Ή) of Γ-
equivariant bounded measurable fields of operators T = (Tx), Tx G B(HX),
is a (7*-algebra, where the norm is given by

There is a faithful representation p : Kc —> EndΓ(W) For / G /Cc, the
operator p(/) is defined by

(2.2) [p(/U](m) = L f(m,n,x)ξ(n)dμx(n),

for ξ G //"a?. The norm-closure of Kc with respect to the norm

is, by definition, the C*-algebra C*{X,T,E) of the foliated bundle (X, T)
with coefficient £7.

Let C(V) x Γ be the reduced crossed product C*-algebra arising from the
(left) Γ-action on C(V) given by

(ga)(x) = a(xg), geC(V).

The C*-algebra C(V) x Γ is exactly the reduced (7*-algebra associated with
the following groupoid. As a topological space this is V x Γ. The space of
units is F, with s(x,g) = rrg and r(x,g) = #. Thus C(V) x Γ contains the
following dense *-subalgebra CC(V x Γ) :

(ab)(x,g) =
her

a*(x,g) =a(xg,g~ι)
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for o, 6 G CC(V x Γ). For each x £V, one has

Define a ^representation Lx of CC(V x Γ) on I2(s~1(x)) by

where a G CC(F x Γ) and ξ e P^ix)). Then

\\a\\=Snp{\\Lx(a)\\;xeV}<<X>,

and C(V) x Γ is the completion of CC(V x Γ) with respect to the norm|| | |.
If Ug denotes the characteristic function of V x {<?}, then Ug belongs to

CC(V x Γ), since V is compact. Any a E CC(V x Γ) can be expressed as a
finite sum

α = Σ α ^ > ageC(V).
per

The *-algebra CC(V x Γ) is generated by C(V) and {Ug)geγ, subject to rela-

tions: U9Uh = Ugh, ff,fteΓ, U; = E/,-1, and t/,αί/; = ff(α), a e C(V).

Remark 2.3. The collection {I2(s~1(x))}xev forms a continuous field of
Hubert spaces, and the correspondence x -> Lx(a) is a continuous field of
bounded operators.

Proposition 2.4. There exists a Hilbert C(V) x T-module e such that

^(X.T^E) is isomorphic to the C*-algebra JC(e) of compact operators of e.

In particularj C*(X,JΓ,E) is strongly Morita equivalent to C(V) xi Γ.

Proof Choose a base point * E M. The image T of {*} x V in X is a
complete transversal of T, where G£ = ^ ( T ) Π r~x(T) and G τ = s'1^)
are identified with F x Γ and M x V, respectively. Then Proposition 3 of
[14] implies the assertion. D

We now describe the module e, as we will need the description later. Let

S = CC(E). A right C C (F x Γ)-action on S is defined by

ξ)(m,x), ξ 6 5, / G
per

A C c(y x Γ)-valued inner product ( , •) on S is defined by
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where ( , )~ is the Hermitian product in E. The module e is the completion
of S with respect to the norm ||ξ|| = | |(ξ,ξ)| | 1 / 2.

The representation of C*(X,T,E) on e given by Proposition 2.4 is:

(/*0(7)=

for / G CC(G,E), ξ G Cc(Gτ,r*E). Through the identification G = (M x
M x F)/Γ, the left CC(G, Enaction is described as

f{m,n,x)ξ(n,x)dμx(n),

where (m, x) G M x V = GT, and / is regarded as a Γ-invariant family
of integral kernels on M x M x V. Proposition 3 of [14] says that the left
CC(G, E)-action extends to a faithful representation of C*(X, T, E) on 6, and
that the image of this representation is precisely the space /C(e) of compact
operators of the Hubert C*-module e over C(V) xi Γ.

Let C™>°(E) be the space of compactly supported sections of E over MxV
of class C0 0 '0 ([6]). In an obvious way C^°'°(E) can be regarded as a subspace
of sections of the field %. Consider the *-algebra of intertwining operators
of H which map C™>°(E) into itself. Its C*-closure in EndΓ(H) is denoted
by 55.

Proposition 2.5. There exists a *-monomorphism Φ from 03 into the
C*-algebra C(e) of all bounded operators of the Hilbert C*-module e over
C(V) x Γ.

Proof. For ξ ejC™>°(E), denote by ξx the restriction of ^ onto Mx. Then
ξx£Hx = L2(EX). For / G Cc{Gξ), define SξtX(f) G C?>°(E) by

For u G C^°(E), define TξtX{u) G CC{GT

X) by

where (, )x is the inner product of Hx.
We need the following lemma.

L e m m a 2.6. The linear maps Sξ,x and Tξ^x extend to bounded maps

SLx : 12{GT

X) -* Hx,
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and

Moreover,
(1) Sξ:X is the adjoint of TξtX;
(2) for ξ,η,ζe C?'°(E) and f € /2(Gj), one has

(3) \\ξ\\ = sup{| |5 ξ > x | | ; xeV} = sup{| |Γ ί l ! t | | ; x E V} ,
where \\ξ\\ is the norm of ξ in e.

Proof. By a straightforward computation,

where / e CC{G1) and u 6 CC{E), and the right-hand side is the inner
product in 12{GT

X). Let a € CC(V x Γ) and £,77 G C, 0 0 - 0 ^). Then

From this

As for the second equality in the assertion (2), we have

τξtXsη,x{f)=ΆΛ(v<>)*)

τ
= ((ξ,η)a)\Gτ

x

= Lx((ξ,η))f,

where a is an element of CC(V x Γ) such that a\Gτ = f. Thus

\\sUf)\\2 = (sξ,Λf),s

Prom this and facts that Cc(Cfζ) is dense in P(Gl), and that Lx((ξ,ξ)) is
positive, it follows that 5 ξ, x extends to a bounded linear map, and
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Consequently, Tξ x also extends to a bounded linear map, and

Finally,

= sup | | 5 ί i τ 112

= sup \\Tξ,x 112.

This completes the proof of the lemma. D

We return to the proof of Proposition 2.5.
Assume that P = (Px) e EndΓ(Ή) and its adjoint P* = (P*) preserve

the space C™'°(E). Since P is Γ-equivariant, it is readily seen that P defines
a CC(V x Γ)-module homomorphism P of C^°j0(E). Furthermore, for £ E
C?>°(E), one has

(2.7)

<sup| |P x | | suP | |-S ξ,, | |

= \\p\\ lien-

Thus P is a bounded operator of e. Similarly P* defines a bounded operator
P* with

for ξ,η e e. Therefore P 6 £(e).
We show that the correspondence P —> P is injective. From the inequality

(2-7),

ll^lk <

Assume that P = 0. Let P = lim^^oo P^ in norm in EndΓ(Ή) where we
have that P^ preserves C™^(E). Then, for ξ e Cc°°'

0(^), we have

Urn
J - ί OO

Notice__that any ξ 6 C^°'°(E) is written as ξ = a(β,η) for some α, /?, 7 G
C,0 0 '^^). Then
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Therefore

sup Hpω&H < sup \\P<j»Sa,9\\ sup \\TβtX(Ίx)\\

for some C > 0. Thus sup HPJ ̂ H -> 0 as j -> oo. Hence P ^ = 0 for all
x e F. This means that P = 0 in EndΓ(Ή). Thus P -^ P is an injective
*-homomorphism, and in particular,

M = \\P\\ =

This ends the proof of Proposition 2.5. D

Remark 2.8. The foliation C*-algebra C*(X, T, E) is a subalgebra of 93,
and the restriction to C*(X, T, E) of the embedding of OS into C(e) is exactly
the isomorphism

C*{X,T,E)^K{e)

given in Proposition 2.4.

Remark 2.9. When the Γ-action on V does not satisfy the Condition 2.1,
the structure of the holonomy groupoid is more complex, and C* (X, T^ E) is
not strongly Morita equivalent to C(V)xΓ. Thus the arguments above do not
apply to this case. However, if one uses the C*-algebra of the fundamental
groupoid, in place of the holonomy groupoid, then the results in this paper
remain valid.

3. Algebra of Pseudodifferential Operators.

For a given foliated bundle (X,T), the C*-algebra C*{X,T,E) defined in
the preceding section contains pseudodifferential operators. In this section
we will introduce a dense Banach subalgebra 21 of C* (X, T, E) and will show
that 21 is holomorphically closed. _

Let E° and E1 be Γ-equivariant Hermitian vector bundles over M x V.
Let P : C^°{E°) -> C°°'°(Eι) be a continuous linear map. We say that P
is a Γ-equivariant family of pseudodifferential operators of order r if

(1) P is Γ-equivariant, _
(2) for each x eV, the operator P restricts to Mx to give a pseudodiffer-

ential operator of order r

px: C

(3) the distributional kernel of P has Γ-compact support.
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Conditions (1) and (2) imply that the distributional kernel is regarded as
a distribution on M x M x V and is Γ-invariant.

Denote by Φ£ (EO, E1 J the space of all Γ-equivariant families of pseudod-

ifferential operators of order < r from E° to E1. When E° = E1 = E, we use

ΦfCE) instead of Φf ( E ° , E 1 ) . A basic fact is that if P G Φ£ (J5°, E1} , QG

Φf ( E 1 , ^ 2 ) , then QP G Φ£ + s ( l ; 0 ,£ 2 ) . If P E Φf ( E ° , JB1) , then its formal

adjoint P* belongs to Φf (E1, E°J . So, in particular, ^(E) is a *-algebra.

Recall [11] that by a tangential operator we mean a continuous linear
operator D : C™>°(E°) -+ C 0 0 ' 0 ^ 1 ) such that D is Γ-equivariant and
that for each x £ V,D restricts to Mx to give a continuous linear operator
Dx : C™(E°X) -+ C°°(El). _

Let Ax be the Laplacian on Mx twisted by Ex. Then Δ x acts on the
sections of Ex. Denote by W£(E) the completion of C^°(EX) with respect to
the Sobolev s-norm:

where ( , )x is the inner product of Hx — L2(EX). We obtain a continuous

field W?{E) = (W£{EΫ) of Hubert spaces over V, which we shall call a

tangential Sobolev field [15, p. 78].
A tangential operator D is smoothing if Z) induces a bounded operator

for all 5, t G R A smoothing operator is compactly smoothing if its distribu-
tional kernel has Γ-compact support.

For a tangential operator P, and s,ίGM, set

\\Px\\.,t = sup

and

Of course, | |P x | | S ) t , \\P\\s,t might be infinite. However it is true that if P G
Φf (E), then

| | P | | β - r , β < OO,

for any s. In particular, P extends to an intertwining operator
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If P belongs to tyγ°°{E) = ΠΦf (-E), then P is a compactly smoothing oper-

ator. Moreover, one canjsee that Φf°°(ί?) is contained in C*(X, T, £7), here

E is the lifting of E to M x V.
Let S*T be the unit cosphere bundle of T, and let π be the canonical

projection S*T —> X. l&t EQ,Eι be Hermitian bundles over X, and let
E°, E1 be the liftings to M x V of ϋ7°, J51, respectively. The principal symbol
map is σr : Φ£ ( E 0 , ^ 1 ) -> C ^ S ^ H o m ^ E 0 , ? ^ 1 ) ) . We say that P E

Φf ( S 0 , ^ 1 ) is elliptic if σ r(P) is invertible.

Proposition 3.1. ([15, Prop. 7.12], [6, p. 128]). Let P G Φ f ^ 0 , ^ 1 ) be

elliptic. Then there exists Q E ^ ( E 1 ^ 0 ) such that I - PQ and I - QP
are compactly smoothing.

The operator Q given by Proposition 3.1 is called a parametrix of P.

Every P E ^!%{E) is regarded as an intertwining operator in EndΓ \W®(E)) .

Thus Φ£(JE7) C 55. Let p 0 denote the enclosure of Φ£(£7) in EndΓ

The principal symbol map σ0 extends to a *-homomorphism

and the sequence

0 -> C*(X,T,E) -> po Λ C(S*JΓ End(π*£)) ^ 0

is exact.
Fix an TV > dimM. For P E Φf1 = Φ f 1 ^ ) , set

Then by the interpolation method of Calderon, for all —N < s < N — 1, one
has

Certainly, | | | -1|| is a norm on Φ f ι . A staightforward computation shows that

II Will < Ill^lll lllβlll
for PjQGΦf 1 .

Let 21 be the Banach algebra completion of Φfι with respect to | | | | | |.

Lemma 3.2. There exists an injective homomorphism a : 21 —> ρ o

Proof. Since ||P||o,o ^ III^ΊII? there exists a homomorphism a : 21 -> po
We prove the injectivity of a. Let {Pj} be a Cauchy sequence in Φp 1 with
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respect to | | | | | | . It suffices to show that if α(P, ) -> 0 in ρ 0 , then Pj —> 0 in
21. Since {Pj} is a Cauchy sequence in 21, it is a Cauchy sequence also with
respect to | | | | s +i, s ,— N < s < N — 1. Therefore, there exist intertwining
operators P ( s ) , of fields of Hubert spaces Wf(E) -+ W?+1{E) such that

as

Recall that C™>°{E) is a total subspace of W^{E). For ξ E C?>°(E) and
for s > —1, we have

a s j —>• o o .

Hence P^ξ = 0 for all ξ E CC°°'0(JB). Consequently P ( s ) = 0.
Assume, now, that 5 + 1 < 0. Then

< \\(Pj - p(°))ξ\\s+1 + \\Pjξ\\0

as j -> oo.
Hence P( s )^ = 0 for all f E Cc°°'0(£). Thus P, -> 0 in 21. D

From now on, we regard 21 as a subalgebra of ρ o In particular, an element

P E 21 is interpreted as a collection of operators P = (Ps) such that Ps :

W?{E) -> VFr

5+1(^) is bounded for -TV < 5 < N - 1, and such that

p.\w;(E) = p t if 5 < t .

Let 2t+ be 21 with unit adjointed. As an algebra, 2l+ is identified with the

algebra generated by 21 and the identity / of p o Then a sequence {A Ĵ + P J

in 2t+ converges to λ/ + P in 2l+ if and only if

Xi -> λ in C,

and

^ -> P in 21.

Theorem 3.3. The dense subalgebra 2l+ of C*(X,T,E)+ is holomorphi-

cally closed.

In order to prove Theorem 3.3 we need the two lemmata below.
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Lemma 3.4. IfP + I, P G 21, is invertible in C*{X,F,E)+, then (I + P)8 '
W?{E) -> W;+1{E) is invertible for \s\ < N.

Proof. Let 0 < s < 1. Obviously, (I + P)s: W?(E) ->• W*(E) is injective. By
the Open Mapping Theorem, if (I + P)s is surjective, then it is invertible.
Let η e W?(E). Since (I + P)o : W?(E) -> W?(E) is invertible, there exists
a ξ eJV?(E) such that (J + P)ξ = η. Then ξ = η-Pξe W^E) + W?(E) C
Wϊ(E), since Pξ E W}(E). Thus (/ + P)s : w/(E) -* WJ(E) is injective.

By an induction, using the fact that P maps W^~~ι(E) into W^(E), we
can show that (I + P)8 is invertible for 0 < s < N.

As for — N < s < 0, use the nondegenerate pairing

W~S{E) x f ; ( E ) - ) C

and the fact that (£, (/ + P)8η) = ((/ + P*)-Sξ,η) to deduce the conclu-
sion. D

By Lemma 3.4, we know that when I+P is invertible, it induces invertible
operators at each level W;(E) -> W?(E).

Lemma 3.5. Let I+P, P E Φf \ be invertible in ρ0. Then (I+P)'1 G 21+.

Sublemma. IfQE^ίγ is invertible in ρ0? then there exists α sequence {Ai}
in Φp such that I — AiQ is compactly smoothing, and that

\\I — AiQ\\8tt -> 0 as i —> oo for all s,t.

Proof of Sublemma. Since Q is invertible in p0, its principal symbol σ(P) is
invertible, i.e. Q is elliptic. Then there exists R G Φ?. such that / — Qi2, / —
RQ are compactly smoothing.

Since Q is invertible in ρθ5 there exists a sequence {B^} in Φp such that

| |Q~ 1-Si| |o,o->0 as i->oo.

Put A< = 2Λ + S f - RQBi - BiQR - RQR + RQB{QR. Then A{ e Φf. We
have

/ - AiQ = (I - RQ)(I - BiQ)(I - RQ).

Since S = / — iϊQ is compactly smoothing,

| |z - AiQiu,* = M^CQ-1 - ^OQSΊI-,*
<||5||s,o||Q-1--Bi||o,o||Q||o>o||5||o,t-^0 as i -> oo,
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and the sublemma is proved. •

Proof of Lemma 3.5. By the sublemma, there exists a sequence {Ai} of order
zero ψDO's such that / — Ai(I + P) is compactly smoothing, and such that

\\I-Ai(I + P)\\Sit - > 0 as z - ^ 0 for a l l s,t.

Notice that I-Ai = A{P + (I- A^I ' + P)) belongs to Φf1. τ h u s Ai = I + Bi
with Bi G Φf1. Set

Ti = / - ( / + J5i)(/ + P) G ΦF°°.

We have (I + P)'1 -I = ^ + Ti(/ + P)~ 1 . The operator (7-hP)"" 1-/maps
into WΓ

r

s+1(£) for -TV < s < N - 1. Therefore

|| ((/ + P ) - 1 - /) - ^ | | s + i , s is finite,

and

J P ) 1 | | β , β -^0 as i -+ oc.

This means that (7+P)" 1 - J+Q, with QeSl. Thus (/+P)" 1 G 2l+. D

Proof of Theorem 3.3. The proof uses the well-known fact that an algebra
is holomorphically closed if and only if the resolvents are contained in the
algebra itself. Since 21 is an ideal of C*(X, T, E)+, no elements of 21 are
invertible in C*(-X", T, E)+. So it is sufficient to consider elements of the
form / + P, P G 21. Since P E 21, there exists a sequence {P }̂ in Φfλ such
that

->0 as i -> oo.

Then, in particular, | | (/ + P) - (/ + Pi)||o,o ~> 0 as i -> cx>. As / + P is
invertible in C*(X, T', i?)+, one may assume that I + Pi is also invertible in
C*{X,T,E)+ for all ϊ. From

(/ + P ) - 1 - / = (/ + p ) - 1 ( / - ( / + P)) = - ( / + P)-ιP,

it follows that (/ + P ) - 1 -I maps W7(E) into PFr

s+1(E) for -N < s < ΛΓ-1.
As bounded operators on W*(E), one has that

< (\\(i + p) - (i + muiίi + P)-ι\\ls)

I ( I +1|(/ + po - (/ + P)| |S l S | |(J +
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Prom this, it follows that sup{||(J+ P i)~1 | |S i S; i} < oo. Moreover, one can
see that sup{||(7 + Pi)"1 Iks', i, \s\ < N} < oo. Then we have

P ) - 1 - / ) - ( ( / + P i ) " 1 -

Since | | (/ + P^)" 1 ^^ is uniformly bounded, as i -> oo one has

+ P ) - 1 -I)- ((I + Pi)'1 - J ) | | , + 1 , . -> 0.

This means that HKJ + P ) " 1 - (I + Pi)'1]]] -> 0. By Lemma 3.5, {I + Pi)-χ €
21+. Consequently (/ + P)""1 e 2l+ •

Applying Theorem 3.3 to the bundle Ek, one obtain that Mfc(2l)+ is holo-
morphically closed in Mk(C*(X,F,E))+. Prom this we get the following
(see [3]).

Proposition 3.6. The canonical inclusion 21 C C*(X^Jr
 )E) induces an

isomorphism

4. Modular Automorphism Groups.

A volume form on the fibre of the foliated bundle (X, T) gives rise to a weight
on C*(X,J7,E). We will show that the modular automorphism group, asso-
ciated with the weight, leaves the Banach algebra 21 invariant, and induces
a one-parameter group of automorphisms.

Throughout the rest of the paper, assume that V is oriented, and Γ acts
on V by orientation preserving diίfeomorphisms. Let ωv be a volume form
on V. For j G Γ , a positive real-valued function λg on V is determined by

Xgωv = g(ωv).

The correspondence g -» λ̂  satisfies the cocycle condition:

(4.1) λ9h = g(λh)λ9, g,her.

Let φ be the state on C(V) xi Γ associated with the volume form ωv. Then

Φ(f) = I feωvJv
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if

The modular automorphism group (σt) of φ leaves C(V) x Γ invariant.
We have

for / = Σ fgUg Actually, σt is implemented by the following unitary Aιt on
L2{V)®l2{Y) defined by

Let ω be a Γ-invariant volume form on M. Choose an orientation on X so
that for a Γ-invariant volume form ω on MxV, there exists a positive smooth
function ψ on M x V such that

ω Λωv = ψω.

As above, let E be a Γ-equivariant Hermitian bundle over M x V. Recall
S = CC{E). Define a linear operator Au (t G K) on 5 by

(4.2) Δ i f ( O = ^ - i t ί , ξ e = S .

Lemma 4.3. T/ze linear operator Aιt extends to a bounded operator Aιt :
e —> e which satisfies:

(1) (Δ"(O,Δ i t (r ? ))=σ ί ((^r ? )), f,̂  e e,
(2) Δ«(ξo) = (Δ
(3) Δ"Δ"( ί ) =

Proof. (1) By the definition of C(V) x Γ-valued inner product and (4.2), the
equality holds for ξ, η £ S, t G M. Then

sup{||Δ r f(ξ)||/||ξ||; ξeS, ξ ϊ 0}

= snp{\\σt((U))\\1/2/\\(U)\\1/2; ξes,ξ?o} = i.

Hence Aτt extends to a bounded operator on a Banach space e, and the
equality holds for all ξ G e.

(2) A straightforward computation shows that the equality (2) is true for-
ξ E e, α G C(F) x Γ. By continuity, the equality holds for all ξ G e and
α G C(F) x Γ.

(3) From the definition of Aιt and continuity, the conclusion follows.
D
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Statement (2) of Lemma 4.3 means that Aιt is not C(V) x Γ-linear.

Lemma 4.4. (1) If P e £(e), then AUPA~U € £(e), and HΔ^

l l^ll
(2) We have Δ<t/C(e)Δ-<ί C £(e).

Proof. (1) Let ξ € e, and let a € C(V) » Γ. By Lemma 4.3,

«) (ξa) = AU

We have also that

This means that (Δ^PΔ"*)* = AUP*A-U. Obviously, AitPA~it, Δ < ί P*Δ' i ί

are bounded. Thus

Since Δ J ί : e —> e is a surjective isometry,

| |Δ«PΔ- β | | =

(2) Let ξ,η G e. By the definition of rank one operators θ^η and Lemma
4.4,

Therefore Δft/C(e)Δ-« C /C(e). D

Definition 4.5. For P G £(e), set

σ t(P) = Δ i t P Δ - i t e C{e).

Proposition 4.6. TΛe operator {σt}te^ on £(e) amounts to a one-parameter
group of automorphisms of the C*-algebra C(e). Moreover, {σt} preserves

Proof. It is easy to see that t -> σt is strongly continuous. The conclusion
follows from Lemma 4.4. D
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Notice that Δ" preserves CC°°

Lemma 4.7. If P e Ψf(#), then AitPA~it € Φf (S).

Proof. We only have to show that AτtPA~ιt is Γ-equivariant. (Other prop-
erties of elements of Φf(E) are obvious.) For g € Γ, ξ E CC°°'O(E), we
have

= g(Ψ)-*g{ξ) = X^^gte) =

Hence

0 ( Δ a P Δ - a ) = λ ^ ' Δ ^ P Δ " " = XjuAuPgA-it

because the multiplication by λ^ 6 Coo(Vr) commutes with operators Δ8t

and P. D

Lemma 4.8. ΓΛe linear operator Δ r t extends to a bounded operator on
W?{E) for all s.

Proof. Recall that the L2-inner product induces a well-defined pairing

such that \{ξ,η)x\ < \\ξx\\s\\ηx\\-s Let s > 0. Set Q = ψ*&*'$-*. Thanks to
Lemma 4.7, Q G Φ^S(£J). We have

<

Therefore Δ ώ : W?(E) -)• ̂ ( έ ) is bounded for s > 0. Then by nondegen-
eracy of the pairing W* x W;-s ->• C, we see that Δ " : W (E) -> Wτ

s(£;) is
bounded for all s. D

By Lemma 4.8, there exists a constant C > 0 such that

| | | Δ i t p Δ - i t | | | < C| | |P | | | for P e f 1 ^

By continuity, σt{P) = Δ ' P Δ " " , P € 21, gives rise to an R-action on the
Banach algebra 21. Denote by δ the generator of (σt), i.e.

<5(P) =l imi(σ ί (P)-P)/ ί , P e 21.
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Then δ is a closed derivation of 21, whose domain contains Φf 1(E). Set
φ = λogψ. Then by a straightforward computation we obtain that

= [φ,P]=ψP-Pφ,

where φ is regarded as pointwise multiplication operator.

Proposition 4.9. IfPe Φ f 1 ^ ) , then δ(P) G ^γ2{E).

Proof. Recall first the definition of i/>, i.e.

ώ Λ ωy = ψω.

Prom this, g(ώ) Λ g{ωv) = g(ψ)g(ω), g G Γ. Since cD and α; are Γ-invariant,

and g(ωy) = λpα;v, we have

λ^ώ Λ ωy = g(ψ)ω.

Therefore we have

(4.10)

and

(4.11)

Since φ G C°°(M x V), both </λP and Pψ are continuous linear operators
Cc°°'0(£) -> σc°°

 0 ( β ) , and (φP)x = φxPx, {Pφ)x = Pxφx are ψDO's on M β

for every x G V. By asymptotic expansion of the symbols, we can see that
ψxPx — Pxψx is a τ/>DO of order —2. Hence we only have to show that [φ, P]
is Γ-invariant. We have

g(φP - Pφ) = g(φ)Pg - Pg(φ)g

- Pψ)g + (\ogλgP -Plogλ9) by (4.11)

= {ψP - Pφ)g,

because log λg commutes with P.
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5. Godbillon-Vey Classes.

Throughout this section, V denotes the circle S1 with the canonical volume
form dx. The foliation J7 on X = M xΓ V is transversely orient able and
codimension one. To such a foliation, a characteristic class gv(T), called the
Godbillon-Vey class, is assigned. In this section we will give a description of
gv(T) in terms of function φ introduced in the preceding section. We will
use this description in Section 8.

Let θ be an arbitrary 1-form on X defining T. By integrability, there
exists a 1-form η such that dθ = η A θ. The Godbillon-Vey class then given
by[ηΛjη\eH*DR(X)([13]).

Let Θ,JI be the lifting of 0, η respectively to M xV. Let Ω be the pullback
of ώ by M x V -> M. Then ω = Ω Λ θ is a Γ-invariant volume form on M x V.

Since θ and ωy = dx define the same foliation on M x V, there exists a
nowhere vanishing smooth function / on M x V such that θ = fωv. Then

ω = ΩΛθ = fΩΛωv = fφω.

So / = 1/ψ. Consequently, θ = (l/φ)ωv. From this

dθ = ήΛθ= (l/φ)η Aωv.

On the other hand

dθ = d(ljφωv) = d{l/φ) Λ

for ωv is closed. From these,

(5.1) (l/Φ)η Aωv = d{l/φ) Λ ωv.

Recall that ψ — log-0 and ώ Aωv — φω. Thus — dψ Aωv — η Aωy.
The tangent bundle T oΐ M x V has a splitting

where T" (resp^ T;/) consists of vectors tangential to M I } x £ V (resp.

{α} x F , α 6 M). Set

Ωn'm = C°°(An(T;)* ® Λm(T")*).

The exterior derivative d splits as

d = d' + (-l)nd" on Ωn'm,

where d! and d/; are exterior derivatives in the direction of M and V, respec-
tively.
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The (1,0)-component and (0, l)-component of the 1-form η are denoted ηf

and 77", respectively. Since the wedge product with ωv induces an injection

it follows from (5.1) that

-d'φ = -{dφ)'=ή'.

Then

(5.2) ηAdη = (ή' + ή") A d(ή' + η")

= -ή' Ad"ή' +ή' Ad'ή",

because dή' = -d'd'φ = 0 and Ωn 'm = 0 for m > 1. We have

(5.3) d(rf A η") = {dfrf - d"η') Λ η" - fjf Λ (d'η" + d"η")

Notice that η' A η" is Γ-invariant, sine the Γ-action on M xV preserves the

decomposition T = V Θ T".

Proposition 5.4. The Godbillon-Vey class of T is given by the cohomology

class

[-d'φAd"d'φ]eH3

DR(X).

Proof. By (5.2) and (5.3),

ηAdη = -d'φ A d"d'ψ - d{ή' A η").

Since η A dή and ή1 A ή" are Γ-invariant, so is d'φ A d"d!φ. Therefore —d'φ A

d"d'φ defines a 3-form on X, and

[η A dη] = [-d'φ A d"d'φ] £ H3

DR{X).

D

Remark 5.5. Equality (4.11) together with the fact that logλ5 on M xV

is constant in the direction of M implies that d'φ is Γ-invariant.
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6. Cyclic Cocycles.

In this section we will construct a densely defined cyclic cocycle on the
algebra 21. This cocycle can be interpreted as an analytical variant of gv{T).

As in the preceding sections, let E be a given Γ-equivariant bundle over
M x Sι. Define a new right Γ-action by

(6.1) vg = \g(x)-ιvg, f i E £ M , g G Γ,

where vg is the given Γ-action. Denote by E' the vector bundle E equipped
with this new action, and denote by g[ξ] the action of g G Γ on ξ G C^°f0(E').
Then

(6.2) g[ξ] = Xgg(ξ).

With respect to the new action (6.1), the Hermitian metric of E is no
more Γ-invariant. However, we have the relation

(vg.wg) = λg(x)~2(υ,w), υ,w G E(πiyX).

This enables us to obtain continuous fields of tangential Sobolev spaces.
Let P G Φ f ( S ) . Then

9[P(ξ)} =

here we used the fact that P commutes with the multiplication operator λg.

Thus P E <&r

τ(E').

Conversely, if Q € *£(•#')> t h e n

Since λ9 > 0, we have g(Q(ξ)) = Q(g(ξ)), i e. Q € *
Denote by d2φ the partial derivative of φ in the direction of S1. Regard

the pointwise multiplication by d2φ as an operator C^°'°(E) -> Cffi{E'),
and consider the commutator of operators

] = (d2φ)P-P(d2φ) for P
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Proposition 6.3. We have [d2φ,P] G Φ j r 1 ^ , ! ? ' ) .

Proof. The proof is similar to that of Proposition 4.9. We only have to show
that [<92<£, P] is Γ-equivariant. We then have

g[(d2φ)P - P(d2φ)} = Xgg((d2ψ)P - P(d2φ))

= \g{g{d2φ)gP - Pg{d2φ)g)

= \g{d2φ)Pg - XgPg{d2φ)g

= (d2φ + a2(log λg))Pg - P(θ2ψ + d2(log λg))g

= {{d2φ)P - P(d2φ))g + Θ2(log λg)Pg - Pd2(log\g)g.

Since logλp is constant along Mx, x € S1, so is 92(logλ3). Thus 92(logλ9)
commutes with P. Hence

] = [d2φ,P}g,

i.e. [d2φ, P] is Γ-equivariant. D

Let N be as in Section 3, and let N > r > 0. As in Section 3, we can
define a norm | | | | | | on Ψ^Γ(E,E') by

Denote by OPf(E,E') the completion of ^γr{E,E') with respect to
HI • | | | .Jt is easy to see that if P e Φr(^), Q E Vq

Γ(E,E'), then PQ, QP 6

Proposition 6.4. The space OPf2(E,E') is a Banach %-module.

Proof. Straightforward. D

Notice that the correspondence P —> [d2φ,P] is an unbounded derivation
from 21 into OPf2(E,E') with domain Ψ f 1 ^ ) . Closability of the multipli-
cation operator d2φ implies that the derivation P —ϊ [d2φ, P] is closable.
Denote by δι its closure with domain Dom^x).

Consider the multiplication operator Aiι on both E and E'.

Proposition 6.5. If Q e ^(E,E'), then AUQA-U G Φf (#,.§').

Proof. It is sufficient to show that AuQA~ιt is Γ-equivariant. Let ξ €
C™<°(E). Then

(6.6)
= g(Δu)\gg(QA-«ξ) =
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By (4.10), g(Au) = AH. Hence the equality (6.6) is equal to

This is the end of the proof. •

For Q e Φf2(i?,£'), set σ't{Q) = Δ^QΔ"4*, t G R

Lemma 6.7. The linear operator σ't extends to an automorphism of
OPf2(E,E').

Proof. By Lemma 4.8, the operator Aιt is bounded on Sobolev spaces. There-
fore

In particular, there exists C > 0 such that

.-N < C\\Q\\-N+2,-Nt

| |Δ i*QΔ- i t | |JV,Λr_2 < C\\Q\\N,N-2.

It follows that || |σί(Q)||| < C|| |Q|| |. D

It is clear that (σ't) is a one-parameter group of automorphisms. Denote
by δ'2 the generator of (σ't), and by Dom^ί,) its domain.

Proposition 6.8. If Q € ^γ2{E,E'), then Q € Όom(δ'2), and δ'2(Q) =

[ψ,Q]

Proof. Same as that for the derivation δ2. D

Proposition 6.9. If P G Φ f 1 ^ ) , then δ1(δ2(P)) = ̂ (

Proof. From Proposition 6.8 and the definition of J l 5 the conclusion fol-
lows. D

Recall that the underlying Hermitian vector bundle structures of E and E'
are the same. Therefore L2(E) = L2{E'). Then, if Q E Φ ^ E , ^ ) , r > 0,
the operator P x can be regarded as a bounded operator on L2(EX). Let σ
be a compactly supported smooth function on M x S1, and let σx be the
restriction of σ to Mx, x G S1.

Proposition 6.10. Let s > dimM. Then σxΛ~s/2 and A~s^2σx are Hilbert-
Schmidt class operators.

Proof. Recall that Λ = (/ + Δ) 1 / 2 . For the Laplacian Δ' on M, we have that

(I + A1)-112 G Cv for any p > dimM.
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Prom this, ((/ + Δ') 1 / 2 )~ s / 2 is a Hilbert-Schmidt class operator. If Q is
a ψΌO of order —1/2 on M, then Q is a Hilbert-Schmidt class operator,
because

/ /

In particular, the Schwartz kernel of Q is measurable and square-integrable.
Let P e ^γs/2(E). Then the Schwartz kernel of P is measurable [6].

The observation above, combined with Γ-compactness of the support of the
Schwartz kernel, implies that σxPx and Pxσx are Hilbert-Schmidt class op-
erators.

Let P e Ψγs/2{E) be a parametrix of Λ5/2, so that T = PΛS/2 - / is a
compactly smoothing operator. We have

as operators on L2(EX). Prom this, σxA~s/2 = σxPx — σxTxA~s/2. Since
both σxPx and Txσx are Hilbert-Schmidt class operators, so is σxA~s^2. As
Λ~s/2 is self-adjoint, we see that A~8/2σx is also a Hilbert-Schmidt class
operator. D

Corollary 6.11. Let σ,σ' be compactly supported smooth functions on
M x S1. Then for every P e Φf s(E,E') with s > dimM, the operator
σxPxσ'x is a trace class operator on L2(EX), for any x E S1. Moreover, there
exists a constant C > 0 such that

\Tr(σxPxσ'x)\ < C | |P | | s / 2 > _ s / 2 .

Proof. We have

σxPxσ'x = (σ.Λj ^ X Λ ^ P . ^ /

Consequently, σxPxσ'x is of trace class, and

\Tr(σxPxσ'x)\ < ^ k

where || ||i (resp. || | |2) is the trace class norm (resp. Hilbert-Schmidt
norm).

Continuity of the family (A~s^2)x implies the existence of C > 0 such that
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Thus
\Tr(σxPxσ'x)\<C\\P\\s/2^s/2.

D

Let σ be a compactly supported smooth function on M x S1 such that

i.e. {g(σ)2}geΓ is a Γ-invariant partition of unity on M x S1.

Definition 6.12. For P G ̂ γs(E,E') with s > dimM, set

(6.13) traceΓ(P) = / Tr(σxPxσx)dx.

Notice that the integrand in (6.13) is continuous. A modification of the
proof of Lemma 4.9 of [1] shows that traceΓ(P) is independent of the choice
of σ.

Let P G Φf s (£,£ ' ) , Q ^τr(E) = Φ F W
Then PQ, QP G Φ r β + r ( £ , £ ; )

Proposition 6.14. Let r + s > dimM + 2. Assume that either 0 < r < 2,
or 0 < 5 < 2. Then

tracer (PQ) = traceΓ(QP).

Proof. Since P and Q have Γ-compact Schwartz kernels, there exists a finite
subset S of Γ satifying:

(i) S = S~\

(ii) snppg(σ)x Π suppσ ^ 0 => g e S,

(iii) σxPsΣ#(σ)x = σxPxΣ'g(σ)x, and

)x = σxQxΣ'g(σ)x,

where the summation Σ (resp. Σ') is taken over all g G Γ (resp. g G S).
Then

Tr(σx(PxQx)σx) =

The last expression is equal to

Σ'Tr{g{σ)xQxσxσxPxg(σ)x),
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because either σxPxg(σ)x or g(σ)xQxσx is a trace class operator, by Corollary
6.11 and our assumption on s,r.

Let U(g) be the canonical unitary mapping L2(Exg) —> L2(EX). It is easy
to check that, as multiplication operator,

g(σ)x = U(g)σxgU(g)~1.

Then we have

g(σ)xQxσxσxPxg(σ)x

= U(g)σxgU(g)-1QxU(g)U(gy1(σx)
2U(g)U(g)-1PxU(g)σxgU(9r1-

Since Q is Γ-equivariant, U(g)~1QxU{g) = Qxg. As for P, we have

Hence

traceΓ(PQ)= / Σ'Tr{g(σ)xQxσxσxPxg(σ)x)dx
Js*

= / Σ'Tr(σxgQxgg-1(σ)xgg-1(σ)xgλg(x)Pxgσxg)dx
Js1

s1

= / Σ'Tr{σxQxg-\σ)xg-ι{σ)xPxσx)dx

= ί Σ'Tr(σxQxg(σ)xg(σ)xPxσx)dx

ί ' -1/ \2

= ί Tr(σxQxΣ(g-ι(σ)x)
2Pxσx)dx

Js1

= tracer (QP)>

D

By Corollary 6.11, tracer is continuous with respect to || ||s/2,-s/2j P r o "
vided that s > dimM. This implies that traceΓ extends to a continuous
linear functional on OPfs(E,E') with s > dimM. (Caution: our tracer is
not the same as tracer of [1]. Our traceΓ is not an actual trace on any
algebra, it is just a linear functional, while Atiyah's tracer is an actual trace-
on an algebra.)

Lemma 6.15. (1) traceΓ([d2^,P]) = 0 for all P e * f s ( £ ) with s >
dimM.
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(2) tracer(#>(<9)) = 0 for all Q G ΦFS(#, E') with s > dimM.

Proof. (1) Notice that Pxσx and Px(d2φ)xσx are trace class operators. Then

Tr{σx{d2φ)xPxσx) = Tr{Pxσxσx(d2φ)x)

= Tr(Px(Θ2cp)xσxσx)

= Tr(σxPx(d2φ)xσx).

Thus Tr(σx[d2φ,P]xσx) = 0. Hence traceΓ([<92</?,P]) = 0.
(2) The proof is the same as that of (1). D

Furnish (£ = Dom(5χ) Π Dom(52) with the locally convex topology given
by the graph norms associated with δι and δ2.

We will construct a densely defined cyclic cocycle on 21. Let us first con-
sider the case where dimM = 2. Set

(6.16) r2 (P°,P\P2) - tracer ( P % (P1) δ2 (P2))

- traceΓ (P°δ2 (P1) δι (P2)) for P°, P 1 , P 2 G C C 21.

Proposition 6.17. The trilinear functional τ2 is a cyclic 2-cocycle.

Proof. If P ^ P ^ P 2 e <£, then the products

P % (P°) ί2 (P°) and

belong to OPf5(E,E'). Since $i and δ2 are derivations, τ2 is a Hochschild
cocycle. By Proposition 6.14 and Lemma 6.15, τ2 is a cyclic cocycle on
Ψf l(E) C C Then by continuity and the fact that Φ f 1 ^ ) is dense in 6, we
can see that τ2 is a cyclic cocycle on (£. D

Proposition 6.18. The densely defined cyclic cocycle τ2 is a 2-trace on 21
in the sense of [8].

Proof. We have that

τ2(a?dxιaιdx2) =

and

< σ l f 2 | | | α 0 | | | n i e l l i ,
for some constant CΊj2 depending only on x1 and x2.
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Similarly

This completes the proof. Π

Let us now consider higher dimensional cases. Let dimM = 2n. The
formula (6.16) defines a cyclic cocycle on Φf °°(.E), but not on 6 when n > 1.
Consider the cyclic 2n-cocycle Sn~~1τ2, instead. For P°, . . . , P 2 n , we have

(6.19) ((n-l) !)- 1 (2π2) 1 - n S f n - 1 τ 2 (P 0 , . . . ,P 2 n )

{tracer (

2i-2δ2(P2i~1)P2i
P2i-2δ2(P2i~1)P

Denote by τ 2 n (P°, . . ,P 2 n ) the right-hand side of (6.19). Notice that
r2 n (P°,... , P 2 n ) makes sense when P°,. . . , P 2 n e <£.

The proof of Proposition 6.18 can be generalized to show that τ 2 n is a
2π-trace on 21.

Definition 6.20. When dimM = 2n, the Godbillon-Vey cyclic cocycle gv
is the 2n-trace

gv = ( n - l)!τ2 n.

By [8, Lemma 2.3; Corollary 2.4], gv extends to a cyclic 2n-cocycle on
a holomorphically closed dense subalgebra of 21, consequently it induces an
additive map from i£o[2l] into the scalars. By Proposition 3.6, the canonincal
inclusion 21 C C*(X, T, E) induces an isomorphism of fΓ0-groups. Hence gv
induces a map ϋfo[C*(X, T, E)] -> C. In Section 8 we will compute the value
of this map on a specific class in Ko[C*(X, T, E)].

7. Dirac Operators and Graph Projections.

In this section we will show that the graph projection of a longitudinal Dirac
operato^belongs to the domain of the 2n-trace gv on 21. _

Let M be as in the preceding sections. Assume further that M is even-
dimensional and is furnished with a Γ-invariant spin structure. Denote by
D the associate^ Dirac operator on M acting on the bundle S of (complex)
spinors. Since M is even, the bundle S has a Z2-grading ε. Thus

(7.1) S = S+@S~y
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where S*1 are ±1 eigenspaces of ε, respectively. With respect to the decom-
position (7.1), the operator D has the form

where D*1 are first-order, elliptic differential operators. Since the Γ-action
on S preserves 5=*= respectively, D*" are Γ-equivariant operators. Moreover,
D is essentially selfadjoint and has a closed extension. The closure D** of
D has the form

D ( ή

where T is the closure of Z?*, and Z}** is selfadjoint.
The graph G(T) of Γ is, by the definition of T, a closed subspace of

L2(S+) θ L2(S~) = L2(S). Denote the corresponding orthogonal projection
by e, and set

Lemma 7.2. We have

/ 1 1 \ / \

Proof. Define t : L2(5+) -»• L2(5+) θ L2(5") by

/Λ 1/2 / ( / +

ί = ^ τ J (7 + TT) =

It is easy to see that t*ι = 1. Since (/ + JΊ*T)-1/2 j s a n isomorphism from
L2(5+) onto the domain Dom(T) of T, the image of % is precisely the graph
G(T). Thus the projection e is given by

* __ ( i1 + T*T)-λ {I + T*T)~λT* \
6 ~ U \T{I + T*T)-λ T(I + τ*T)~ιT*) '

As for the second equality, from the equality

f, /τ»*τΛ—1 \ / n αi+λ
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it follows that

D

Set

Set u = (I + X)ε Then

u2 = (I + X)e(I + X)ε = (J + X)(J - X) = I - X2,

because Xε = —εX.

Let e = e — p_. Then using the equality

we can see that

(7.3)

From this,

(7.4) e2 = vΓ2 = {I - J

A straightforward computation shows that

(7.5) e= I U + i 1 ]

As in the preceding sections, suppose that Γ acts on S1 by orientation pre-
serving diffeomorphisms. For each x e S1, identify Mx = M x {x} with M
in a natural way. Via this identification, we obtain a vector bundle Sx and
a differential operator Dx. By abuse of language, denote the family (Dx) by
D. It is clear that D is a Γ-equivariant family of elliptic operators, acting on
a Γ-equivariant vector bundle S = (ί?x), i.e.

D e Φi(5).



GODBILLON-VEY CYCLIC COCYCLE 515

The Γ-equivariant differential operator D on M x S1 descends to a longi-
tudinal elliptic operator D on X — M x Γ S1, which we call a longitudinal
Dime operator.

The operator D is of the form

D =

and D+ = (D£) £ Φp(S ί+,S f ). Consequently, we can consider a continu-

ous field e = (ex) of projections: each ex is the orthogonal projection of

L2(S£) θ L2(S~) onto the graph of the closure of D+. The matrix p_ can be

regarded as the orthogonal projection of (L2(SX)) onto (L2(S~)J

Then, obviously p_ E Φr(S).
We devote the rest of the section to show that e belongs to the domain

of the cyclic cocycle gv. For this purpose we employ the method of bounded
propagation [20], [21], [23]. Since the Dirac operator D is the lifting of the
Dirac operator on a closed manifold M, it has bounded propagation speed.

Recall that the space S^M) of symbols of order zero is the collection of
all C°°-functions / o n l such that for each j = 0,1, 2,. . . , it holds that

sup{(l + \x\Y\fU)(x)\ : x e R} < oo.

We need the following:

Proposition 7.6. ([15, Thm. 7.25], [20, Thm. 21]). Let P <E ̂ r(E) be
a longitudinal, tangentially essentially self adjoint, first-order elliptic differ-
ential operator of bounded propagation speed. If the Fourier transform f of
f E ^(K.) is compactly supported, then

// the Fourier transform g of a Schwartz function g is compactly supported,

g{P) is compactly smoothing.

Let p+ : R -» [0,1] be a C°°-function such that

P + Ξ 1 on t < 1 - 5,

and

P + Ξ 0 on t>l+δ

for some sufficiently small 0 < δ < 1. Set p-(t) — p+(—t). For λ > 2, set
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to obtain a C°°-function ρx(t) : R -» [0,1] such that

Px{t) = l on |*| < λ — 1 — *,

and

P A ( * ) Ξ 0 o n | ί | > λ - l + ί .

Lemma 7.7. For any positive integer i, there exists a positive constant Ci
such that

\pψ{t)\<d for all λ,ί.

Proof. By the construction of px, it is straightforward. D

Set

(7.8) φλ(x) = (2π)~1/2 / eixtpx(t)e^ dt.
JR

L e m m a 7.9. (1) The function φx belongs to 5°(1R), and its Fourier
transform is px(t)e~^.

(2) The function φχ(x) = (2π)" 1 / 2 ( l + x2)φx(x) -I is a Schwartz func-
tion with compactly supported Fourier transform.

(3) As λ -> oo, ^λ converges to zero in C0(M).

Proof. (1) Using integration by parts twice, we get that

(7.10) {2π)-^φx{x) = - ^ + Γ p'l(t)e^~^(ix - 1)~2 dt
1 ~r X JO

+ f pl{t)^ix+ι\ix + l)-2dt.

Prom this, it follows that sup{(l + x2)\φx(x)\; x E M} < oo. This, in turn,
means that φx G L1(M), because φx is continuous. Then by the Fourier
inversion formula,

Φx{t)=pλ(t)e-M.

For a given nonnegative integer j , consider

hx(t) = (it)jpx(t).
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Notice that hl*\o) = 0 for k = 0,1,... J. Then

f°° I

JO J-oo

— (-l)J f h(jUt)p(ix~1ϊt(iτ — l)~j Ht
I I I I ί ί ι \ l l / j C \ LJu JLI L6o

^ 0o

It is easy to see that there exists a constant C > 0 such that

bλ }(^)l < £ ( ! * * - l Γ ' + lis + ll"') for all x.

Thus

sup{(l + \x\)j\φ(^(x)\; x e R} < oo.

(2) The equality (7.10) implies that φx E C0(R). We need the following

Sublemma, which we will prove later.

Sublemma. As distributions, we have the identity

where SQ is the delta function at t = 0.

We now have that

(7-11) & ( ^ )

= —pχe~w + 2ρf

xe~^sgn(t) (as distributions).

Since both sides of (7.11) are compactly supported C°°-functions, they are

actually equal as C°°-functions. It is now clear that φx is a Schwartz func-

tion.

(3) The Fourier transform induces an isomorphism from C0(M) onto C*(R).

So

By our construction, p'λ', p'x are bounded uniformly in λ. Therefore the equal-

ity (7.11) implies that

H^AIUMR)-*0 a s λ->oc.

This concludes the proof of Lemma 7.9. D
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Proof of Sublemma. Let /(«) = e~w. For g e CC°°(M), applying integration
by parts twice, we obtain that

f f(t)g"(t)dt = Γf(t)g"(t)dt+ f f(t)g"(t)dt
JR JO J-OO

= -2^(0) + ff(t)g(t)dt.
JR

Therefore

t-\ ί f(t)g"(t)dt
2 Ju

= 9(0)

D

For P G Φp(iS), by a straightforward computation we get that

(7.12) | | P | | M + r = | |(7 + Δ) f c/ 2P(7 + Δ)-( f c

In the definition of tangential Sobolev spaces for the bundle S, we can use

D2 in place of the Laplacian, thanks to the standard elliptic estimate. Thus

we may assume that the Sobolev s-norm is given by

2ξ\\ for ξeC™.

Consider an (unbounded) intertwining operator T — (Tx) of W®(S) —

(L2(SX))X, where Tx is the closure of D+. As before, set

χ - [ τ o j
Then

(7.13) e = (I + X)

By Proposition 7.5 and Lemma 7.9,
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and

= V2Ϊ(l + D2) Ψχφ) -

These imply that ψχ(D) G ̂ γ2(S). Hence

The equality (7.13) means, in particular that e is an operator of order —1.

Therefore we can consider the norm e — \/2π(J 4- X)εψχ(D)\

By (7.12)
\k,k-l

k,k-l
(I + X)ε [I + D2) - V2π(I + X)εφx(D)

(/ + b2)k/2 {I + X)ε ( (/ + D2)"' - V2^Ψxφ)\ ( l + D2)

(i + x)ε ( (/ + b2) ~ι - v^^ί^D)) (/ + b2*)1A

(/ + X)ε (i + D2) ~1(l-y/2^[l + D2) φxφ)) |

(7 + X)ε (i + D2)'1 I - y/2^ ίl + D2) Ψxφ)\\ .
V ' r\ r\ ^ ' I' 0,0

(l-fc)/2

0,0

0 0

In this computation we have used the fact that (/ 4- D2)1/2 commutes with

(/ + X)ε(I + D2)-1 - V2πψλ(D). Now by Lemma 7.9, (3),

k,k-l
a s λ —>> o o .

Thus e is in the closure of ΦΓ

1(S r) with respect to the norm | | | | | | . Therefore
e G21.

We show that e belongs to the domain of δ2. Recall that e = u~ι —
((I+X)ε)-1 = (D+ε)~ι. If φ is bounded, then the commutator [φ, (D+ε)'1]
is a bounded operator, and

lim [φ, V2^{I + X)εψxφ)\ = [(/?, (5 + ε)"1] .

Unfortunately, ψ is unbounded in general (see (4.11)). Thus \φ,(D + ε) λ is

defined only on a subspace which may not be dense. So, even if </?,(£) + ε ) " 1
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extends to a bounded operator, the extension may not be unique. However,
"formally" we have the equality

[φ, (D + ε)"1] = ψφ + ε)"1 - φ + ε)~ι

φ

and (Z> + ε)"~̂ [Z) + ε, φlφ + ε)"1 is a bounded operator, because [D + ε,φ] —
[D,ψ] E Φr(^) τ l m s ιt i s natural to expect that

δ2(e) = φ + ε)~ι[D + ε, φ]φ + ε)~ι.

Notice that [φ, φ+ε)V2πφxφ)] € ΦF2(^)5 and that φ+ε)~1[D+ε,φ}φ+
ε)" 1 is an operator of order —2 (not a ψΏO). We will show (Proposition 7.17)
that

as λ -» CXD for any s. It is enough to show that

I(D + ε) [ψ, (D + ε)V2Uφχ{D)] φ + ε) - [D + ε, φ]\\^ g -> 0

as λ —> oo. Recall that ψ\(x) = 1 — (1 + x2)φx(x).

Lemma 7.14. We have

( 2 ) ] | - > 0 as λ->oo.

Proof. For simplicity, set aχ(x) = (1 + x2)φχ(x). Then

φxφ) (i + D2) = aλφ) = J ax{s)eisΈ> ds.

Since [<£>, D] extends to a bounded operator, by DuhameΓs formula,

[ψ,φxφ)

From this

+ D2)}\\oo<\\[φ,D}\\o,ojjax(s)\\S\ds.

= J ̂

By the definition of ψλ, when λ -> oo, the integral JR |Sλ(^)| |s| ds behaves
like λe~Λ; i.e. there exists a constant C > 0 such that

*x(s)\\s\ds<C\e-χ.
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Thus

L e m m a 7.15. We have

Proof. We have

Then

0,0

0,0

0 as λ -» oo.
0,0

-1/2

-1/2

0,0

D

0,0

0,0

(notice that [(/ + D 2 ) 1 / / 2 , φ] is an operator of order 0). By Lemma 7.14, we
get the conclusion. D

Lemma 7.16. We have

\\[φ,MD)]\

Proof. By (7.12),

s,s—1
0 as λ —> oo.

0,0
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Case (i). s > 0. In this case

here we have used the fact that 11 + D2) ,φ\ GΦf (S) provided that

5 > 0. We have

<

0,0

0,s-l Ϊ-1,0

which converges to zero as λ -> oo.
Similarly,

0 as λ —> oo.
0,0

Then, by Lemma 7.15, we obtain the conclusion.

Case (ii). s < 0. In this case -s/2 + 1/2 > 0 and [φ, (I + /J2)(1-*)/2] i s

a ψΌO. Making use of [y>, (/ + D*)Q—)I*] in the place of [(/ + D2)s'2, φ] in

Case (i), we can deduce the conclusion. D

Proposition 7.17. The element e is in the domain of δ2, and

Proof. As mentioned above, it is sufficient to show that

φ + ε) [φ, φ + ε)V2^Ψxφ)] φ + ε)

converges to [D + ε, ψ] as λ ->• oo, as operator of order zero. By a straight-

forward computation,

φ + ε)[5 + ε,<p]-φ + ε) [<p, φ

= [D + ε,φ]ΦxΦ) + M
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We have that

Then by Lemma 7.16,

\\[tp:iPx(D)}{D + s)\\s,s-*O as λ -> oo.

By construction, ψ\(D) commutes with (i + D2j . Hence

2 φχ(D) (/ + D2yΦ

-)• 0 a s λ -> o o .

From these it follows that ||[D+ε, φ]ψ\(D)\\SiS —>> 0 as λ —> oo. Consequently,

[cp, (5 + ε)V2πφx{D)] -> (D + ε ) " 1 ^ + ε, (p](5 + ε)" 1 .

0,0

Recall that (D + ε)v2π(y9λ(-D) —> e in 21. Therefore, by closedness of δ2 we
obtain that

S2(e) = (D + ε)-χ[5 + ε, ̂ ( 5 + ε) ' 1 .

D

By the same argument, we can verify that e is also in the domain of <5X,
and that

(7.18) δ1{e) = {DΛ- ε ) " 1 ^ + ε,

8. Main Theorem.

In this section we will compute the pairing between the 2n-trace gv and the
class of the graph projection of the longitudinal Dirac operator. Throughout
this section dimM = 2n.

Let D be the longitudinal Dirac operator for the foliated S1 -bundle (X, T).
Denote by C*(X,T,S)~ the C*-algebra generated by C*(X, T, S) and the
projection p_ in ρo We then have a split exact sequence:

In Section 7, we showed that
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Set Θ = [e] - [p_]. Then Θ € K0[C*(X,F, S)].

Proposition 8.1. The class Θ is equal to ind(jD+).

Proof. Recall [9, Lemma 6.1] that

where Q is a parametrix of D+, and

S0 = I-QD+eC*(X,f,S+),

Set

and

o \1 "T
?; =

Then,

and

_ / 50

2 5o(/ + S0)Q\

^-{s^ i-si J'
and υu = e. Thus

i n d p + ) = Θ in ϋΓ0[C
r (-X'J^

Γ,5)].

D
Denote by C*(X,^Γ,Sf)+ the C*-algebra C*{X,T,S) with unit adjoined.

Notice that C*(X,^*, 5) + is identified with the C*-subalgebra of ρQ gener-
ated by C*(X, T, S) and /G po The 2n-cocycle gv, constructed in Section
6, extends to C*{X,T,S)+ by setting
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if one of α°, α 1 , . . . , a2n is a scalar multiple of /.
In terms of C*(X,T, S)+, the class Θ is expressed as a difference

where

P =

Θ = [p] - [ϊ],

(I + D-D+)-1 0 0 (I +
0 00
0 0 1 _

\D+(I + D-D+)-1 0 0 D+(I +

'D- \

and

/0 0 0 0\
0 0 0 0
0 0 1 0
0 0 0 1/

Notice that p, q e M2(C*(X,Jr, S)+). Then it is easy to see that

(gv,\p)-[q]) = (2τn)2nn\gv(e,...,e).

The main focus of the section is to explicitly compute gv(e,... , e).
We have

gv(e,... , e) = (n - 1)!

where the summation is taken over all i and j such that 0 < i, j and i + j <
n - 1 .

Lemma 8.2.

(1)

have

and

(2)

x (I (D +
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Proof. Recall that u = (I + X)ε = D + ε. In Section 7 we showed that

5j(e) = φ + ε)-ι\D + ε,d2φ](D + ε)'1 = U-1[D,

and

δ2{e) = u-1[D,φ]u-1.

Therefore

e2i+1δ1(e)e2jδ2(e)e2n-2i-2j'2

D2) "(ί+1) [5, a2¥?] (J + £ 2 ) " ϋ + 1 ) [5, φ)

Similarly we obtain the second equality. D

For i, j with 0 < i, j , and i + j < n — 1, let

Then

gυ(e,... , e) = (n - 1)! ̂  (traceΓ (A i J) - traceΓ (β^")) ,

traceΓ (-4*>J) — \ tr (σxA^jσx) dx:

tracer {BiJ) = ϊ tr {σxB^σx) dx,

where Ax'
j (resp. B^) is the restriction of A1^ (resp. B1^) onto M^ =

M x {#}, a; G 5 1. We must compute tr{σxA\^σx) and tr(σxBx

y*σx). In order
to do so, we make use of Getzler's symbolic calculus method [12]. Fix an
arbitrary x G S1. For a while we do analysis on the manifold Mx — M. In
order to simplify the notation we supress the subindex, as long as it is clear
on which manifold we are working on. _

Consider a one-parameter family of operators on M = Mx,

ii+1) [W,d2φ]

pγwΛ
t2D-D+)-1 -(I + ΐD+D)1 Γ
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Similarly, define B^{t).
In the symbolic calculus method, a key notion is that of asymptotic order.

Assign to the parameter t the order —1, and to a Clifford multiplication the
order +1. The total order is called the asymptotic order. For instance, the
following symbols have the asymptotic order 0 [9]:

(i)

(ii) σ([W,f])(m,ξ)=tdfm, f£C°°(M).
In (i) the operator (λ+tD2)"1 is a ψΌO. However, its distributional kernel

does not have Γ-compact support. In (ii) dfm is a Clifford multiplication
operator.

Although in [12] only compact manifolds are studied, the method devel-
oped there works for compactly supported T/JDO'S. In particular, the follow-
ing "Fundamental Lemma" is valid for such ψDO's (we use the notation of
[12] and omit the proof).

Lemma 8.3. ([9], [12]). (1) If A = A(t) has asymptotic order 0, then

σt-i(A(t))=σ0(A)

where σt-\ is the rescaled symbol, and σo(A) is the asymptotic symbol of A.

(2) // A, B are operators of asymptotic order 0, then

σo(AB) =σo(A)*σo(B),

where * is the Getzler multiplication of symbols.

(3) IfU{t) G Oj95-°°, then

Trs(U(t))--=(2π)-άϊmM f _tr8(σt-i(π(t)))(m,ξ)dmdξ, t > 0,
JT*M

where dmdξ is the symplectic measure on T*M.

We return to the computation. It is easy to see that

and

tr(σB'Ί(t)σ)=Trs(n*j(tj),

where

Π£ (ί) = σ (/ + t2D2) ~ t+1 [W, d2φ]
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and

+ t 2 b 2 )

b2) ~{n~ι~J)

 σ%
2b2)

Next, notice that the operators considered in [9] and [12] are the operator
y/^ΛΪ). For simplicity, let JJ) = \f-ΪD. Then Ίjb * = - Jβ and $> 2 = - I ) 2 .
We have [ί?,<p] = -yf^Jβ ,φ\, and [JD,ftv?] = -yΓΛ\ψ ,ft^] From this
it follows that

π i w = -σ (i - e ip 2)" ( i + 1 ) [t 9" ( i + 1 ) [t 9 Λ] (it2y> 2 ) ' u + 1 )

t2 φ 2 y n~l~3

Similarly,

, d2φ] (i-t2 φ2y 3 σ.

The operators Π^ and Π^ satisfy the assumption of Lemma 8.3. Therefore

(8.4) ίr(σi4^(t)σ)=Γr f(lIί 1

J .(ί))

= (2π)~2n ί ^trs (σt-i ( π ^ ) ) (m,ξ)dmdξ
JT*M V V JJ

= (2π)~2n [ ^trs (σ0 (ufλ
JT*M

Similarly

(8.5) tr (σB^(t)σ) = (2π)"2n / trs (σ0 (nf,)) (m,0 dmdξ + 0{t)./
T*M

We compute the asymptotic symbols σ0 (Π^ J and σ0 (jlfj) - Symbols which
are independent of ξ commute with those dependent on £, with respect
to Getzler multiplication. By [9, Example (3.2)], σo([t# ,</?]) = dφ and

,d2φ\) = d(d2φ). Hence

σ o ( π ^ ) = -σd(ft^) Λ dφσσ0 (jl - tt2
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and

σ0 ( i l*) = -σdφ A d(d2φ)σσ0

2 ) (" J= σd(d2φ) A dφσσ0 ((i - i2 $> 2 ) (" J

Using the formula:

V7 " * ^ / = k\ Jo

we obtain

GQ ( Π ^ J = —σd(d2ψ) ί\dφσ- —- / sn^~1e~sσo(e~st ** )ds.

By [9, p. 362],

• sR/2 \ 1 / 2

JT* M "K y S ^\smhsR/2) '

where R is the curvature tensor of the Γ-invariant metric on M.
Applying the super trace, which amounts to multiplying (2/i)n and taking

the top degree term, we get that (8.4) is equal to

-(2π)- 2 n / _ σd(d2φ)
JT*M

A/ _ σd(d2φ) A dφσ
T*M (n + l j !

Γ°° ί s/?/2 λx^2

x / s n + 1 e - s τ r " s - n d e t — , ' Λ dsdmdξ + O(t)
Jo \smhsR/2J s v '

= - (-)"(2π)-2"π" ίσ2d(d2φ)Adφσdet ( R'l ) + O(t).
\ι J JM Vsinniί/2/

Therefore

(8.6) Σ\tr (σA^iήσ) - tr (σB^iήσ)}

i,j); 0 < i,j, and i+j<n- 1}) 2(2π)-2 nτrn

/ ^ \ / 2 I/O \ A 7 j x / ^ / ^ \ , rΛί,\

x T x / σ d\p2ψ) Λ dφσdet . Ί _ . + Uίί)

^ . ^

x/_σM^)Λ^σdet(-^) +O(ί)
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( i?/2 \ 1//2

, ) is homogeneous of degree
smn XL I Δ J

(n — 1). Hence (8.6) is equal to the following (8.7)

-2nτrnn(n+l)(2m)n-1- βY (2π)-2nτrnn(n+l)(-2m)

x / a*d{d2ψ) Λ dΨa det ( ΪT^T, u) ̂  + <>(*)•
7M y Ψ> Ψ \smh(-(l/2πi){R/2))J w

Proposition 8.8. As t -> 0, the term
converges to

-(-) (2π)-2nπnn(n + l)(-2πi)n'1

Moreover, convergence is uniform in x.

Proof. Convergence follows from the equality (8.7).
Recall that we^are dealing with a family of operators^!) = (Dp) on M x S1

such that Dx = Dy via the canonical identification of Mx and My, and φ, d2φ
are smooth functions. It follows that, when one applies Lemma 8.3, (1), one
obtains an estimate O(t), which is uniform in x. Then the conclusion is
immediate. D

Proposition 8.9. We have that

£ / [tr(σxA^σx)-tr(σxB^σx)]dx,

= ^ ί [tr(σxA
iJ(t)xσx) - tr(σxB

iJ(t)xσx)] dx for all t > 0.
^ Js1

Proof. The right-hand side of the identity above is precisely

where et is the graph projection of the operator 1D+, and et = et

Clearly, (e^) is a continuous path of projections. Therefore

[e] - [p-] - [et] - \p-} in Ko.

Hence
gv(et,... , et) = ̂ υ(e, . . . , e) for all ί > 0.
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D

From Propositions 8.8 and 8.9, it follows that

g v ( e , . . . , e ) = g v ( e t , . . . , e t )

= l i m g v ( e t ) . . . , e t )

- lim(n - 1)! ]Γ j [tr(σxA^\t)xσx) - tr(σxB"(t)xσx)} dx

= ( n - l ) ! V ( lim[tr(σxA
ι>J(t)xσx)-tr(σxB

ίJ(t)xσx)]dx
z-^ Jsi t->0

= -(n + I)!(2π)-2 nπn(-2πi)n-1 β

1 /9

x[ ίσld((d2φ)x)Ad(φx)det(. ~ / 1 ^ ) ( ^ 2 )

/ 9 , 0 dx
Js* JMX \smh(-(l/2m)(R/2)))

= -(n + I)!(2π)~2nπn(-2πί)n-1 [-")

x / [σ2dfd"φΛd'φΛA(R)

Js1 J M
= -(n + I)!(2π)~ 2 nπn(-2πi)n- 1 Γ-^ / rf'd'V Λ d'φ A A(R),

where X = Mxr^S1, and A(i?) is the A-polynomial of M given in terms of the
curvature R of the Γ-invariant Riemannian metric on M. Since d'd"φ Λ d'φ
is Γ-invariant, so is d'd"φ A d'φ A A(R). Consequently the integration of
d'd"φ A d'φ A A(R) on X is well defined. By Proposition 5.4, the 3-form
—d'd"φ Ad'φ represents the Godbillon-Vey class gv(F). On the manifold X,
the cohomology class of A(R) is exactly the pullback of A-class A(M) of the
spin manifold M. Thus

(8.10) gυ(e,... ,e) - -(n + l) !(-l) n ~ 1 (2^)~ 1 / d'd"φ A d'φ A A(R)
Jx

- (n + m-ir-1 (2m)-1 (gv{T) U A(M)) [X].

Summarizing the arguments above, we have the main result:

Theorem 8.11. Let X be a foliated S1-bundle over a 2n-dimensional closed
spin manifold M, and let D be the longitudinal Dirac operator. Then

{gυ,md(D+)) = (-l)"- χ(n + l)(2π ί)-"" 1 (gυ{T)UA{M)) [X].
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Corollary 8.12. // (gv(T) U A(M)) [X] φ 0, then the class θ = ind(D+)

is nontrivial in K0[C*(X,T.S)].

Example 8.13. Let ( T i Σ , ^ ) be an Anosov foliation associated with the
geodesic flow on the unit circle bundle TίΣ over a closed Riemann surface Σ
of genus > 2. Since dim Σ = 2,

(gv,ind(D+)) = ^

It is known [18] that gυi^lΆΣ] Φ 0. Therefore, θ = ind(D+) is nontrivial
in K0[C*(TιΣ, TA, S)]. In the next section we will show that θ together with
other known elements generates the whole i^0[Cί*(T1Σ,^Γ4, S)].
Remark 8.14. In (8.10), the righthand side is always purely imaginary.
This is due to the fact that the cyclic 2n-cocycle gv is purely imaginary, i.e.

for α 0 , . . . , a2n G Όom(gv).

9. A relationship between the cocycle gv and Connes's cocycle.

In this section we will study the relationship between the cyclic cocycle gv
and Connes's cocycle [8].

Let us recall his construction. Denote by τ\ the transverse fundamental
class for C(Sι) x Γ. That is

n(f°J1)=1)= Σ ί f°9o^9o)dfι

9l{χ
9091=1 J S 1

where fj = Y,fu

gUg G Cf{Sι x Γ). Its derivative fl5 defined by

(9.1) M/0,/1) =limi(r1(σ t(/°) lσ t(/1)) - r ^ / 0 , / 1 ) ) ,

is (σt)-invariant. The cocycle which Connes studied is iDφ(τι) We will see
that there exists a homomorphism Π from C(S1) x Γ into C*{X,T,E) such
that

τΓ{gυ)=iDφ{τ1)

on
C^iS1 x Γ) c C^ 1 ) x Γ.

There exists a compactly supported C°°-function σ on M such that
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i.e. {g{σ)}9€r is a Γ-invariant partition of unity for M. We can choose σ
so that σ takes the value 1 on some open set U. We may further assume
that the fundamental domain V is contained in suppσ. Assume that E is
a Γ-equivariant vector bundle on M x S1, which is the pullback of a vector
bundle E on M by the composition of two canonical maps

M x S1 -> M 4 M.

The bundle S of spinors considered in the preceding two sections satisfies
this assumption. Choose a section f E C^°(p*E) such that suppξ C £/, and

ί(ξ,ξ)dμ(m) = l.
JM

In a natural way, ξ can be regarded as a compactly supported section of E.
By the choice of ξ, we have that

(9.2) supp£ Π supp#(£) — 0 unless g = 1.

Moreover

(9.3) L(M)*dμx(m) = l
JM

for all x ζ S1. From this follows that

where ( , •) is the C(S'1) >i Γ-valued inner product on e in Section 2.
In general, for a right Hubert module over a unital (7*-algebra 21, if there

exists an η E e such that (77,77)̂ 1 = 1, then the map Π defined by

(9.4) Π(α) - 0 ^ , α E 21,

is a *-homomorphism from 21 into /C(e), which induces an isomorphism of
if-groups. Apply this principle to ξ above to obtain a *-homomorphism Π
from C{Sι) x Γ into /C(e) ^ C*{X,T,E).

Let dx and ώ be as in Section 5. Let ψ b e a real-valued C°°-function on
M x S1. It is easy to see that ω = φω Λ dx is a Γ-invariant volume form on
M x Sι if and only if τ/> is never zero, and φ = g(φ)λg for any # E Γ. Set



534 HITOSHI MORIYOSHI AND TOSHIKAZU NATSUME

Since {g(σ)} is a partition of unity, and Xg > 0, the function ψ is always
positive. Moreover

her

her

Thus ω = ψω Λ dx is a Γ-invariant volume form. Using the definitions given
in Section 5, obtain (Δ**) and (σt).

Lemma 9.5. The section ξ (as a section of E over MxS1) has the property
that

Proof. Obvious from the fact that ψ Ξ l o n suppξ. D

Lemma 9.6. The *-homomorphism Π given by (9.2) is R-equivariant; i.e.

σt(Π(α)) =Π(σ t(α)), for all aeC(Sx)xΓ and teR.

Proof. For each a G C^S1) x Γ and t e M, by Lemma 4.3,

= Π(σt(α)).

D

For α G Cf^°(Srl xΓ), the operator Π(α) is a compactly smoothing operator.
Therefore tracer(Π(α)) is well defined.

Proposition 9.7. For a0, a1 G C?(Sι x Γ), we

tracer
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Proof. We have, using (9.2) and (9.3), that

tracer (Tl(a°)δι(ϊl(a1)))

= / I L Σ ao(xg,9-
1h)((d2φ)(n:x)-(d2φ)(m,x))

Js* JVJM ghglh,

x a1 (xg',g'-ιti){ξ(nh,xh),ξ{ngf,xg'))

x (ζ(mhr, xh1), ξ(mg, xg)) dμx(n) dμx(m) dx

= 11 LΣa°(x9^-1h)((d2φ)(n,x)-(d2φ)(m,x))a1(xg,g-1h)
Js1 Jv JM g h

x \\ξ(nh,xh)\\2 \\ξ(mg,xg)\\2 dμx(n) dμx(m) dx

= ί ί LΣa^x^a^xh^iid.φ^x) - (d2φ){m,x^
Js1 Jv JM "

x \\ξ{nh,xh)\\2 \\ξ(mg,xg)\\2 dμx(n) dμx(m) dx.

Since ψ Ξ l o n supp<^, we have (52(^)(rn, a;) = 0 if m E P . Hence

tracer (Π(α )δι(H(a )))

Jv JM h

x dμx (n) dμx (m) dx

ί f x

Js1
 JM ^

If nh £ V, then \\ξ(nh,xh)\\2 = 0. By the choice of ̂ , if ||ξ(n/ι,x/ι)||2 ^ 0,
then

ψ(n,x) = \h-i(x)h(σ)(n),

and

φ(n,x)=l(h-1){x)+log(h(σ)(n)).

Therefore (d"φ)(n^ — dl(h~λ)x. Consequently

tracer (Πία^ί^Πία1))) = Y ί a°(x,h)aι(xh,h-ι)dl(h-1)

D
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Finally we can relate the two cocycles:

Proposition 9.8. For a0, a1, a2 in C™(Sι x Γ), we have

Proof. This is immediate from Lemma 9.6, Proposition 9.7 and [8, Lemma

6]. D

Remark 9.9. Suppose that E is the trivial line bundle. Then the formula

(9.10) / / (k°{m,n,x)d"kι{n,m,x)dndrndx
Js1 Jv JM

defines the transverse fundamental class on /Cc. The cocycle {k°,kι) -»
traceΓ (A;0δλ {k1)) — tracer (A;0 [d"φ,k1]) is the derivative, in the sense of (9.1),
of the cocycle (9.10) with respect to the modular automorphism group (σt).

10. The ίQrgroups of the C*-algebras of Foliated 51-bundles.

In this section we will determine the generators of the group K0[C*(X,T)]
for an arbitrary foliated S1 -bundle over a closed Riemann surface.

Let Σ be a closed Riemann surface of genus g > 2, and let Γ = π^Σ). To
any (right)action of Γ on the circle S1 by orientation preserving diffeomor-
phisms, a fibre bundle with fibre S1 is associated (Section 2). By evaluating
the Euler class of this bundle on the fundamental class of Σ, we get an integer
X, which is called the Euler characteristic.

This group Γ is an amalgamated free product Γ = F2 *% F2g~2 By [17] we
have an exact sequence, a part of which looks like

K0{Aι)®K0{A2) -> K0{A) -* Kλ{Ao) -> K1(A1)®K1(A2)i

where Ao = CiS1) x Z, Ax = C(52) x F 2 , A2 = CiS1) xi F2 ί 7_2, and
A = C(S1) x Γ. The computations done in [16] enable us to obtain

(10.1) K0[A] ̂ Z 2 5 Θ Z Θ Z/χZ.

The subgroup Z2g in (10.1) is generated by Rieffel projections. It is straight-
forward to see that those 2g generators lie in the kernel of the map K0(A) ->
C induced by the pairing with the cyclic 2-cocycle iDφ(ϊi) described in the
preceding section. The torsion subgroup Z/χZ is generated by the class of
the unit. As for the remaining generator, we know only of its existence, by
applying an exact sequence to compute the ϋf-groups. We will show that this
missing generator is given by the class θ associated with the Dirac operator.
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Recall that the upper half plane H+ is the universal covering of Σ. The
Γ-equivariant Hermitian vector bundles S — S+ θ 5~~, associated with the Γ-
invariant spin structure on H+, give rise to a Hubert C*-module ei over C*Γ
in the fashion used to create e in Section 2. Let ξ be as in Section 9. Then
ξ yields *~homomorphisms Π : C^S1) M Γ - ) /C(e) and Πx : C T -+ K{ex),
which induce isomorphisms of K-groups.

Proposition 10.2. There exists a *-homomorphίsm from /C(ei) into /C(e)
such that the diagram

C*Γ - ^ - > /C(eχ)

C{Sι) x Γ —5-^ /C(e)

is commutative, where C*Γ —> C(S1) xi Γ is £Λe canonical inclusion.

Proof. Recall that /C(e) is generated by operators with Γ-compactly sup-
ported, Γ-invariant C°°-kernels. Let P G /C(ei) have the kernel k. Then the
Γ-invariant C°°-kernel k defined by

k(m,n,x) — A;(m,n), (m,n,x) E O+ x O4. x 5 1,

determines an operator P G /C(e). Using the definition of norm, it is not hard
to check that the correspondence P —> P extends to a *-homomorphism
j : /C(Cl) -^ /C(e).

Commutativity of the diagram is also easy. D

The Dirac operator D+ on Σ lifts to a Γ-equivariant differential operator

The graph projection e+ associated with JD+ is a bounded operator on
I/2(HLf, <S + θ5") and determines a class

Proposition 10.3. The class θ 0 and the class of unit 1 G C*Γ generate

Proof. By the fact that the index map from the ϋf-homology of Σ into
if*[C*Γ] is an isomorphism [2, Thm. 3], we can see that K0[C*T] is isomor-
phic to Z2 and is generated by the class of the unit and the index mdΓ(D+).
As in Section 8, it is not hard to see that Θo coincides with indΓ(Z)+). D
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By the construction of j we can see that

Prom this we see j*(Θ0) = θ , where j * : K0[JC(eι)] -» K0[IC(e)] is the

induced map.

Theorem 10.4. The class θ is the missing generator of K0[C(Sι) x Γ] =

Proof. We claim that θ , together with the known generators, spans the Ko-
group. Let Ao, A l 5 A2, and A be as above. We have a commutative diagram:

KQ[Aλ}®K0[A2) • K0[A) - • Kλ{A0} > K1[A1]®K1[A2]

T ΐ ΐ ΐ
s

i S - 0 [ ^ -^2J vl? •** θL^-/ 2 o 2J ^ " 0 L ^ *• J ^ " 1 1 ^ *-*J ^ •"• 1 L̂ * ^ 2 j ® -^ 1 1 ^ - ^ 2 σ 2J?

where horizontal rows are exact, and all the vertical arrows are induced from

the canonical inclusions of C*-algebras.

The map Kλ[C*Z] -> Kλ[C*F2] θ Kλ[C*F2g-2] is a zero map, and the

kernel of iϊ^jylo] -» ^ [ A i ] θ i ί Ί ^ ] is an infinite cyclic group generated by

the class of the unitary of C(Sι) x Z corresponding to the generator of Z.

Since the class of the unit and the class θ 0 generate ifo[C*Γ], we see

that <5(θo) must be the generator of-KΊ[C*Z]. From this and the observation

above, δ(Θ) is the generator of the kernel of ϋΓi[-40] —> ifi[Ai] θ ϋΓi[^42]

Therefore the class θ and the image of the map ϋΓo[^i] θ ^0(^2] ~> K0[A]

generate JKΌ[̂ 4.] Π
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NEVANLINNA'S COEFFICIENTS AND DOUGLAS
ALGEBRAS

ARTUR NICOLAU AND ARNE STRAY

Some relations between Douglas algebras and coefficients
appearing in Nevanlinna's matrix parametrization of the so-
lutions of the Nevanlinna Pick interpolation problem are stud-
ied.

1. Introduction.

Let U denote the analytic functions bounded by one in D = {z : \z\ <
1}. Given a sequence {zn} C D, we consider the classical Nevanlinna Pick
interpolation problem

(NP) f(zn)=wn, n = l , 2 , . . . , feU.

If this problem has more than one solution, R. Nevanlinna [4] found ana-
lytic functions P,Q,R and S such that the set of all solutions is given by

The functions P,Q,R and S are unique subject to the normalization

5(0) = 0 and PS - RQ = π, where

— Z

is the Blaschke product corresponding to {zn}.
While the funcions P,Q,R and S arose from classical function theory, it

turns out that they are also connected with more recent developments. It
is part of Nevanlinna's theory that the functions P/R, Q/R, S/R and 1/R
belong to U and are linked with π in many ways. (See Lemma 1.)

Suppose (NP) has a solution / 0 satisfying sup{|/0(z)|, z E D} < 1. Our
main result is that then P/R, Q/R, S/R and 1/R all belong to a certain
subalgebra of H°° depending only on π which we shall denote by CDAπ.
This algebra is part of the theory of Douglas algebras through the work of
S.Y. Chang and D.E. Marshall ([1], [2?]). Our results in particular answer

541
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a problem raised by V. Tolokonnikov in [11] where other relations between
Douglas algebras and the Nevanlinna Pick problem are studied.

Our methods are based on Nevanlinna's ideas in [4] and last but not least
on the more recent treatment of the Nevanlinna Pick problem given by J.
Garnett in [2], where dual extremal methods are used. We also give a new
proof of a recent result of Tolokonnikov concerning questions whether (NP)
has a unique solution.

Next we introduce some notations and well known results.
Let m denote normalized Lebesgue measure on the unit circle T = {z :

\z\ = 1}. lϊ I < p < oo, Hp denote the Hardy space consisting of all / G
Lp(m) whose harmonic extension to D is analytic there. If p — oo, the norm
||/||p in Lp(m) can also be given by

Il/Iloo = sup{|/(*)|: ZED} f€H°°.

For basic properties of Hp, we refer to Garnett's book [2].
We recall that / G H°° is called an inner function if |/(e i α) | = 1 almost

everywhere with respect to m. Any Blaschke product is inner, but there are
many others ([2, p. 75]).

Considering H°° as a subalgebra of L°°(ra), let Dπ = [H°°,π] be the
Douglas algebra generated by H°° and the restriction π | τ of W to T. Then let
QDπ — Dπ Π Dπ be the maximal C*-subalgebra of Dπ. Define also QDAπ =
QDπΠH°° and let CDAπ denote the subalgebra of H°° generated by all inner
functions / invertible in Dπ. It is evident that CDAπ C QDAπ. For more
about these algebras, see [1], and [2] for example. Let / be an inner function.
The property of / being invertible in Dπ has a very concrete formulation: If
{C»} C D and |π(Cn)| -> 1, then |/(Cn)| -> 1.

The special solutions Ia to (NP) given by

_P-Qeia

•* 0c

R - Seia

play an important role in this theory. Nevanlinna showed that each Ia is
inner [4], and in fact almost all Ia are Blaschke products [9]. A Nevanlinna
Pick problem is called scaled if it has a solution /0 satisfying ||/o||oo < l

For general properties of Douglas algebras and more on the Nevanlinna
Pick problem, Garnett's book [2] is a good reference.

The letter d will be used for different absolute constants, while C(t\
indicates a constant depending on the parameter t.
Acknowledgements. We thank the referee for several helpful remarks
which have improved our work. Theorem 2, which is stronger than our pre-
vious result, is due to him. This work was done during a visit to University
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of Bergen by the first author and to CRM in Barcelona by the second au-
thor. Both of us wish to express our appreciation of the hospitality and nice
working conditions.

2. Main result.

If (NP) has more than one solution, R. Nevanlinna considered the "Wertevor-
rat" A(z) = {f(z) : / is a solution of (NP)}, z eΏ. Using (1.1), one can eas-
ily check that A(z) is a disc of center c(z) = (-Q(z)S(z)+P(z)R(z))(\R(z)\2

-\S(z)\η~\ and radius p(z) = \φ)\(\R(z)\2 - \S(z)\2)-\
For later use, we collect some of the properties of Nevanlinna's coefficients.

Lemma 1. Assume (NP) has more than one solution and consider the
Nevanlinna's coefficients P, Q,i?, S appearing in (1.1). Then
(i) P, Q, i?, S have radial limit almost everywhere and Q = —πi?, P =

—πS, |i?|2 — |5 | 2 = 1, QS — PR — 0, almost everywhere on the unit
circle.

(ii) \R(z)\" - \S{z)\* > 1, |i?(*)|2 - |P(*) | 2 > 1, ̂ D .

(iii) For any eiθί £ <9O, (R - Seίoc)~2 is an exposed point of H1.

(iv) IfueUandf = (P- Qu)(R- Su)~\ one has

S/R-u

1-uS/R
1 L°°(dΌ)

(v) // (NP) is scaled, one has p(z) -> 1 as \π(z)\ -ϊ 1.

(vi) // (NP) is scaled and 7 = inf{||/0||oo f is a solution of (NP)}, then

ReHp for dip < π(arcsin(7))-1.

Proof, (i), (ii), (iii) are well known (see [8] and the references there given to
[2]). Using the relations in (i)

P-Qu,

R-Su Ry

S/R-u

P/Q-u
1-uS/R

1-uS/R
a.e. eiθ E 3D,

and this is (iv). A proof of (v) can be found in [10]. Now, let us prove (vi).
Consider Ia = (P - Qeia)(R - Seia)~\ for fixed α, 0 < a < 2π. Using (i).
one can easily check

\(R -
a.e. on 8D.
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Since 7 = dist(/απ, H°°) < 1, there exists g G H°° satisfying

R-Seia)~2 II

4
Since Jα(0) G 0Δ(O), one has dist(/απ,flj°) = 1, where #0°° = {f e H°° :
/(0) = 0}. The proof of Lemma 4.3 in ([2, p. 386]) shows \g(z)\ > 1 - 7 , z G
D. Let Arg( z) be the principal branch of the argument. One has,

|Arg (g~ι(R - Seia)~2) \ < arcsin(7), a.e. on dD.

So, the same is true on D and using a result in ([2, p. 114]), one gets

(g-1(R-Seia)-2)~'1 eHp, p< - ^-7-τ .
2arcsm(7)

Hence {R - Seia)2 G Hp, for p < π(2arcsin(7))~1 and it follows R G i P , for
p < π(arcsin(7))~1. This finishes the proof of Lemma 1. D

Let (NP) be an scaled Nevanlinna problem, V. Tolokonnikov proved that
the extremal solutions Ia are invertible in Dπ [11]. Our next result is an
extension of this.

Proposition . Let (NP) be a scaled Nevanlinna Pick problem and Ia one
of its extremal solutions, 0 < a < 2π. Then Dia = Dπ.

Proof As mentioned before, it is known that Ia is invertible in DΈ. We
present another proof of it. Prom (v) of Lemma 1, p(z) —> 1 whenever
\π(z)\ -> 1. Since Ia(z) G dA(z), one gets |/α(^) | -» 1. Hence, Ia is invertible
in Dπ and DIa C Dπ.

For the converse assume

Since the Nevanlinna Pick problem (NP) is scaled, the "Wertevorrat" A(zn)
must meet a fixed disc inside the unit disc. Actually, /o(^n), Ia(zn) £ Δ(zn),
where f0 is a solution to (NP) with ||/o||oo < l Hence, for large n,

\n(zn)\>p(zn)>^(l-\\f0\\oo)>0

and one deduces that π is invertible in Dja.
The Proposition can also be immediately deduced from the proof of The-

orem 2.1 in [1]. D
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Remark. The hypothesis on the scaling of the Nevanlinna Pick problem
is essential. In fact, there exist non scaled Nevanlinna Pick problems and
points βn E D such that

sup{M : w E A(βn)} —> 0, \π(βn)\ —> 1

see [5]. Then, Ia(βn) —> 0, 0 < a < 2π, and no Ia is invertible in Dπ.
The following result is known although we have not found it in the liter-

ature. We thank the referee for pointing out it to us.

Lemma 2. Given u, \u\ — 1 and z, \z\ < 1, one has that

ί2π z-ueia da

Jo 1 - zueia 2π

can be uniformly approximated by its Riemann sums.

Proof. Multiplying by ΰ if necessary, one may assume u = 1. For w — e2πιn ,
one has

1 ^—Λ, Z — W n—1 — I I II

n ~ 1 — tί ̂ z 1 — z nz
n

This can be shown expanding in a series and using

unless p = 0 mod n. By continuity the same holds if Ί71 φ 1. Now, the
inequalities

z — wk

whz

1 + 1*1 ^ 2
1 + l^l"1 + + |>2τ|—(̂ —i) ~~ n

finish the proof. D

Assume (NP) is scaled. In [11] it is proved that the functions P/R,
πR~2{S/R)k, k>0, belong to CDAπ and it is asked if R~ι <E CDAπ. Next,
we complete these results.

Theorem 1. Let (NP) be a scaled Nevanlinna Pick problem, E the set of
its solutions and
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its Nevanlinna's parametrization. Let Dπ be the Douglas algebra generated by
H°° andW\τ. Then, the functions P/R, Q/R, S/R,l/R belong to the algebra
CDAπ.

Proof. Since \S/R{eiθ)\ < 1, Lemma 2 shows

-?- Γ Ia(eiθ) da = P/R(eiθ), a.e. eίθ e T,
£π Jo

and the integral can be uniformly approximated by its Riemann sums. Since

Ia are inner functions invertible in Dπ, one gets P/R £ CDAπ.

Since Q/R is an inner function, one only has to show that Q/R is invertible

in Dπ. If \π(z)\ —> 1, by (v) of Lemma 1, the disc A(z) tends to the unit

disc, that is to say,

\Q/R(z)-P/R(z)S/R(z)\
P{Z) ~ 1 - \S/R{z)\* ' l

P/R(z)-Q/R(z)S/R(z)
C[Z)- 1-\S/R{z)\>

Hence,

P/R(z)S/R(z) - Q/R(z)

° < 1-\S/R(z)\* + Q/R{Z)

= P/R(z)S/R(z) - Q/R(z)\S/R(z)\2

1-\S/R(z)\*

and one gets \Q/R(z)\ -> 1. Therefore Q/JΪ E CDAn.

Since by (i) of Lemma 1 QS = PR a.e. on the unit circle, one has

S/R = (P/R) (Q/R) e CDΈ and since it is analytic, S/R e CDAπ.

Using R = Qπ a.e. on the unit circle, one gets (1/R)Q/R = π/i? G i ϊ 0 0 .

Then, for 0 < δ < 1,

R~ 2πJ0 1 + ei

uniformly on the unit circle. Since Q/R is an inner function invertible in

Dπ, so is

Q/Re^S/R e i a

l + eia(δ/R)Q/R

and one gets R'1 e CJDAπ. D
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3. An example.

The results of last section may suggest that if one takes w E CDAπ, w E U
in Nevanlinna's formula, the resulting function / = (P — Qw)(R — Sw)~1

may also belong to CDA^. This is of course the case if ||w||oo < 1, because
of the relation

oo

f = (P/R-wQ/R)Σ(wS/R)n.
n=0

It has been surprising to us that for general w E U Π CDAπ, the function /
may not belong to CDA^. In fact, / may not belong to the bigger algebra
ζ)-Aπ, which consists of the holomorphic functions in the unit disc which
belong to Dπ Π Dπ. To show this, we need to construct a scaled Nevanlinna
Pick problem such that the corresponding function R is not bounded. We
will do the construction in the upper half plane.

Consider zn = iyn, where yn+ϊ < cyn, for some fixed 0 < c < 1 and
z* = xn -f- iyn, where xn > 0 is a decreasing sequence, snpxny~ι is a small
number to be chosen later, xny~ι —> 0 as n —» oo, but

(3.1) Σ(xny?)2 =+oo.
n

Let B and B* be the Blaschke products in the upper half plane with zeros
{zn} and {2:*} and BUB{ the Blaschke products with zeros {φ(zn)}, {φ(z*n)},
where φ is a conformal map from the upper half plane to the unit disc.

L e m m a 3. With the notations above, the Nevanlinna Pick problem

(*) f{φ{zn))=Bl(φ{zn)), n = l , 2 , . . . , / G U

is scaled. Moreover, if

{fEH°°:f solves (*)} =

is Nevanlinna's parametrization of the set of its solutions, one has

lim |i?(e^)( - +00.

Proof. We will prove the Lemma in the upper half plane. Let x E M, as in

([2, p. 432]), one can compute
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Now, if F G H1, one has

< 2 £ Γ \F(t + iyn)\dt <
n J°

because the linear measure σ on U[iyn, xn + iyn] is a Carleson measure, with
n

σ(Q) < snpn(xny~ι)l(Q) where Q is a square lying on the real line and l(Q)

is the length of its side. So, given ε > 0, if supn xnyΰl *s sufficiently small,

one gets | | kτg(B*/B)\\BMO < ε, and hence

(3.3) Arg(B*/B)=u + υ, \\u\U < Cε, \\v\U < Cε,

where v is the conjugate function of υ and C is an absolute constant ([2, p. 248]).

Now,

hence

(3.4) dist(B7S, H°°) <2Cε<l

and (*) is scaled.

On other hand,

\\B/B*-e-v- iϊ|oo<2Cε,

SO

(3.5) dist(B/B% H°°) < 2Cε < 1.

Now, (3.4) and (3.5) give that B* is an extremal solution of (*), that is to

say, there exists 0 < a < 2π,

P - Qe*

R - Seia"

Thus, applying (3.3) and (i) of Lemma 1,

(R-Seia)-2

exp(i(u + ΰ)) = B*/B =

Consider H = exp(iu — ϋ, + v + iv) E H1 and hence

H (R- Seia)-2
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By (iii) of Lemma 1 (JR — Seia)~2 is an exposed point of H1, so

H = M(R - Seia)~2, M e C ,

and \M(R - Seia)~2(x)\ = exp(v(x) - ΰ(x)). Now, by (3.3),

Now, let x > 0. Using the inequality ln^" 1) < c(ί)(l — £) for δ < t < 1, one
gets

Σ

<c

a;|<x

2a;Tϊa; —.n

i

X xn:\xn-x\<x

On the other hand, considering k with xk > 2x > Xk+i one has

V X ^V / n = l

^ ^ ^ g ) - 2 - 2

r 2 . ?y2 ^ °
n = l X ^Vn n=l

Also, if z < 0, v(x) - u(x) > - C 3 + v(-x) - u(-x). So, (3.1) gives

lim\(R-Seia)-2(x)\ =+00,

and thus lim^o \S/R(x)\ = 1. So, by (i) of Lemma 1, lim^o \R(x)\ =
and this finishes the proof of Lemma 3. D

Now, consider the Nevanlinna Pick problem (*) given by Lemma 3 and

7 = inffll/lloo : / is solution of (*)}.

For 1 > t > 7, Proposition of last section gives that there exists an inner
function J, tJ — (P — Qwo){R — SWQ)'1 E CDAπ. Using Theorem 1 one
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can see that w0 € CDAπ. Now consider an interpolating sequence {αn}

approaching to 1, with | π ( α n ) | -» 1 as n -> oo, where π = i?i, and let

/ be the Blaschke product with zeros {an}. Then, by Lemma 3, R~2I is

continuous up to the circle. Also (iv) of Lemma 1 gives

(3.6)
S/R - wo

- «*>*/*

and then \wo(eiθ)\ < \S/R(eiθ)\ + c(l - |S/i2(e")|), 0 < θ < 2π, for some

fixed c = φ ) < 1. Therefore wx = w0 + {1 - c)R~2I eUΠ CDAn.

Now, assume / = (P - Qwi)(fl - Sw^'1 e QAn. Thus,

/ -tJ = π(ιy! - iϋo)(Λ ~ SwoΓ^i? - S'tϋi)-1 G QAπ.

Let σ denote the pseudohyperbolic metric, σ(z, w) = |z — tw| | 1 — ϊίJzl"1. Since

K ( α n ) | —> 1 as n —> oo, writing g — (wι —Wo)(R — Swo)~1{R — Swι)~1, from

the fact that πg E QAπ one can deduce

max \g(z)\ — min |^(z) | ->0, as n - ^ oo,
σ(^,Q!n)<r σ(z,an)<r

for any r < 1, because otherwise, taking a subsequence of {αn}, for some

fixed r < 1, there would exist δ > 0 and £n, σ(α n , zn) < r, such that

Then, by subharmonicity, for m < 1, it would follow

\g'(w)\2dm(w) > Ci(m)ί

where Dn is the disc of center zn and radius ra(l — \zn\). So,

/ |</H|2(1 - M) dm(w) > C2(m)δ(l - \zn\)

and using a result in [2, p. 381], this would contradict the fact πg £ QAn.

Since #(α n ) = 0, one gets

(3.7) max \g(z)\-+0, as n -» oo.

But, (3.6) and (v) of Lemma 1 give

11 Q / T?f >*\n n ί rs\\ •έ' f1 f-l-Λ f 1 I C / 7? ( 'y\\'^\ <^ Γ^ ί+\\ f? ( 'y^l~^ o Π 1 ' y C TΠ)

1 — D/Ih[ZJWiyZ)\ \ O i ( t) ( 1 — O/Xt^/oJ J \ ^ 1 V̂ / l-^v^/ I ? * — U, 1, -2- t : Ji>',

SO,

1 — c
max |^(^)| > -τς- max |/(^) |

Since {an} is an interpolating sequence, this contradicts (3.7). Therefore
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4. A question about uniqueness.

The question whether (NP) has a unique solution is in general delicate.
A necessary condition for uniqueness is of course that ||/||oo — 1 for a n y
solution / to (NP). If there is f0 G H°° with | | / 0 | U < ι solving the reduced
problem f(zn) — wn, n > N for some N > 2, we shall call (NP) semiscaled.
In [11], Tolokonnikov obtained the following nice result

Theorem 2. (Tolokonnikov). // a Neυanlinna Pick problem is semiscaled,
but not scaled, then any solution is inner and hence must be unique.

It should be observed that previous results due to T. Nakazi [3] an K.O.
Oyma [7] easily follow from Theorem 2.

Proof. Let us use the notation from the introduction and assume that the
Nevanlinna Pick problem (NP) is scaled. One can assume N = 1. If {zo,wo}
is an extra pair of points consider the extended problem

(*) f(zn)=wn, n = 0 , l , 2 , . . . , fβU.

One can assume z0 = 0. The sets F = {/ G H°° : \\f\\oo < 1, f(zn) =
ιyn, n > 1} and B = {/(0) : / G F, ||/||oo < 1} a r e convex. Suppose B is
non-empty and that the only functions in F with /(0) = w0 have norm 1.
We will show that such / are inner. Since the average of two inner functions
is not inner, this will also prove uniqueness.

If Il/Hoo J 1, llslloo < 1 and 0 < 6 < 1, then \\eg + (1 - e)/| |c^_< 1,
and hence B = {/(0) : / G F}. The assumptions mean that w0 G B \ B.
The proof in [2, p. 152] works verbatim, and shows that any / G F with
f(z0) G dB must be inner. D
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SOBOLEV SPACES ON LIPSCHITZ CURVES

MARIA CRISTINA PEREYRA

We study Sobolev spaces on Lipschitz graphs Γ, by means
of a square function of a geometric second difference. Given
a function in the Sobolev space WliP(Γ) we show that the
geometric square function is also in LP(Γ). For p = 2 we prove
a dyadic analogue of this result, and a partial converse.

1. Introduction.

The Sobolev space on the real line, WliP(R), is the set of functions in LP(R)
whose distributional derivatives are also functions in LP(R).

There are several characterizations of these spaces. In the early 80's
Dorronsoro (see [Do]) gave a mean oscillation characterization of poten-
tial spaces, extending earlier results due to R.S. Stritchartz. In the late 80's,
Semmes showed that the Sobolev spaces W1"2{M) have many of the proper-
ties of W^1)2(Rn) when M is a chord-arc surface (see [Se]). Dorronsoro and
Semmes used square functions closely related to the square functions we use.

There is a characterization, due to E. Stein (see [Stl] Ch.V) that involves
the second differences of the given function. More precisely, let

and define the square function

1/2αO

Then the following result is true (see [Stl]):

Theorem A [Stein]. For 1 < p < oo, / G Whp(R) if and only if /, Sf G
LP(R). Moreover \\Sf\\p ~ | |/' |p.

For p = 2 the proof of this theorem is just an application of PlancherePs
theorem. In this case 15/12 = l/'h

It is important for applications (eg. boundary problems for PDE's) to
obtain similar results when R is replaced by a curve Γ. Smooth curves can
be treated reducing to the case Γ = R after a suitable change of variables.

553
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Difficulties appear when the curve is merely Lipschitz, as it often happens
in harmonic analysis (eg. boundedness of the Cauchy integral on Lipschitz
curves, see [Ch], [M], [CJS]).

Let Γ be a Lipschitz graph:

Γ = {z = x + iA(x) : l^lloo < oo}.

We define the Sobolev space on the curve just pulling back to the line,

(1) = {fe Lp(Γ) : f(A) G A{x) =x

We introduce a geometric second difference, to do it we must restrict our
attention to Lipschitz graphs with Lipschitz constant less than one. Prom
now on Γ is always a Lipschitz graph, with HA'Hoo < 1. For any z G Γ, let

(2) Atf(z) := f(z~*~) + f(z~) — 2f(z)

where zf are the unique points on Γ at distance t from z. It is clear that one
point lies on the right and the other on the left of z, denoted respectively
zf and zf. Let us denote the corresponding ^-coordinates x, xf , see figure
below,

We define the geometric square function, Sf, by analogy with Stein's
square function 5/; just replacing the second difference by the geometric
one,

1/2

zβT.

We can prove the following result,

Theorem 1. Let Γ be a Lipschitz graph with Lipschitz constant less than
one. Assume f G W1>P(Γ) then Sf G LP(T) for 1 < p < oo. Moreover

\\Sf\\LP(Γ)<C\\f\\LP{ry
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We can prove dyadic analogues of Theorem 1, and a partial converse. We
assume the reader is familiar with the dyadic intervals on the line, and with
the Haar basis (see definitions in Section 3).

Let us consider the case Γ = R.
Denote by V the collection of dyadic intervals on the line. Let χi denote

the characteristic function of the interval /.
Define the dyadic square function by:

(3) Sdf(x) =

where Δ// denotes the second difference of / associated to the interval
/ = [xj^x^] centered at x7, namely:

The square function Sd is a dyadic analogue of the square function defined
in the begining of the paper.

In this case, the analogue of Theorem 1 is very simple. The main ob-
servation being that the second difference Δ// of an absolutely continuous
function / is, up to a scaling factor, the Haar coefficient of the derivative /'
corresponding to the interval /. More precisely:

where the Haar function hj is the step function supported on / that takes
the values ± 1 / | / | 1 / 2 on the right and left halves of /, respectively.

The Haar functions indexed on V form a basis of L2(R). Hence if / G
Wli2(ΈL), an application of PlanchereΓs Theorem for orthonormal systems
implies:

II/ΊI^ΣK/' .ΌI^Σ 1 ^-
lev lev ' '

The right hand side coincides with the L2 norm of the dyadic square function,
hence:

few1

We also get a partial converse.
Define the dyadic derivative, Df, of / G L2(R), as the L2 limit (when it

exists) of the sequence:

Dnf(x) = / ( x | )

m

/ O r 7 ) , xe I € Vn;
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where / = [xJiXj], and Vn denotes the nίΛ-generation of dyadic intervals.
In this case if / and Sdf are in £ 2(R), then the limit exists, so Df

is in L2(R). Moreover, ||Z>/||2 = ||Sd/||2. This is another application of
Plancherel's Theorem, once we observe that:

= Σ Mχ)

We are ready now to describe the results for Lipschitz curves. We will
replace the dyadic square function Sd by a geometric dyadic square function
Sd.

We construct a family T of intervals related to the geometry of the prob-
lem. T is what we call a regular dyadic grid. It preserves the nesting prop-
erties of the standard dyadics, but the scaling is more involved. (For the
precise definitions see Section 3.2.)

Let Γ be a Lipschitz graph with Lipschitz constant less than one. For a
function / on Γ define the geometric second difference corresponding to the
interval / by:

where zf are the points on the curve Γ whose projections coincide with the
endpoints, xf of /. And Zj is the unique point in Γ which is equidistant to
both zf.

Define now the geometric dyadic square function:

where π(z) is the X-coordinate of z.
We can then prove an analogue of Theorem 1 (for p = 2):

Theorem I 7 . Let Γ be a Lipschitz graph with Lipschitz constant smaller
than one. Assume f G Wh2{Γ) then Sdf € L2(Γ). Moreover

\\Sdf\\2 < C\\f'\\2.

We also get a partial converse, which is the main result of this paper.
Define the dyadic derivative of f associated to the grid T, D^f, for / G

L2(Γ), as the limit in L2(Γ) (when it exists) of the sequence:

nf() + _ \ ()
Zj — Zj

where Tn is the n^-generation of T (see Section 3.2).
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Theorem 2. Let Γ be a Lipschitz graph with Lipschitz constant smaller than
one. Assume both f and Sdf are in L2(Γ). Then Djrf exists as a limit in
L2(Γ). Moreover, \\Dτf\\2 < C\\Sd\\2.

It should be clear that if we know a priori that / G VF1'2(Γ), then /' =
Dτf, and hence | |/' | |2 < C\\Sdf\\2.

To prove these theorems we try to mimic the argument described in the
case Γ = R. We build a Haar basis adjusted to the Lipschitz curve Γ
and supported on the grid T which itself is related to the geometry of the
problem. This can be done without great difficulty, we will not get a basis but
a frame, exactly as in [CJS] for the study of Cauchy integrals on Lipschitz
curves.

In this setting the Haar coefficients of the derivative will not be exact
multiples of Δ//. There will be an error that can be controlled by the
geometry of the problem.

The proof of Theorem 2 is not as straightforward as in the case of the
line. Surprisingly enough it is here where operators like the ones studied in
[P] appeared first. We will use the techniques developed there. For more
details see the introduction to the third section.

The norm HŜ /H^ — Σ / e ^ ^Hi\~ c a n ^ e r e g a r ded as a Riemann sum for

/
JR JO
/ \AJ(z)Ax = ISfI*
R JO tό

In the case Γ = Rwe could use Theorem 2 to prove the full converse of Stein's
theorem, averaging over translations and dilations of the dyadic intervals.
In the general case it is not clear how to do the averaging, since we no longer
have the group structure of the line available. (See [GJ] for examples on
how to go from dyadic to continuous situations.)

The paper is organized as follows: We will prove Theorem 1 in the next
section; we will use a result of Dorronsoro and some Carleson type estimates.
This proof, suggested by the referee, greatly simplifies the original proof of
the author. In Section 3 we will prove Theorems 1' and 2, together with all
the discrete ingredients (see the introduction to Section 3 for more details).

Throughout this paper C is a constant that might change from line to
line. We will use the notation a ~ 6, for positive numbers α and 6, whenever
there exists a positive and finite constant C such that C~ιb < a < Cb\ we
will say, in that case, that a and b are comparable.

These results are part of my PhD thesis. I would like to thank my advisor
P.W. Jones for suggesting the problem and guiding me through the comple-
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tion of this work. I extend my warmest thanks to R.R. Coifman and Stephen
Semmes for very helpful conversations. Finally, I am grateful to the referee
who carefully read this paper, and made a lot of valuable suggestions.

2. Proof of Theorem 1.

We are going to prove in this section the necessity of the boundedness of the
geometric square function Sf for a function / to be in the Sobolev space of
a Lipschitz curve. The idea is to control the geometric square function by
Stein's square function. There will be some left overs that can be controlled
in turn by Dorronsoro's mixed norm estimate on the approximation of these
functions by affine functions. Further errors can be handled by Carleson-type
estimates given by the geometry of the curve.

Let us state some geometric lemmas that we will prove at the end of this
section.

Recall that xf are the projections onto the real line of the points on the
curve Γ which are at distance t from a given point z G Γ whose projection
is x.

Lemma 1. Let u+(t) := xf —x := £+, for t > 0; then u+ > 0 is an increasing
homeomorphism oft. Moreover it is uniformly bilipschitz on x, i.e.

Similarly for u~{t) := x — x^ ~ t~ > 0.

Let us define the following quantities, as they are defined by Peter Jones
[J] in the Traveling Salesman Problem.

For a point z G K, K a subset of the plane; and t > 0, let

β(z,t) =mί sup t~ι dist(w,L)
L weK,\w-z\<2t

where L is any line in the plane. This quantity measures how close is the
set K [\{w : \w — z\ < 2t) to a line.

In our case K — Γ and, since it is a graph, we will talk indistinctly about
z E Γ or its projection x G R

In general t+ φ t~. This assymetry is what causes most of the problems.
Since the curve is flat enough, we can control the difference

Lemma 2. |t+ - t~ \ < Cβ(x, t) t.

We will prove Lemmata 1 and 2 at the end.
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Recall that μ is a Carleson measure on the upper half plane if

dμ{x,t) < C\I\ V/CR
Ji

where / is any interval of the line and / is the cube lifted above /.
Finally we can control the /3's in the sense that

L e m m a 3 (P. Jones' Geometric Lemma). The measure given by

dμ{x,t) — β2{x,t)—dx,

is a Carleson measure on the upper half plane i2 + .

For a proof of this result see [J] and also [Do].
We will need the following facts concerning Carleson measures:

Carleson's Lemma. Given a Carleson measure μ in the upper half plane,
and a positive function F(x,t) then

< oo/ Γ[F(x,t)Ydμ(x,t) < C I' [F*(x)Ydx, 0 < p
J a Jo J Jti

where F*{x) = svpt>Oily_x\<tF{y,t).

For a proof of this lemma and the next see [St2], Corollary 2.4 in Ch.II.

As an immediate consequence of Carleson's Lemma and the Hardy-Little-

wood Maximal Theorem, we conclude that for the case F(x,t) = \mxjf\i

where mx%tf = γt f**f f{y)dy the following inequality is true:

Lemma 4. Given a Carleson measure μ in the upper half plane, and f E
LP(R) for 1 <p < oo, then:

L Γ \mXttf\*dμ(x,t) < C f\f(x)\pdx.
J ±t Jo J it

We can deduce from this lemma the following mixed norm estimate; here
the /3's, are the ones given by the geometry, which in particular are bounded
by a constant.

L e m m a 5. Given the Carleson measure in the upper half plane,

dμ(x,t) = β2(x,t)—dx
TJ

and f e LP(R) for 1 < p < oo, then:

r / ί°° rίt\P//2 r

JR\1 K ' / W ^ T ) dx<CJR\f(x)\pdx.
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We will prove this result at the end of the section.

We are going to use the following result due to Dorronsoro:

Theorem [Dorronsoro]. Let f £ W1>P(R) be given, with 1 < p < oo. Then
for each x G R and t > 0 there is an affine function axj with the following
properties:

rX+t

(4) | < t | < CΓ1 / \f'(y)\dy;
Jx-t

/R(f(<- \x-y\<t
\f(y)-**Λy)\) T d*<c f\f'(χ)\pdx.

If we drop the condition (4) this is a special case of Theorem 6 (i) in [Do].
The affine function aXit used by Dorronsoro is the unique one such that:

rX+t

/ [f(y)
Jx-t

It can be computed explicitly. It is not hard to see that:

The following inequality is true for absolutely continuous functions:

I rx+t rx+t

7/ \f(y)-mx>tf\dy<C \f'(y)\dy;
t Jx-t Jx-t

(it is a calculus exercise to check it). Since functions / G WliP(ΈL) are
absolutely continuous after modifications on a set of measure zero, we see
that condition (4) holds in Dorronsoro's Theorem.

Proof of Theorem 1. We want to bound with a constant times the Lp norm
of the derivative of a function / G Wι'p(R) the following expression

dt\p/2 V/P

W 1 / ^ 1 / \J\xt ) "T~J\xt ) ~ ΔJ\X)\ 77 ) a x \O r

Recall that xf — x + t+. To get a symmetric second difference, add and
subtract f(x — tx~), we can bound (6) by Minkowski's inequality, up to a
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constant by:

/ f ί f°° dt\p/2

(7) (yR(/ \f(x + tt) + f(x-tt)-2f(x)\^j dx
ίr ( r + ?dtγ/2 \1/p

The first summand can be reduced to the euclidean case. Let us do the
change of variable s = t+ — u^(ϊ)\ by Lemma 1, s ~ t, ds ~ dt. We can
bound the first term by:

/ Γ ( ί°° ds\p/2 V/P

CΛ \ I / \f(τ A- ςΊ 4- f(τ — sΊ — 2f(r)\2— 1 dr\
\^K \Jo s / j

which is bounded by C| |/ ' | | p by Theorem A.
We are left with the second integral in (7). This time we will add and

subtract axj(x — t~) and axj(x — £+); where axj is the affine function given
in Dorronsoro's theorem. Certainly:

\f(x-t±)-ax,t{x-tf)\< sup

We can then bound (7) by a constant times:

LlΓlt-1 sup \f(y)-aXtt(y)\) T) dx

JK \ Jo V \y-χ\<t ) t J

, ,xp/2 \ X/P

^ /

The first term is bounded by C| |/ ' | | p by Dorronsoro's theorem. The second
can be rewritten as:

p/2 1/P

and using Dorronsoro's estimate (4) and Lemma 2, we can bound this by

v p/2

β2(x,t)— I dx
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which in turn is bounded by Carleson's mixed norm lemma (Lemma 5), and
P. Jones geometric lemma (Lemma 3) by

This finishes the proof of Theorem 1 except for the geometric lemmas,
and Carleson's mixed norm lemma. D

Proof of Lemma 1. We want to prove that u£(t) — t+ = x^ — x is an
increasing bilipschitz homeomorphism. Clearly u+ is increasing (because Γ
is a Lipschitz graph with Lipschitz constant less than one). The inverse of
this mapping is given by the distance between the images on the curve Γ of x
and y = rr + s, namely (w^)"1^) = \A(x + s) — A(x)\, where A is the Lipschitz
map defining Γ and A(y) = y + iA(y). By hypothesis, \A(y + h) — A(y)\ < ηh
where η < 1.

Showing that u+ is bilipschitz is equivalent to show that its inverse is
bilipschitz. To show this it is enough to show that there exists a constant C
such that V#, s > 0, h > 0

c - h - a

We can assume without loss of generality that x = A(x) — 0. We want to
bound (\A(y + Λ)| - \A(y)\)/h, from above and below.

The upper bound is trivial by the triangle inequality and by the fact that
the map A is bilipschitz, since

h < \A(y + h)- A(y)\ = \h + i(A(y + h) - A{y))\ <

Note that for all z and y,

\A(z)\2 - | i (y) | 2 = z> - y2 + (A2(z) - A2(y)).

It is not hard to check that for every 0 < y < z

therefore \λ{z)\2 - \A(y)\2 > (1 - η2){z2 - y2).
Since \A(z)\ < \zy\ + η2, then

M + \y\
\A(z)\ + \A(y)\

hence, choosing z — y + /ι, h > 0 we get that

_ _ _ ^ l-η2

h
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which is certainly larger than zero, since η < 1.

This finishes the proof of the lemma. •

Proof of Lemma 2. We want to show that there exists a constant C inde-

pendent of x and t such that

where the /?'s were defined for z = A(x), by

β(x,i) = inf sup t~ι dist(w,L),
L wζT, \w-z\<2t

and L is any line in the plane.
Notice that the height h of the isosceles triangle drawn through the images

on the curve of x, xf = x + t+ and x^~ — x — t~ (which we will denote
respectively by z, zf and z±) is certainly bounded by tβ(x,t).

Therefore it is enough to show that |£+ — t~\ < C h.
Let a = a(x,t) be the common angle in the isosceles triangle. Let θ =

θ(x, t) be the angle between the horizontal and the chord through zf and z~[.
We can assume without loss of generality that θ > 0 and that arg z > arg z~ζ.
Then high school geometry shows that

t~ — tcos(o; + θ), h — t s inα,

t cos a cos θ = -^——— = xu t+ — {x\ — x^) — t~.

Therefore t~ — xt - hsinθ. and t+ = xt + hs'mθ.
Hence

|t+ - t ~ | = 2/ιsinβ < 2/ι.

We can have a better bound if we notice that sin# < Y^ΓΊ
This finishes the proof of Lemma 2.

D

Proof of Lemma 5. The case p = 2 is an immediate consequence of Lemma 4.
We will get the inequality for 1 < p < 2 using the atomic decomposition of
the tent spaces T^ for q < 1 (see [CMS]), as suggested by the referee. For
2 < p < (X) we will get the result interpolating between a mixed L2 norm
space and the space of Carleson measures.

Case 1 < p < 2: Denote by T(x) the standard cone whose vertex is x, i.e.,
T(x) = {(y,t) : \y — x\ < t}. For a function G on R _̂, define Aoo(G)(x) —
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The tent space T^ consists of exactly those functions G continuous in R+,
so that Aoo(G) G Lq(R), and for which G(x,t) has non-tangential limits at
the boundary almost everywhere. We define | |G| |r i = HAx>(G0||g.

A T^-atom is a function a(x,t) supported on a tent J, and such that
suP(:r,ί) l^ί^?*)! ^ l/|JΓ|ly/^ where / is an interval centered at xj, and I =
{(x,t) e R+ : x E I,t < \I\/2 -\x- xr\}. Clearly ||α||T£ < 1. The atomic
decomposition for Γ^ when q < 1 given in Proposition 5 on p. 326 of
[CMS], says that if G e T£, q < 1, then G(x,t) = Yi\aj{x,t), where aj
are Γ^-atoms. Moreover Σ|λjί 9 <

Let / G LP(R) be given and set

Then F lies in the tent space Γ^ of [CMS] with q = p/2 < 1. Moreover, as
an application of the Hardy-Littlewood Theorem, | |F|K% < C\\f\\p

r

It is simple to check for T£/2-atoms, a(x,t), that the quantity:

(9) y R ( / o a(x,t)βP{x,t)j) dx,

is bounded by a constant C independent of the atom a. More precisely, using
the support and size properties of the atom we see that (9) is bounded by:

the first inequality by the Cauchy-Schwartz inequality with pf = 2/p > 1,
the last one by P. Jones' geometric lemma.

Finally, writing an atomic decomposition for F(x, t) = Σ \aj{χ-> t)-> using
the above estimate for atoms, and the fact that p/2 < 1, we conclude that

/ (I Fir iΛfPi'r f\—— I #7τ <Γ \ ^ C*y?J^ <C C\\Ί?\\P^ < C*\\ f \\p

JΈL \Jo ' t J — Δ^ J — τξj2 — P

Case 2 < p < oo: Let us introduce the mixed norm spaces, 1 < p < oo

{ / r ( r°° dt\p/2 \1/p

f K^^\\fh*=\L[jQ i/(M)|2T) dxj <oo

Define the Carleson measure space by:

CM = I g : B?+ -> R; \\g\\CM = sup j^r

x,t)jj dx<<x>).
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These are Banach spaces with the corresponding norms. We can interpo-
late between mixed norm spaces and Carleson measure space. In the sense
that, given a linear operator T bounded simultaneously from L2 into L2'2,
and from L°° into CM, it is also bounded from Lp into L2)P, for 2 < p < oo.
See [CMS] and [AM].

Define the linear operator T for integrable functions by:

Tf(x,t)=β(x,t)mXttf.

T is bounded from L2 into L2'2, it only remains to check that is bounded
from L°° into CM. We want to show that:

Certainly \mxjf\ < ||/||oo; substituting it into the integral, applying the
Cauchy-Schwartz inequality, and using once more P. Jones' geometric lemma
we get the desired inequality.

As it was pointed out by the referee, the result for p > 2 is related to
Remark b on p. 320 of [CMS]. This remark addresses essentially the same
point, but with integrals in t replaced by integrals over cones.

This finishes the proof of the mixed norm Carleson's lemma. D

3. Dyadic Version.

3.1. Introduction. Let Γ be a Lipschitz graph, Γ = {z = x + iA(x) :
l̂ Ίloo < oo} We will assume that H-A'Hoo < 1, as before.

When Γ = R it is not difficult to see that

As we pointed out in the introduction of the paper, in this case this result
can be regarded as a continuous version of PlanchereΓs theorem for the Haar
basis. The key observation being that the Haar coefficients of the derivative
/' of an absolutely continuous function / are, up to a scaling factor, the
second difference of / at the corresponding interval.

We will take advantage of this natural dyadic interpretation in order to
develop a discrete approach to the problem.

In Section 3.2 we will introduce the regular dyadic grids (substitutes for
an ordinary dyadic grid). We will construct some Haar systems associated
to these grids and to a nice complex measure dσ (by nice we mean absolutely
continuous with respect to Lebesgue measure, and such that |σ(/)| ~ |/| for
all intervals / in the grid, where σ(I) = /7 dσ).
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In Section 3.3 we will construct a regular dyadic grid T adjusted to the
geometry of the problem and the corresponding Haar system {/i/}/e 5̂ asso-
ciated to the measure dσ = (1 + iA'{x))dx (this measure is certainly nice).
We will show that this particular Haar system is a frame, i.e. it behaves
almost like an orthonormal basis (see [CJS].) The deviation from the stan-
dard basis is controlled by a geometric quantity estimated in a Geometric
Lemma (dyadic version of P. Jones Geometric Lemma 3, which in this case
is very easy to prove; see [J]), and a discrete version of Carleson's Lemma.

Define the geometric second difference associated to the interval / =
(xj,xf) by

A,/= /(4)+ /(*7)-2/(*/),
where zf = xf + iA(xf), and Z[ £ Γ and is equidistant to zf.

Define the geometric dyadic square function

where π(z) is the X-coordinate of z.
We can prove the dyadic analogue of Theorem 1, for p = 2,

Theorem V. Given f e W lϊ2(Γ) then

\\bdj\\L*(r) = 2^ m - CWJ ll̂ 2(r)

If we do not know a priori that / G W1>2(Γ) we can still show a partial
converse. Let Tn denotes the nth generation of the grid T. Define the dyadic
derivative of f associated to the grid T, Djrf', as the limit in £2(Γ), when it
exists, of the sequence:

Dkf(z) = M)'f[xT). π{z)
Zj — Z1

Theorem 2. Assume that f E ̂ 2(Γ) and that

Πϊ

Then Djrf exists and is in L2(T). Moreover

< „
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It will be enough to prove local versions of these theorems. By this we
mean to replace R by an interval J and prove the corresponding statements
uniformly on J.

In Section 3.4 we will prove a local version of Theorem 1Λ To do this
we will use the orthogonality of the Haar system constructed and Carleson's
Lemma for regular dyadic grids.

In Section 3.5 we will prove a local version of Theorem 2. We will reduce
the problem to the boundedness of an operator, Pbσ, that formally looks like
the operator defined in [P] by,

n=0 j=n+l

where g is a square integrable function, b comes from the geometry and is
in the space of bounded mean oscillation functions (BMO), and Δ n / is the
projection onto the subspace generated by the Haar functions corresponding
to the nth generation of the dyadics.

In Section 3.6 the operator Pbj(r is analized. The strategy is the same
as in [P]. We can rewrite the paraseries Pb in terms of the weight ω —
Π^LO(1 + A/6) (see p. 581). The necessary and sufficient conditions for
the boundedness of the operator Pb in L2 are described in [P], and they
reduce to a reverse Holder condition on the weight. In our case the grid will
be the regular dyadic grid T\ the Haar functions will not be the standard
ones either. Nevertheless, we can mimic what we did in [P]. As we could
expect, the boundedness of the operator will depend upon the boundedness
of a weighted maximal operator, and this will be so provided the weight ω
satisfies a Reverse Holder condition on the grid. The proof in this case is
simpler than in [P]; after a minute of reflexion we see that both the weight
and the grid come from the geometry and some of the difficulties are cancelled
out.

3.2. Dyadic grids and Haar functions. Consider a fix interval J. A
dyadic grid associated to J is a collection of nested intervals T(J) such
that T(J) — \J^=QTn(J). The generations Tn are defined inductively by
JΓn+1(J) = U/G^fj) ^1(^)5 a n d given any interval /, its first generation
Fλ (/) — {IhIr} is a partition of / into two disjoint intervals that we will call
the children of /.

A regular dyadic grid associated to J is a dyadic grid such that there is a
constant | < C < 1, such that given any interval I E !F(J) and / a child of
/ then

(l-C)\ϊ\<\I\<C\ΐ\.
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If C = I we get the ordinary dyadic decomposition of J. In this case
given any I G Tn{J), \I\ = 2"n|J\.

If C > I then we can only say that for any I E ^(J)

(i-cr\j\<\i\<cn\j\.

This implies that given any point x G J, if /n is the unique interval in the
nth generation that contains x then

n=0

It also implies that intervals of a given generation are comparable, but
the comparison bounds are not independent of the generation.

We say that T is a dyadic grid on R if there exists a sequence of intervals
{Jn}n>o such that:
(i) J n e FiίΛ+i),

(ii) R = Un>0Jn;
in that case T = ^Jn>o^(Jn)- The generations can be defined by:

k

ί Un>0^n+Jb(Λi) for k > 0

^* is a regular dyadic grid on R if there exists a constant 1/2 < C < 1
such that (1 - C)\ϊ\ < \I\ < C\ϊ\, for all / G T, I parent of /.

Given any regular dyadic grid associated to an interval J, f(J), and an
absolutely continuous measure σ, such that |σ(/)| ~ |/|, for all / E
there is a iίααr system associated to them. More precisely for each / G
let / r, /; be the right and left children of / respectively, define

and

K(x) =

where χι is the characteristic function of /.
Clearly each hσj is supported on / and is constant on each child. Moreover

its mean value with respect to dσ is zero. Therefore, if we denote by (., .)σ

the bilinear operation (f,g)σ = / fgdσ (notice that there is no conjugation),



SOBOLEV SPACES ON LIPSCHITZ CURVES 569

the system {/i/}/E^(j) behaves like an orthonormal system with respect to
this pseudo inner product, i.e. (h°, hσ

Γ)σ is zero if / Φ /', and one if / = /'.
The function hσ

o is certainly "orthogonal" with respect to the bilinear form
(., .)σ to all the ΛJ's and {hσ

o,h
σ

o)σ = 1. Let us state this result as the first
part of the next lemma.

L e m m a 6. The Haar system associated to the regular dyadic grid T and
the measure σ as defined above satisfies the following properties:

• "orthonormality" with respect to the bilinear form ( . , . ) σ .

• "reconstruction formula" for functions f G L^OC(J, dσ):

(12) f(χ)= Σ <M?U?(s), σ-a.e.x

where T'{J) is the grid F{J) with a second copy Jo of J and we agree
that hσ

Jo ~hσ

o.

The proof of this lemma is an standard application of Lebesgue's Differen-

tiation Theorem (see for example [P] p. 631), replacing by the corresponding

expectation and difference operators as defined next.

Define E* the expectation operator with respect to dσ, associated to the

grid, by

(13) Eσ

nf(x) = ~Γ)Jj(y)dσ(y) x e I € Γn(J).

Define the difference operator,

(14) Δ°f = K+if-Kf

Observe that Eζf{x) = {f,hσ

o)σh
σ

o{x), and for n > 0,

(15) Kf(*)= Σ </,Λ?>σΛ?(*)

We can use PlanchereΓs Theorem for orthogonal systems if the measure
dσ is positive (in that case we have an honest inner product); to get that

= Σ

In particular, if dσ = dx we have the standard Haar basis associated to

the grid T\ that we will denote by {hj}Iejτ. for the record, note that,

(16) M , )
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We want to deal with complex measures, and we want to say something
about the function being in ordinary L2(J). That is we would like to know
under which conditions the system {h^}Ie^j) is a frame in L2(J). By this
we mean that we can reconstruct the functions as in (12), and we can also
recover the L2 norm. More precisely, there exists a constant C > 0 such that

In [CJS] a Haar system adjusted to a Lipschitz curve is built. There the
grid is the ordinary dyadic grid and the measure involved is dσ = z'(x)dx,
where z is the arclength parametrization. It turns out that in this case the
system is a frame.

In the next section we will construct a Haar system associated to a regular
dyadic grid T and to a measure dσ related to the given Lipschitz curve. We
will show that this particular system is a frame.

Carleson's lemma is still valid in this context. A Carleson sequence with
respect to T(J) is a sequence of complex numbers {&/}/eJr(j) such that there
exists a constant C (Carleson's constant) such that

Σ \bi\

Lemma 7 (Carleson's Lemma). Given {&/} a Carleson sequence with respect

to T(J) and any sequence of positive numbers {λ/} then

Σ λ ' N <C f λ*(x)dx,

where C is the Carleson constant of the {&/} and λ*(x) — sup x G / G : F ( j) λj.

A proof for the standard dyadic grid can be found in [M] p. 273. The
proof for regular dyadic grids is essentially the same.

3.3. Our Grid. Given the Lipschitz graph Γ — {z = x + iA(x)\ IA'IQQ

η < oo}. We assume, as before, that η < 1.
Fix an interval J, let Γj = A(J), i.e. the piece of the graph Γ whose

projection is J.
We will construct a Haar system, adjusted to the Lipschitz graph Γj, but

also to the geometry of our problem. In general the supporting dyadic grid
will not be the ordinary dyadics (except in the trivial case when Tj is a line)
but it will be a regular dyadic grid. The measure will be

(18) dσ = (l + iA'(x))dx.
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To define the grid it is enough to indicate how to produce the children
of a given interval. Let / be any interval, let us denote its left and right
endpoints by xj and xf respectively. Let zf = xf + iA(xf) and similarly
zj. Let zj be the point on the curve Γ which is equidistant from zf and zj
(it is well defined because ||A'||oo < 1) Let xj be the point in / such that
zj = xj + iA(xj). The children of / will then be

It = (xj,xi), Ir = (xi,xf).

Lemma 8. The grid F(J) defined by this procedure is a regular dyadic grid.

Proof. Clearly, the vector zf — zj — J7 dσ(x) = σ(I).
Let θj — argσ(7). Notice that by construction, |σ(//)| = |cr(JV)| := tj.

Therefore OLJ := θIι — θi — θj — θIr (here aj is the common angle in the
isosceles triangle defined by zj, zf and zj). Since the curve is a Lipschitz
graph, then certainly both θj and OLJ are bounded in absolute value by
θ := arctan ll̂ 'loo < π/4. In particular, since |/| = \σ(I)\cosθj and by
construction \σ(ϊ)\ — 2|σ(J)| cosα/ (where / is a kid of /) then

; for C=±^-.

Since 0 < η < 1 clearly \ < C < 1. D

The Haar system associated to T{J) and to dσ = (1 + iA'(x))dx is, as we
can see by (10) and the fact that σ(Ir)/σ(Iι) — e2iai, given by:

(19) Λ?(x) = ^ y y (e itt'χ/r(a:) - e'ia'χIt(x)) .

Proposition 1. The Haar system defined above is a frame on L2(J).

Proof. The proof is essentially the same as the one in [CJS].
Let us compare the standard Haar basis, {/i/}/ejτ(j), associated to the

grid T(J) (see (16)), and the new system. It is not hard to see that

where \cj\ ~ 1, \dj\ ~ 1, uniformly on /.
Therefore,

,hσi)σ = ci j fhjdσ + d^IΫ'^maj-^- ί fdσ.
J μι\ Jii
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Recall that dσ = (1 + iA'(x))dx and let us denote the mean value with
respect to the Lebesgue measure by πiig — Λ-.fjgdx, and recall that (.,.)
denotes the ordinary inner product in L2. Then we can rewrite the right
hand side in the last equality as

Also notice that,

where \cj\ ~ 1 as well.
Since |c7 | ~ 1 and |d/| ~ 1 independently of/; then

(20) Σ \(f,h°)f<C Σ \(f(l + iA%hj)\2

)
+ C

The first term on the right hand side of this inequality is clearly bounded by a
multiple of ||/||i,2(j), since {/i/j/e^CJ) 1S a basis on L2(J) and |1 -MA'loo < 2.

The second term can be controlled by Carleson's Lemma on regular dyadic
grids, provided we can show that

Lemma 9 (Geometric Lemma). The sequence bj = |J|sin2α/, / G T{J)
satisfies Carleson's condition with Carleson's constant independent of the
base interval J.

We will prove this lemma at the end of the section. Assume it is true, and
let λ7 = |m 7 | /(l +iA')\2. Clearly

\*(x) < CM2\f\,

where M is the ordinary Hardy-Littlewood maximal operator.
By Carleson's Lemma and the boundedness on L2 of M, we get that

lsin'ajlmrJil + iA'W < C | / | | 2 ( J ) .

Therefore, for all / G L2{J)

The converse now follows from a standard polarization argument (see
[CJS]).
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This finishes the proof of the proposition. •

We will say that a locally integrable function b is in BMO(JΓ, σ, J) if there
exists a constant C such that

(22)

Remark. Since the square of the absolute value of the sequence 6/ —
iσ1 / 2(/)sinα/ is a Carleson sequence with respect to dσ and T{J) (Geo-
metric Lemma 9), the function

b(x)=

is a well defined L2(J) function and is in BMO(σ,J, J); moreover, there
exists constant 0 < e < 1 such that for all /, \bjh^(x)\ < 1 — e.

Proof of Lemma 9. This proof is the same as the proof of the Lipschitz case
in the Travelling Salesman Problem (see [J].)

Since |/| ~ |cr(Jr)|, it is enough to show that the sequence |σ(/)| sin2 c*j
satisfies Carleson's condition.

Denote by Γ/o the image curve of the interval Io.
Certainly the arclength of Γ/o is comparable to \IO\. We can compute this

length /(Γ/o), by successive polygonal approximations to Γ/o.
Let σj — {z — zj + tσ(I) : 0 < t < 1}, be the chord built joining the

images of the endpoints of / on Γ. Clearly, |σ/| = |cr(/)|.
Let Γo = σIo and define for n > 0

Γn = (J σj.

Clearly Γn —> Γ/o and /(Γn) —> l(TIo).
Therefore

n=0

It is easy to compare the lengths of two succesive polygonals,

Z(Γ n + 1 )-Z(Γ n )=

By definition of the grid, |σ(/)| = 2|σ(/)| cos α/, for / parent of /; hence,
since Γ is Lipschitz, |σ(/ r)| + |σ(/j)| — |σ(/)| ~ |σ(/)| sin2α/.



574 MARίA CRISTINA PEREYRA

Therefore

Z(Γ/β)-Z(Γ0)

Finally since l(To) = \σ(I0)\ ~ \IO\ and l(TIo) ~ \IO\ we see that for all

Io 6 ΠJ)
|σ(/)|sin2α7<C|/o|.

This finishes the proof of Lemma 9. D

The bilinear form (.,.)σ is not an honest inner product. We would like
to study the boundedness in L2 of certain operators and their adjoints with
respect to the bilinear form. Let us state here a lemma that we will use
later. The proof of the lemma is an exercise in functional analysis left to the
reader.

Lemma 10. Given T and T* linear operators in L2(J) such that

(Tf,g)σ = (f,T*g)σ, Vf,geL2(J),

then T is bounded in L2(J) if an only ifT* is bounded in L2(J).

3.4. Proof of Theorem 1'. Suppose / G Wh2(Γ), where Γ = {x + iA(x) :
lA'Ioo = η < 1}. Let A(x) =x + iA(x).

By definition of the Sobolev space on the curve, f(A) and (f(A))f are in
L2(R). We can assume that f(A) is absolutely continuous.

Let dσ = (1 + iA'(x))dx, be the measure used in the previous section.
There we showed that given an interval / then (see (19))

Clearly (f(A))f = f'(Ά)(l + iA1), and by the fundamental theorem of
calculus,

(f(A),hσj)σ = - ^ [eiaif(zf) + e-ia'f(zj) - 2cos<*//(*,)] ,

where Ir = [xj^xf], // = [:E7,£J] and zf = A(xf).
The right hand side is almost the geometric second difference that we

associated to /, namely Δ// = f(zf) + f(zj) — 2/(^/).
Let us introduce an adjusted geometric second difference

(23) Δ// = ete'/(*ί) + e~iaif(z7) -2coβaIf(zI).
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Observe that when Γ = R, the two differences Δ// and Δ// coincide with
the ordinary second difference.

Remark. This adjusted second difference is, in some sense, a better behaved
object. If we define

AJ(z) = eia^f(z+) + e-^' VfizΓ) - 2 cos a(z,t)f(z);

then At will annihilate linear holomorphic functions. This is something that
an ordinary second difference does but ours does not!! The nonlinearity in-
troduced in the construction of zf is compensated in At by the introduction
of the correction factors e±ιa^z^ and cos a(z,t).

Fix an interval J. We just showed that if / G Wι'2(T) then for all I G

Also recall that

Let Γj = A(J). Notice that \f'\L,(Tj,dz) = | |(/(i))' | |^(j) ~ \f'(A)\LHJ),
therefore by Proposition 1 it follows that

Hϊ)\ +

If we replace Δ/ by Δ/ we can still show a local version of Theorem 1'.

Since |/ | ~ |cr(i")|, we can use either of them in the estimates.

Theorem 1' (Local version). Given f 6 VFll2(Γ), then for every interval

IΔ/!2 \Hzΐ)-f(zj)\2 . ;

uniformly on J.

Remark. This local version implies Theorem Γ. Since it holds uniformly on

J, and clearly / G W^2(Γ) implies that l / ( ^ [

)

σ ~ ^ ^ ) | 2 < l/ 'H2 ( Γ j ) (more is ac-

tually true: / G Wι'2{Y)^ f absolutely continuous, implies that

\σ(j)\J ^ 0, as J -> R, this is a consequence of the elementary fact
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that for any function / 6 L2(R), j^O"//)2 -»• 0 as |/| -> oo.) Denote by
F = Un>o^"(Jn) where J n € ̂ i(Jn+i) and R = Un>0Jn, then certainly

MJ)I "
which is the conclusion we were seeking.

Proof of Theorem V (Local version). After observation (24), we see that it
is enough to compare Σieτu) |Δ//| 2/lσ(ΌI and Σiepm |Δj/|2/lσ(-OI

In particular

(25) Δ// = cosα/Δ// + isinc*/ (f(zf) - f(zj)) .

Since / E W1>2(Γ), we can assume that f(A) is absolutely continuous; i.e.
f(A)(b) - f(A)(a) = Sh

a(f(A))'{x)dx = Sb

af'{Ά)dσ. Hence if we denote the
mean value of g with respect to σ on / by raj#, then

Therefore

The second summand on the right hand side is bounded by |/;(A)l2 ~
Il/Ίli2(r) ^ Carleson's Lemma and the same argument with the maximal
function that we used at the end of Proposition 1.

This finishes the proof of the local version of Theorem V. D

3.5. Proof of Theorem 2. If we do not know a priori that / G WX'2(Γ)
but only that / £ L2(Γ) and that for a fixed interval J,

"'*ί)-/(*7)la , ^ lA'/!2

<0o,

we can still say something. Certainly (26) does not carry enough information
about the smoothness of /. for instance it only considers the values of / at a
countable number of points which is negligible. Nevertheless, if (26) is true
the sequence

Dίf{z) = S{xt)~JfxT\ Φ) e I e τk{J)
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will converge to a function DJf in L2(Γj), that we will call the dyadic
derivative of f on J with respect to the grid T{J) (clearly if we start with a
differential)le function / then the sequence converges pointwise to /' in J).
More precisely, we can prove the following:

Theorem 2 (Local version). Let f G L2(Tj) and assume (26). Then,
the sequence Dkf defined above converges to a function DJf G L2(Tj).
Moreover,

where the constant C is independent of the base interval J.

Remark. To get the global estimate, denote by T — Un>o^i(Jn) where
Jn G T{Jn+ι) and R = Un>0Jn> a s i n the remark right after the local ver-
sion of Theorem Γ. Clearly, T(Jn) C F(Jn+ι) C ... C T, assume that
Σ/gjΓ ισ(nι < °° This implies that (26) holds uniformly on Jn (since

\f(*j) - f(zJ)\VΠJ)\ < cΣjc/6^|Δ//| 2 /kU)l) G i v e n / € ^ 2(Γ), we
will get a sequence of functions Dnf defined by DJn f on TJn and zero other-
wise, uniformly bounded in L2. By construction D n + 1 / | j n — Dnf\Jn, hence
Dnf —> Djrf in the L2 sense as n —> oc, and

Hence, Theorem 2 is proved, up to the local version.

Proof of Theorem 2 (Local version). Fix an interval J. Let us drop the
superscripts J in the notation for dyadic derivative (i.e. Dk and D will be
used instead of DJ

k and DJ).
We do not know a priori that f exists, so we cannot use Carleson's Lemma

straight away as we did in the previous section.
Nevertheless, notice that for every xj G / G ̂ (J) w e c a n write by (25)

(27) Δ// - cosα/Δ// + iσ(I) sin <*/£>*/(*/),

by an abuse of language, we are identifying Dkf with Dkf(A), and we are
writing Dkf(x) instead of Dkf(A(x)).

It is not hard to see that

Dk+1f(x) - Dkf(x) = ^ίL
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Therefore, multiplying (27) by /iJ/σ1/2(/) and using the last equality we

get for every x G / E ^ ( J )

(28)

Dk+1f(x) = cost*/—-Mτzhΐ(x) + (l + iσ1/2(I)sinaIh
σ

I(x))Dkf(x).

By hypothesis and Proposition 1, the function

(29) g{x)= Σ cosaj^-hUx),

is in Ll(J).
Let b(x) = ΣieF(J) bih°(x), where 6/ = iσ1 / 2(/) sinα/. By the remark on

p. 573, b is in BMO(^, σ, J).
Moreover, with the notation of Section 3.2 p. 569,

cos a!

and similarly for Alb(x).
With this notation we can rewrite (28) for all k > 0 as

(30) Dk+1f(x) = Δ^(x) + (1 + Δ26(x)) D fc/(x).

This is the recurrence equation that we solved in [P] under some conditions
on b.

Let us replace Dkf by the corresponding sum and continue down until we
reach k — 0. We get

(31) Dk+1f = A*kg + U Kg f[ (1 + ΔJ6) + A,/ f [ ( l + ΔJ6).
n=0 j=n+l j=0

The last summand on the right hand side of this equation is a multiple of

Dof — σ7j) which is not necessarily zero.

Lemma 11. The sequence ωk — ΠjLoU + ^J^) converges in L2(J) and
a.e. to the function ω = Π^o(l + ΔJ6). Moreover ||ϋ;Iχ,oo(j) < 1.

We will prove this lemma at the end of the section. These products had

been studied in [FKP].
The first two summands in the right hand side of (31) look formally like

the finite sum operator Pff in [P], The only differences are that here the
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supporting grid is not the standard dyadic grid and the measure is dσ instead
of the Lebesgue measure. The function b comes from the geometry, just as
the measure dσ and the grid do. All the algebra is still valid, including the
algebra to pass to the corresponding finite paraseries.

Let us define the analogous finite sum operators, for b G BMO(σ, T, J)
and g £ L2

0(J,dσ) (the space of functions in L2(J) with mean value zero on
J with respect to dσ)

(32) Pb

k

σg := Σ K9 Π (1 + ΔJ6) + Alg(x).
n=0 j=n+l

Proposition 2. The operators P£σ converge to a bounded operator in L2(J).

To show the convergence of the martingale Dkf (see (31)), it is enough
to show that P^σg converges to a function in L2(J) since the other term
converges to ωDof, a multiple of ω £ L2(J) (by Lemma 11), where Dof =

σ(j) ^ s a consequence of Proposition 2,

< c\\g\\h{J) < c

It is clear that \\ωDof\\2

L2{J) < g ' ^ ^ J ^ ^ 2 , because by Lemma 11, \ω\ < 1.
Therefore, in the limit, the function Df = lim^^oo Dkf, will be in L2(J) and
moreover,

11 ΪL2{J) h i^oΓ
where C is a constant independent of J. The local version of Theorem 2 is
proved up to the study of the operators P ^ , and the weight ω (Lemma 11).

D

3.6. Convergence of the operators Pf;σ. Since formally the operators
P/fσ look exactly like the ones treated in [P], we want to analize them in a
similar way.

In this setting we can define the paraproduct

(33)
j=0
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and its adjoint with respect to (., .)σ

(34) (Πn*5 =
j=0

(It is easy to check that (Πfa,/)σ = (g, (Πf )*/>σ )
For b E BM0(.F, σ, J) the paraproduct is bounded in L2{ J) by Carleson's

Lemma and so is its adjoint by Lemma 10.
The basic product and composition rules for the expectation and difference

operators are true (see Definitions (13), (14), and see [P], and [Ga]), namely

fΔ* i f n > j m
n j \θ otherwise'

AσJ x Δξg = Δ*(/ x ΔJ 5 ) when n > j .

Therefore for all iχ < i2 < ... < %M a n d n <iM

(35)

and for all M > n

(36) |
\k>M

Let 6 = Σ / 6 ^ (j) &jfr/, where bj — iσ1/2(/) sinα/. By the remark on p. 573
6GBMO(f,σ,J).

We can now reproduce word by word what we did in [P], except for

Proposition 3. The operator

(37) Pί9 = ΣK9 Π (1 + ΔJ6),
n=0

is well defined and is bounded on L2(J).

Nevertheless we can do similar computations to the ones done in [P] to
prove the analogous result. Let us assume that it is true for a moment, and
let us go back to our problem. We want to study the convergence of P^σg

as k -> oo. Let bk = Σn=o K^
Then clearly

Pb

σ

kg = Pb

k

σg + (g-gk).

Therefore Pbσg will converge simultaneously with Pζhg (since (g — gj.) —>
0). But reproducing the proof of the corresponding theorem in [P], we see
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that Pζkg converges to Pζg — {I—Iίl)~ιg. Therefore P^σg converges to Pζg,
which is a function in L2, by Proposition 3.

Proof of Proposition 3. As in the proof of the analogous result in [P], the
weight ω (see Lemma 11) can be used to rewrite the operator so that it will
now look like the operators Pω treated in [P].

Recall that

(38) ω(x) =

As a byproduct of the proof of Lemma 11 we will get (see (56)) that

(39) E>=Π(1 + ΔJ6),
3=0

which is equivalent to

(40) mσjω = J ] (1 + &ΓΛ?,(a:/)), Xi G /.
I'DI

With this in mind we can rewrite the operator Pζ as

_

= v - ω(x)(g,hσ

I)σh
σ

I{x)

Written in this way the operator looks formally like what we called Pω in
[P]. The main step over there was to study the boundedness of the adjoint
operator.

Let

It is easy to check that for all /, g E L2(J)

Therefore by Lemma 10 it is enough to show the boundedness of the
operator (P6

σ)* Since {h*} is a frame, it is enough to show that there exists
a constant C such that for every g G L2(J)

(43)
ωghσ!

1 + brh
da < C\g\
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We can rewrite the operator in a simpler form.
Let / G F(J) be a child of /. Then by (40), for any xj G /,

(44) mσ

Iω = mjω (1 + bjhf- (xj)).

Therefore, recalling that σ(It) = eiaiσ(I)/2cosar andσ(/ r) = e-2 i α /σ(/z),
we get

1 I ωghσ

τ ^ = 1 Γ eiaifIrωgdσ e~ia> f^ωgdσ 1

mσ

Irωg m^ω
= 2cosα7σ

1/2(J)
rrijrω m^u

Let dμ — ωdσ. With this notation (43) is equivalent to

(45) £ \σ{I)\\mlg-m^<C\g\l

where πijg denotes the mean value of g on / with respect to μ.

Remark. The left hand side of (45) resembles the L2(dσ) norm of the
standard dyadic square function Sf(x) = (Σxei(mirf ~ΎniJ)2)1^'> namely,

lev

It is known that such an operator is bounded in L2 (dσ) for dσ = vdx if and
only if the weight v is in the Muckenhoup class A2 (see [GC-Rf] for the
general weight theory). There is a very nice proof of this result in [B]. Our
proof follows the ideas in that paper.

Lemma 12. The measure μ restores dyadicity to T. More precisely, for
every I G T{J), I child of I, μ(ϊ) = 2μ{I).

Proof. By definition and using (44) for any Xj G /

It is not hard to see that for x G /

(46) l + 6/Λί(x) = ί e

1 1 1 e / x G
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Also recall that σ(I) = eiθl\σ(I)\, θIr = 07 - α7, θh = 07 + α7 and
|σ(/ r)| - |σ(/z)| = |σ(/)|/2cos α7. Therefore for x <E I

σ(I) 1

σ(ϊ) 2(1+ bϊh
σ

ϊ(xI))'

This finishes the proof of the lemma.

It is not hard to see, after the last lemma, that

D

We recall that for all complex numbers z, w the following identity holds,

\z — w\
= \zr -

z + w z + w

Let z — rrijβ, w = rrijrg and (z + w)/2 = m ^ . Then (45) is equal, up to
a constant, to

(47) W)\(\rnμ

ig\
2-\m^).

Adding and subtracting 2|σ(/)||mj^|2 we get

(48)

The first summand in the last expression can be bounded by

(49) C Σ sin2 aj\a(I)\\m»g\\

because ||σ(/)| - 2|σ(/)|| = 2|cosα7 - l | |σ(J)| < Csin2 α7 |σ(/)|.
This last expression can be bounded in turn using Carleson's Lemma by

where

(50)

C I \M»g(x)\2dx,
Jj

M"g(x)= sup \mμ

l9\.
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Let

Clearly the second term in (48) is a telescopic sum for this sequence, hence
it equals to Σ,™=Λam - αm_i) = limm_^oo am - o0.

But

a>m<C g2

m{x)dx\
Jj

where

Clearly for all m

and therefore αm < μ)
Finally we can bound (47) by a constant times the L2 norm of Mμg,

and we will be done as soon as we can show that this maximal function is
bounded on L2 (J).

Lemma 13. The maximal operator Mμ is bounded on L2(J).

Proof. By definition
fjωgdσ

mjg = ———

It is enough to show that ω satisfies a weighted Reverse Holder (2 + e)
condition-, namely, that there exists e > 0 such that for all / G F(J)

(51)

Let us assume that (51) is true, for / G T{J), g £L2(J), and by Holder's
inequality with p = 2 + e, q = f±j we get

Since |dσ| ^ dx and by (51) we can bound this by

[ 1
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where M is now the ordinary Hardy-Littlewood maximal operator which is
bounded in Ls for all s > 1. In particular, since g E L2 then \g\q E L2/q,
where 2/q > 1 by hypothesis, and therefore,

/ \M»g\2dx <C [ \M(\g\")\2^dx < C ί \g\2dx.
JJ JJ JJ

This proves the lemma; the only missing step is (51). D

It is enough to show that ω satisfies (51) for 6 — 0. This resembles the
classical result of Gehring (see [Ge]), that says that if a weight satisfies a
Reverse Holder condition of order p, it does satisfy a condition of order p + e
for some positive e.

L e m m a 14. There exists a constant C such that

-^ I \ω\2dx < C\mϊω\2, VJ G

We will prove this lemma at the end, and as a corollary of it and of the

precise description of ω, we will conclude that,

L e m m a 15. There exist e > 0 such that (51) is true for all I E T{J).

Proof of Lemma 11: Let

(52) ωk(x) = Π Π
7

Notice that by (46)

Σ K ί \ f \ Έ
k

π
n=0

where for x E I E Tn{J) we define an(x) — α/, θn(x) — θj, and sn(x) —

sj(a ) = < r . Recall that θIr — 0/ — α/, #/, = 0/ + α 7 ; therefore

^n+l(^) = 0n(z) - 5n(x)αn(x) and Σn=O 5n«n = 0̂ ~ θk+l

Hence

A;

(54) α;Λ (a:) = e i ( 0 J -βfc+1 {x)) J J cos α n (a;).
n=0
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Clearly \ωk(x)\ < 1, therefore ωk e L2(J) and |ω f c |L2 ( J ) < C\J\^2, Vfc.
Moreover, |ωfc+i| < \ωk\, hence it is a decreasing sequence. Therefore there
is a subsequence convergent to a function ω G L2(J).

We can also say something about a.e. convergence. Since Γ is a Lipschitz
graph parametrized by A, then A is differentiate a.e. Let x E J be a point
where A'(x) exists. Clearly θk(x) -> aict&n Af(x). On the other hand, the
infinite product Π^Lo cosan(x) converges for each fixed x simultaneously
with Σ ^ o ί 1 ~ cosαn(α;)) ~ ΣZ=o sin2 an(x).

But

]Γ sin2 an(x) I dx = ]Γ /
\n=0 / n=0Jj

sin2

1 sin2

this last expression is bounded by C\J\ by the geometric lemma (Lemma 9).
Therefore Σ™=0 sin2 an(x) < 00 for a.e. x G J.

Hence for a.e x £ J

lim ωfc(z) = e ^ - a r c t a n y l / ( a ; ) ) TT

In conclusion, ω is well defined as the L2 limit of the ωk and also as a
pointwise limit; for a.e. x ,

(55) α (rr) = eiθj{I+iA'{x))~1 \[ cosan(x).
n=0

This finishes the proof of the lemma. D

We can safely write

n=0

It is not hard to see that

(56) Έ%ω(x) =

which is equivalent for Xι E / to

(57) mΐω = JJ (1 + bΓh
σ

Γ(xj)).
I'DI
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To prove this last statement, observe that ω — Πl=o(l + Δ f̂e) Π^=j(l +
Δ£6). The first factor is constant for all x G / G ^Fj(J) and the second factor
looks like 1+ sums of products of Δ£ί> where k > j . When we compute the
mean value on intervals / G Fj(J) we pick the value of the first factor at a
point xι G / times the mean value of just the function f(x) = 1, because all
the other summands have mean value zero by (35).

Now (56) implies that 1 + Δ^6 — E^+ιω/E^ω^ which in turn implies that

f\ Q
JtZ/ CO ιJ (jJ

Therefore

(58) », = <*,*;>. = < ϋ * Z k

Proof of Lemma 14. Because the system {/i/}/e '̂(/o) is a frame for L2(IO)
and ω G L2{IO) for all Io G J^(J) then

ί \ω\2dx

But by (58), (ω,hΐ)σ =
Therefore to prove the lemma, it is enough to check that for every Io G

T(J)

But for /,/' G ^(/o) and xj G /, by (57), and (54)

(1 + bΓhΓ{xI)) = mσ

Ioωei(θlo'θl) ]J cosaΓ

Hence |rajα;| < |mjoω| and since bj — iσ1//2(/) sinα/ then

But the second factor on the right hand side is bounded by C\IO\ by the
geometric lemma (Lemma 9.)

Notice that the constants involved are independent of the base interval J.
This finishes the proof of the lemma. D

Proof of (51) (Lemma 15). We conclude immediately from Lemma 14 that
for all/

(59) |rajα;| ~ ra/|α;|.
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This observation and Lemma 14 imply that the weight \ω\ satisfies a Re-
verse Holder condition of order two on the intervals of the grid. Namely, for
all / G

ω\
flf \ 1 / 2

(60) ( — J^ωfdx) <Cmj\

This is enough to ensure that the weight |α;| satisfies a Reverse Holder
condition of order 2 4- e, for some e > 0. Namely, for / G T{ J),

(61) ί — j \ω\2+*dx\ <Cmj\ω\.

Since |rnjα;| ~ ra/|α;| (see (59)), we then get the desired result.
That condition (60) implies condition (61) for some e > 0 is Gehring's

Theorem. One can follow word by word the proof in [G] p. 260; you need
the RH2 condition to be true on a lot of subintervals of the starting interval
J, enough so that a Calderon-Zygmund decomposition argument can be
used. Usually the intervals used are those that come from a standard dyadic
decomposition of J, but it is straightforward to check that it can also be
done if the intervals are given by a regular dyadic grid associated to J.

This finishes the proof of (51). D
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A TYPE OF UNIQUENESS FOR THE DIRICHLET
PROBLEM ON A HALF-SPACE WITH CONTINUOUS DATA

HlDENOBU YOSHIDA

Dedicated to Professor F.-Y. Maeda on his 60th birthday

In this paper, we shall prove a property of the harmonic
function H defined on a half-space T which is represented by
the generalized Poisson integral with a slowly growing con-
tinuous function / on the boundary dT of T. Then we shall
investigate the difference between H and more general har-
monic functions having the same boundary value / on dT.
These give a kind of positive answer to a question asked by
Siegel.

1. Introduction.

Let K. and K+ be the sets of all real numbers and of all positive real numbers,

respectively. We introduce the spherical coordinate (r, Θ), Θ = (0i,02, >

0n-i)> i n ^ e n-dimensional Euclidean space Rn (n > 2) which are related to

the cartesian coordinates (X,y), X — {xι^x2->. ,xn-i5!/) by the formulas

/n-l

Xχ ~ Γ I Π

and if n > 3,

Λ-i \
Xn+ι-k = r J | sinθ^ cos0fc (2 < k < n - 1),

where

0 < r < H-oc, - 2 " x π < 0n_i < 2~13π

and if
n > 3, 0 < θj < π (1 < j < n - 2).

The unit sphere (the unit circle, if n = 2) and the upper half unit sphere

{(l,0i,02,..- A - i ) e M n ; 0<6>! < f} (the upper half circle {(l,0i) E M2;

591
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-2-λπ <θx< 2~ιπ) if n = 2) in Rn (n > 2) are denoted by S71"1 and S!p\
respectively. The half-space

{ ( I , y ) G Γ ; X G R n - 1 , y > O } = { ( r , θ ) G Γ ; Θ G S ^ 1 , 0 < r < + O O }

is denoted by Tn. Then the boundary dΊn of Tn in Rn (n > 2) is identified
with R71"1, which is represented as

{Q = (t,ξ)ew-ι

; |g| = t > o, f e as"-1}

by the spherical coordinates, where 9S+"1 is the boundary of S+"1 in S71"1 (if
n > 3, then dS1^1 = § n " 2 and if n = 2, then dS\ = {-§, f} , (t, f) = t G R
and (ί,-f) = - t 6 R ( ί > 0 ) ) .

Given a continuous function / on OTn, we say that h is a solution of the
(classical) Dirichlet problem on Tn with /, if h is harmonic in Ύn and

lim h(P) = /(Q)

for every Q e dTn.
Helms [4, p. 42 and p. 158] states that even if / is a bounded continuous

function on dTn, the solution of the Dirichlet problem on T n with / is not
unique and to obtain the unique solution H(P) (P = (X,y) € Tn) we must
specify the behavior of H(P) as y —» +oo. With respect to this fact, Siegel
[6, Theorems 1] proved the following result. Let Ft (ί > 0) be the set of
continuous functions f{x) on R such that

i: \x
2+ι

If f G Fι, then there exists a solution Ht^{f){P) of the Dirichlet problem on

T 2 with f satisfying

o(rί+1/cosθ1) (r -> +oo)

(P = (rsinθi, rcos^i) G T 2 ) .

If h(P) is a solution of the Dirichlet problem on T2 with this f such that

h(P) = o(/ + 1 / c o s 0 i ) (r -> +oo) (P = (rsinβi, rcosβi) G T2),

then

for every P G T 2, tί Λere U(h)(P) is a harmonic polynomial (of P = (xyy) G

R2) of degree at most ί vanishing on dΊ2 = {(z,0) G R2; rr G R} . Further
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he stated the following result without proof (Siegel [6, Theorem 3]). Let £ be
a non-negative integer. If f is a continuous function on dYn (n > 2) such
that

(1-1) \f(Q)\<F(x) (QedΊn = Rn-\ \Q\=x)

for some F(x) € Fe, F{x) = F{—x) (x € M), then there exists a solution
He,n(f){P) of the Dirichlet problem on Tn with f satisfying

(1.2) He<n(f)(P) = o(ri+1/cosθ1) (r^+oo)

(P = (r,Θ) € Tn, Θ = (Θ1,θ2,... ,0 n - i)) .

If h(P) is a solution of the Dirichlet problem on Tn with this f satisfying

(1.3) h(P)=o(ri+1/cos θ1) (r->+oo)

(P = (r,θ) € Tn, θ = (Θ1,θ2,... ,0n-x)),

then
h(P) = Ht,n{f)(P) + U(h)(P) (P € Tn),

where U(h)(P) is a harmonic polynomial of P — (#i,#2? ,rrn_i,ί/) G W1

of degree at most ί vanishing on dTn = { ( I , 0 ) G R n ; X e W1'1} .
In connection with these results, Siegel [6, p. 8] asked whether the condi-

tion (1.1) of f{Q) can be replaced by more natural condition

(1 4) Lτv§*dX<+~ ιl20}

under which H£)Tl(f)(P) exists.
A special case of the following result of Yoshida shows that this question

is solved affirmatively in the case where i — 0. To state it, we need the
following notations. Let Φ(r, θ) be a function on Tn. We put

N(Φ)(r)= / ^Φ(r,θ)cosθidσθ (θ = (0i,02,... ,0n-i

and

μo(Φ) = lim r"

if they exist, where dσ& is the surface element on S n x. Let Gn(P1,P2){Pι1

P2 E Tn) be the Green function of T n . By K^n(P, Q) (P e Tn, Q e dΊn),
we denote the ordinary Poisson kernel of T n

ς fθ.(P,<ϊ) = 5! | i .-β |- c.-l' Ά <" = ;;>
ov sn [(n-2)sn, (n > 3)
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where — denotes the differentiation at Q along the inward normal into Tnόv
and sn is the surface area 2τrn/2{Γ(n/2)}-1 of Sn~\

Theorem A. (Yoshida [8, Theorem 3 and Lemma 3]). Let f(Q) be a con-
tinuous function on Ύn (n > 2) satisfying

r+cχ>

(1.5) J Γ2 Π_λ \f(t,ξ)\dσξj dt < +00,

where dσ^ is the surface element of 9S"" 1 = Sn~2 (n > 3) and

ί \f(t,ξ)\dσξ= f(t^) + / ( t , ~ ) (n = 2).

Then the Poisson integral

H0,n(f)(P) = j d τ f(Q)K0,n(P,Q)dσQ

is a solution of the classical Dirichlet problem on Ύn with f such that

μo(HoA\f\))=0.

If h(P) is a solution of the classical Dirichlet problem on Tn with this /,
then two limits μo{h) (—00 < μo(h) < -j-oo) and μo(\h\) (0 < μo(\h\) ̂  +00)
exist, and if

(1.6) μo(\h\) < +00,

then

(1-7) h(P)=HoM)(P)

foranyP = (X,y)€Ίn.

We remark that (1.5) is equivalent to

• dQ < +00.

If h is a solution of the Dirichlet problem on Tn with this / such that
h = o(r/cosθi) (r -> oo), then μo{\h\) = 0, μo(h) = 0 and hence h(P) =
Ho,n{f){P) This shows that Theorem A gives a positive answer to SiegeΓs
question in the case where ί — 0. However Theorem A gives a form of h not
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only in the case where μo(|^|) — 0 but also in the case where 0 < /io(|/ι|) <
+ OO.

In this paper we shall show that a solution of the Dirichlet problem on T n

with / satisfying (1.4) satisfies a natural condition weaker than (1.2) (The-
orem 1) and other solutions with this / satisfying some growth condition
different from (1.3) are specified in a certain sense (Theorem 2), which con-
tains a positive answer to SiegeΓs question in every case (Corollary 1) and
gives a generalized form of Theorem A (Corollary 2). We shall also state
Theorem 2 in more general form (Theorem 3).

I would like to thank the referee for suggesting a much simpler proof of
Lemma 3.

2. Statement of results.

We denote the origin of IRn by O. Let k (k > 0) and n (n > 2) be two

integers and let Lk^n+2 be the (n + 2)-dimensional Legendre polynomial of

degree £;, where Lo,n+2 = l We also put

n-ί

We note that ck^n+2Lk^n+2(t) is equal to the ultraspherical (or Gegenbauer)

polynomial Pk

/2 of degree k associated with | (see Stein and Weiss [7, p. 148])
The following theorem gives the Fourier expansion of KOjΐl(P, Q).

Theorem B. (Armitage [1, Theorem E] and Gardiner [3, Theorem B]).

Let Q = (Z) = (ί,f) E R71'1 - {O}, \Q\ = t, ξ E Sn~2 (n > 2). The function

Jk,n,Q ofP = (X,y) = (r ,θ) E IT, θ = (0i,02,-- A - i ) , 9™en by

(2.1) Jk^Q(P) = rh+1 cos θιLk^2(smθ1 cos

(7 is the angle between (-X", 0) and (Z,0))

is a homogeneous harmonic polynomial of degree k -\-1. Further the function
independent of t and r

{which is the restriction to the surface § n - 1 of Jkyn,Q(P) and hence a spherical
harmonic of degree k + V) satisfies

(2.2) |/,,n

for each P = (r, θ) E Rn. // r < t and θ E S+" 1 then K0,n(P, Q) is given by

K0,n(P,Q) = -
SSn k=0
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For an integer £ > 1 and two points P = (r, θ) e Tn, Q = (t,ξ) e OTn,
we put

VUPQ)

We see from Theorem B that for any fixed Q 6 dTn the function V^n(P, Q) of
P £ Tn is harmonic on Tn and vanishes on OTn. We define another function

TTΛ / o ^^ ίVifn(J°, Q) (P eTn,Q = (ί, 0 e STn, 1 < t < +oo)

In addition to K0>n(P, Q), the Poisson kernel Ke>n(P, Q) (P G Tn, Q g 5Tn)
of order t {I > 1) is defined by

κe>n(p, Q) = κo,n(P, Q) - Wi,»(P, 0)

(see Siegel [6, p. 7] and also see Armitage [1, p. 56]).
Let I be a non-negative integer. Given a function Φ(r, θ) on Tn, we set

μt(Φ) = lim r-*-χiV(Φ)(r),
r—>oo

if it exists. By FιiΎl we denote the set of continuous functions f(Q) on
dΊn = W1'1 (n > 2) such that

which is equivalent to

Jdsi-1

Hence F^2 is equal to F£.

Theorem 1. Let £ (ί > 0), n (n > 2) 6e too integers and f e FitΛ. Then

Ht,n(f)(P)=f f(Q)Ke,n(P,Q)dσQ
JdΎn

is a solution of the classical Dirichlet problem on Ύn with f satisfying

(2.4)

Remark 1. Further, suppose in Theorem 1 that / E Ft^n for some £' lesa
than L Then
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Γ°°t-k-2 (ί Ik^(Θ)f(t,ξ)dσλ dt P=(r,θ).

We note from (2.2) that

^ dί<+oo.

Put Jk,n,Q(P) = yΎk3niQ(P), and observe from (2.1) that Ύk^Q(P) is a
polynomial of P = (xχ,x2,... ,xn_i,y) G Mn of degree at most k and even
with respect to the variable y. Hence, if we set Jkn(f)(P) = j/ϊjζn(/)(P),
then Ύ*kn(f)(P) is a polynomial of P = (xι,x2,... ,xn_i,?/) of degree at
most k and even with respect to y (h = £',£' + 1,£' + 2,... ,£ — 1). Thus

fΓo,(/)(P) = HP,n{f){P) + yL(f)(P),

where L(f)(P) is a polynomial of P = (̂ 1,̂ 2? i%n-ι,y) £ Mn of degree
at most £ — 1 and even with respect to y.

Remark 2. If (1.2) is satisfied, then (2.4) also holds. Since Siegel assumed
(1.1) which is stronger than (2.3), he could obtain (1.2). It is interesting to
ask whether (1.2) follows under (2.3) or not.

The following result is just a generalization of Picard's theorem stating
that a positive harmonic function in the Euclidean space is a constant. Let
H(r,Θ) be harmonic on Em (ra > 2). If for some positive t > 1,

r-^MiH+Hr) -> 0 (r -> +00), M{H+){r) - / ίί+(r, θ) dσ,7 0 7

then for some positive integer £ less than t

£

where C is a constant and Ξk(r,Θ) = rkYk(Θ) is a homogeneous harmonic
polynomial of order k (1^(0) is a spherical harmonic function) (see e.g.
Brelot [2, Appendix; §26]).

It is well known that many results on harmonic functions in Mn can easily
obtained by a passage to Mn+2. By using this fact and the result with m —
n + 2 stated above, Kuran proved the following Theorem C. To state it, for
a function Φ(r, θ) on Tn we define

2?(!/Φ,r) = (σ+)-1 / ί/Φ(r,θ)dS+
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if it exists, where §+ = {(r, θ ) G T n ; Θ G S+"1} , σ+ is the surface area of
the spherical part of §+ and dS+ is the surface element of §+.

Theorem C. (Kuran [5, Theorem 10]). Let h{X,y) (— h(r,θ)) be a har-
monic function on T n such that h vanishes continuously on dTn.

If for some positive t,

(2.5) lim r'f'2V(yh+, r) = 0,
T—>-OO

then

h = yU(h)

in T n , where Tl(h) is a polynomial of(xι,x2,... , xn-i, y) E IRn of degree less

than t and even with respect to the variable y.

Remark 3. Let Φ(r, Θ) be a function on T n . Then

(2.6) V(yΦ,r) = 2s~V]V(Φ)(r),

if they exist. Hence (2.5) is equivalent to

limr" ( f + 1 )JV(Λ+)(r) = 0.
r—>oo

The following theorem answers affirmatively Siegel's question in the case
where I is a positive integer.

Theorem 2. Let ί (I > 1), n (n > 2) be two integers and

(2.7) / G Fitn.

If /ι(r, Θ) is a solution of the Dirichlet problem on Tn with f satisfying

(2.8) μe(h+) = 0,

then

(2-9) h(P) = Htιn(f)(P) -

for every P = (X, y) E T n , where Π(/ι) (P) is a polynomial of P — (xι, x2, -
xn-ι,y) G W1 of degree at most ί—1 and even with respect to the variable y.

The result obtained by Siegel immediately follows from the remark fol-
lowing Theorem A (the case ί = 0) and Theorem 2 (the case ί > 1).
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Corollary 1. Let i be a non-negative integer and f(Q) be a continuous
function on dTn — R n - 1 (n > 2) satisfying

\f(Q)\<F(x) (Qer-1, \Q\ = X>O)

for some F(x) e Ft (£ > 0), F(x) = F(-x) (x E K). If h(P) is a solution of
the Dirichlet problem on Ύn with f such that

h(P)=o(re+1/ cos ΘJ (r->oo) (P = (r, Θ) 6 T n ) ,

then

h(P) = Ht,n(f)(P) + U(h)(P) (P = (r ,θ) G T n ) ,

where U(h)(P) is a harmonic polynomial of P — (x1,x2,. . , a;n_i,y) G Mn

o/ degree at most ί vanishing on dTn.

Theorems 1, 2 and Remark 1 also give a generalized form of Theorem A.

Corollary 2. Let £ be a positive integer and f(Q) be a continuous function

on dTn (n > 2) satisfying f E i*V_i,n Then the Poisson integral

f(Q)Kέ-ltn(P,Q)dσQ

is a solution of the classical Dirichlet problem on T n with f satisfying

(2.10) μt.

If h(P) is any solution of the classical Dirichlet problem on Ύn with this f

satisfying

μe(h+) = 0,

then

(2.11) h(P) = Ht.lιΛ(f)(P) = yΠ'(Λ)(P)

for every P = (X,y) G TΓn, where Tl*(h)(P) is a polynomial of P with degree
at most i — 1 and even with respect to the variable y.

Remark 4. Since

from (2.10) and (2.11) and

yW(h)(P) = reφ(h)(θ){l + o(l)} (r -> +oo) (P = (r, θ ) G T n )
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for some φ(h)(θ) on S^_x, it follows that

φ{h)(θ)cosθ1dσe1

exists. Put I = 1 in Corollary 2. Then Π*(/ι)(P) is a constant C and
Q

= Cμo(y) = — s n Thus we obtain (1.7) under the weaker condition
In

(1.6).It may be more desirable to restate Theorem 2 in the following form.

Theorem 3. If ft(r, Θ) is a solution of the Dirichlet problem on Tn (n > 2)
some / G i^,n (̂  > 0) satisfying

6 , v A y < +oo,
logr

for every P = (X, y) G Tn, where A(h)(P) is a polynomial ofP = {xχ,x2,.. ,
rrn_-i,y) G K.n and even with respect to the variable y.

3. Proofs of the Theorems 1, 2, 3 and Corollary 2.

For a set E, E C R+ U {0}, we denote {(r, θ) G Tn; r G # } and {(r, θ) G
OTn; reE} by ΊnE and <9Tn£, respectively.

Lemma 1. For a positive integer ί we have

\KOin(P,Q) - Vt9n(P,Q)\ < dr^H-^cosθ±

for any P = (r,θ) G Tn, Θ = (θuθ2,... ,βn-i) and any Q = (t,0 G
2r

9Tn — {0} (n > 2) satisfying 0 < — < 1, ti Λere CΊ «5 a constant depending

only on ί and n.

Proof Take any P = (r,Θ) G Tn and any Q = (t,ξ) G OTn - {O}. Put
2r ί

β i = — , α = — and Θi = Θ in
t 2

x,θx), («i?2,θ2)) = Gn ((RuQi), (Ra,θ2))

(«€«+ , (Λi,θ x ), (Λa.θa) 6 T n ) .

When (i?2,62) approach to (2, £) € OTn along the inward normal, we obtain

(3.1)
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2r
Suppose that 0 < — < 1. Prom Theorem B and (2.2) we have that

V

(3.2)
£-1 fc+1

£+l

Since

£-1

is finite, we immediately have

from (3.1) and (3.2), which is the conclusion. D

Lemma 2. Let t he any positive integer. Let f(Q) be a locally integrable
function on dTn (n > 2) satisfying (2.3). Then i?^)T1(/)(P) is a harmonic
function on Tn.

Proof. For any fixed P = (r, Θ) G Tn, take a number i? satisfying R >
max(l,2r). Then from Lemma 1 we have

(3-3)

/ \
dΊn[R,+oo)

\f(Q)\\Kttn(P,Q)\dσQ

)

dTn[R,+oo)
\f(Q)\\K0,n(P,Q) dσ

cosθλ Γ°° Γ£-2 I ί \f(t,ξ)\dσλ
JR yjds^-1 j

dt

Thus Hiin(f)(P) is finite for any P e Tn. Since Kt,n(P,Q) is a harmonic
function of P £ Ύn for any fixed Q G OTn, i/^n(/)(P) is also a harmonic
function o f P e T n . D
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L e m m a 3. Let ί be any positive integer. Let f(Q) be a locally integrable
and finite-valued upper semicontinuous function on ΘΎn (n > 2) satisfying
(2.3). Then

for any Q* £ dΊn.

Proof. Let Q* = (ί*,ξ*) be any fixed point of dTn and ε be any positive

number. Take a positive number £, δ < 1, such that

(3-4) HQ)<f(Q )+ε

for any Q e <9Tn Π C/^Q*), where t/"4(Q*) = {P 6 Mn; | P - Q | < δ} . From
(3.3), we can choose a number R*, R* > 2(ί* + 1), such that

(3.5) / \f(Q)\\Ke,n(P,Q)\dσQ<ε,
JdTn[R*,+oo)

for any P eΊnΠUδ(Q*). Now we write

HUf)(P) ^ I f(Q)KtΛP, Q) dσQ
JdΊnΠUs(Q*)

+ I f(Q)Ke,n(P,Q)dσQ
JdTn[0,R*)-Us(Q*)

+ I f(Q)K£,n(P,Q)dσQ
JdΊn[R*,+oo)

h{P)=ί f{Q)K0,n{P,Q)dσQ

JdΊnnυs(Q*)

-I f(Q)We,n(P,Q)dσQ

JdΊnnUs{Q )

and

h(P)= ί f(Q)KOtn(P,Q)dσQ
JdΊn[0,R*)-Us(Q*)

- I f(Q)We,n(P,Q)dσQ

JdTn[0,R )-Us(Q )

First we see from (3.5) that

(3.6) \h(P)\<ε
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for any P G T n Π Uδ(Q*). Since

K0,n{P,Q)dσQ
dτnnuδ(Q*)

/
dτn-uδ(Q*)

= — ί \P-Q\-n

Sn JdΊn-Uδ{Q*)

for any P — (X, y) £ T n , we have

lim
/

JdΎnnUδ(Q*)

and hence from (3.4)

(3-7) limP ( Ξτn, P->Q*Λ,I(P) < f(Q*) + ε.

Also observe that

(3.8) |/2il(P)| < ^ ( I ) " Γ ί""2 f / |/(ί,C)μσξ) dί

for any P = (X,y) e T n Π C/4/2(Q'). Since

/ I/(Q)I l ^ , n ( ^ Q ) l ^ Q < C2COSΘ1

Jaτn[o,R*)

for any P = (r,Θ) G T n Π t ^ ( Q ), Θ = ( ^ , θ 2 , . . . ,0^), where

C2 = 2 ^ 1 2 c , n + 2 ( r + l) t + 1 Γ ^-2f/ \f(t,ξ)\dσλ dt,

we obtain that

(3.9) |/l
JdτnnUδ(Q*)

< C2 cos θλ -> 0

and

(3.10) |7 2 i 2 (P) | < ( \f(Q)\ |W,,n(P,Q)| dσQ

J dΊn[0,R*)-Uδ{Q*)

< C2 cos θλ -+ 0,
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as P = (r,θ) -> Q*. All (3.6), (3.7), (3.8), (3.9) and (3.10) give

Π E P e T n , P^Q.Hitn(f)(P) < f(Q*) + 2ε,

from which the conclusion immediately follows. D

Proof of Theorem 1. If £ = 0, then Theorem 1 is included in Theorem A.
Hence we can assume that ί > 1. It immediately follows from Lemma 2 and
Lemma 3 that i ϊ^ n (/)(P) is a harmonic function on T n and

for any Q* € OTn.
To prove (2.4), we see first that

(3.11) N(\HUf)\)(r)

= /1(r) + /2(r)

for any P = (r,θ) G Tn, θ = (Θ1,θ2,...,θn^), where

h(r) = I ( I \f(Q)\ \Kt,n(P,Q)\ dσQ) cosθ1dσθ

and

h(r) =

Let ε be any positive number. Take a sufliciently large number r0 such
that

7 )
where Ci is the constant in Lemma 1. Since

(3.12)

we have from (3.3)

(3.13) h(r) < ε-
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for any P = (r, θ) G Tn, r > r0.
Suppose P = (r,θ) G Tn[§,+oo). For any Q = (t,ξ) G OTn (0 < t < 2r)

we obtain
ί-l

from (2.2) and hence

where

C3 = i2ίs~ι

Hence we have

(3.14) hi?) < I2ti(r) + I2,2(r)

from (3.12), where

\f(Q)\( [ K0tn(P9Q)co8θ1dσθ] dσQdΊn[0,2r) \JSl-1

and

/2f2(r) = C3(2n)-15flr
ί Λ ^ " 1

Here, consider the function KOin(P,Q) of P = (r, θ) E Tn for any fixed
Q = (t?f) G aTn. Then we see from (2.5) that

and from Kuran [5, Lemma 2] and Helms [4, p. 109; Example 2] that

which gives

/ _ιK0in(P,Q)cosθ1dσθ = I™ ^ _J ~T <n~ιrι~n

(r\ (f\ n n
[\y = = \"l •) V2-) •) "n—1
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Hence we obtain

(3.15)

Γ 2 V 2 ( 7 \f(t,ξ)\dσλ dt

= n - V - / V 2 (7 \f(t,ξ)\dσλ dt
Jo \Jdsi-1 )

V 2 ( 7 \f(t,ξ)\dσλ dt

V1-" + n-V1-" ΓΓt-\2r)n+t-11 [ \f(t,ξ)\dσλ dt

where

and

Γ^if ldσλ dt.
)

Then

(3.16) l2Ar) = C3(2n)-1snr
£φ(r).

Thus if we can show

(3.17) φ(r) = o(r) (r -> oo),

then we have

I2,i(r) = o(rt+1) (r->oo)

from (3.15),
J 2 i 2 (r) = o(rt+1) (r -> oo)

from (3.16) and hence from (3.14) we can find a number ri such that

(3.18) I2{r) < ε-rί+ί

for any r > rλ.
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To see (3.17), we note that ψ(r) is increasing,

Γ°° ^ dv = 2 /+°° r ^ 2 f / |/(ί, £)| dσλ dt < 2C5

<2 Γre-2( f \f(t,ξ)\dσλ dt<2Cb,
Ji \Jdsy1 )

C,= Γt-e-2( ί \f(t,ξ)\dσλ dt.

and
φ{r)

r

where

From these we see

/

+oo
r~2ψ(r) dr < +oo

_
by the integration by parts. Since

— φ(r) / x 2 dx < x 2φ(x)dx,
J r J r

this gives (3.17).
If we put r2 = max(ro,Γi), then we finally have from (3.11), (3.13) and

(3.18)

for any r, r > r2 > which gives (2.14). D

Proof of Theorem 2. Consider the function h - H^n(f). Then it follows from
Theorem 1 that this is harmonic in T n and vanishes continuously on dTn.
Since

(3.19) 0 < {h - He,n(f)}+ (P) < h+(P) + {He,n(f)Γ

for any P G T n and

from (2.4) of Theorem 1, (2.8) gives that

From Remark 3 and Theorem C we see that
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for every P = (X,y) G Tn, where U(h) is a polynomial in Rn of degree at
most ί — 1 and even with respect to the variable y, which gives the conclusion
of Theorem 2. D

Proof of Corollary 2. The first part follows from Theorem 1. Since / G F^n,
Theorem 2 gives

for every P = (X,y) G Tn, where Π(Λ)(P) is a polynomial of P G Mn with
degree at most £ — 1 and even with respect to the variable y. Remark 1 also
gives

for every P = (X,y) G Tn, where L(f)(P) is a polynomial of P G Rn with
degree at most ί — 1 and even with respect to the variable y. Prom these, we
evidently obtain (2.11). D

Proof of Theorem 3. Put

— ]QgN{h+)(r)
limr_>oo = α.

logr

It immediately follows that /i[α]+i(/i+) = 0. Take an integer t satisfying
t > max(£, [a] + 1). Since / G F£^n and μ£*(h+) = 0, Theorem 2 gives that

(3.20) h(P) = Hέ.9n(f)(P) + yΠ(Λ)(P),

where Π(Λ)(P) is a polynomial of P and even with respect to y.\ί ί — t ,
then (3.20) gives the conclusion. Suppose that t > ί. Prom Remark 1 we
also see

(3.21) Ht.,n(f)(P) = Ht,n{}){P) + yL(f)(P),

where L(f)(P) is a polynomial of P and even with respect to y. From (3.20)
and (3.21) we have

h(P) = He,n{f)(P) + yΛ(Λ)(P), Λ(Λ)(P) = Π(Λ)(P) -

which is also the conclusion of Theorem 3. D
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