Volume 172 No. 2 February 1996



Rosa M. Miré-Roig, Singular moduli spaces of stable vector bundles on
P e

Hitoshi Moriyoshi and Toshikazu Natsume, The Godbillon-Vey Cyclic
Cocycle and Longitudinal Dirac Operators ...............cooiiiivninenanen.

J.C. Naranjo, The positive dimensional fibres of the Prym map ..........
Artur Nicolau and Arne Stray, Nevanlinna’s coefficients and Douglas al-
e2<Y 3 P
K.K. Park, Entropy of a skew product with a Z2-action ..................
Maria Cristina Pereyra, Sobolev spaces on Lipschitz curves .............
T. Sano, Commuting co-commuting squares and finite dimensional Kac al-
BEDTAS . . e

H.B. Thompson, Second order ordinary differential equations with fully
nonlinear two point boundary conditions ................... ...l

H.B. Thompson, Second order ordinary differential equations with fully
nonlinear two point boundary conditions IT .................... ... ... .. ..
F. Xu, The flat part of non-flat orbifolds ................... ... ... ...

Hidenobu Yoshida, A type of uniqueness for the Dirichlet problem on a
half-space with continuous data ........... .. .. ... . il

477

483
223

541
227
553

243

255

279
299

591



PACIFIC JOURNAL OF MATHEMATICS
Vol. 172, No. 2, 1996

ON THE FAILURE CYCLES FOR THE QUADRATIC
NORMALITY OF A PROJECTIVE VARIETY

EDOARDO BALLICO

Let X be a smooth projective surface and L a very am-
ple line bundle on X which is not quadratically normal; set
r+1=h%X,L). Here we give numerical conditions on X and
L which imply the existence of a finite subscheme T of X with
length(T) > 25+ 2 and contained in a dimension s < r — 2 linear
subspace of P(H°(X,L)) and such that L | T is not quadrati-
cally normal.

Introduction.

It is very classical the following problem (with several variations). Suppose
that a curve C' C P" has some bad property, e.g. it is not projectively normal.
Show the existence of a finite subscheme S of C' contained in a smaller linear
subspace such that S explains the failure of C to be projectively norrnal.
In modern times there is the important paper [4]. Here we consider the
corresponding problem when the scheme C has dim(C) > 1. We were also
motivated from the notion of k-ampleness and k-very ampleness introduced
in [2]. By definition these conditions fail for a scheme C' if and only if there
is a zero dimensional subscheme S of C with a bad property. We were
interested (see e.g. [1]) in showing that under suitable conditions there are
many such subschemes. A natural question was if there is some bad positive
dimensional proper subscheme Y containing all of them for a natural reason
(for example if it were the union of them) or if there was some bad ”free”
zero dimensional subscheme. Here we consider the condition of quadratic
normality and give a positive answer if dim(C') = 2 under suitable numerical
conditions. These numerical conditions are strange, far from optimal and
just come from the proof. We will state them below as Theorem 0.2. But
first and most important: the proofs are essentially technical variations on
an alternative proof ([5, §2.5]) of a theorem in [4]; hence the idea originates
ultimately with Robert Lazarsfeld. After the present results were proven, we
checked the references and found that exactly that subsection was deleted
in the printed version [6] of [5]. After a while we decided to rewrite a little
bit the paper, but to write it anyway.
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308 EDOARDO BALLICO

We fix an integral variety X and a very ample line bundle L on X; set
r+ 1 := h%X,L) and O := Oy; let ¢, : X — P7 be the embedding
associated to H°(X,L) into a projective space. Recall that a subvariety
U of P(V) is called quadratically normal if the restriction map V ® V. —
H, (U, Oy(2)) is surjective. The pair (X, L) (or just L) is called quadratically
normal if ¢ (X) is quadratically normal.

Definition 0.1. If L is not quadratically normal, we will call amount
of failure of quadratic normality the integer dim(coker(H°(L) ® H°(L) —
H°(L?)).

Let G = G(r + 1 — dim(X),r + 1) be the Grassmannian of codimension

dim(X) linear subspaces of P7; set

B:={U € G : X NUis not zero dimensional}.

Here is the main result proven in this paper.

Theorem 0.2. Assume dim(X) = 2 and that L is not quadratically nor-
mal. Let £ > 0 be the amount of failure of the quadratic normality of X. If
h'(Ox) < f + codim(B) — 1, then there is a codimension 2 linear subspace
[U] € G\B such that the scheme X NU is 0-dimensional and is not quadrat-
ically normal with respect to L | (X NU). Furthermore, there is a an integer
s <r—2, a linear subspace V of U with dim(V') = s and a subscheme T of
UNX contained in V with length(T) = 2s+2 such that T is not quadratically
normal with respect to L | T.

In particular Theorem 0.2 applies to all linearly normal but not quadrat-
ically normal embedded surfaces with h!(Ox) = 0.

For other related 1 results proven within the same framework, see 2.2 and
2.3. In §1 (after fixing the notations) we will give the framework and the
main ingredients for the proofs of all the results of this paper. In §2 we will
prove Theorem 0.2.

The author owes a huge debt to the referee for essential constructive crit-
icism and for fundamental mathematical contributions which improved the
original statement of 0.2.

The author was partially supported by MURST and GNSAGA of CNR
(Italy).

1. Preliminaries and general set up.

We work over an algebraically closed base field. We fix an integral variety X
and a very ample line bundle L on X; set r + 1 := h%(X, L); let ¢, : X—PT
the embedding associated to H°(X,L). If A is a sheaf on X, we will often
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write H(A) or hi(A) for H'(X, A) or hi(A). Set Y := ¢,(X). Let Q be
the cotangent sheaf of P™. Set My, := ¢;*(2(1)). By the dual of the Euler
sequence of TP” and the completeness of the embedding of X we obtain the
following exact sequence on X:

(1) 0—M,—H°(X,L) ® Ox—L—0

which contains a lot of informations on the cohomology of Iy.
Now we generalize the Remark in [6] given at page 510 (between the
statement of [6], Prop. 1.3.3, and its proof).

Lemma 1.1. With the notations X, L, ¢y, My, and so on introduced at the
beginning, we have:
(i) Fiz an integer k > 0 and assume H'(L*) = 0; the multiplication map
H°(L)®H°(L*)—H°(L**') is surjective if and only if H' (M, ® L¥) =
0. In particular if h*(L°) = 0 for every s > 0, then L is normally
generated if and only if H' (M}, ® L*) = 0 for every t > 0.

(i) The amount of failure for the quadratic normality of L is
dim(ker(H' (M, ® L)~H°(L) ® H'(L))).
(iii) If HY(L?) = 0 the amount of failure of quadratic normality is

h(M;, ® L) — h°(L) - B*(L).

Proof. Just use a twist of the exact sequence (1).

Let G := G(r —z+ 1,7+ 1) be the Grassmannian of codimension z linear
subspaces of P(H°(X,L)) and F := {(y,U) e X xG:ye€ U} C X x G be
the incidence variety. On G we have the exact sequence

(2) 0—-S—H°(X,L) ® Og—Q—0

with @ tautological quotient bundle and S tautological rank z subbundle.
Let f : X xG—G and p : X XxG— X be the projections. The incidence variety
F is defined by the vanishing of the induced morphism s : f*S—p*L i.e., its
ideal sheaf I in X x G is the image of the associated map f*S®p*L* O xx¢.
Note that this ideal sheaf I has a resolution:

(3) . f*At+IS ®p*L*t__>f*AtS ®p*L*(t—1)_>f*A(t——1)S ® p*L(t-2) ..
e fPA2S @ p L*— f*S—I® p* L—0.

On X x @ there is an important commutative diagram. First, we will write
it as formula (4) in the particular case z = rank(S) = 2 needed in the proof
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of 0.2.
0

|

f*A’S®p*L* — p*M,

F— S — O

(4) 00— f*s — H(L)® Oxxg — f*Q —0

| |

p*L —p'L®O0pr —0
| |
0 0

O

In the general case this commutative diagram has 3 columns. The first
column of this diagram is the resolution (3) of I (without I). The second
column of the diagram is the pull-back p* of the exact sequence (1) and
the third column is just the tautological surjection f*Q—p*L ® Op. These
columns are connected so that the only long row in the diagram is the pull-
back by f* of the exact sequence (1); just above this exact sequence there is
a map f*A%2S ® p*L*—p* M}, and just below the exact sequence there is the
surjection p* L—p*L ® O coming from the surjection Oxxg—OpF. Follow
the first column of the diagram till the term f*A2S ® p*L*; then go on the
right one step and find f*Q; then go down one step and find f*A%S ® p*L*.
In this way from this diagram we obtain an exact sequence obtained from
the exact sequence (3) substituting the last part f*S—I® p*L—0 with

p"Mp—f*Q—p*L @ Op—0.

Call (§8)(k) the exact sequence obtained twisting by p*L, the sequence just
described. If z = 2 the complex (§§)(1) is the following exact sequence:

(5) 0= f*A’S—p* (M, ® L)~ f*Q ® p*L—p*L* ® Op—0.

Now we push-forward the complex (§§)(1) to the Grassmannian; since (§8§)(1)
is exact, its higher pushforwards vanish and we obtain a spectral sequence
(call it (#)) converging to zero.

(#) E' =R'f.(C") =0

where
0—C* ... 5C°=C'—>C?*—-C3*—0
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is the complex
0= f*A*SRp*L*@ 2 ... 5 f*A2S—p* (MLQL)— f*Q®p* L—p* L2®0 p—0.

In Section 2 we will write the E;-part of (#) as formulas (7), (8) and (9)
in the case dim(X) = z = rank(S) = 2 we need for the proof of 0.2. Use
the projection formula R'f,(f*A’' ® p*A) = H (X, A) ® A’ for all locally free
sheaves A on X. We normalize the indices of the complex (§§)(1) in such
a way that the term E? of the spectral sequence (#) is H°(X,O0x) ® A%S.
With this normalization the term Ef* of (#) is 0 if either ¢ < 0 or ¢ < 2 — =,
it is HY(X,0x) @ A=4*2S for 2 —z < ¢ < 0,HY(X,M;, ® L) ® Og for
q=1,H(X,L)® Q for ¢ =2 and R'f,(p*L* ® OF) for ¢ = 3.

Remark 1.2. Note that over G\ B we have R'f,(p*L®Or) = 0 for every j
and every ¢ > z — 2 because the fibers of f over G\ B have dimension < z —2.
Fix a point [U] € G\B corresponding to a codimension z linear subspace U
of P". Then for every integer k the fiber of the sheaf f.(p*L*"' ® OF) at [U]
is canonically isomorphic to the vector space H°(U, Oynx (k + 1)) and fiber
over [U] of the homomorphism u := d3° : H*(X,L) ® Q—f.(p*L* ® Op) in
the E;-part of the spectral sequence (#) is identified at [U] with the natural
multiplication map

(6) H°(X,L) ® H*(U,Oy(1))~H*(UOxnu(2))-

2. Proof of Theorem 0.2.

Now we specialize the situation of §1 to the situation of Theorem 0.2, whose
proof will be given now.

Proof of Theorem 0.2. First, note that the “Furthermore part” of the state-
ment of 0.2 follows from the first part and [6, Lemma 2.4.4].

Now we will prove the first part of 0.2. We write as formulas (7), (8) and
(9) the 3 non trivial lines of the E;-term of the spectral sequence (#) under
the assumptions of 0.2; in particular we have z = 2,rank(S) = 2,A%S =
O¢(-1),dim(X) = 2.

(7) Hz(OX)®OG(—1)—)H2(ML®L)®OG——)H2(L)®Q
(8)
H'(Ox) ® Og(~1) 3 H' (M, ® L) ® Og & H'(L) ® Q—R'f.(p*L>* ® Op)

(9) H°(Ox)®0¢(~1)—»H(M,®L)®0s—H(L)®Q % R°f.(p"L*®0p).
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Let a := d*, 8 := di',u := d?° be the maps indicated above. By Remark
1.2 to prove 0.2 it is sufficient to prove that the map u is not surjective on
G\B. We use that the spectral sequence (#) converges to 0 because the
complex (§§)(1) is exact. We have coker(u) = E3°. We divide the proof into
two parts.

(A) Here we assume h'(L) = 0, hence 8 = 0 and coker(a) = E}'. Since
the spectral sequence (#) abuts to 0, we have

0= E = Bl = ker(d!! : EN'E).

Hence coker(a) injects onto coker(u). Hence it is sufficient to prove that the
codimension of the support of coker(a) is at most h'(Ox) —f + 1. Since o :
H'(Ox)®0¢g(—1)—0¥% and Og(1) is ample, this follows from [3, Th. L1(a)].

(B) Now we make no assumption on H*(L). As in the corresponding case
of [5], the exact sequence (1) gives a homomorphism

c: H' (M, ® L)»HY(L) ® H*(L)

and dim(ker(c)) is the amount of failure f of quadratic normality of L by
Lemma 1.1 (ii). On G there is an inclusion of sheaves (ker(c)) ® Og— ker(3).
Since ker(/3) is a subsheaf of a trivial sheaf, this inclusion is an isomorphism
of (ker(c)) ® Og onto a direct summand of ker(3). Hence projecting ker ()
onto this summand we obtain a surjection from E;' = ker(f3)/im(a) onto
coker(H'(Ox) ® Og(—1)—0¥%,). We conclude as in part (A).

The proof of 0.2 is over. O

Remark 2.1. The proof of 0.2 depends only on dim(B). If we want to
exclude a bigger subset of G, then we obtain a corresponding result in a
suitable range. Viceversa, if we may control a dense part of B the corre-
sponding result is true in a larger range. The proof of Theorem 0.2 gives
with no change the following result.

Proposition 2.2. Fiz an integer k > 1. Assume dim(X) = 2. Assume
the surjectivity of the restriction map H°(P",Op(k))—>H’(¢r(X),O0(k)) =
HO(L*). Let £(k) be the dimension of the cokernel of the multiplication map
H°(L) ® H°(L¥)—H°(L**'). Assume f(k) > 0 and

hY(L*') < £(k) + codim(B) — 1.

Then there is a codimension 2 linear subspace [U] € G\B such that the
scheme X NU is 0-dimensional and the multiplication map

HYL)@ HY(X NU,(L | (X NU))=H (X NU,(L|(XNU))*)
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is not surjective.

Remark 2.3. Note that for a complete but not projectively normal em-
bedding the machine can start (and give informations on (X, L)) using the
proposition just given exactly at the first step, say the (k + 1) step, at
which the embedding is not (k + 1)-normal. However, it can also be used at
an intermediate step with large h°(L*), obtaining a result of Castelnuovo -
Mumford type.

If we look at the proof of Theorem 0.2 when X is a smooth curve with
H'(L) <1, we find exactly the proof of [5, §2.5]. In the statement we have
the small precision about the amount of failure of quadratic normality of L.
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ON THE MINIMAL FREE RESOLUTION OF GENERAL
EMBEDDINGS OF CURVES

EDOARDO BALLICO

Here we study the minimal free resolution of general em-
beddings in P" of genus g curves with general moduli. We
prove that if p is an integer with, roughly, g < n?/(2p+2), then
the embedding has the property N,, i.e., the first p pieces of
the resolution are as simple as possible.

We work over an algebraically closed field. Let C be a smooth curve
embedded in P". We are interested in the minimal free resolution of C'.
Here we will consider the case in which the curve has general moduli and
the embedding is general. Recall the following definition ([5], [6]).

Definition 0.1. Let C C P™ be a reduced curve; fix an integer p > 1;
C satisfies the property N, if C' is arithmetically Cohen - Macaulay and for
every integer ¢ with 1 < ¢ < p the i'"-sheaf appearing in the minimal free
resolution of the homogeneus ideal of C' is the direct sum of line bundles of
degree —i — 1.

For instance if we say that Ny means “C is arithmetically Cohen-Macau-
lay”, then N, means that the curve C is Ny and its homogeneous ideal is
generated by quadrics. Furthermore, if p > 0, then N, implies N,_;.

In this paper, using degeneration techniques, we will prove the following
results (Theorems 0.2 and 0.3).

Theorem 0.2. Fiz an integer p > 1. For every integer u, set:

(1) ap(u) == (u?)/(2p +2) — (u/2).
Fiz an integer n > 3 with n > p+ 1, and set:
(2) Gyp(n) = op((p + 1)[n/(p +1)])

where [y] is the greatest integer < y. Then for every integer g < G,(n)
the general linearly normal non special curve C C P™ with p,(C) = g and
deg(C) = g + n satisfies the property N,.

Note that G,(n) has order (n?)/(2p + 2) and hence d := g + n is usually
much smaller than 2g + p if n is much larger than p.

315
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In the case of special linearly normal embeddings we have the following
“conditional” result.

Theorem 0.3. Fiz an integer p > 1 and an integer s > 2p. Assume that
a general canonical curve of genus s + 1 in P*® has the property N,. Fiz an
integer n > p+s; write n = s+ a(p+1) + b with a,b integers and 0 < b < p.
Set:

(3) Sps(n) :=(a+1)s+1+ala—-1)(p+1)/2

Then for every integer g with s +1 < g < S, 4(n) a general linearly normal
curve C C P™ with p,(C) = g and h*(C,0¢(l)) = 1 (hence of degree
g +mn — 1) has the property N,.

Quoting existing references on N, for the canonical model of a curve, C,
with general moduli (e.g. [7], [3]), one obtains corresponding statements for
special embeddings of C. We stress that the proof of Theorems 0.2 and 0.3,
being a kind of induction on n using as inductive tool Lemma 1.2, may be
used to obtain many other cases not covered by the statements of 0.2 and
0.3; the proof of 0.2 should be helpful to the reader interested in other cases.

I want to thank the referee for several suggestions which improved very
much the readability of the paper;

The author was partially supported by MURST and GNSAGA of CNR
(Italy).

1. In this section we will prove Theorems 0.2 and 0.3. A key quotation
for the proofs here is the criterion for condition N, given in [6, Prop. 1.3.3];
the base field for all [6] was the complex number field, but the statement of
the quoted criterion 1.3.3 works in arbitrary characteristic because each of
the steps of its proof either works verbatim in positive characteristic or it is
known to hold in general; furthermore, [6, Prop. 1.3.3], although stated only
for smooth curves, works with the same proof for all reduced curves. It is
the use of this criterion for N, which gives the condition of linear normality
in the statements of 0.2, 0.3 and 1.3.

Fix an integer n > 3; following the notations of [6], M,, will denote the
rank n vector bundle on P" with M, (—1) isomorphic to the cotangent bun-
dle.

The following result is well known (see e.g. [1, Lemma 1.3]):

Lemma 1.1. Let D C P™ be a rational normal curve. Then M | D is the
direct sum of n line bundles of degree —1.

Lemma 1.2. Fiz integers n,p,t,j and m withn >t > j > p > 1 and
m > 0. Let C C P"7 be a reduced curve satisfying condition N,. See P"~7
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as a linear subspace V of P™ and let D be a smooth rational curve of degree t
in P™, D spanning a linear subspace W of dimension t, with dim(VNW) =
t—j and card(CND) = t—j+1, D intersecting quasi transversally C, (hence
C U D spanning P"); assume that H*(C, (AP¥Y M,,_;(1))(m) | C) = 0; then
HY(CUD,(A®»YM,(1))(m) | (CUD))=0.

Proof. Consider the following Mayer-Vietoris exact sequence:

0 —(APD M, (1))(m) | (C U D)
(4) (AP, (1))(m) | C @ (AP M, (1))(m) | D
—(APHIM,(1))(m) | (C N D)—0.

Note that M, | C = (M,_; | C)®O%. Hence APV M,, | C is a direct sum of
trivial factors and factors isomorphic to A*M,,_; | C for some integer u < p.
Since N, implies N, for every u < p we have

HY(C,(AP*YM,(1))(m) | C) = 0.

Note that M, | D is the direct sum of ¢ line bundles of degree —1 and
n — t copies of Op. Hence (A®*VM,(1))(m) | D is a direct sum of line
bundles of degree at least mt + ¢t — p — 1. To conclude it is sufficient to
use (4) and to check (see below) the surjectivity of the restriction map
p : HO((APHU M, (1))(m) | D)= H((A®**Y M, (1))(m) | (C N D)). For the
surjectivity of p, note that, since deg(Op(—(C N D))) = —card(C N D) and
j > p, we have H'(D, E(—(C N D))) = 0 for every line bundle E on D with
deg(E)>t—p—1. U

Note that p,(C U D) = p,(C) +t — j and that C U D spans P™. An easy
Mayer-Vietoris exact sequence gives h'(C U D,O¢yp(1)) = A'(C,0¢(1))
and h°(C U D,Ocyup(l)) = n+ 1. Hence any smoothing of C U D will give
linearly normal smooth curves “near” C' U D.

Proof of 0.2. We fix the integer p. First we will prove N, for the genus G,(n)
and every integer n. Set n = a(p+1)+r. As a starting point we assume the
property N, for the rational normal curve of PP*!. Of course, better results
and other example can be obtained using other curves in P?*! with property
N,, e.g. the ones given by an important theorem of M. Green (proven in any
characteristic in [5, Prop. 3.2]) saying that a linearly normal embedding of
degree at least 2k + 1 + p of any smooth curve of genus £ has the property.
N,. The main property of the function G, is the property G,(m +p+1) =
G,(m) + (p+ 1)[m/(p + 1)]; its normalization G,(p + 1) = 0 comes from the
choice we made for the starting point of the induction. Then we apply (a—1)
times Lemma 1.2, always with j = p+ 1 and at each step with the maximal



318 EDOARDO BALLICO

possible ¢; in the k*"-step we pass from a curve of genus G,((k+1)(p+1)) in
P*+D(+) to a curve of arithmetic genus G,((k + 2)(p + 1)) in P*-+2)@+1),
Then we apply Lemma 1.2 for the integers n,t,j with ¢t = n and j = r,
concluding the case g = G,(n). Now we will check N, in P" for any non
negative integer g < G,(n) There is an integer z < n — p — 1,z divisible by
p+ 1, with Gp(z) < g < G,(z + 1), say z = m(p + 1). We take a curve, C,
in PX with N, and genus G,(z) and we apply Lemma 1.2 for the integers
n,t,j, with j =n—z and t — j = g — Gp(z).

At each step of the induction the possibility of deforming the reducible
curve to a smooth linearly normal curve (i.e., a smooth curve, T', with the
correct h'(T,Ox(1))) is proven (in a much stronger form than needed here
and for 0.3) independently in several papers: see for instance [BE, Lemma
1.2, (1)], or [4, Th.4.1], or [8, §5]; one can also see a discussion of the way
the smoothing concerns the moduli spaces in [8] and [2, §1, §2, §3]. O

Note that the bound (2) on the genus is just a byproduct of the inductive
proof.

Proof of 0.3. The proof of 0.2 works with the following modifications. In-
stead of quoting [6, Prop. 1.3.3], use Remark (2) after the proof of [6, Prop.
1.3.3]. The starting point of the induction is a general canonical curve in
P? which in the statement of 0.3 is assumed to have property N,. To check
the smoothability of reduced curves, use for instance [2, Lemma 1.2 (1)].
To check the condition “A!(T,Or(1)) = 17, first (as remarked before the
proof of 0.2) use a Maver - Vietoris exact sequence to prove it for the re-
ducible curves; then use semicontinuity to obtain that h!'(T,0r(1)) < 1 if
T is general, while h'(T,Or(1)) > 1 by Riemann - Roch. O
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ON NORMALITY OF THE CLOSURE OF A GENERIC
TORUS ORBIT IN G/P

RoMUALD DABROWSKI

In this paper we consider generic orbits for the action of a
maximal torus T in a connected semisimple algebraic group
G on the generalized flag variety G/P, where P is a parabolic
subgroup of G containing 7. The union of all generic T-orbits is
an open dense (possibly proper, if P is not a Borel subgroup)
subset of the intersection of the big cells in G/P. We prove that
the closure of a generic T-orbit in G/P is a normal equivariant
T-embedding (whose fan we explicitely describe). Moreover,
the closures of any two generic T-orbits are isomorphic as
equivariant T-embeddings.

1. Introduction.

Let G be a connected semisimple algebraic group over an algebraically closed
field k of arbitrary characteristic. As usual, let Bt denote a fixed Borel
subgroup of G, T' a maximal torus in B*, I'(T') the character group of T', B
the opposite to B*, ® the corresponding root system in an euclidian space
(E,( , )), @, the set of positive roots relative to B*, A the set of simple
roots in ®,, s, the reflection about the linear subspace of E perpendicular
to root a, W the Weyl group of ® generated by the reflections s,,a € ®,
(W can also be naturally identified with Ng(7T')/T), and R the root lattice
in E.

Let P be a fixed parabolic subgroup containing B. Let Ap be the set of
simple roots a such that s, € Wp = Np(T)/T. Then the map P — Ap
is a bijection between the set of all parabolic subgroups containing B and
the power set of A (see e.g. [B, Proposition 14.18]). We denote by S¥ the
subsemigroup of the root lattice generated by all positive roots which are
not sums of simple roots in Ap.

We will be concerned with T-orbits of points in the projective variety G/ P.
Let X be an integral dominant weight (with respect to ®,) whose stabilizer
in W is Wp Then X extends to a character of P (we will also call it X),
inducing a line bundle £* on G/P. We let V(\) denote the Weyl G-module

HY(G/P, L) = {f € k[G]|f(zy) = A7 (v)f(z) for all z € G,y € P}

321
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of global sections of £* (see e.g. [J, Sec. 5.8, p. 84]).

Let IT, denote the set of weights of V' (A) for the action of T'. Let A, denote
the set of weights of V()) listed with multiplicity. For each u € A,, we pick
a corresponding weight vector (function) f, so that {f,|p € A,} is a basis
of V(A). Functions f,,p € A,, are called the Pliicker coordinates in G/P.
By abuse of language we use f, to denote any Pliicker coordinate of a given
weight pu. Let £ = u.P be an element of G/P. We let I, (z) denote the set of
weights p € II, such that at least one of the Pliicker coordinates f, does not
vanish at u. It is easy to see that II(z) depends on z and A only (not on the
choice of the Pliicker coordinates). It turns out that A — IIy, C SP. Hence
by W-invariance of IIy, A — wily(z) C S”, for any z € G/P and w € W.
Intuitively, a torus orbit Tz C G/P can be called generic if sufficiently many
Plicker coordinates of z do not vanish. The following definition makes this
requirement precise.

Definition 1.1.  Let z be an element of G/P. Then the torus orbit
Tz C G/P is called generic if and only if {wA|w € W} C II,(z), and for
each w € W, the semigroup generated by A — wll,(z) is S¥ (that is, the
maximal semigroup that A — wIl(z) can generate).

We will show that this definition does not depend on the choice of A. It
turns out that II\(z) = II, implies T'z is generic. Therefore generic orbits
exist since there are points in G/P at which all Pliiccker coordinates do not
vanish. We will also prove that in the case of G/B, Tz is generic if and only
if z belongs to N,cw/w, wB*.P.

The aim of this note is to prove that the closure of a generic T-orbit in G/ P
is a normal equivariant T-embedding. We can then use the general theory of
equivariant torus embeddings (see e.g. [K, Odal]) to show that the closures
of any two generic orbits are isomorphic (as equivariant T-embeddings). We
prove this by identifying the fan describing the isomorphism class of these
T-embeddings.

Remark. We point out that if P # B, the definition of generic T-orbit
given here differs from the one used in [F-H, Remark 1, p. 257]. There, an
orbit Tz is called “generic” if and only if z belongs to the non-degenerate
stratum Z = (\,ew,w, wB*.P in the stratification of G/P introduced in
[G-S] (note that in [F-H] B is the “positive” Borel subgroup, while here B
denotes the “negative” Borel subgroup). It is easy to see that the set of all
z € G/P with Tz generic in the sense of Definition 1.1 is an open subset of
Z. 1t is proved in [G-S, Section 5.1, Proposition 1] that if k is the field of
complex numbers then the image under the moment map of the closure of
each torus orbit contained in Z is the convex hull of {wA|lw € W}. In [F-H]
the general theory of torus embeddings is used to study the closure of Tz in
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G /P for z € Z. Tt appears however that normality of these varieties, required
in the theory, has not been proved (as pointed out in [Oda2, Section 2.6]).
Also, contrary to what is claimed in [F-H], two T-orbits in Z may have
nonisomorphic closures in G/P (see the example below).

Example. Let C denote the field of complex numbers. Let ¢ be a nonde-
generate quadratic form on V = C® | and let G = SO(q) be the subgroup of
determinant one linear transformations of V', preserving q. Then G is a con-
nected, semisimple, rank 2 algebraic group over C, and V is an irreducible
representation of G. Let L be a fixed isotropic line for ¢ (that is g(v) = 0
for all v € L), and let P C G be the stabilizer of L. Then P is a parabolic
subgroup of G, and G/P is naturally isomorphic to the smooth quadric
hypersurface ) in the complex projective space Proj(V') given by the homo-
geneous equation ¢(z) = 0. For brevity, we will equate G/P with Q. Let
{e1,e3,€e3,€e4,e4} be the standard basis of V and let q(z) = z,23 +zo14 — 222,
where [z, 29, 23,24, z5] are the coordinates of z € V relative to the stan-
dard basis. We let L = Ce;. Then the maximal torus contained in P
is T = {diag(t,,ts,1/t1,1/t5,1)|t, € C\ {0},4 = 1,2}. Here, the Pliicker
coordinates in @@ = G/P are just the standard homogeneous coordinates
in Proj(V). Clearly, L, = C[1,1,—1,1,0] and L, = CJ[1,1,1,1,1] are ¢-
isotropic. Also, the T-orbits of L, and L, arc “generic” in the sense of
[F-H], but only TL, is generic in the sense of the Definition 1.1. Also,
II(L,) # TI(Ly) =TI, where IT denotes the set of weights of V. This directly
contradicts Lemma 13 in [F-H]. Let X; = TL;, i = 1,2, where the closure
is taken in @ (or in Proj(V'), since @ is closed in Proj(V')). It is easy to see
that X, is isomorphic to CP! x CP! . On the other hand X, is the singular
closed subvariety of Proj(V) given by homogeneous equations z,z5 = zZ,
Toxs = 2 (the singular points of Xy are [1:1:0:0:0],[1:0:0:1:0],
0:1:1:0:0,and [0:0:1:1:0]). Therefore, the example shows
that two T-orbits “generic” in the sense of [F-H| may not have isomorphic
closures in G/ P.

2. Weights of Weyl G-modules.

We will need the following notation. For any additive set A of real numbers
and any subset Y of E, let AY denote the set of all linear combinations of
elements in Y with coefficients in A. By definition, a semigroup S contained
in a lattice L in F is saturated in L if and only if

(see [K, Chapter 1, Section 1]). Equivalently, S is saturated in L if and only
if for any positive integer m, mu € S and 4 € L imply p € S.
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Proposition 2.1. S¥ is saturated in R.

Proof. Let @f denote the set of positive roots which are not linear combina-
tions of roots in Ap. Then S¥ = Z ®%. Suppose that S¥ is not saturated in
R. Let pu € R be an element of minimal height among the elements of Q&%
which are not elements of S¥. Then u = p; + p, , with

= Z mgf

BeM

where M C ®%, mg are positive integers, and

M2 = Znaa

aEN

where N C Ap, and n, are positive integers. From the above decompositions
of 4 we choose one with p, of minimal height. Since the sum of any two
roots with negative scalar product is again a root, minimality of y, implies
that

(aa :6) > 0,

for all @ € N,3 € M. Take any simple root  in N, such that (u,,a) > 0.
Consider v = s,(u) € R. Since elements of &% are permuted by s, v belongs
to Q.+ ®F but not to SF. This is a contradiction, since ht(r) < ht(s) and
4 was assumed to be of minimal height among the root lattice elements in
Q. %, not in SP. O

Let V(A), A, I, be as in the introduction. The following proposition lists
some basic properties of II,.

Proposition 2.2.
(1) A —TII, coincides with the set of root lattice points in the convez hull
of {A —wiwe W}
(ii) ST is generated by A\ —1II,. If P = B and ) is the sum of fundamental
weights then ST is generated by {\ — wA,w € W}.

Remark. Part (i) is well known, but were not able to locate an appropriate
reference.
Proof. We first observe that the weights of the Weyl module V' (\) (X integral
dominant) are independent of the characteristic of k. This follows from the-
fact that character formulas for Weyl modules are the same in each charac-
teristic. Therefore we can assume, that char(k) = 0.

Part (i). Let C denote the convex hull of {wA|w € W} and we let II =
(A+R)NC. We have to prove that IT = II,. It is a known fact that IT, C A+R.
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Therefore it is enough to show that 1I, is contained in C. Suppose that this
is not the case, and let y be a weight in II,, not in C. Assume also, that u
is a maximal such weight in the usual order in F relative to ®,. Since both
ITy and C are W —invariant, we must have s,(u) < u for all positive roots
a. Hence p is dominant. Since p is not the highest weight A, there must be
a positive root « and a positive integer m such that u; = p + ma € 1I,.
Then by maximality of p, 4, (hence also s,(p1)) is in C. A straightforward
computation shows that u belongs to the line segment connecting p, and
Sq(p1). This is a contradiction, since we have assumed that p is not in C.

We are left with showing that II is contained in IT,. An easy argument by
induction on the length function in W, shows that for any w € W, A — wA
is a sum of roots in ®%. Therefore II is contained in A — Z, ®. It is proved
in [H, Proposition, p. 114] that the elements of II, are exactly the weights
whose W-orbit is contained in A — Z ®,. Hence II C II,, as required.

Part (ii) We have observed in the proof of Part (i) that A — C' is contained
in convex cone spanned by ®%. Therefore

A-II,=Rn(A-C)CS”

since S” is saturated in R. The opposite inclusion holds since ¥ C X —1II,.
This follows from the fact that weigths of irreducible G—representations (in
characteristic 0) satisfy the following property: for any positive root ¢, and
a positive integer n, if 4 and p — na are weights of the representation, so
are p — g for any ¢,0 < g < n (see e.g. [H, Sec. 21.3, Prop.]). One applies
this property to A and s,()), where a € ®%.

The second claim of Part(ii) follows since A C {A —wA|jw € W} if X is
the sum of fundamental weights. W

3. Generic orbits of T' in G/P.

Let z € G/P and let X denote the the closure of Tz in G/P. For any
we W, let

Y = {y-Plfur(y) # 0} = {y.Plwi € I (y.P)}
and
X, =Y, NX.

It is well known that each Y, is an affine space which is open in G/P and
whose coordinate ring is generated by functions f,/fux, ¢ € A\x. Moreover,
the union of Y,,,w € W is G/P. Let T, = {t € T|tz = z} and T* = T/T,.
We have the following proposition
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Proposition 3.1. Let z € G/P.

(i) Tz is open in X and it is isomorphic to T*. Therefore, X is an equiv-
ariant T*—embedding in the sense of [K].

(ii) {Xyu|lw € W,wX € II\(z)} is a covering of X by T-invariant open affine
subsets of X. The coordinate ring of X, w\ € II\(z), is the subalgebra
of k[T*] = k[['(T*)] generated by II)(z) — wA.

(ili) Let w € W be such that w € II(z). Then

T, ={teT|plt)=1 for all pewl—-1I(z)}

Proof. The fist part of (i) follows from the fact the map ¢ — ¢z is a separable
morphism from T onto an open subvariety Tz of X whose fibers are the
cosets of T, in T' (the morphism is separable since it is the composition of
the inclusion of T in G with the quotient map from G to G/P).

Part (ii) follows, since for each w € W such that wA € II,(z), X, can
be viewed as a closed T-invariant subvariety of the affine space Y,,. Hence
the coordinate ring of X,, is generated by the restrictions to X,, of functions
fu-/fwkaﬂ € -AA-

Part(iii). Suppose that w € W satisfies wA € II(z). Then z € X,,. Clearly,
t € T, if and only if ¢ fixes all elements of X, (or equivalently, ¢ fixes all
regular functions on X, ). Therefore the desired formula for T, follows from
the description of the coordinate ring of X,, given in (ii). W]

Before we state a corollary of Proposition 3.1, we need to introduce the
following notation. Let RF denote the subgroup of the root lattice generated
by S¥. One can show that Rf = R if ® is an irreducible system. If ® a union
of irreducible root systems ®;, € J, then RF is the root lattice of the root
system

u{®,;|®, N S # 0}.
Let
Tp = ﬂ ker(v).
vERP

Note that if R = R, then Tp is coincides with the center of G.

Corollary. (Suggested by the referee.)
(i) The stabilizer of each generic torus orbit is Tp. Moreover, Tp it is the
smallest subgroup of T among the T-stabilizers of elements of G/ P.
(ii) (Partial converse of (i)). If z € G/P 1is such that Tz is contained in
the nondegenerate stratum Z, Tx is normal and T, = Tp, then Tz is
generic.
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Proof. Part (i) follows from Proposition 3.1 (iii). Suppose that Tz satisfies
the assumptions of (ii). Let S* denote the semigroup generated by A—11,(z).
We have to show that §* = S¥. Since T, = Tp, one has

ﬂ ker(v) = ﬂker(y)

vERP

by Proposition 3.1 (iii). Therefore RF is generated by S as a subgroup of
[(T). Assumed normality of Tz implies that S® is saturated in R*. On the
other hand {A —wA|w € W} C S7 since Tz is assumed to be generic. Hence
S* = S* since both semigroups are saturated in Rf and Q,S* = Q,S” by
Proposition 2.2. O

From now on we assume for simplicity that R = R (equivalently, S¥
contains at least one root from each irreducible component of ®). Let W¥ C
W be a fixed set of representatives of W/Wp. Let D denote the fundamental
chamber {v € E|(u,a) > 0 for all @ € A}. We are now ready to state the
main result of this paper.

Theorem 3.2. Let x € G/P be such that Tx C G/P is generic. Let
X =Tz. Then:
(i) X is a normal variety (hence by [K, Theorem 14, page 52], also Cohen-
Macaulay with rational singularities).

(i) The fan corresponding to X consists of the cones

C,=—w U zD, weWw?

zEWp

together with their faces. In particular, the closures of any two generic
orbits in G/ P are isomorphic as T-equivariant embeddings.

Proof. Part (i). By [K, Theorem 6, p. 24] a general equivariant T-embedding
is a normal variety if and only if it admits a covering by open affine T-stable
subvarieties whose coordinate rings are generated by semigroups saturated
in I'(T"). Hence Part(ii) follows from Propositions 3.1 and 2.1.

Part(ii) follows, since the dual cone of S* is |, .y, 2D , and by Proposi-
tion 3.1(ii) the coordinate ring of X,,, w € W, is k[-wS?]. O

The following theorem shows that Definition 1.1 of a generic torus orbit
does not depend on the choice of the Weyl module V(X).

Theorem 3.3. Let x € G/P. The following statements are equivalent.
(i) There exist an integral dominant weight A whose stabilizer in W s
Wp, such that for any w € W, the semigroup generated by A — wll, (x)
is SP.
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(ii) For each integral dominant weight A\ whose stabilizer in W is Wp, and
each w € W, the semigroup generated by A\ — wlly(x) is ST.

(ili) There ezists an integral dominant weight X whose stabilizer in W is
Wp, such that Iy (z) = II,.

Proof. Clearly, (ii) implies (i). Also, by Proposition 2.2, (iii) implies (i). We
have to prove that if (i) holds, so do (ii) and (iii). Let X = Tz and let
Xw,w € W be as in Theorem 3.1. Since the coordinate ring of X,, does not
depend on the choice of a Pliicker embedding, Theorem 3.1(ii) implies that
(ii) follows from (i).

It remains to prove that (i) implies (iii). Let z € G/P and let A be as in
(i). For any integral dominant weight y whose stabilizer in W is Wp, let £*
denote the corresponding line bundle on G/P. Let £% denote the pullback
of £* to X = Tz. Since X contains an open, dense T-orbit, every weight of
H°(X, L%) under the natural T-action has multiplicity one. Therefore the
dimension of the image of the restriction map

H°(G/P, L") —» H(X, L%)

is §(II,(z)). We observe that line bundle L% is ample. This is because the
piecewise linear function on E corresponding to L% (see [F-H, Theorem 2])
is strictly upper convex. Then the description of the fan of X given in
Theorem 3.2(iii), [Odal, Theorem 2.13 and Corollary 2.9], and Proposition
2.2 (i) imply that
dim H*(X,£4) = H(I1,).
Since £* is ample there exists a positive integer g such that the restriction
map
H°(G/P,L™) = H*(X, L%)
is surjective. Hence Il 5 (z) = II,, as required. O
It is easy to see that Theorem 3.3 and Proposition 2.2 imply:

Corollary. Letz € G/B. Then Tz is generic if and only if z € N, wB*.B
(i.e. it is “generic” in the sense of [F-H]). Moreover, if T is generic then
X =Tz is smooth.

Remark. Smoothness of the closure of a generic torus orbit in G/B is well
known (we do not know however, to whom this fact should be attributed).

Final remarks and questions.

1. All results about closures of T-orbit in G/P stated in [F-H] hold for
generic orbits (in the sense of Definition 1.1) in any characteristic. This is
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because the arguments used in [F-H] are valid for normal equivariant 7-
embeddings, and we have shown that the closure of a generic orbit is such
an embedding. We do not know however, if the results remain valid for all
T-orbits in the nondegenerate stratum if P # B.

2. Let X denote the closure of a T-orbit of an element z € G/P. It is not
difficult to prove that if A is an integral dominant weight whose stabilizer in
W is Wp, then the line bundle L is in fact very ample (one can use the crite-
rion for very ampleness given in [F, Lemma, p. 69] or [Odal, Corollary 2.9]).
Then it follows from [F, Exercise, p. 72] that the corresponding embedding
of X in Proj(H®(X, L%)) is projectively normal and Cohen-Macaulay (that
is, the homogeneous coordinate ring of X in Proj(H®(X,L%)) is normal
and Cohen-Maculay). Therefore, the embedding X C Proj(H®(G, L")) is
also projectively normal and Cohen-Macaulay, if the restriction map from
H°(G/P,L*) to H°(X, L) is surjective (equivalently II,(z) = II,). We do
not know if this is so, if T'z is generic and II(x) # II,.

3. Since the closure of any T-orbit in an equivariant normal 7T-embedding
is normal (see [K, Proposition 2, p. 17]), X is normal if it is contained in
the closure of a generic T-orbit. In this situation, the fan corresponding to
X can be described explicitly in terms of the fan defined in Theorem 3.2 (iii)
(see e.g. [Oda2, Section 1.1]). Since there could be non-generic orbits of
maximal dimension (see the example in the introduction) not every T-orbit
is contained in the closure of a generic one. The structure of the orbit is not
clear. Does it have to be normal? If yes, what is its fan? Suppose that the
closures of all T-orbits in G/ P are indeed normal. Then the Example and the
Corollary of Proposition 3.1, suggest the conjecture that the isomorphism
type of Tz (as a torus equivariant embedding) is determined by two pieces
of data: the stabilizer of z in T and the set {w € W/Wp|z € Btw.P}.
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PARAGROUPE D’ADRIAN OCNEANU ET ALGEBRE DE
KAC

MARIE-CLAUDE DAVID

Dans ces quelques pages, nous reprenons l’essentiel des notes manuscrites
d’Adrian Ocneanu intitulées “A Galois theory for operator algebras” (1986).
Nous en précisons les définitions et démontrons les théoremes essentiels: les
propriétés fondamentales du paragroupe, le résultat de classification qui est
un corollaire du théoréeme de classification de S. Popa et la caractérisation de
I’inclusion d’un facteur dans son produit croisé par une algebre de Kac de di-
mension finie. Il nous a paru important que le paragroupe soit explicitement
défini et que ces résultats admis par tous et souvent cités par F. Goodman,
P. de la Harpe, V. Jones dans leur livre [GHJ] et par S. Popa dans ses
article de classification [Popa, 1 et 2] regoivent enfin une demonstraion ex-
haustive. Je me suis attachée a rédiger les démonstrations qui auraient pu
étre données a ’époque & deux exception pres:

Le caractére d’invariant complet du paragroupe est démontré grace aux
carrés commutatifs de S. Popa.

La coassociativité du coproduit de l'algebre de Kac (§5) était vérifiée
directement dans ma premieére version (Publications de I’Université Paris-
Sud #93-06). Claire Anantharaman a attiré mon attention sur 'article de
W. Szymanski [S], je 'en remercie: la dualité qu’il définit me permet de
donner une démonstration plus algébrique.

Parmi les développements de la théorie qui pourraient fournir d’autres
démonstrations a ces résultats, on peut citer, par exemple, la théorie des
bimodules d’A. Ocneanu [O], la théorie des secteurs [L1, L2], [I1, I2]...

Je remercie particulierement Vaughan Jones qui m’a encouragée a en-
treprendre ce travail et m’a guidée lors de nombreuses discussions. Je re-
mercie aussi Michel Enock pour ses conseils qui m’ont aidée & achever cet
article.

0. Introduction.

Soit N un sous-facteur d’indice fini dans M, un facteur de type I1; dont tr est
la trace finie fidele normalisée. Soit M; ’algébre oblenue par construction de
base: M, est l'algébre de von Neumann sur L?(M, tr) engendrée par M et ey
la projection sur L2(N, tr) [VJ1]. SiJ est I'involution standard de L*(M, tr),
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M, est égal & JN'J. J permet donc de définir un anti-automorphisme ~, de
N'N M1:
Yo(z) = Jz*J  (z € N'nM,).

Plus généralement, comme M. Pimsner et S. Popa ont montré que
N C Mn - M2n+1

est isomorphe A la construction de base, on sera tenté de définir, pour z
élément de N' N Myyy1, Yo(z) par J,z*J, ot J, est linvolution standard
de L?(M,,tr). La premiére partie de cet article contient les vérifications
nécessaires a une définition cohérente de -y,,.

La deuxiéme partie donne la définition et les propriétés fondamentales des
Yn-

La troisiéme partie contient la démonstration de ces propriétés et une
expression de v,(y) quand y est un élément de N' N My, 4.

La quatriéme partie montre que le paragroupe (la tour dérivée munie des
anti-automorphismes) est un invariant complet pour l’inclusion d’un sous-
facteur de profondeur finie dans le facteur hyperfini de type II; équivalent
a linvariant défini par S. Popa dans [Popal], & savoir le carré commutatif
canonique.

On rappelle que linclusion N C M est de profondeur finie si le graphe
principal est fini [GHJ, 4.1]; on obtient le graphe principal de N C M en
effacant dans le diagramme de Bratteli de la tour dérivée ce qui s’obtient
par réflexion de 'étage précédent.

La cinquiéme partie donne une caractérisation de 'inclusion d’un facteur
de type II;, dans son produit croisé par une algébre de Kac de dimension
finie:

Soient M un facteur de type II,, tr sa trace normale finie fidéle normalisée
et N un sous-facteur d’indice fini dans M. Les proposition suivantes sont
équivalentes:

(a) N est de profondeur au plus 2 dans M et N'N M est égal & C.

(b) M est le produit croisé de N par une action extérieure d’une algebre
de Kac de dimension finie K.

(¢} N est la sous-algebre des points fixes de M sous une action extérieure
d’une algebre de Kac de dimension finie K.

Une démonstration de ce résultat utilisant la méthode des secteurs se
trouve dans [L2] (voir aussi [I12]). Dans [I1], on trouvera une caractérisation
d’une inclusion irréductible de profondeur 2 de facteurs proprement infinis.

Un résultat semblable dans le cas ou 'indice est infini est montré dans
[EN]. D’autre part, si N'NM; est commutatif, I’algébre de Kac est un groupe
fini.
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1. Représentations des algébres de la tour obtenue en itérant la
construction de base.

1.1. Définitions [VJ1]. Soient M un facteur de type II,, tr sa trace nor-
male finie fidéle normalisée et NV un sous-facteur d’indice fini dans M. On re-
garde M dans sa représentation standard my sur L?(M, tr). L’espérance con-
ditionelle Ey de M sur N définit le projecteur ey de L? (M, tr) sur L?(N, tr):

Si € est le vecteur cyclique canonique donné par la trace, si z appartient
a M, on a:

en(2€) = En(2)¢.

La construction de base sur N C M est la définition de I'algebre de von
Neumann M; sur L?(M,tr) engendrée par M et ey. On connait donc M,
par sa représentation fidele 7y sur L?(M, tr) qui prolonge la représentation
mg de M par multiplication & gauche, c’est-a-dire pour tout a de M et tout
z de M, on a:

mo(a)(2€) = (az)¢ et mo(en)(x) = En(2)¢.

D’apres [VJ1, 3.1.7], la trace canonique Tt sur M; est une ([M : N]~*, M)
trace, c’est-a-dire Tr étend tr et Tr(eyz) est égal & [M : N] !tr(z) pour
tout z de M. On notera alors la trace sur M; comme la trace sur M par tr.

1.2. La tour. D’apres [VJ1, 3.1.7], on peut recommencer la construction
de base a partir de l'inclusion M C M; et on obtient une algebre de von
Neumann M, que 'on connait par sa représentation m; sur L?(M;,tr). Les
restrictions de 7, & M; ou M sont les représentation de ces algebres qui
prolongent leur action par multiplication & gauche sur M;&;, ou &; est le
vecteur cyclique canonique.

La trace sur M, prolonge celle de M; et vérifie la propriété de Markov,
on la notera encore tr et ainsi pour la trace de chaque algebre construite
par construction de base. En effet, en répétant la construction de base, on
obtient la tour d’algebres:

€0 €1 €2 €n
NcMCMCM,C--- M, CM,,---

On connait M, par sa représentation m, sur L?(M,, tr), M, ,, est 'algébre
de von Neumann engendrée par M, et e,, la projection de L?(M,,tr) sur
L2(Mn_1 ) tr)

1.3. La construction de base N C M, C M,, ;. Dans [PiPo2], M.
Pimsner et S. Popa remarquent qu’on peut définir abstraitement ’algebre
de la construction de base sur N C M comme 'unique (& un isomorphisme
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prés) facteur fini M,;, muni d’une trace 7, qui contienne M et une projection
e et vérifie

[M; : M] = [M : N]

le,y] =0 (yeN)

ere = Ex(z)e (z € M)

7(ex) = [M; : M]" ' tr(z) (z € M).

Ils montrent alors que I’algébre M,,; est isomorphe a I’algebre obtenue par
la construction de base sur NV C M,,. Il existe donc une représentation fidele
7 de My, sur L?(M,,tr). Le projecteur de la construction de base est
alors [PiPo2, 2.6].:

_ n(n+1)
[7'=[M:NI"=2 (enen_1---€)(€nt1€n.--€1)---(€2n€on_1---€n)

M>,41 est donc le facteur engendré par M, et f 1.
Si ¢, est le vecteur cyclique canonique de L%(M,,, tr) et z,, un élément de
M,, on a:

et la restriction de 7w, & M, est la representation standard de M, sur
L*(M,, tr).

1.4. D’autres représentations. On pourrait aussi regarder la construc-
tion de base sur M, C M,, p < n, qui nous donne une représentation n¥ de
M,,_, sur L*(M,, tr); posons alors

(n—p)(n—p—1)
p)

fﬁ = [M H N] (enen_l SN 6p+1)(€n+1€n RPN 6p+2) e (62"_p_1 . 6n).

M3, , est le facteur engendré par M, et f? et, pour z,, dans M,,, 72(f2)(z.&,)
vaut Ey, (2,)&,.

La restriction de ,, (définie en 3) & M,,,_, nous donne aussi une représenta-
tion de Ms,,_, sur L*(M,, tr) ... Nous allons voir dans le paragraphe suivant
que 7?2 et m, coincident sur Mo, _,.

1.5. Compatibilité des représentations obtenues a partir de diffé-
rentes constructions de base. Nous commencons par fixer les notations
et rappeler les régles de calcul dans les algebres de la tour.

1.5.1. Notations.
a) a=[M : NJ, aest la partie entiere de o et a(n,p) = «

(n=p)(n—p—1)
2 .

b) a, est la partie entiere de ", I'indice de M,, dans M,,,.
C) gh = enen_1...€xp16k neNkeNn >k
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d) ¢ =eneni1...er 16k neNkeNn<Ek
remarquons que g = (g*)" pour tous n et k.

e) fP=a(n,pgteil.. g5 1 nENpeNn>p>-1.

1.5.2. Bases de Pimsner-Popa [PiPol, 1.3].
Il existe une famille {);,1 < j < a+ 1} d’éléments de M, appelée base de
Pimsner-Popa de M sur N, telle que:
b)  En(Aj);) = p; ol p; est un projecteur de N de trace « —a sij = a+1
et est I'identité sinon.
Une telle famille vérifie de plus:
c) Ajen est une isométrie partielle pour 1 < j <a + 1.

d) S5 NenAr =1
e) YIAN =a
f) Tout y de M admet une unique décomposition y = Z?;Lll A,y; ou y, est

un élément de p; N égal & Ex(Ajy). De méme y = Z;’Ll En(yA)A;.
g) La famille {a!/?\;e0,1 < i < a+ 1} est une base de Pimsner-Popa de
M; sur M. Plus généralement, la famille {aPTV/2\;g8,1 < i <a+ 1}
est une base de Pimsner-Popa de M, sur M,. (Ceci résulte de la
démonstration de la proposition 1.5 de [PiPol].)
1.5.3. Reégles de calcul. On rappelle que
a) ey appartient & My, .
b) e commute avec les éléments de M, _;.
c) er commute avec ey si |k — h| > 2.
d) epepiier =a leg et eppreperi = a ey
e) err1zeri1 = En_ (z)eryr (z € My).
Ey, (er) = a™t.
fP appartient & M,,,_, et commute avec les éléments de M,,.

To(fE)(@nbn) = B, (Tn)n-

= 09
~— N N

Lemme 1.5.4. fPf-! = -1

Démonstration. Pour montrer cette égalité, nous allons faire disparaitre un
\ . +k
a un les produits du type g~} de fP.

Voici un procédé pour faire disparaitre un projecteur:

ntk ko k4l _ o1k ntk+1 k+1 :
Lemme. ¢;""g; 1 0nTke1 = @ Gnyr19n Gniksr Sth >2n+k+1et
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k>0.
Démonstration.
ntk k k1 _ntk+2 k k+1
9r IntkIntk+1 = 9n €ntk+1 €ntk Intk Intk+1 (1.5.1c)

— qntE+2 k k+1
= Gp Cntk+1 Cntk Gntk—1 Cntbt+l Intht1 (1.5.1c)
— ntk+2 k k+1
=G €ntk+1 Entk Cnth+l ntk—1 Intk+1 (1.5.2b)
— =1 _ntk+2 k k+1
= Gh Entk+1 Intk—1 Intk+1 (1.5.3d)
— 1k n+k+2 k+1
= Gpyp-19n Entk+1 Intk+1 (1.5.1c) et (1.5.3¢)
— o 1g* ntk+1 _k+1
=Q Gnir-19n Intk41 (1.5.1c).

Suite de la démonstration de 1.5.2.
Ce procédé va nous premettre de faire disparaitre un 3 un les projecteurs de

ggn—p—l .

n -1 — ( ___1) n 0 1 n—p—2 n—p—1 n (1 5 1e)
g2n—p—1fn an, g2n—p—1 In9nt1 -+ g2n-—p—2 gzn—p—l -+ YGan Y. -
En appliquant le lemme une fois, nous obtenons d’abord:

n -1 _ -1_0 n+1 1 2 n—p—2 n—p—1 n
an—p—lfn - a(n, _1) (O{ Gn—1 an—p—l 9nt19n42 - - 92n— —2) 9on-p—1---Y92n-

En appliquant ce résultat (n — p — 2) fois de plus, nous faisons disparaitre
g gﬂ—p—l -

Gonprfit = o, 1) (a7 gl glg? .

n—p—3 2n—p—2 n—p—2 n—p—1 n
92n—p—1492n—p-1 92n—p-2 ) 92n—p—-1 - - - G2n

—(n—p— —p— —p— —p—1
=afn,~1) (@™ g0, gl ... g5 7 %) GinTE Tl gia bty - B

= a(n,~1) (a™"* g2 gl ... g5 0%) gty - g

Multiplions maintenant par g;‘n__lp_z:

ggn_—lp—zqgn—p—lfn-l = a(n’ _l)a—(n—p—l)

(95t0mz 90s G5 G5a202s) Goatits - - G
Par le procédé précédent appliqué (n — p — 2) fois, nous avons:
ggn_jp—zggn—qur:l = a(n, —1)0‘—(n_p—1)
(a gl g5t GBS G5t %s) Gan T - G5
g;ln——lp—Zggn—p—lfr:l = a(n, “1)0‘_(71—])_1)_(”_]]_2)

0 1 n—p—3 n—-p—2 _n—p-—1 n
(gn—-Zgn——l cc an—p—5) g2n—p—2 g2n—p—1 s 9271‘
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Apres la disparition de gﬁﬁ, c’est-a-dire apres (n — p — 1) absorptions, nous

obtenons

fﬁf;l = a(n,p)a(n, —-1)a” (n=p=1)=(n=p=2)... ng (92+1)931+1---93n-
Comme (n—p—-—1)+(n—-p—2)...+1= ————("*”)(;_’”1) et ght'g0 ., = b,
I’égalité est démontrée.

Nous allons vérifier maintenant que les représentations ,,, 72, ¥ coincident
sur Ms,_p.
Proposition 1.5.5. Avec les notations précédentes, T np,,_, = 75.
Corollaire 1.5.6. Toutes représentations de la méme algébre sur le méme

espace obtenues a partir de différentes constructions de base sont les mémes.

Plus précisement, si p < k < n, alors les représentations m,, 7?2, & coinci-

dent sur Ms,_,.

Démonstration de la proposition. On sait que 72 et 7, ont méme restriction
a M, c’est la représentation standard de M,, sur L*>(M,,, tr); il reste donc &
comparer 72(f?) et m,(f?).

Si z,y et z sont des éléments quelconques de M,,, xEx(yz) appartient M,
et on peut écrire:

mh () ma(@f ) (26,) = nh (F) (@ En (y2)én) = En, (En (y2))En-

D’ou:

() ma(efy y) (260) = Eu, (8) En (y2)6n = mal B, (2) £, y) (260)-
Nous avons donc obtenu:

() ma(@f'y) = ma(Bw, (2)f 1Y) (2 € My,y € My).

D’autre part, calculons fPzf'y:

frafity = frafifa'y = Bw, (@) f2f 'y = Em, (@) f 'y (154).
De ces deux calculs, nous déduisons:
(*) m(fma(@fly) = ma(flzfy'y)  (z € Mo,y € M,).
L’égalité (*) nous permet d’écrire:

a,+1 an+1
w(f2)m (Z Nl IA*) =, (f” IEVA u)

7=1
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L’égalité des éléments 72(f?) et m,(f?) découle alors de la propriété de la
base de Pimsner-Popa (1.5.2d) qui donne 'expression de l'identité de M,:

an+1

SN =1

Jj—1

La compatibilité des différentes représentations nous permet de définir
sans ambiguité les anti-automorphismes associés a la tour derivée.

2. Anti-automorphismes associés a la tour dérivée.

2.1. Définitions et notations. On reprend ici [VJ1, 3] et on rappelle que
J,, est 'involution de l'espace de Hilbert L?(M,,,tr) définie par J,(z,&,) =
z,&, sl T, est un élément de M,,.

On notera I',, 'anti-automorphisme de I’algébre B,, des opérateurs bornés
de L?(M,,tr) défini par:

Fn(’l))(il,'fn) = Jn’U*Jn(zfn) (’U € B,,xz € Mn)

On sait que T',(M,,)) = M), et T'(7,(N)') = 7,(Msp41) puisque N C M, C
My, 1 est la construction de base; plus généralement, considérant M, C
M, C M,,_,, on obtient I, (7, (M,)") = 7,(Man_p)-

Définition. Soit Ay = N’ N M, on note encore tr la restriction a A,
de la trace de M;. T',, envoie m,(A2,41) sur m,(Az,11). On appellera 7,
Panti-automorphisme de A,, ; défini par:

7Tn(7n(m)) = Fn(ﬂn(x)) (m € A2n+1)'

Si 0 < p < n, v, coincide sur M; N M,,_, avec I’anti-automorphisme con-
struit & partir de la tour M, C M,, C Ms,_, (1.5.6).

2.2. Propriétés fondamentales.

Théoréme 2.2.1. Pour tout n entier naturel, les anti-automorphismes v,
satisfont les relations suivantes:

a) ’Yn+2’)’n+1lA2n+1 = Ynt+1Yn

b) filv(z) =frlz (z € A

c) nler) =€ (0<k<n).

La démonstation de ce théoréme est l'objet du paragraphe 3. Au cours
de cette démonstration, nous donnerons une formule pour v,(y) quand y
appartient & Asy, 4.
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Proposition 2.2.2 ([Popal). Si N est un sous-facteur de profondeur finie
dans un facteur M de type 11,, les anti-automorphismes -y, conservent la
trace tr de Aspiy.

Démonstration. Soit ... N, ; C N, C ... C Ny C N C M un tunnel dans
N C M [GHJ, 4.7¢]; en considérant la construction de base N,,; C M C
M, 12, on peut définir 7o un anti-automorphisme de N;,;, N M, , par:

siz€ N, N My, mo(Yo(x)) = Jo(mo(x))Jo

ou Jy est involution canonique de L?(M, Tr).
Comme N est un sous-facteur de profondeur finie dans un facteur M de
type II;, on sait que

Enna(eo) = [M : N1

Grace 4 4.5 de [PiPol], 3.1 et 3.2.ii de [PiPo02], cette derniére propriété est
suffisante pour affirmer que +, conserve la trace de N, ., "M sur M' N M.

La proposition annonce un résultat plus fort. S. Popa affirme que 7,
conserve la trace de N;,, N M,,,. Pour démontrer ce résultat, il utilise
I'hypotese de la profondeur finie. En effet, on va plonger N, N M,,, dans
N1 N My, tel que k soit supérieur a la profondeur du graphe principal. o
s’étend & Ny, N My et conserve la trace de Ny, N M sur M' N M 5. Ce
choix de k permet d’affirmer que N; ,NM; est 'espace vectoriel engendré par
Ny NMeg N, N M donc vy, conserve la trace de Ny, "M, sur N' N M,o;
par récurrence, on montre ainsi que ~y, conserve la trace de N, ; N M, .

De la méme facon, ~y, conserve la trace sur A,,,;, il suffit, pour le dé-
montrer, d’opérer une translation des indices sur la suite d’algebres formée
du tunnel et de la tour dérivée.

Remarque. La relation (a) du théoreme 2.2.1 permet de définir un iso-
morphisme T de la tour dérivée de I'inclusion N C M sur la tour dérivée de
Ml C M3Z

Soient A, = N'N M, et B, = M; N M,
T est égal & Yni1Yn SUr Asnyr et T(Azny1) = Bony1-

D’apres (2.2.1a), T est bien défini, c’est un isomorphisme des tours dérivées
conservant la trace (2.2.2) et les anti-isomorphismes, c’est un isomorphisme
de paragroupe (voir 4) qui opére une translation de 2 sur les indices des
projecteurs de V. Jones.
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3. Démonstration du théoréme 2.2.1.

3.1. Lemmes.

Lemme 3.1.1.

a)

o= e R

7fn+1(fn) = al"P~ 1)95';+17fn+1( ﬁif)(gpﬂ)

(g2*?, élément de M,,,, agit par multiplication & gauche sur
L*(Mpy4, tr)).

-1 _ . n+l1,.2n+2 —1 n+1
b) fn+1 =« gn+1 g2n+2

Démonstration.

a)

2
fp = a(n p) p+lgﬁil g;ln—p—l

— p+1 +3 p+k+1 n+1
a(n,p)gh ep+lgn+lep+2 «+ Gntk—1€p+k - - - 92n_p_1€n-

Grace aux régles de commutation des projecteurs (1.5.3c), on obtient:

P p+1_p+3 p+k+1 n+1
fn - a( )p)gn In+1 - gn+k 1- g2n——p-—lep+lep+2 s eP+k --.€n.

Comme f2f} = a(n + Lp + 2)gii3...go4ktt .. gnil, 1 et
a(p, n) = a(n p—l)a(n +1,p+ 2) fp vaut o™ p—l)gp+1fp+2( 7,;4.1)* et
(a) est démontré.

b)
fobr=can+1,-1)gn. 1 gnys - gg:-:z
= a(n+1,-1)en119) €nt2 gn+l -+ €241 93 C2nt2 9;:-&2 (1.5.1c)
=a(n+1,-1)¢23%% g0 g, Gusa - G Gtz (1.5.3b)
= a(n,—1)a n“ﬂif{z (gn gn+l - G5n) ggrjiz (1.5.1a)
artigint2f-lgntl - (1.5.1e).

Lemme 3.1.2. (dit du tour de passe-passe)

k+1 . k41
9k+3 €k+3 = €k+1 Gr43-
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Démonstration.

k+1 —_
Gr+3 €k43 = (Er+3€Kt2€k+1)€K43

= (€k+3€k12€k+3)Cht1 (1.5.3¢)
= epr3(@eryr) (1.5.3e)

= err3(€rr1€rra€ril) (1.5.3€)
= err1(€rs3€rr2€rs1) (1.5.3c).

Lemme 3.1.3. Si0 <k <n, e f =erf7.
Démonstration.

e2n—kfn—1 = e2n—ka(n7 —l)gggrlrl-l T g”
=a(n, —1)g2gn 11 - - - Gon i 2eon—kGon il - - Gon (1.5.3¢).

Nous avons ey,_; devant g3, %!, et nous voudrions e, devant g2.

187 étape: transformons e,,_j en es, r_» devant g;l,;_’“,:_ll. D’abord nous

faisons disparaitre eg,_:

—-k-1 n—k
€an—kTom b 190mk = €2n—kC2n—k—195m b 2€2n—kTrm k-1 (1.5.1c).

Comme ey, et g ¥ ', commutent [(1.5.3a) et (1.5.3b)],

n—k—1 n— _ - n—k
€2n—k 9on—k—192n—k = €2n—k €2n—k—1 €2n— k 9om— k 292n—k 1

= Qg3 2 e2n—k 9ot (1.5.3d)

n—k—1
QAGon k2 Gon— k

Ensuite nous faisons apparaitre ez, _g_»:

—k-1 _n—k __ —k—1 —k
€on—k g2n—k 12—k = A€2n—k-2 92n k—3 QQn_
— n—k—1 _n—k
= €an—k—2 C2n—k—1€2n—k—292n_—-3 Jon—+k (153(1)
— n—k—1 _n—k
= €n—k—29Y92n—k—1 92n—k (151C)

2¢me dtgpe: nous avons maintenant es,__, entre g% F% et gpF T, grace

4 n —k — 1 tours de passe-passe (3.1.2), nous allons obtenir e, devant ¢2:

1°" tour de passe-passe:
n—k— _ n—k—2
9on—k— ze2n k=2 = €2n—k—2 €2n—k—3 €2n—k—4 €2n—k—2 Jon k5 (1-5-30)
n—k—2
= €2n—k—4 €2n—k-2 €2n—k—3 E2n—k— 492n k—5 (3-1-2)

_ n—k—2
= €on—k—4 Yop—k_o
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) —k— 1
Apres Y4 tours de passe-passe, nous avons €2n—k—2(p+1) devant g;ln—k_(l(’;‘_*_i) et

aprés n—k—1 tours de passe-passe, nous obtenons e, devant g2 et la relation
annoncée est vérifiée.

Lemme 3.1.4. Siz € A,,,z, € My, 7 (Vn(2))(Zrn&n) = Tnzén.

Démonstration.

T (Y (T)) (nén) = JnTn ()" Jn(Tnén) = Jnmn(z)” (z78n) -

Comme z est un élément de M,,, 7, (vn(2))(z1€n) est donc égal & J, (z*z3E,),
soit £,z€,. Ainsi y,(z), élément de M, agit par multiplication & droite sur
L*(M, tr).

Lemme 3.1.5. Si la famille {m;,1 < j < a, + 1} est une base de Pimsner-
Popa de M,,_, sur N, alors la famille {a™?X\;g5 " 'm;,1 < j < a,+1,1<
i < a+ 1} est une base de Pimsner-Popa de M, sur N.

Démonstration. Vérifions (a) est (b) de (1.5.2):

Ey ((an/2m293—1)\Z)(an/2)\z‘93_lmj)) = a"En(m}gy_1e0(MgAi)eogt ' m;)
= a8, 1 En(m;gh_1e097 'm;) (1.5.1c,d et 3d)

= aléi,kEN(m’,';EMn_l (en_l)mj) = i’kéj,h(1.5.2a).

Quand l’indice o de N dans M est entier, on peut facilement donner une
base de Pimsner-Popa de M,, sur N:

Proposition 3.1.6. On suppose que l'indice o de N dans M est entier.
On note J, le produit de n copies de {0,1,2,... ,a} et si I = (i, i1,
T9y. .., i) est un élément de J,.1, on pose

my = an(n+1)/4Aingg—1)\in_lgg-'? N /\izgéAil €0>\i0.

Alors la famille {m;,I € J,.1} est une base de Pimsner-Popa de M, sur
N.

Ceci résulte par récurrence de (1.5.2g) et du Lemme 3.1.5.

3.2. Une formule pour v,(y) quand y appartient & A,,,;. Nous allons
maintenant donner I’expression de v, (y) quand y appartient & A,,,;. Cette
formule nous permettra d’établir 2.2.1(a) et nous sera trés utile dans la
partie 5. Quand l'indice est entier, elle coincide, grace & la proposition 3.1.6,
avec celle annoncée par A. Ocneanu.
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Proposition 3.2.1. Si {m;,1 < i < a,.,+1} est une base de Pimsner-Popa
de M, sur N, alors pour tout y de Asniq, on a:

an41+1

Yu(y) = o™ Z Eu, (fi'mey) £ img.

k=1

Démonstration. D’apres 1.5.2, la famille {a™+1)/2m,f~1 1 <1 < @,y + 1}
est une base de Pimsner-Popa de My, sur M, et

an41+1

y=o" N~ By, (ymif ) frtmy

=1

. 472 , . n 1 N
Si Ex(m;my) = qp, tout élément de M,, s’écrit ZZ+§‘+ zZpmyj, ou zy est

un élément de Ngp, il suffit donc de connaitre m,(v,(y)) sur les vecteurs
de L*(M,, tr) de la forme zm}¢, ou z appartient & N,,. Jomets 7, quand
I’élément de M,, agit par multiplication a gauche.

an+1-+1

Ta(y") Jn(zm;n) = o™ Z By, (y'mafy ) ma(f ) (mimaz"En)

an4+1+1
="t z Eun, (y*mif ) En(mimg)(2E,). (1.5.3h)

=1

Or

En(mimy)z" = 6 nqnz” = 6;p2" (1.5.2a,b),
d’ou

7Tn(y*)‘]n (Zmzfn) = an+1EMn (y*mhfn_l)(Z*fn)
et

Wn(Vn(y))(zngn) = an+IZEM,. (f;lm;y)gn

Comme z commute & Ey; et f-' et que zm} se décompose en

anyi+1

k=1

on obtient:

an41+1

T (Y (¥)) (zmién) = @™ Y B, (f 'miEn (mizmy)y)én.

k=1
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Comme Pélément y de Asni1 commute & Ey(m}2zm}), on obtient:

an41+1
(T (W)) (2mi6n) = @1 3 By, (£ 'muy) En (mipzm,)én
k=1
an41+1

=a™ N B, (f7 muey)ma(f7)mi (zmitn)- (1.5.3h)
k=1

Et la formule est démontrée.
3.3. ’Yn+2’Yn+1|A2,.+1 = Yn+1Yn-

Lemme 3.3.1. Si z € M,,, Ex, (g7zgl) = a " Ex ().
Démonstration.

Eu, (g"zgl) = Ep(e165. .. enTe, ... e261)

= Ep,(e1es...en 1By, (T)enen_q...e2€1).
Comme E)j,, est égal & Eyy, Eyy,, 1égalité devient:
Eu, (g7zgl) = @ 'Ey, (€162 ... €n_1En,_, (T)en 1 ... €261).
Apreés n — 1 manceuvres de ce type, on obtient:
B, (9729;) = @ "V Ep, (1B (z)er) = o "En().

Proposition 3.3.2. i, pour 1 < k <a+1, p = a®D/12), g3+ et siy
est un élément de Agni1, alors yni1(y) est Uélément Yot uxvn(v)eantaps
de M{ n M2n+3'

Démonstration. Comme {a("*V/2)\;g? i =1,... ,n} est une base de Pimsner-
Popa de M, sur M, (1.5.2), il suffit de calculer 7, ;(Vns1(y)) sur les
vecteurs de L?*(M,,tr) de la forme X;giz€,.1 ol p; est le projecteur
En(Aj);) et z un élément de p; M,,.

Tnt1(Y")Int1 (Ajgngnﬁ)
ant1+1

— o2l Z Eu, (mif; ) ongn (f 1) (mF 2" g0 N3 En i)

i=1
Comme fn—l = ang?z 11;+1(gn)* et 7Tn+1(f11+1) = Ep, (1.5.3h), on a:

Tt 1(Y*) Jns1 (Ajggz€n+1)

ant1+1

= g2t Z Eun, (y*mif ) g2 Ep, (gé‘mZz*gW) Ent1-

i=1
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Donc

Tn41(Tnt1 (y)) ()\jgngnﬂ)
An 41 +1

— a2n+1 Z EMl (A]gonzngg) gg'EMn (fn_lm:y) §n+1
i=1

any1+1

— o2t Z NjeoEn, (g{‘zmig,ll) 90 En,, (fn_lm:y) Ent1-

=1

Appliquons le lemme 3.3.1 & zm; et nous obtenons:

Tog1 (Vnt1(Y)) (A 90 2€nt1)

@n41+1

= o™ 3" AeoBum(zmi)eogs En, (f7'miy) €nia
i=1
ant1+1
= o™ 3 NeoBin(zmi)gs Bur, (£7'm}Y) €nsa-
=1
Comme Ey(zm;) commute & g7, & Epy, et & f7* et que Y02 Ex(2m)m:
vaut z, on peut écrire:

7Tn+1(’)’n+1(y))()\jgngn+1) = anH’\jggEM.. (frflzy) Ent1-

On utilise maintenant la décomposition de ¢ sur la base m; (1.5.2f):

ant1+1

z= Z m;En(m]z)

=1
pour faire commuter 2z avec y, élément de A,,,; et le sortir de F,,,:

an+1
Tn41 ('Yn+1 (y))()\jgngn+1) =a™! Z AjggEMn (fn_lmzy) EN(m:z)ng-l
=1
an41+1,a+41
=a™ N S Mgr Eu, (fr'may) En(mip;z)Ensa.

i=1,k=1

Comme & ;p; = ™V Epy (9901 98)s Tnt1 (Va1 () (N;95 26n41) est égal a

ant1+1,a+1
o) Z Aego B, (f7'may) En (m] En, (92 A% X90)%) &ntr-

i=1,k=1

7Tn+1(’7n+1(y))(>‘jgngn+1)
ant1+1,a+1

=™ N Ngb B, (£ miy) En (mighNiNig52) Enir-
i=1,k=1
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Or 7rn+1(fr:—:1)(x)§n+1 = En(z)én41 81 T € My, (1.5.3h), donc

an+1l,a+1
Yrt1(y) = a2t Z Mego Em, (fn—lmzy) fn—ilm:gg)‘;-

i=1,k=1

Comme f,}; est égal & a"t!gZnt? f-1gn+l, (3.1.1), en utilisant les régles de
commutation, on écrit:

at+1 ant1+1
Ynt1(y) = o*n ) Z Aega™t? Z Ey, (fitmay) frim; ggn+2/\1:-
k=1 =1

D’ott Yny1(y) = 2™ 0 Xeg8™ 2 yn (1) 9312 k-
Si, pour 1 < k < a+1, on note u;, ’élément o?(™+1/2), g0+t de la base de

My, o sur My, .1, ce résultat s’écrit:
+ +15

a+1
'7n+1(y) = Z Hk’Yn(y)ezn+2MZ-
k=1

Corollaire 3.3.3. Si, pour 1 <k <a+ 1, pp = a®?+2/2), 271 o 5i y est
un élément de Aspiq, alors

a+1
Y1 (Y () = Z PrY€an2iy-

k=1

Proposition 3.3.4. v, 2Vnt1]a3ms; = Ynt17n  (n EN).

Démonstration. Ecrivons la formule du corollaire 3.3.3 pour n + 1: Si y est
un élément de A, .3,

a+1

2 *
V2 (Va1 (y)) = @ EMk€2n+2€2n+3y€2n+462n+3€2n+2#k-
k=1

Mais si, de plus, y est dans A,,.;, la formule se simplifie car

2 2
G €2n+2€2n+3YC2n+4€2n43€2n42 = (& y€2n+2(€2n+362n+4€2n+3)€2n+2

= ay(€2n+2ezn+362n+2) =Y.

On obtient alors:
Ynt2(Yns1(¥)) = Vo1 (Ve ()
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3.4. f'v.(z) et f! sont égaux si z est un élément de A,.
Proposition 3.4. Pour tout z de A,, fv.(z) = f 'z

Démonstration. 1l suffit de démontrer la relation pour les unitaires de A,,.
Soient u un unitaire de A, et z un élément de M,

To(fr (W) (260) = ma(f ) (2ué)  (3.1.4).

Alors par définition de f ', m,(f, 'vn(w))(2én) = En(2u)€,. Comme u
normalise N, pour tout z de M,,, Ex(uzu*) = uEn(z)u*, on obtient donc:

Tn(fr 9n (1)) (260) = En(2u)én = u”Ex(uz)ué, = En(uz)é,
car v commute a N. Cela s’écrit aussi:

Wn(fr:17n(“))(zén) = Wn(fv:lu) (an)
La relation est démontrée.

3.5. Si 0 < k£ < n, 'image de ¢, par 1’anti-automorphisme v, est

Con—k-
Proposition 3.5. v,(ex) = €sn_x (0<k<n).

Démonstration.
1" cas: k =n.
en est la projection de L?(M,,, tr) sur L?*(M,,_,, tr), aussi J, et e, commutent

et vu(en) = e,.
2¢me cas: 0 < k < n.
Soient z,, z des éléments de M,,. Calculons d’abord v, (e)z f;  y:

T (Ynlee)zf y) (26n) = Tn(Ynler)) (@En(yz)€n) = En(yz)erés (3.1.4).
Comme e, commute & M;_; donc & N,
Wn(Vn(ek)xfn_ly)(Zén) = mekEN(yz)fn-

On obtient donc v, (ex)zf 'y = e f 'y.
Calculons maintenant ey, _,zf 'y:
Comme k < n, ey,_ commute & M,, donc

Con Ty = Teon_r fi 'y = Terfi 'y (3.1.3).
Soient a,.; la partie entiere de a™*!, l'indice de N dans M, et

{m,,j=1,...ap41 + 1}
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une base de Pimsner-Popa de M, sur N. Comme ¥ ;1" m;fim} est
I'identité (1.5.2d) et, pour tous z et y éléments de M,, vy,(ex)zf; 'y et
ean_1Zf; 'y coincident, on peut écrire:

ant1+1 ant1+1
-1, % _ -1, *
'Yn(ek) Z mjfn mj = €2n—tk Z mj n m]‘ )

i=1 j=1
c’est-a-dire v, (ex) = €sn_i.-

4. Le paragroupe, invariant complet pour ’inclusion d’un
sous-facteur de profondeur finie dans le facteur hyperfini de
type 11,.

4.1. Paragroupe ou carré commutatif. Popa a montré que l’inclusion
d’un sous-facteur de profondeur finie dans le facteur hyperfini de type II; est
determinée par son carré commutatif canonique [Popal, 6.6]. Le paragroupe
est une autre version de cet invariant.

Définition. Le paragroupe de l'inclusion N C M est la tour dérivée
(Ax)k>0 de N C M munie de ses anti-automorphismes canoniques ;.

Remarque. La donnée du graphe principal équivaut a celle de la tour
dérivée [GHJ, 4.6.5].

Théoréme 4.1.1. Soient N (resp. N ) un sous-facteur de profondeur finie
dans le facteur hyperfini de type II, M (resp. M). Si les couples N C M et
N C M ont méme paragroupe, ils sont isomorphes.

Démonstration. On suppose qu’il existe un isomorphisme 3 des tours dérivées
conservant la trace tel que B(Ax) = Ay et v, = B 17:0.

Si N C M est de profondeur finie p, N; C N est de profondeur finie p,,
alors si 25 est supérieur a p — 1 et p;, le carré commutatif

M'NM,; C N'NM,,
©) n n
M' N M2j+1 C N’ N M2j+1

est le carré canonique de N; C N. Pour montrer que les deux couples sont
isomorphes, il suffit de montrer que N; C N et N; C N ont méme carré
canonique [Popal, 6.6].

Montrons que (C) et (C) sont isomorphes: o
Nous savons déja que I'isomorphime [ envoie N' N My; sur N' N M,; et

N'N Myj4q1 sur N' N M,j4, en conservant la trace.
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Comme M' N M,; est intersection de (N' N My;) et (M' N My;.,), il nous
suffit de démontrer que

B(M' N Myjy,) = M'N M2J‘+1-
Or
M'N My = v;(N' N Myy),
donc o .
M' 0 My = 5;(N' 0 My;) = 5;8(N' N Ma;)
et comme v; = 71,0,
M'n M2j+1 = B;(N' 0 My;) = B(M' N Myj41).

Les deux carrés sont isomorphes.

5. Produit croisé par une algébre de Kac de dimension finie.

Dans cette partie, nous donnons une caractérisation de l'inclusion d’un fac-
teur de type II; dans son produit croisé par une algébre de Kac de dimension
finie:

Théoréme 5.0. Soient M un facteur de type 11, tr sa trace normale finie
fidéle normalisée et N un sous-facteur d’indice fini dans M. Les propositions
sutvantes sont équivalentes:

(a) N est de profondeur au plus 2 dans M et N' N M est égal a C.

(b) M est le produit croisé de N par une action extérieure d’une algébre
de Kac de dimension finie K.

(¢) N est la sous-algébre des point fizes de M sous une action extérieure
d’une algébre de Kac de dimension finie K.

L’équivalence entre (b) est (c) est un résultat de M. Enock et J.-M.
Schwartz [ES2]; dans [EN], on trouvera la démonstration de (b)=(a) dans
le cas le plus général. Nous nous attacherons ici & construire une algebre
de Kac de dimension finie & partir de I'inclusion d’un sous-facteur dans un
facteur de type II;, c’est-a-dire & montrer (a)=>(c).

Soient M un facteur de type II;, tr sa trace normale finie fidele normalisée
et N un sous-facteur d’indice fini n et de profondeur 2 dans M. Par con-
struction de base, on obtient la tour de facteurs

€g e e ep
NCMCM CM,C.. M,CMpy,...,

la suite des projecteurs de V. Jones et les anti-automorphismes v, définie en
2.2.1. On s’intéressera plus particulierement & la tour dérivée de I'inclusion
M C M,, aussi on notera B, = M'N M,. On supposera, de plus, que
N'NM=C
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5.1. La tour dérivée de l’inclusion M C M,. Comme N'N M = C,
B, =v%(N'NnM)=C.

Comme l'inclusion de N dans M est de profondeur 2, N' N M, est obtenue
par construction de base sur 'inclusion N'N M C N'NM; [GHJ, 2.4.1 ou
4.6.3], donc N'NM, est un facteur de dimension finie puisque [M : N] est fini,
soit M,(C) ot n = [M : N] qui est donc entier. Alors B; = y;(N' N M,) est
aussi isomorphe au facteur M, (C), plus précisément c’est le facteur B(H,,),
si (B2, Hy, J,, ) est la forme standard de Bs.

Alors B, est une algebre de dimension finie n, soit By = ®;c;M,.(C) ou I
est un ensemble fini et },., n? = n. On notera M, (C) le sous-facteur Ce,
de B, (donc n; = 1) et p; le projecteur central de B, tel que Byp; = M, (C).
La trace de Markov normalisée sur B, notée ¢, est la restriction de la trace
de M, sa valeur sur le projecteur minimal du facteur Byp; est 7*.

Nous allons montrer que (B2, ¥271,71, n¢) est une algébre de Kac qui agit
sur M en laissant fixes les éléments de N.

Nous utiliserons seulement deux réflexions de la tour dérivée:

i) 7, anti-automorphisme de I’algébre B; défini par

Yo(a) = J,a*J, (a € B3)

Y, envoie B, dans Bj.

ii) yp, défini de la méme fagon & partir de Jy, l'involution standard de
Bs, c’est un anti-automorphisme de ’algebre B;N B, qui envoie B,NB;
sur Bj N By.

Comme nous ne considérons que des constructions de base & un étage,
il n'y a aucun probléeme de compatibilité de répresentations, de plus les
formules de la partie 3 sont encore valables; on peut vérifier directement que
ces réflexions conservent le trace de Markov de la tour dérivée.
5.2. Bases de Pimsner-Popa et unités matricielles. Pour appliquer les
formules de 3, nous allons choisir des bases de Pimsner-Popa particuliéres.
La proposition suivante motive ce choix.

Proposition 5.2.1. Soit N un sous-facteur d’indice fini n du facteur M,
tr la trace normale finie fidéle normalisée sur M et N C M e M; la con-
struction de base.

Si N est de profondeur au plus 2 dans M et que N'N M est égal a C, on
pose:

NIﬂMl:@iEIMni(C) et JZ{Kz(k7k11k2)7k€I11Sklak2Snk}"
Soit {f,fh,c2 = fg,K € J} une famille d’unités matricielles de N' N M, ou
fL1 = fo = eo, alors la famille {1 /;";fK,K € J} est une base de Pimsner-
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Popa de M, sur M ainsi qu’une base de Pimsner-Popa de N' N M; sur C;
de méme pour {,/%(fk)*,f( € J}.

Démonstration. On vérifie facilement les propriétés de 3.1.5 car, comme
N'NM =C, sur N' N M, 'espérance conditionelle sur M est la trace.

Définitions.

1. On choisira pour base de Pimsner-Popa de M; sur M la base de
Pimsner-Popa associée a une famille d’unités matricielles de N’ N M;
comme dans la proposition 5.2.1 et on la notera pour simplifier {},,1 <
s < mn}, o A\; = eg. On ne souviendra que >, tr(A, )\ = 1 et que
{A*,1 < s < n} est aussi une base de Pimsner-Popa de M; sur M.

On rappelle que {n'/?)\,e;,1 < s < n} est alors une base de M, sur
M, (1.5.2g).

2. Si By = @M, (C) et J ={K = (k,ki,k2),k€1,1 <ki, ks <my},
on choisit une famille d’unités matricielles de B,, f,fh v =, K€TJ }
ot f{; = e;. La proposition 5.2.1 permet alors d’affirmer que la famille

{ ;":fK,K € .7} est une base de Pimsner-Popa de M, sur C ainsi

qui une base de Pimsner-Popa de B, sur C; de méme pour la famille

{\/%(fK)*,K € j}.

On voudrait voir 7,7y; comme un co-produit sur B, or 7,7y; est un iso-
morphisme de B, sur M, N M, qui est contenu dans Bj N By; il reste a
mettre I'algebre B, N B, dans le produit tensoriel B, ® B,, c’est 'objet de
la proposition suivante qui fixe les notations.

Proposition et Définitions 5.2.2.
a) L’application 7,7y, est un isomorphisme de By sur By N Bz qui conserve
la trace.

Posons fi =7, (fx)-

La famille {f., K € J} est une famille d’unités matricielles de B N Bs.
b)  L’application vy, est un isomorphisme de By sur By N By qui conserve
la trace.

Posons Fx = vu,v,(fk)-

La famille {Fx, K € J} est une famille d’unités matricielles de B3 N By.
c) La famille {fFx,H € J,K € J} est une base de B, N By. L’algébre
B} N By est isomorphe d& By ® By par lisomorphisme 0:

O(fuFk) = fu ® fk-

d) L’application oy, est un isomorphisme de By sur My N My qui envoie
B, dans By N By en conservant la trace.
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Posons gk = Yo (fk)-
Alors g = Ypoes ThpofpFq ot les ¥, sont des nombres complezes.

On posera T’ = O~,7,.
La démonstration de cette proposition est laissée au lecteur.

On peut appliquer les résultats du 3 et obtenir les formules suivantes:

Proposition 5.2.3.

VK € J, Y1 (fK) —nEEMI(el)‘ fr)eir;.

fK— \/-fP’Yl(fK [fp
PeJ

Fg=n Z fpesze?,Cz” fP
PeJg

2
g = 1N z )\36162fK6362€1A:.

s=1

Démonstration.
a) C’est la formule (3.2.1) pour 7; 'anti-automorphisme de B,.

b) C’est la formule (3.2.1) pour 7, 'anti-automorphisme de B, qui se

simplifie:
fx =nY_ Eg, (62 ﬁfm(fx)) o iy
PeJ M "

n n .,
=1§7 Efp’h(fx)ez\/;—;fp-

(c) et (d) cf. formule (3.3.3).

5.3. Définition d’un coproduit sur B,. Nous allons préciser les com-
posantes de gk sur la base {f};Fx,H € J,K € J}, connaisant I’expression
de I'(fx), nous pourrons vérifier que I est un co-produit co-associatif.

Proposition 5.3.1. gx = Y p ey T8 o fpFq, ¢’est-d-dire

I'(fx) = z T ofr® fo

PQeJ

ol

:I:f.f,Q = tr (ZEM, (e1Arfp) FrA; fQ)
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En particulier e3 =T'(e,) = Y pc s ;1:’71(f;:) ® fp-

Démonsiration.
Si P = (p;p1,p2) et @ = (¢;q1, q2),

9 fpkg = rPQfmm o

et en passant & la trace, on obtient xf,,Q = nn—; tr (gKf}i‘Fé).
Calculons donc tr(gx fpFg).

n n n n
pFo=n = e (1/—— By = >e esezy/ —f¢
feFo B%;j nbe’h(fP) 2 nbe ncfc 2foeser ncfc
n n
=ny v/ —fen(frleafaesery/ —fk
Bey V™ T
car {1 [2fc,C € .7} est une base de Pimsner-Popa [1.5.2a]. Donc

tr(gx fpFo) =

- * n n *
=n’tr Z Ase1€; freses <€1>\s\/ "—fB’Yl(fP)> €2fQ€3€2\/ —fB>
BeJ,s=1 Ty Ty
= n n .,
=n’tr Z Aser€es fres By, (51)\:\/ ““fB%(fP)) ezersffu/—fB)
BeJ,s=1 Ty T
~ [n m,,
= n2 tr Z )\561€2fKEM1 <61/\: —fB’)’l (fp)) fQ€362 ——fB) .
BeJ,s=1 np L

Utilisons la propriété de commutation de la trace et sa propriété de Markov
[VJ1, 3.1.7]: on a

tr(gx fpFq) =

= ntr (Beg;sd ey (&fg)\sq) esfxEu, (el)\:\/—gfsw (fP)> fQ)
= ntr (15'627;:211?1\41 (\/;j;f,}Asel) esfxEu, <el>\:\/—%f3’)’1(fp)> fQ) .
=tr (Beji,s_—_l Eu, (\/—fs/\ 61) fxEn, (61 \/'7f371(fP)> ) .
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Ecrivons Eyy, (el)\: nlbe’Yl(fp)> sur la base {\,,7 =1 4 n}:

Ewm, (el’\:\/nzbe'Yl(fP)> = gEM <EM1 (elA:\/nzbe’h(fP)) /\7‘) A
Ey, (61)\:\/—%&’)’1(#)) = TZ:;EM (GIA:\/nEbe’Yl(fP))\r> A

Comme fx commute & M, on en déduit:

tr (g fpFq) =

= tr /Beészl Ey, (\/_nﬁ: ngse1> Enr (ey\: \/nzbfml (fp)z\r) fKX:fQ)
= tr Be;szl Ey, (\/nEbeAselEM (el)\;\/nEbe%(fP )‘r)) fK)‘:fQ)
= tr Begsﬂ Enu, (\//fB)\ e1En, (61 ffB’Yl fp) )\r) 61) fK)‘:fQ)

Comme on a:

n§xelEM1 (e f fan(feIh ) = [ fan(fehe (1520,

on en déduit:

tr (gx fFl) = (3;_ B, (f fo fom(Fe)hver ) J; fQ>

Et comme 3 p (/2 f5 /o f = n (1.5.3¢), on peut écrire:

tr (g fpFq) = tr <Z Ey (m(fp)Arer) fK)\:fQ) .

r=1
Simplifions Eyy, (71(fp)Ar€1) en remplagant v, (fp) par
n Z Eu, (erhsfper;
s=1
On obtient alors

8o = ”n tr (gKfI';Fé) = tr (Z Eyy, (er M fp) frAr fQ>

TpTlg Tq r=1
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Onnoterayx (f5) =nd.r_, Eu, (et A.fp) fxAr. (Cette notation est cohérente
puisque v1(fr) =n > o, En, (e1Asfp)eiAt). On peut alors écrire

K L * *
_ t .
Tpo = Ny r ( 7K(fP)fQ)

En particulier:

es = 12 (er)
= > (fomU) firFa

pges Mo

= Y (fonmf) fr® fo

pQeg "'

Comme {1 /oI5, B € J} est une base de Pimsner-Popa de B, sur C et que

v; conserve la trace, on peut écrire

e =y ;1—fP®71(f1*3) =y i’)’1(fz*>) ® fp.

PeJg bp peg P

5.4. Dualité entre A, et B,. Dans [S], W. Szymanski définit une dualité
entre les espaces vectoriels A; etB,.

Définition et Proposition 5.4.1. (W. Szymanski) La forme linéaire
définie sur A, X By par

(a,b) = n’ tr(ae; epb) (a € A,b € Bsy)

établit une dualité entre A; et B,.

Démonstration.

Rappelons d’abord que A,eq = Ceqy et ¢; By = Ce;. Alors si, pour b donné
dans B,, n® tr(ae; egb) est nul pour tout a de A;, n? tr(ae,a’eyb) est nul pour
tous a et o' de A;.

Comme A, = Aje; A, et que egb est un élément de A,, nous concluons a
la nullité de tr(esbb*ey).

Or comme FE, (bb*) appartient a Palgebre M' N M; qui vaut C, on peut
écrire:

0 = tr(ephb*ey) = tr(bb*ey) = tr (Eas, (bb*)eg) = n~" tr(bb*).

La fidélité de la trace permet de conclure & la nullité de b.
Nous démontrons de méme que, pour a donné dans A;, la nullité de (a,b)
pour tout b de By implique la nullité de a.
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La proposition suivante nous assure la co-associativité de I'.

Proposition 5.4.2. T, le coproduit de By, est le dual du produit de l’algébre
A;.

Démonstration.

L’algébre A, (resp. B;) est engendrée par {\,,1 < s < n} (resp.
{fk,K € J}). Nous allons donc calculer (A ® A, ,'(fx)). D’aprés 5.4.1 et
5.3.1, nous avons

(A ® Asy, T(fk)) = n* Z -'Bg,Q tr(Anereofp) tr(Aserenfo).
PQeJ

Lemme 1.

eoE, (e1 A fp) = neoEn (eoe1 A fp) = neg tr (eoes A\ f7) -

Démonstration.
La premiére égalité est une application directe de [PiPo1l, lemma 1.2].
Comme ege; A\, fp appartient & A, Ey (eoe; A\, f7) appartient & N' N M
donc vaut tr (ege; A\, fp).

Lemme 2. Lélément yx(fp) =nY ey Eum, (e1A-fp) fx AL appartient d Bs.

Démonstration.
Soit y un élément de M, Xy = > o, Ep(Aiy)s)AL, alors comme fg, fp
et e; commutent & M, on peut écrire:

Y(fP)y =1 Eu, (et f5) F Aty

r=1

=nY Ewm, (e f3) fEr(AsyAs)X;

r=1

=n Z EM1 (elArEM()‘:yAs)f;’) fK)‘:

r=1

=nY_ Eu, (eyef}) Fx X

r=1

= yvx(fp)

donc vk (fp) € M' N M,.
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Lemme 3.

Z xPQ tr(Aserenfg) = Z(A As, [r) tr(eoer A, fp).

QeJg pr 1

Démonstration.

Z a:g,Q tr(Aserenfg) = Z tr [tr (’yK(f;;)fé) fQ)\seleO] .

QeT My e

Puisque {, [ fé} est une base de B, sur C, le Lemme 2 nous permet

d’affirmer:

5 ot (i fa) fa = ()

QeJ

On simplifie alors ’expression:

1 *
Z zp o tr(Asereofo) = — tr (eov (fp)As€1) -
QeJ p

En remplacant vk (fp) par son expression, on obtient:

Z :CPQ tr(Aserenfg) = Ztr eoEu, (e1 A fp) frArAser) .
QeJ p r=1

Le “.emme 1 nous permet d’écrire:

T‘ $PQtr()\ ereofo) = - Ztr eo tr(eper A fp) frArAser) .

Qeu P r=1

On en déduit Macilement le résultat annoncé.
Suite de démonstration de la proposition. 1Yaprés le Lemme 3, on peut
écrire:

n 4

(>‘h ® AS,F(fK)) Z()‘ As7fK) Z Q—tr(eoelArf;‘) t"I‘(.fIDAheleo)

= pPeJg

3
A 1) 3 2 tr (mep tr(eoer Anf3) frAnes)

1 pPeg P

(Ar s, i) Z —tT (eoEwm, (e1Arfp) frAner) .

=1 rPeceg ’n'P

Il
NEN

T

I
M:
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Comme { /:—pr, Pe .7} est une base de Pimsner-Popa de M, sur M, (5.2),

on peut simplifier ’expression:

n

(A ® A, T(Fx)) =12 Y _(Ar A, fi) tr (eoer X Aner) -

r=1
Grace & 1.5.2a et b et & définition de A, (5,2), on arrive au résultat espéré.
()‘h ® )‘51 F(fK)) = n2(Ah>‘sa fK) tr(eoel) = ()‘hAsa fK)
Corollaire 5.4.3. T' = 0,7y, est un coproduit co-associatif sur Bs.
5.5. 7; est une co-involution sur (B,,I'). y; est, par définition, une in-
volution sur B, pour montrer qu’avec [', elle munit B, d’une structure

d’algebre de Hopf-Von Neumann co-involutive, nous avons besoin d’en savoir
plus sur vy, .

Lemme 5.5.1.

a)
VP e J,NQ € J,0vu,07 (fr ® fo) = n(fo) @ n(fp),

c’est-a-dire que modulo ’identification § entre B) N By et By ® Ba,

Tr, = (n ®M)o
ot o est I'automorphisme de B, ® By défini par o(z @ y) = o(y ® z)

[ES1, 1.2.5].
b) ys(a) =ym,(a)  (a€ ByNBy).
Démonstration.

a) vy, (fpFq) =

= Y, (10,7 (12)) v, (o1 (fP)) = Yo (m(fQ)) YH, 70 (11 (fP)) -
b) D’apres la formule 3.2.1, {\/—Z_; frea, P J } étant une base de Pimsner-
Popa de M3 sur M,, si a € B; N By,

*

= n}%;EM3 ( \/_pfpeza) 6362\/7_;_pr.

Comme (e3 % fpes a) appartient & By, Ejy, (63 \/‘T:T—,, fres a) commute & M

n
donc vaut Ep, (63 o= fpeQa), on a alors

*

n
=n E Ep <e3 fpea a) esea——fp.
pey O\ VT Ve
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C’est la formule 3.2.1 pour vy, défini sur B, N By, ainsi y; et vy, coincident
sur B} N By.

Proposition 5.5.2. Le triplet (Bs,I",y,) est une algébre de Hopf-Von Neu-
mann co-involutive.

Démonstration.

D’apres 5.5.1a, (y1 ® m1)oTy1 = Oyu,v2|p,- Comme 7,(B;) est contenu
dans B; N By, d’apres 5.5.1b, vy, 72|, = ¥372|B,- La propriété (2.2.1a) des
anti-automorphismes nous permet alors d’écrire:

(M ®m)oly =0yy =T,

Le triplet (B,,[',7;) est une algébre de Hopf-Von Neumann co-involutive
[ES1, 1.2.5].

Remarque. On peut vérifier facilement que -, est la co-involution définie
par la dualité entre A; et B,.

Proposition 5.5.3. 1, la co-involution sur B, est le dual de 'involution
de Al'

Démonstration.
Pour A, dans A, et fx dans By, on a

()‘T’ ’yl(fK)) = TLS Z tr (AreleOEMl (61 /\st)el /\:)

s=1

=n3 Z tr (A By (e0Ew, (612 k) €127) -

s=1
Comme ey Eyy, (€125 k) appartient & N' N M;, on a

Ars 71 (b)) = n? z”: tr (A, tr (epes As fi) €1 )

s=1

=n’ z tr (Ayeq tr (freoer As) AL) .

s=1

Comme {),,1 < s < n} est une base de Pimsner-Popa de A; sur C, on peut
écrire:

A1 () = ndtr (A\e1 By, (freoey)) = n® tr (A Eu, (freoer)) .
On en déduit que

(A, m(b) = n’ tr (freoer Ar) = (/\:af}?)-
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5.6. (B2,I',11,n¢) est une algébre de Kac. Nous allons montrer que nep
est un poids de Haar sur (B,,I',7;) en utilisant le théoréme 6.3.5 de [ES2].

Lemme 5.6.1. VK € J, gxe, = e; Fx, c’est-a-dire

Va € B, [(a)(e; ®1) =€, R a.

Démonstration.
Nous utilisons la formule de la Proposition 5.3.1 et la notation déja utilisée

Y (fp) =n> i Eu, (1A f§) fx A%, en particulier

n

vr(er) = tr(A) fx A = fx

r=1
Comme gx = > pc 7 zlng ® vk (f5), gxer = e1 @ Yk (e1) = 1 ® fk-
Lemme 5.6.2. VK € 7, 0(gx)(1 ® ;) = fx ® €3, c’est-d-dire

Va € B,, Fe)(1®e) =a®e.

Démonstration.
Comme 0(gx) = Lpoes 2o tr (Trey Bu, (10 f7) frAif3) fr ® fa, on a:

0(9x)(1®e1) = Z 2t <niEM1(fKA:el)elArf;’> fp®er.

Peg ''pP r=1

Or, puisque {n'/?),e;,1 < r < n} est une base de Pimsner-Popa de M, sur
A4E,

nY" By, (fxXieerh =n Y B, (fxdreen s = fr.

r=1 r=1

Alors,

> 2t (”ZEMI(fK)\:ﬁ)BMTf;) fe=>. 2t (fxfp) fp = fx

peg r=1 pPeg ‘P

et I'égalité est démontrée.

Proposition 5.6.3. (B,,I',v;,n¢p) est une algébre de Kac de dimension
finie.
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Démonstration.
On a vu dans la Proposition 5.3.1 que le projecteur central de B,, e,, vérifie:

1
I'(er) = Z n—’yl( popi) ® I3 po
P=(pip1,p2)€T P
Le Théoréme 6.3.5. de [ES2] et les Lemmes 5.6.1 et 2 permettent de conclure.

Remarque. L’algebre A; munie du co-produit dual du produit de I’algebre
B,, de la co-involution duale de I’involution de B, et du poids ntr est
lalgebre de Kac duale de Palgebre (Bs,I',v1,n¢p) [ES1, 6.9.9].

5.7. Une action de (B,,T',v;,np) sur M. Il nous reste & faire agir ’algebre
de Kac sur M.

Proposition 5.7.1.

a) Si N, est la premiére algébre d’un tunnel construit dans N C M, c’est-
a-dire que Ny C N C M est la construction de base, soit v = vyom
Uisomorphisme de By sur Ny N M, {v(fk),K € J} est une famille
d’unités matricielles de N, M et, a une constante multiplicative pres,
une base de Pimsner-Popa de M sur N.

b) Soit B le morphisme de M dans M & B, défini par:
siyeNetKeJ, Blyv(fx)) =@l (/)

[ est une action de By sur M dont l’algébre des point fizes est N.

c) v se prolonge en un morphisme normal de By dans M qui vérifie:

v(l)=1et fr=(reil.

Démonstration.
a) C’est la Proposition 5.2.1.
b) [ est une action car c’est un morphisme injective de M dans M ® B,

qui vérifie
Bl =1 et Boi)=EeT)8.  [B1,1.1)
En effet siy € N,

CeD)Byv(fk)) =(y®10H(E®T) (v ®)I'(fk)
=1 (rei®)(: NI (fk)
=y®1)(rei®i)(I'®i)I'(fk)
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= 3 2B,y D @)l (fr)]® fo
P,Qeg

=(B®i){(ye1)(veil(fx)
= (8®9)B (yv(fk)) -

Comme 1 =Y . ; fx, B laisse fixe les éléments de N. D’autre part, comme
[M: Nl =n=[M : NP, linclusion N® C N implique 1’égalité.

c) résulte de la définition de v et S.

La Proposition 5.7.1 et le Théoréme 5.2 de [ES2] permettent de conclure:

Théoreme 5.7.2. Soient M un facteur de type 11, tr sa trace normale
finie fidéle normalisée et N un sous-facteur d’indice fini dans M. Si N est
de profondeur au plus 2 dans M et N'N M est égal ¢ C, N est la sous-
algébre des points fizes de M sous laction extérieure B de l’algébre de Kac
de dimension finie (M' 0 My, 0v27v1, 71, ng).

L’action (3 est extérieure puisque N'N M = C.

5.8. Remarque: cas d’un groupe fini. Le cas o N'NM; est abélien peut
se traiter directement, en effet le groupe G apparait comme le quotient du
normalisateur de N par le groupe unitaire de N. Un résultat de Sutherland
repris dans la thése de V. Jones permet de conclure [thése VJ, 4.1.7].
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IRREDUCIBILITY AND DIMENSION THEOREMS FOR
FAMILIES OF HEIGHT 3 GORENSTEIN ALGEBRAS

SusaN J. DIESEL

‘We show that the family of graded Gorenstein Artin alge-
bras of height 3 with a fixed Hilbert function is irreducible,
and we prove some dimension theorems about these families.

0. Introduction.

In Chapter 1 we show that when a set D = (Q, P) of generator and relation
degrees is given, Q@ = {q1,... ,q,} and P = {p,,... ,p.}, the family Gorp of
Gorenstein algebras A = R/J with J having this set of generator and relation
degrees is irreducible. We show that Gorp is the image of an algebraic
map from a dense open set in a product of affine spaces. This depends on
Buchsbaum and Eisenbud’s structure theorem for height 3 Gorenstein ideals
[BE1], which is discussed in Chapter 2.

In Chapter 2 we show that when T is fixed, the family Gory of all Goren-
stein algebras with Hilbert function 7' is irreducible. We show this by giving
an explicit deformation of an ideal with degree set D to an ideal with a
smaller degree set D’ consistent with 7. The minimal set D,,;, of gener-
ator and relation degrees given T is unique, and we conclude in Theorem
2.7 that Gorp D Gorp: for D' O D, and therefore Gorr = Gorp_., the
Zariski closure of Gorp, ;. inside Gorp. We give a method for determining
the alternating matrix whose pfaffians generate the ideal with the smaller
degree set, and show that it is Gorenstein of height 3. We conclude that
whenever an ideal J determining T is generated by more than the minimum
number needed for 7', it can be deformed to an ideal with fewer generators.

We again work from the perspective of a fixed Hilbert function 7" in Chap-
ter 3 to determine the maximum number of generators an ideal determining
T may have. This uses the combinatorial data described in [BE1] and [St1],
specifically the conditions on a sequence {r;,rs,...,r,} of integers, which
we call diagonal degrees, that can occur as the differences in a degree set
D defining a Gorenstein algebra with Hilbert function 7. We determine
the maximum number of generators possible for a ideal determining a given
Hilbert function, and we give an explicit example of a matrix whose pfaffians
generate this number for any given T. There is a lattice structure we can

365
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give to the degree sets that determine T, where a vertex of the lattice is a se-
quence of diagonal degrees that is consistent with 7', and where two vertices
are connected if the sequence at one vertex is a subsequence of the other.
There is a unique minimum vertex, corresponding to the difference sequence
of D,,;, and a unique maximum vertex, corresponding to the saturated se-
quence of diagonal degrees defining T'. We also prove in Proposition 3.12 that
there is a one to one correspondence between permissible Hilbert functions
T of socle degree n and order k(T') and self-complementary subpartitions of
rectangular blocks of size 2k by n — 2k + 2.

Chapter 4 investigates various methods for determining the dimension of
Gorg by studying the ranks of the Catalecticant matrices associated to a
dual form f. For certain Hilbert functions of socle degree n, order k(T') = d,
and bounded by ¢, we make a conjecture for the dimension of the family
Gorr, and we show the conjecture to be true for approximately two thirds
of the possible cases. We determine the dimension of Gor(T) for certain
other T'.

0.1. Notation and definitions. We will use the following notation and
definitions throughout this paper.

e R is the ring k[z,y, 2], where k is an algebraically closed field. The
maximal ideal of R is m = (z,y, 2).

e A is a graded, height 3 Gorenstein algebra quotient of k[z,y, z].

e R; is the space of forms of homogeneous degree 7 in R. R is a graded
ring and can be expressed as ®;>oR;, with Ry = k.

e Ry(g:) is the subspace (z%g;, 2% yg;,. .. ,2%g;) of forms of degree d +
deg g; in R generated by the homogeneous polynomial g;.

e Welet T =T(A) = (ho,h1,.-. ,hn,0,...) be the Hilbert function of
a Gorenstein Artin algebra A = R/J, where J is a homogeneous ideal in
k[z,y,z]. J therefore has a grading J = @;50J;. The nonnegative integer h;
is the dimension of R;/J; as a k-vector space.

e The socle of R/J in the set {a € R/J|a-h € J Vh € m}. We call
R/J a Gorenstein ring and J a Gorenstein ideal if the dimension of the socle
of R/J as a k-vector space is 1.

o D= ({q},{p:}) is a set of generator degrees and relation degrees for
an ideal J in R corresponding to a given Hilbert function 7.

¢ R = Homg(R,k) is the ring dual to R. R acts on R by contraction;
if XeY°etdZe € R, then z°y% o X°Y*+iZe =Y°Ze.

e We denote by f a homogeneous polynomial in R whose annihilator
in R is J.

e I;(M) is the ideal of t + 1 by ¢ + 1 minors of an n by m matrix M. If
t > min{m, n}, then I;(M) is defined to be the zero ideal (0).
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1. Variety structure on Gorp.

We assume in this chapter that k is an algebraically closed field, R = k[z,y, 2]
is a ring, and J is a homogeneous ideal in R.

Let A = R/J be a Gorenstein algebra. Theset D = D(J) = ({q;,p:}), i =
1...u of generator and relation degrees of J determines the Hilbert func-
tion of R/J. Buchsbaum and Eisenbud’s structure theorem for height 3
Gorenstein ideals proves that all such ideals can be obtained as pfaffians of
a suitable alternating matrix M with entries in R. The degree matrix F,; of
the entries of M is determined by D (see Chapter 2). Denote by E = E(D)
the set of entry degrees in Ej;. The degree matrix determines the number
of ways of filling in M with entries chosen generally from R. This number
h(Eys) is a polynomial in the entry degrees E.

Let 7 be the map from the family A*#») of all alternating matrices with
degree matrix equal to F), to the family of algebras A = R/J having the set
D(J) of generator and relation degrees, determined by E,;. We will show
that when we restrict to a single D and Ej;, the matrices whose pfaffians
form a height 3 ideal is a nonempty dense open set Ug,, in AMEr) We
say a degree matrix E), is permissible if Ug,, is nonempty. We discuss the
conditions for Ug,, to be nonempty in Chapter 3.

1.1. Definition and parametrization of Gorp. Let Gorp be the family
of Gorenstein algebras having the set D of generator and relation degrees. D
determines the Hilbert function of any Artin algebra R/J with D = D(J).
We define Gorr to be the union of all families of Gorenstein algebras Gorp,
associated to Hilbert function T'. Gory is a locally closed subset of G'r, the
family of all graded algebras R/I with Hilbert function equal to 7. The ideal
I has a grading I = ®,>0/;. G is embedded in a product of Grassmannians
[1 Grass(ds, R;), with d; = |I;|, the size of I, as a k-vector space. We give
Gory the reduced subscheme structure coming from this product.

Define 7 to be the map from an open set Ug,, in A"¥) to the Gorenstein
algebra Gorp whose degree set D is determined by the degree matrix F,,.

Theorem 1.1. Gorp is the image of Ug,, under the algebraic map ©, and
is therefore irreducible.

Proof. Let D be given and let M be an alternating u by u matrix with degree
matrix Fy, such that the set of pfaffians of M generates a height 3 Gorenstein
ideal J. Let M, denote the submatrix of M obtained by eliminating row ¢ and
column i. The image w(M) is the algebra R/J where J = (g1,... ,0.).- A
generator g; of J is the square root of the determinant of M;. This generator
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can also be computed by the formula

(1.1) Vdet M; = Pf(M;) = uil(—l)’“ Mg - Pf(My,),

where r is a row by which to expand, m,; is the (r, k) entry of M;, My, is
the submatrix of M with rows and columns 4, k and r eliminated [Sa, p. 71].
This expresses the generators (g;,¢gs,.-. ,g.) of J as polynomials in the en-
tries of M, so 7 is an map from Ug,, to Gorp. Ug,, is an open set in A*(Em)
since an ideal has height 3 when the determinant of a certain matrix does
not vanish (see proof of Theorem 2.3 in Section 2.3). Consequently Ug,, is
irreducible, and so is its image Gorp. O

Remark. The fiber 77! over a point p; parametrizing J includes a prod-
uct of general linear groups parametrizing different choices of generators for
J. We get an upper bound for the dimension of Gorp by subtracting the
dimension of this product from the dimension of AMF»), We will use this
fact in Chapter 4 in the proof of Theorem 4.4.

If we look at all degree sets D;,D,,... of ideals J;,Js,... in R such
that the Hilbert function of R/J; equals T for each 4, then each Gorp, is
irreducible by Theorem 1.1. There are a finite number of different degree
sets D; for a given Hilbert function, a result of the structure theorem, and we
will show in Chapter 2 that the entire family Gory of all algebras A = R/J
with Hilbert function T is irreducible.

We parametrize the family Gorp by the product [ Grass(tq4, Ry) of Grass-
mannians, which embeds Gorp as a subspace of a product of projective
spaces [] P whose coordinates depend polynomially on (g;, ... ,gu)-

2. Irreducibility of Gory.

As a result of Theorem 1.1 in the previous chapter, we know that given T
and a set of generator and relation degrees D, the family Gorp is irreducible.
However, T' may have several different degree sets that correspond to the
same Hilbert function.

2.1. Definition of Gory. We have defined Gory to be the family of all
algebras with Hilbert function T'. Goryr is the finite union |J;, Gorp, over all
degree sets D; = D(J;) consistent with T'.

2.2. Structure theorem for Gorenstein ideals of height 3. The fol-
lowing is the statement of Buchsbaum and Eisenbud’s structure theorem for
Gorenstein ideals of height 3 in a local noetherian ring [BE1, p. 456].

Theorem 2.1. Let R be a noetherian local ring with mazimal ideal m.
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1) Let n > 3 be an odd integer, and let F' be a free R-module of rank
n. Let f : F* — F be an alternating map whose image is contained in
mF. Suppose Pf,_1(f) has grade 3. Then Pf,_1(f) is a Gorenstein ideal,
minimally generated by n elements.

2) Every Gorenstein ideal of grade 3 arises as in 1).

Buchsbaum and Eisenbud develop the machinery in [BE1] to prove the
above theorem. If J is a homogeneous Gorenstein ideal of grade 3 in R =
k[zo ... Zs), then a free resolution of R/J has the form

(2.1) E: 0— R(s) 25 3" R(p) -5 3 R(q;) - R(0)
i=1 i=1

where the maps f and g are homogeneous of degree 0, the socle of R/J is
in degree s — 3, the integers {¢;} are the degrees of the generators of J and
integers {p;} are the degrees of the relations among the generators.

Buchsbaum and Eisenbud prove that the matrix representing f in the
resolution of R/J will be skew-symmetric, and the matrix representing g
(resp. g*) will be the column (resp. row) matrix of pfaffians of the matrix
representing f. The degree of the (7, 7) entry of this middle matrix is p; —
g;- We will always consider the sequence {g;} to be nondecreasing and the
sequence {p;} to be nonincreasing. This defines a new sequence {r;}, where
r; = p; — ¢;. With this ordering on the degrees, p; + ¢; = s. The integers {r;}
are all even or all odd, since the degree of the (i, 7) entry of the alternating
matrix representing f is also expressed as (r; + r;)/2. We have the further
relation that s = Y r;. Therefore the sequence of integers {r;} completely
determines the socle degree, generator and relation degrees, and the Hilbert
function. We will discuss which sequences of {r;} can occur in Chapter 3.
It follows from (2.1) that the Hilbert function (hg, hy,...) of R/J equals

0 o <mn.; t) 5 (m i ql)
+Z":<m+t—~pi> B (m+t~s)_

Here the binomial coefficient (;) equals zero if a is less than b.

Ezample 2.2. Let D = ({3,5,6},{11,9,8}) be the set of generator and
relation degrees of a Gorenstein ideal. The {r;} are equal to {8,4,2}. We
get s =8+ 4 + 2 = 14, so the socle degree is 11 and the Hilbert function is

(1,3,6,9,12,14,14,12,9,6,3,1,0,...).
This Hilbert function can also be determined by the sequence

D' = ({3,5,6,6,8},{11,9,8,8,6}).
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2.3. Deformation theorem. We will now show that when the ideal of
pfaffians of the matrix representing f has height 3 and is Gorenstein, and
the matrix contains non-diagonal degree zero entries, we can allow a pair of
these entries to be nonzero constants ¢, —c. The resulting ideal of pfaffians
will be Gorenstein, height 3, minimally generated by n — 2 elements. We
start with an existing resolution of a Gorenstein ideal which satisfies all the
conditions of the structure theorem. Since R is a polynomial ring it is Cohen-
Macaulay, so depth(I) =height(I) for every ideal I C R. A homogeneous
ideal I in R is also perfect, so all height 3 ideals have projective resolutions
of length 3.

Let J be a Gorenstein ideal of height 3 generated by v + 2 elements,
v odd, with the Hilbert function of R/J equal to T. Assume a minimal
free resolution of R/J has the form in (2.1). Let the alternating matrix
representing the map f be

0 my 2 mi3 ... Myyy2
—My2 0 Ma3 ... Mayt2
M=
My p+2 —M2yr2 — M3 042 - - - 0

Assume that the set D(J) requires that M contain two non-diagonal degree
zero entries, which we may assume to be the (v + 1,v +2) and (v +2,v +1)
entries of M. Under the conditions of the structure theorem these must
equal zero in order for the image of f to be contained in mR"*2. Because
the degrees of entries of M are determined by the values of the diagonal
degrees {r;}, we have r, 1 = —7T, 1.

Let M'(c) be the matrix obtained from M by letting my,,, , .o and mj 5,4,
be nonzero elements ¢ and —c¢ € k in a neighborhood of zero, and all other
entries m; ; of M'(c) equal to m; ;. Let m(M'(c)) = J'(c) be the ideal of
pfaffians of M'(c).

Theorem 2.3. Let J be a Gorenstein ideal of height 3 with Hilbert function
T and minimal free resolution

. v+2 v+2
E: 0— R(s) 25 3" R(m) 5 3 R(g;) - R(0)
=1 i=1

where f is represented by the v + 2 by v + 2 alternating matric M, v + 2

odd. Let M'(c) and J'(c) be the matriz and ideal of pfaffians described above.

Then:

(i) J'(c) has height 3 for all but finitely many ¢, and is generated by v
elements;
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(i) R/J'(c) has a resolution E' obtained from E by replacing M by M'(c),
g byg and g byg”;

(iii) J'(c) is Gorenstein, and R/J'(c) has a minimal resolution explicitly
determined by M and c;

(iv) the Hilbert function of R/J'(c) is T.

We will need the following lemma, which we use without proof:

Lemma 2.4. Let T = (ho,hy,... ,hy,0,...) be the Hilbert function of a
Gorenstein algebra A = R/J and let Q = {q,} and P = {p;}, i =1...u, be
the sequences of generator and relation degrees of J satisfying

m+t ~(m+t—q ~ (m+t—p, m+t—s\
Let T be another ideal which defines the same Hilbert function T, and Q' =
{g;} and P' = {p,} its generator and relation degrees, j = 1...u +d, such
that P' contains P and Q' contains Q) as subsequences. If we let P" and Q"

be the sequences P'\ P and Q' \ Q, both arranged in increasing order, then
e =qy forp, € P" and q, € Q", k=1...d.

Proof of Theorem 2.3. Let {g;...g,42} be the pfaffians of M. These are
a minimal set of generators for J under the assumptions of Theorem 2.2.
The ideal J'(c) will be generated by homogeneous polynomials {g] ... g,,,},
where ¢, = g; + ¢- h,(z,y, z). Let ¢; = degg; = degg,.

i). Assume J has height 3. We will show that the vector space J;, of
forms of degree n + 1 in J'(c) has dimension (*}°), and therefore contains
everything in degree n + 1.

Since J is a Gorenstein ideal whose socle is in degree n, the vector space
Jy+1 has dimension ("}?). The set of forms in the vector space

Rn+1—q1 (91)7 e ’Rn+l—‘qu+2 (gv+2)

span J,4, and form the row space of a matrix N of size G by ("}?), where

G > ("1?) is the sum of the dimensions of the vector spaces Ryi1_g(g:).
Each element of J,,; is expressed in terms of the standard basis of R, 4
of monomials {z"*! z"y,... 2"}, N has entries in k, and the ideal of
maximal minors of N must contain at least one nonzero constant ¢ € k.

In the same way we take the generators {g!} of J'(c) and look at the matrix
N(c) whose rows are spanned by the forms in the vector spaces R,,41_g,(g}).
Since each ¢g! = g; + ¢ - hi(z,y,2), N(0) = N, and the ideal of maximal
minors of N(c) contains an element §(c) such that 4(0) = 4.
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Since d(c) is a polynomial function of the entries of N(c), there are finitely
many values of ¢ for which d(c) equals zero. Since k is algebraically closed
and therefore infinite, we can choose a Zariski open set U containing zero so
that when ¢ € U, §(c) is nonzero. Since N(c) contains at least one nonzero

maximal minor, it has rank ("}%), and therefore the dimension of J.,, is

(n+3).

2To see that J'(c) is minimally generated by v elements, note that when we
multiply row i of M'(c) by the column matrix ¢’ we get the sum Z;’:f M'(c)i;-
g; = 0. If i = v + 2, this becomes Z;’I} M'(c)vy2,; - 95 = —CGy 49, Which for
nonzero c allows g, , to be expressed in terms of previous entries of g'. We
can express g, in the same way in terms of previous generators.

ii). The following is a resolution for J'(c):

o v42 , vi2 ,
E': 0— R(s) %5 S R(m) L5 3" R(g:) L R(0)
i=1 i=1
where f' is represented by M'(c) and the pfaffian map ¢’ is represented by
J'(c). Note that E' is not a minimal resolution, because the image of f' is
no longer contained in mR"*2.

To show that E' is a resolution of J'(c), we must show that E’ is a complex
and that it is exact. Since the matrices representing the maps ¢ * and g’ are
1 by v + 2 and v + 2 by 1 matrices of pfaffians of M'(c), the compositions
g*-f and f'-¢g' =0, so E' is a complex. For any complex of free R-modules

A:0—F, 2 F,_,— - -—FF

let J(¢x) the ideal of minors of size k of the matrix representing ¢, where
k is the size of the largest nonvanishing minor. To show that A is exact, it
is enough to show the following [BE2]:

a) rank ¢+ rank ¢, = rank Fy;

b) grade J(¢i) > k or J(¢) = R.

a). We need to show rankg’ + rank f' = rankg™* + rank /' = v + 2.
We know rankg’ = rankg* = 1, so we need to show rank f’ = v 4+ 1.
Since E is a resolution, we know rank f = v + 1, so M contains a v + 1 by
v + 1 submatrix whose determinant is nonzero; in particular, the submatrix
obtained by eliminating the last row and column has nonzero determinant,
since its square root is one of the v+ 2 generators of J. This same submatrix
occurs in M'(c), so f' > v+ 1. On the other hand, M'(c) is skew-symmetric
and v+2 odd, implying that the determinant of M’(c) equals zero. Therefore
rank f'=v+ 1.

b). We already know height J(g'*) = height J(g') = 3. The ideal of v + 1
by v + 1 minors of M'(c) contains J(g'), therefore J(M'(c)) has height > 3.
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iii). To show J'(c) is Gorenstein we will exhibit a minimal resolution for
J'(c) of the form

(2.3) 0—RISR YR R

where 1) is represented by a v by v alternating matrix Y;, whose pfaffians
generate J'(c).
Let W be the upper triangular v + 2 by v 4+ 2 matrix

c000...0 —My y42 My y+1
0c00...0 —Mg2 y42 T2 yt1

0000... c =My yt2 My pt1
0000...0 1 0
0000...0 0 1

The product (W - M'(c) - W7T) is the matrix ¥ =

0 Ccmy o — D12 Cmy 3 — D13 oo My — Dln 00
—Cmy 2 + D12 0 CMg 3 — D23 cv. CMg p — Dzn 00
—CMmMy pn + Dln CMa n — Dgn cmg , — D3n . 0 00
0 0 0 ... 0 01
0 0 0 e 0 -10

where the term D;; is equal to m; 441 - M y42 — My 442 - Mj 1. The pfaffians
of this product generate J'(c), and in particular the minors obtained by
omitting rows and columns v + 1 or v + 2 are equal to zero.

We define the matrix Y, representing v in (2.3) to be Y with rows and
columns v + 1 and v + 2 removed. When j < v, Pf(Y;) = Pf((Yy),), so
the pfaffians of Y;, generate J'(c). The map 1 now satisfies the condition of
the structure theorem that its image is contained in mR". Since J'(c) has
height 3 it is Gorenstein, minimally generated by v elements.

iv). The complex given in (2.3) is exact, since it satisfies the criteria a) and
b), so the Hilbert function of R/J'(c) can be computed by (2.2); by Lemma,
2.4, this will be the same as the Hilbert function of R/J. This completes
the proof. ()

When we work in 3 variables, the third difference sequence (do,d,... ,
ds,...) of T gives the net difference between the number of relations and
the number of generators in each degree t. We denote by the odd number



374 SUSAN J. DIESEL

1(T) the minimum number of generators determined by the third difference
sequence.

Corollary 2.6. For a Hilbert function T = (ho, hy,... ,h,,0,...) of a height
3 Gorenstein algebra R/J, the integer

u(T)=2[i§<—°d"]—1

can be realized as the minimum number of generators for J.

Proof. This follows from repeated application of Theorem 2.3, since if an ideal
defining T' has more generators than p(T'), then it has generators and rela-
tions in the same degree, and its alternating matrix has degree zero entries
occuring in pairs. Each pair of entries may be deformed to nonzero constants,
causing the number of generators in the ideal to drop by 2. O

Remark. When the socle degree n is odd, adding up the negative terms
in the third difference sequence may not indicate a minimum number of
generators. For example, T = (1,3,6,6,3,1) has for its third differences the
sequence

1,0,0,-4,0,4,0,0, -1,
which indicates at least four generators in degree 3 for an ideal which deter-
mines T. Since u(T') must be odd, we need at least 5 generators. T' can be
generated by the ideal (23,33, 222, y2?, 2%y? — 2z*), and it is Gorenstein, with
dual polynomial equal to z2y%z + 2. The extra generator and relation must
be in degree %:1 to preserve the symmetry of the sums p; +¢; = n+ 3. The
degree matrix determined by these generator and relation degrees will have
no nonzero degree 0 entries, since the only entry whose degree is 0 is on the
diagonal, in which case it must be equal to zero.
Remark. The entry degrees E(D) of the degree matrix determined by the
degree set D need not all be positive. The Hilbert function (1, 3,6,6,6,3,1)
has for its third differences the sequence

170: O, _47 37 _3a 4707 Oa '—17

indicating row degrees {3, 3,3,3,5,5,5} and column degree {6,6,6,6,4,4,4}.
This means the 7 by 7 degree matrix will have a 3 by 3 block of degree -1
entries, which must be zeros.

Theorem 2.3 and Corollary 2.6 give us the result we want:

Theorem 2.7. Gory is irreducible.

Proof. The family of Gorenstein algebras Gory with Hilbert function equal
to T is equal to the closure Gorp, . = UGorp for all D' D D by Theo-
rem 2.3, since ideals with degree sets D' can be deformed to the minimal
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degree set D,,;,. Since Gorp,_, is irreducible by Theorem 1.1, Gorr is irre-
ducible. O

3. Number of generators of height 3 Gorenstein ideals.

We have seen in Corollary 2.6 that when we fix the Hilbert function 7' of
a Gorenstein algebra A = R/J we can determine the minimum number of
generators needed for J by taking the third differences of the sequence of
integers in 7. We proved in Theorem 2.3 in the previous chapter that if J
has more than u(T') generators, we can deform the entries of an alternating
matrix whose pfaffians generate J so that J needs two fewer generators.

The degrees of the generators and relations of a height 3 Gorenstein ideal
J can be described completely by the integers {r;} defined in Section 2.2 as
the differences p; — ¢; of relation and generator degrees of J when arranged
in decreasing and increasing order, respectively. These integers can be used
to determine the maximum number of generators possible for an ideal J
defining a given Hilbert function 7T'.

3.1. Saturated sequences of integers {r;}. Recall that an alternating
matrix M can be assigned row degrees {q;} and column degrees {p;} such
that the {q;} are nondecreasing and the {p;} are nonincreasing, with integers
{r:} defined by r; = p; — ¢;- In order for M to have pfaffians that satisfy
Theorem 2.1, the diagonal degrees {r;} of M must satisfy the following
conditions:

Proposition 3.1. Let M be an u by u alternating matriz with generic en-
tries, u odd, whose diagonal degrees {r;} are arranged in nonincreasing order.
A necessary and sufficient condition for M to have u nonzero pfaffians is

the integers r, are all even or all odd;

1
ri+ru_i+2>0f0ri::2...(u; )

Proof. If the condition r; + r,_;,» > 0 is not satisfied, M will contain zeros
in all entries (4,7) with 7,57 > % The submatrix obtained by eliminating
row and column / not passing through this block of zeros will have the shape

g ad A
M,=1 0 0O zeros
AT zeros zeros
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where O indicates a block containing nonzero entries. A will be size i — 2 by
1 — 1, so the determinant of M; will be zero, contradicting the conditions of
the structure theorem that M have u independent pfaffians.

To show that these conditions are sufficient, we exhibit a u by u matrix
whose pfaffians generate a Gorenstein ideal with u generators:

(0 0 ... 0 Oy"‘zﬁ‘\
0 0 ... 0 ym2Pgn

0 0 ... ym 2Pz
(3:2) Dol :

0 —ym —zPf —z2 0 ...
—ym —zP2 —z>2 0 0 ...
\—zﬁ‘ —z* 0 0O 0 ...

o O O -

The integers «;, 8; and y; are defined as
a; = (g1 + Tur1-4) /2, Bi = (ri +Tur123)/2, v = (ri +74-3)/2.

If the diagonal degrees satisfy (3.1), the ideal of pfaffians of this matrix
contains 2= "‘",yz " and 22-%+ other terms, so it clearly contains pure
powers of z,y, and z and therefore has height 3. Finally, since the ideal of
pfaffians satisfies the conditions of Theorem 2.1 it is Gorenstein, minimally
generated by u elements. O

We have learned that J. Herzog, N.V. Trung and G. Valla have arrived
independently at the conditions of Proposition 3.1 and give matrix (3.2) as
an example for the sufficiency of the conditions.

We say a sequence of integers R = {r;} occuring as the sequence of diag-
onal degrees of an alternating matrix is saturated if it satisfies (3.1) and it
is impossible to lengthen the sequence by adding a pair of integers d, —d to
R and still satisfy (3.1) without changing the Hilbert function determined
by R. A sequence R has a unique saturation if whenever R' and R" are
two saturations of R with lengths v and w respectively, we have v = w and
r; = r; for all 4.

Theorem 3.2.
(i) A sequence R = {r;}, i =1...u is saturated if

™ >0,

(3.3) i 2T fori=1...u—1,

u+1

and r; +7ry_iz2=2foralli=2... 5
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(ii) PEvery sequence of integers {r;} arising from the generator and relation
degrees of a Gorenstein ideal has a unique saturation.

Proof. Let R = {ry,rs,...,7,} be given and let R’ be a saturation of R.
Denote by @, P and @', P’ the ordered sequences of generator and relation
degrees whose differences are the two sequences R and R’. Let n be the socle
degree of all ideals defined by these sequences. We will show R’ is unique.

As we saw in Chapter 2, the minimum number of generators of a Goren-
stein ideal J defining T" is u(T"). Any other ideal J' with a larger number
of generators determining the same Hilbert function as J must have addi-
tional generators and relations occuring in the same degrees. This implies
that Y r; = n + 3 is constant, since adding d; and d, to the sequences {g;}
and {p;} will add d; — d, and dy — d; to the sequence {r;}, leaving ) 7;
unchanged.

The sequences must satisfy p; + ¢; = p; + ¢, = n + 3. Since the sequences
determine the same Hilbert function, the smallest generator degree in the
ideals they define must be the same; therefore ¢; = ¢; and p; = pj, so
=T
Proof of 1). To saturate R, we begin by adding a pair d, —d to R. Clearly d
must be less than r;, otherwise we would be adding a generator in degree ¢,
to the ideal, which would change the Hilbert function. We reorder RU{d, —d}
so that the new sequence is nonincreasing, and continue adding pairs until
ri+71,_;., =2 fori>2in a larger sequence R' = {r{,... ,r,}. R’ will be of
the form

(rl, ... positive integers ,{1's}, negative integers )
when the integers are all odd, or
(rl, ... positive integers ,{2's},{0's}, negative integers )
when the integers are all even. Once we reach the point where r;+r,_,, , = 2
we cannot lengthen R’, since the insertion of d, —d into a sequence of length
v forces asum r; +7, ., , ;. , =0, wherer; =d and r,,_,,, = —d.
If not all sums in R' satisfy r; + r,_,, , = 2, there must exist a sum

Ty + 70— = 4. We can insert the pair d, —d where d = . — 2 to get a new
sequence R' U {d, —d} of the form

! !
(rl,.., N A ,rv_k+2,——d,...>.

This new sequence satisfies (3.1).
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Proof of ii). Now assume R has two different saturations, R’ and R", of
lengths v and w respectively. Since 3.7} = r{ +2- % must equal }_r! =
r{ 4+ 2- %=L and r{ = r{, it follows that v is equal to w.

Let k be first position for which r; # r;; we may assume r; < 7). There-
fore there is at least one more occurrence of the pair r;, —r; in R". Since
R" and R’ agree in position 1 through £ — 1 and they are both saturated
sequences, they must also agree in position v — k + 3 through u. Suppose
—r, occurs in position p in R”. We must have p > v — k + 2 to satisfy
(3.1). But now p is in the range where both saturations agree, contradicting
the fact that R’ doesn’t contain this occurrence of —r}. Therefore the two

saturations must agree everywhere. O

3.2. Maximum number of generators of a Gorenstein ideal. Let T' =
(hoyhyy--. ,hy,0,...) be given, where T is the Hilbert function of R/J. Let
k be the first position in which hy < (¥}?). We call k = k(T") the order of T,
and it is equal to the smallest degree of the generators of J for any graded

ideal J which determines T'. Clearly, £ depends only on T'.

Theorem 3.3. Let a Hilbert function T of order k(T) be given. The maz-
imum number of generators of a Gorenstein ideal J which determines T is
2 - k(T) + 1, and it occurs if and only if the sequence of diagonal degrees
determined by J is saturated.

Proof. Let R = {ry,rs,... ,7,} be a saturated sequence of diagonal degrees
which satisfies (3.3). Since } ;- , 7; = n+3 = s, and we assume 7;+719_; = 2
fori =2...(u+1)/2, we know s = r; + u — 1, and from the definitions of
s and {r;}, the smallest generator degree equals k = (s —r;)/2 = (u —1)/2,
sou =2k +1.

Conversely, if the smallest degree is k and R has length 2k+1, we get 2k =
§—r1 = 222 i = (T2 4+ Tokg1) + - - - (P(2k4141)/2 + T(2k+143)/2), Which must all
be positive. Therefore they must all be equal to 2, so R is saturated. [l

If we set all o; equal to 1 in the matrix (3.2), we are working with a

saturated sequence of {r;}. The smallest degree generator is 2o = z*,
and u = 2k + 1.

Corollary 3.4. Given a permissible Hilbert function T, all values between
w(T) and 2 - k(T) + 1 can occur as the number of generators of an ideal
defining T

Proof. This follows from Theorem 2.3 and Proposition 3.1. O

Stanley has shown [St1] that a sequence T' = (hg,hy,...,h,) of non-
negative integers with h; < 3 occurs as the Hilbert function of a Goren-
stein algebra if and only if it is symmetric and the first difference sequence
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(hoyhi — hg,hy — hy,... ;hy — hy_1) is a permissible Hilbert function, where
s =|n/2/.

Suppose T' is a permissible Hilbert function of some graded Gorenstein
quotient of R. We will consider the family Gory of all graded Gorenstein
algebra quotients A = R/J having Hilbert function T
Ezample 3.5. T = (1,3,4,4,... ,4,4,3,1). The third differences of T are

1,0,—2,0,1,0,0,...,0,0,—1,0,2,0,—1.

The ideals having this Hilbert function have at least two generators of degree
2 and one generator of degree n — 1.

The third difference sequence of T determines diagonal degrees {n—1,n—

1,5 — n}. The sequence is not saturated, so we can lengthen it by adding
at least one pair of integers. Since k(T) = 2, the only pair we can add
is n — 3,3 — n, getting a new sequence {n — 1,n — 1,n — 3,5 — n,3 — n}.
This sequence is saturated, so the maximum number of generators of an
ideal determining 7" is 5. 1" can be generated by three generators in degrees
2,2 and n — 1, for example J = (z*,4%, 2z"""), or five generators in degrees
2,2,3,n — 1 and n, for example J = (22, zy,yz?,y" !, 2").
Ezample 3.6. Let T = (1,3,6,7,6,3,1). The third differences of 7" indicate
at least 3 generators of degree 3. Since k(T) = 3, the maximum number
of generators an ideal J determining 7' can have is 7. A 5-generator ideal
having Hilbert function 7' is Js = (2%, 2%z, zy®> —2*, 42, y°), corresponding to
R ={3,3,3,1,—1}, and a 3-generator ideal is J; = (z*,4°, 2°), corresponding
to {3,3,3}. The 7-generator ideal

Jr = (2%y, 2%z, 2yz, 2 — 227 2y — y2t, 2 — 2%, 9% — 2°)
corresponding to the saturated sequence {3,3,3,1,1,—1, -1}, determines
the same Hilbert function. The Hilbert function of R/J; was computed
using Macaulay.

In summary, if a Hilbert function 7' with socle in degree n is given, and
an ideal J determining 7' has k for its smallest generator degree, then the
upper bound on the number of generators that can generate J is 2k + 1.
This upper bound can be achieved for all permissible Hilbert functions in 3

variables.

3.3. The lattice £(T') of T. Define L(T') to be a lattice associated to the
Hilbert function 7. Its vertices are all the sequences of integers {r;} satis-
fying (3.1) which determine T. Two vertices are connected if the sequence
at one vertex is a subsequence of the vertex below it. We call the vertex
corresponding to the smallest subset the minimal vertex.
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Ezample 3.7. Let T = (1,3,6,10,12,12,10,6,3,1). The minimum and
maximum number of generators for ideals which determine 7" are 3 and 9,
respectively.

Number of generators

&) {4,4,4}
/
®) {4,4,4,2,:2} {4,4,4,0,0}
/N
(M {4,4,4,2,2,-2,:2} {4,4,4,2,0,0,-2}
A
9) {4,4,4,2,2,0,0,-2,-2}

The sequence at the bottom level is saturated.

We have seen that if Hilbert function T is fixed, we can exhibit ideals
which achieve the minimum and maximum number of generators possible
among all ideals which determine T'. By Theorem 2.3, we can deform an
ideal with v + 2 generators into one with v generators without changing T
as long as v is at least u(T). We are able to deform an ideal with v + 2
generators into one with v generators only when the matrix M contains
degree zero entries, which happens only when the sequence of integers {r;}
for M contains a pair r; and r;, 7 # 7 such that r; +r; = 0. Therefore there
is a one to one correspondence between degree sets D = ({Q;},{F;}) for
ideals defining T' and the sequence of diagonal degrees for the corresponding
alternating matrix.

The lattice structure associated to T illustrates the irreducibility of certain
subfamilies of Gory. A vertex V in the lattice represents a family Gorp, with
the degree sets D specified by V. L(T') is a geometric lattice, since any two
vertices V; and V, representing Gorp, and Gorp, determine unique vertices
corresponding to D; N Dy and D, UD,. Gorp,,. corresponds to the minimal
vertex of L(T).

min
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Theorem 3.8. The closure Gorp is equal to |JGorp: for all D' D D and s
irreducible.

Proof. As seen in Chapter 2, ideals with degree sets D' can be deformed
to an ideal with degree set D when D' D D. This shows in the lattice
representation as V = sublattice descending from V. The minimal vertex
is unique as a result of the unique third difference sequence of T'. Thus
Gory = Gorp where D,,;, is the degree set specified by the minimal

min?

vertex. O

3.4. Saturated sequences of {r;} and partitions. There is a convenient
pairing between saturated sequences of {r;} and partitions as follows. Let
the socle degree n of a Gorenstein ideal J and the order k(T') of the Hilbert
function it defines be given. We will look at all possible sequences {r;} of
diagonal degrees for J.

The maximum number of generators for J is 2 - k(T) + 1. Construct a
partition of a rectangle of size 2k + 1 by s = n + 3 by dividing the s blocks
of row 4 into ¢; and p; blocks, such that p; — ¢; = r;. Eliminate the first row,
k columns from the left and £ + 1 columns from the right to get a 2k by
n — 2k + 2 rectangle. The resulting partition of this rectangle will be self-
complementary, and it retains the original information needed to reconstruct
the ideal and the Hilbert function it determines.

Proposition 3.9. When the socle degree n of a height 3 Gorenstein ideal
J is fized and the order k = k(T) of the Hilbert function defined by J 1is
given, there is a one to one correspondence between Hilbert functions T and
self-complementary partitions of 2k by n — 2k + 2 blocks.

Proof. The partition constructed above for any given Hilbert function will
be self-complementary, since the n — 2k + 2 blocks of row 7 are partitioned
into ¢;4; — k and p;;; — k — 1 blocks, whose difference is r;4; — 1. If j =
2k + 1 —1, the blocks of row j are partitioned into two parts whose difference
is ;41 — 1. Since r;1; + 741 = 2, we know r,4; = —7;11, S0 rows ¢ and j are
complementary.

If we are given a self-complementary partition of a 2k by n — 2k + 2
rectangle, where row i is divided into a; and b; blocks, a; + b, =n — 2k + 2,
then we can recover the saturated sequence of diagonal degrees from the
partition by letting r, =n+3 -2k and r;;; = b; —a; +1 fori =1...2k.
Since a partition defines a unique sequence of diagonal degrees, it defines a
unique Hilbert function. O

Ezample 3.10. Let n = 6 and k(T) = 2. There are 6 self-complementary
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partitions of a 4 by 4 rectangle, corresponding to the 6 different Hilbert
functions with order 2 and socle degree 6:

T partition {r:} generator colength
degrees

[ 11|
[ 11|
L L

1357531 (== 51111 24444 25
[ ]
{ 11|
[ 1L |

1356531 L L 5311-1 23445 24
[ |
L |
HE R

1355531 LU 533-1-1 23355 23
[ I |
| 11|

1345431 LI IL 5511-3 22446 21
[ ]
HE N

1344431 |mmmm 553_1.3 22356 20
AEEN

1333331 |mmEE 555_3.3 22266 17

Obviously T is no longer fixed; the constants are now the socle degree
and the order k. By counting the number of self-complementary partitions
of a given size we are counting the number of Hilbert functions with the-
given socle degree and order. Since the partition is self-complementary, it
is determined by the partition of a subrectangle with k& rows and [n/2| —
k 4+ 1 columns into nondecreasing rows. There are (L"/ ZJ“) such partitions.
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Therefore the number of permissible Hilbert functions of a given socle degree

equals
[n/2)+1
Z <Ln/2J + 1) — oln/2)+1
k

k=0
See [St2] for a more general discussion of generating functions for plane
partitions with varying degrees of symmetry.

4. Dimension of Gorr.

We define a different parametrization in Section 4.2 for Gorr than that used
in earlier chapters. With this parametrization the closure Gorr includes
Gorenstein algebras with different Hilbert functions.

4.1. Matlis Duality and the dual polynomial f.Let k be an alge-
braically closed field of characteristic zero, R = k[z,y, 2] with maximal ideal
m = (z,y,z). Emsalem [Em]| states that the dual A = Hompg(A, %) of a
Gorenstein algebra A = R/J with socle in degree n can be obtained by the
procedure of taking the vector space generated by a homogeneous degree n

polynomial f and its partial derivatives of all orders. We use the divided
(n+2

powers of the derivatives of f and write f = 5,3 ) baz%, by € k, where the
multi-index a = (ay, ay, a3) satisfies |a| = n.
An isomorphism exists between R-closed subspaces

JCR and Homg(R/J, E),

where J is an ideal of R and E is the injective envelope of R/m. This
isomorphism is shown in the theorem proved by Matlis [Ma] and discussed
by Miri [Mi]. We assume R is a commutative, Noetherian, complete local
ring, with & = R. From the exact sequence

0—J—R—R/J—0

we derive the commutative diagram

0 —— Homg(R/J,E) ——— Homg(R, E) —— Homg(J,E) — 0

| -
0 —— J — E _— E/TJ — 0.

Since FE is injective, the top row is exact. The bottom row is clearly exact,
and the vertical map ¢ is an isomorphism defined as follows [Ma, p. 526]:

Let R/J be generated by the element e, so that g € J if and only if
ge = 0. Let h € Homg(R/J,E) and define ¢ : Homg(R/J,E) — J by
¢(h) = (h - e). Clearly ¢ is a well-defined R-homomorphism. If ¢(h) = 0,
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then he = 0, so h = 0. This shows ¢ is one-to-one. If we let z € J, define
h:R/J — FE by he = z. Then ¢(h) = z, so ¢ is onto, and therefore
Hompg(R/J, E) = J. Since the first two vertical maps are isomorphisms, so
is the third, so Homg(J,E) 2 E/J.

4.2. Catalecticant matrices associated to f. We parametrize Gorr by
using the coeflicients of the dual polynomial f described by Emsalem up to
nonzero constant multiple. To specify a Hilbert function (ho, A1, ... , hy,), we
require that a degree n polynomial f have h; linearly independent partial
derivatives of order d. The permissible Hilbert functions are those for which
such a polynomial exists. This is the intersection of an open and closed
condition on the ("}?) coefficients of f.

When f is a homogeneous polynomial in 3 variables, the rth partial deriva-
tives of f form the row space of a ("}?) by ("77*?) matrix. We denote this
matrix M, ,_.(f), called the rth Catalecticant matrix associated to f. When
n = 2d is even, the Catalecticant M 4(f) is square and symmetric.

Let A = k[{b.}][z,y,2]/J, where J is the annihilator of f in the Matlis
duality. Let I,(M,4(f)) be the ideal in k[{b,}] = k[B] of all determinantal
minors of size ¢+ 1 of My 4(f). When ¢ = (*}?) we set I,(My4(f)) = (0), the
zero ideal. For each t from 0 to (*}?) we get a different Hilbert function T,
equal to (1,3,6,... ,t,t,...,t,...,6,3,1), the largest possible given t. The
codimension in k[B] of I;(My 4(f)) will be the dimension of k[B]/I,(M4,4(f))-
4.3. Codimension of I;(M;.(f)).

Ezample 4.1. The Hilbert functions of k[B]/I;(M.(f)) were computed for
values of ¢ from 0 to 6 using the commutative algebra computer program
Macaulay. In the case n = 4 the results are summarized below, where H
denotes the Hilbert function of a minimal reduction of k[B]/I;(M2(f)).

t  codimension  dimension H degree
0 15 0 1 1

1 12 3 1123 16
2 9 6 1945173 75
3 6 9 1621562161 112
4 3 12 1361015 35
5 1 14 111111 6

6 0 15 0 1

This information was computed using the commutative algebra computer program Macau-

lay.

All values of t can occur in the 3-variable case [BE1], and in the general
case for any number of variables [I1].
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The pattern of codimensions of I;(M; »(f)) at first exhibits behavior sim-
ilar to that of a generic symmetric matrix: the codimensions follow the
pattern 1,3,6, for corank 1,2,3; after that corank they jump by 3’s. This
suggests examining other even values of n to see if this pattern is sustained.
When n = 3, M3 ;(f) will be size 10 by 10. If the same pattern evolves, we
expect to see the values in the following table.

Table 4.2
codimension dimension

¢ of I,(Ms5(f))  of I.(M;3(f))
1 25 3

2 22 6

3 (19) >9

4 (16) >12

5 (13) >15

6 (10) >18

7 6 22

8 3 25

9 1 27

10 0 28

Numbers in () have not been verified. Dimension and codimension for ¢t = 7,8 and 9
follow from Theorem 4.4. Dimension for ¢ = 1 and 10 have been shown independently.
The dimension for ¢ = 2 has been verified by Macaulay. The lower bounds of dimension
of I.(M33(f)) for 3 <t <6 follow from Lemmas 4.8 and 4.9 below.

4.4. Codimension of I;(My4(f)). Let f = Y b,z*, || = 2d = n. The
dimension of k[B] equals ("}?). The size of the matrix My q(f) is (*}?) by
(‘“2'2). Let ¢ equal the rank of M, 4(f), determined by the vanishing of the

minors of size t+1 of M, 4(f), and let a equal (d‘;2) —t, the corank of My 4(f).

Conjecture 4.3. The codimension of I,(My4(f)) in k[B] is (°}') if t >

(37, or (“77) =8t if t < (7).

Remark. This pattern is numerically consistent. Suppose the sequence of
codimensions of I;(M, 4(f)) is0,1,3,6,10,... fora=0,1,2,..., and persists
to the jth term. We find that the equation (*}?) = ("t} +3 ((‘“2'2) - j) has
solution 7 = d + 1 for each d.

If X = {z;} is a symmetric (*}?) by (“}?) matrix of indeterminants in S =
k[z;], then I,(X) will have codimension (*}?) — (*}) in S. The resolution
structure for ideals I,(X) is given in [JPW]. We obtain I;(My4(f)) by a
change of rings, defining ¢ : S — R by ¢(z;;) = the (¢,7) entry of My 4(f).
Since the ideals I;(X) are generically perfect [EN], if F is a resolution of
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I,(X), then F ®s R will be a resolution of I;(My 4(f)). It follows from [EN]
that the codimension of I;(M,;q(f)) in k[B] is less than or equal to the
codimension of I;(X) in S. Conjecture 4.3 says that this is an equality for
(*+1) <t < (*F?), or equivalently, for 0 <a < d+ 1.

To verify Conjecture 4.3 for large values of ¢, we will use Theorem 2.1 to
determine an upper bound for the dimension of the family of algebras having
a given Hilbert function. In part 2 of the proof of the theorem, Buchsbaum
and Eisenbud show that if a Gorenstein ideal I has a resolution

F:0— F, 2% R, 2 F, I8 R,

then f; may be chosen to be an alternating map for any appropriate map
f1, so that all sets of generators for I occur as pfaffians of an alternating
maftrix.

In the discussion that follows we add 1 to the computation of the projective
dimension of A*®m) in order to compare it with the affine count for the
dimension of Gorp.

Let f be a degree n = 2d homogeneous polynomial in z,y and z. Let
I,(M,,4(f))be the ideal of size t+ 1 minors of M, 4(f), imposing the condition
that the rank of My 4(f) is less than or equal to t = (*}?) — a. If we restrict
a so that a < d + 1, then we determine the Hilbert function

(4.1) T=1,3,6,10,... ,t,...,10,6,3,1,

where all the matrices M, ,_.(f) have maximal rank except M, (f). The
third difference sequence of T is

1,0,0,...,0,-¢a,3¢a -3 —n,—3a+3+n,a,0,...,0,0,—1.

Theorem 4.4. If 3a < n+3, then there is an irreducible component Gor(T)
of I,(My,4(f)) with codimension equal to ("}*) — (*11).

Proof. We can break up the proof into 2 cases:
Case 1. 3a = n + 3. The sequence of third differences is

1,0,0,...,0,~a,0,0,—a,0,... ,0,0,—1.

We get a generators in degree d and a relations in degree d + 3 in the ideal
J with the smallest possible number of generators defining a Gorenstein
algebra A with Hilbert function 7. All entries in the a by a alternating
matrix M will have degree 3, meaning a choice of 10 coefficients possible for
each, since we are choosing generic entries, so h(Ey) = 10(3). For J, there
are g generators to choose, each of which is a linear combination of a fixed set
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of a forms in J of degree d, giving dimension a®>. We subtract this from the
number of parameters we found for M, since each of these ideals determines
the same algebra. Therefore, the maximum dimension of the family equals

10(3) +1-a®=4a"—5a+1.

Since the codimension of the family cannot be larger than that for a generic
symmetric matrix, this dimension is also a minimum, so it is equal to the
dimension given in the conjecture.

Case 2. 3a < n + 3. This gives a generators in degree d and —3a + 3 +n
generators in degree d+1, —3a+3+n relations in degree d+2 and a relations
in degree d + 3. The alternating matrix M will have this shape:

0 Degree 3 entries Degree 2 entries
Degree 3 entries 0 Degree 1 entries
Degree 2 entries Degree 1 entries 0

The maximum affine dimension of the family equals

“3a+3
10<g)+6a(-—3a+3+n)+3( ag +”)H

—(a®+ (2n + 3)(=3a + 3 +n))
a? a
= (—2— — 6da + 6d* — 195 + 15d + 10>
— (a® — 6ad + 12d + 4d* — 9a + 9)

2

Q a
=—— 42— = +3d+1
2+ 2+ +1,

n+2) - (a+1

; ; ) as claimed. O

and this is equal to (
Remark. This Gor(T) is not in the closure of another, larger Gor(T"),
because 7' is maximal given ¢, and by Theorem 3.8.

Remark. When 3a > n + 3, the third differences of (4.1) show that an
ideal with this Hilbert function needs a minimum of a generators in degree
d and 3a — 3 — n generators in degree 3,1, and —1 in the following shape:.

0 Degree 3 entries Degree 1 entries
Degree 3 entries 0 Degree -1 entries
Degree 1 entries Degree -1 entries 0
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If we assume the degree —1 entries are all zeros, we get

10 (;) +3a(3a ~3 —n) — (a® + (4d +6)(3a — 3 — n))

= 13a? — 32a + 4da + 24d + 84> + 19

for the maximum dimension of Gorr and

a’ a

2> +3d+1— — — =
+3d + 5 "5

for the conjectured dimension. The difference between these is

3a—3—n
(7).

which is three times the number of -1’s in the degree matrix. This suggests
that the fiber 7~ over an ideal is larger than we have accounted for. It
remains an interesting problem to justify subtracting 3(**7}~") from our
count of the dimension of Ug,, by explaining this difference.

Since we have shown the result for a < 2d/3 + 1, and the only values of a
that are possible are 0 < a < d + 1, we have proven the conjecture true for
roughly two thirds of the range where we expect codimension I;(My 4(f)) to
be the same as codimension ;(X).

Ezample 4.5. Let us look at the Hilbert function T' = (1, 3,4, 3,1). We get
the sequence of third differences 1,0, -2, —1,1,2,0, —1, indicating a smallest
possible minimal resolution of 2 generators in degree 2, one generator in
degree 3, one relation in degree 4, and two relations in degree 5. This
translates to the following alternating matrix pattern:

-3 2
3 -2
22—

When we count dimensions for the entries we get 1-10+2-6+1 =22+1 =
23. There are 2-2+41-7 = 11 choice of generators for the ideal. Therefore the
maximum dimension of the family is 23 — 11 = 12. The conjecture predicts
12 as well, and this information is shown in Example 4.1.

One such matrix M is
2

0 22y
-2 0 =
-2 —z% 0
It can be easily checked that the ideal of pfaffians (23, y?, %) determines the
Hilbert function (1, 3,4, 3,1).
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Remark. We can also use this same method of counting to find the di-
mension of a variety in some cases when the Hilbert function of an algebra is
determined by a rank condition on one of the nonsquare Catalecticant ma-
trices. The result is that when a corank 1 condition is imposed on M, ,,_,(f),
the codimension of I,(M,,_.(f)) for t = ("}?) — 1 is {(n 4+ 3)(n — 2r) + 2,
the same as the codimension of I;(G) when G is a generic ("}?) by ("%
matrix. This is the case no matter how “nonsquare” M, ,_.(f) is.

4.5. A lower bound for the dimension of Gory. We can determine a
lower bound on the dimension of M, 4(f) by looking at sums of powers of
linear forms. Let [;,...,l; be linear forms in the variables z,y and z. We
look at the tangent space of the image of the map P : (k®)° to kV

Pl g4 07

which we denote T,(P).
Ezample 4.6. Take |y =ax+by+czand l, =dc +ey+ fz, n =4.
I+ 13 = (az)* + 4(ax)®by + - - - + (c2)*
+ (dz)* + 4(dx)’ey + - - + (f2)*,
so the points (a,b,c) and (d, e, f) get mapped to
(a*,4a%b,4d’c, ... ,c*) + (d*,4d%,4d°f, ... , f*),

a 15-dimensional space. If we let (a’,¥',c¢') and (d', €', f') be tangent vectors
at the points (a,b,c) and (d, e, f), then T4(P) is

((a+a)4(a+a)(b+b),...,(c+c))
— (a*,4a%,... ,c*)
+((d+d),4d+d)e+e),...,.(f+ )
— (d*,4d%e, ... ,d").

If we choose a',... , f' small, then the quadratic terms and those of higher
degree are approximately zero, so we only need to look at the linear terms
ina’,...,f.

The dimension of 74(P) will be equal to the rank of the following 15 by 6

matrix:
4q3 0 0 4d3 0 0

12a%b 4a®> 0 12d%e 4d® O
12a’c 0 40 12d*f O 4d3
12ab® 12a%b 0 12de?® 12d%e 0
24abc 12a%c 12ab 24def 12d2 f 12d%e

0 0 4 0 0 43
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This matrix has rank 6, computed by Macaulay.

When we add more linear forms we add columns to this matrix. Let
I3 =gx+ hy + 2, |y = jz + ky + 12, ls = mz + ny + 0z. The dimension of
T4(P) is equal to the rank of the 15 by 15 matrix

4q3 0 0 ... 4m? 0 0
12a%b 4a®> 0 ... 12m?n 4m? 0
12a¢ 0 4a® ... 12m%0 0 4m3
12ab? 12a%b 0 ... 12mn? 12m?n 0

24abc 12a%c¢ 1262%b ... 24mno 12m2o 12m?n

0 0 42 ... 0 0 40°
which has rank 14, not 15 as we might expect. This information is con-
tained in the table in Example 4.1, and is a classical result by Sylvester
[El, pp. 293-295].

We would like to be able to say that when n > 4 we can find r linear
forms so that the dimension of T,(P) is 3r, providing 3r < ("}?). Since
the dimension of the tangent space is given by the condition that a certain

matrix has maximal rank, which is an open condition, we will be assured of
being able to find r linear forms whenever the matrix has maximal rank.

n+2

Conjecture 4.7. When n > 4, there exist s = > ) linear forms
li,...,ls in z,y,z which the map P injective (that is, for which the tangent
map T,(P) has rank 3s).

Lemma 4.8. If l;,...,l; — [} +--- + 17 is injective, then ly,... [, —
I +---+ 17 is injective for m > n.

Proof. Assume ly,... ,l; — I* + --- + 17" is not injective; then there exist
coefficients c;,... ,c, in R not all equal to zero such that 3 c;i*™' = 0.

If we differentiate this sum m — n times, we will get a nontrivial linear
relation Y c/{?"' = 0. But this gives a nontrivial linear relation among
the [, which means the map ly,... ,l; = I} +--- + 7 is not injective, a

contradiction. ]
Lemma 4.9. Conjecture 4.7 is true for n = 5.

Proof. Choose linear formsl;, =z, l, =y, l3 = 2z, |4 = az+y, s =dz+2, g =
y +cz, and l; = £ + y + z, and look at the tangent space of the image of
these forms under the map P at the tangent vectors

(alablacl)a (a2,b2ac2), cee ,((17, b7,C7).
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The dimension of 75(P) is the rank of this 21 by 21 matrix:

500...5d* 0 00 0 0 500
050... 05d* 00 0 0 2050
00 0 200 5

005... 0 0 5d*

000... 0 20¢® 30c? 0 20 30

0 00
000... 0 20 0 0 5¢* 20c® 0 5 20
000... 0 0 50 0 5" 005
The determinant was computed to be nonzero using Macaulay. [
n+2
The following table shows the degree n, value of [( 3 ) , and number s

of forms such that the dimension of T,(P) = 3s. Unverified values are in
parentheses.

Table 4.10.
0o e |
1 3 1
2 6 1
3 10 3
4 15 4
5 21 7
6 28 (9)
7 36 (12)
8 45 (15)
9

Verifying Conjecture 4.7 for n > 5 requires finding s linear forms so
that the dimension of 7,(P) is 3s. Once we have s linear forms where
the dimension of T,,(P) is 3s, by Lemma 4.8 those forms will still “spread
out” to fill up dimension 3s when we increase n. Since computing de-
terminants of large matrices is cumbersome, it would be nice to be able
to choose the s simplest linear forms and show that they give dimension
T.(P) = 3s, but this is not always possible. For the proof of Lemma 4.9
we could not have chosen l; = ex + fz instead of I; = = + y + 2. The
linear forms z,y and z will have nonzero coeflicients on the 9 monomials
™,z ry, gz, xy Ly Yy 2, 22, y2™ 7t and 2™ The image of ax +y
will be nonzero on monomials with power of z at most one. The image of
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dz + z will have nonzero coefficients on 2n + 1 monomials whose power of
y is at most one; the same for ex + fz. However, when n = 5 this means
the 4 linear forms z, 2, az + y, and dz + 2z are nonzero on the 11 monomials
whose power of y is at most one; therefore the dimension of 75(P) < 20 for
this choice of 7 forms.

4.6. Dimension of a family of complete intersections. A height 3
Gorenstein ideal I defines a complete intersection when it can be generated
by 3 elements. For example, the Hilbert function

(1,3,6,7,6,3,1)

can be determined by 3 generators in degree 3.

If an ideal I defines a complete intersection with the Hilbert function of
R/I equal to T = (ho,hy,...,hs,...), the dimension of Gory = Y e;h;,
where e; is the number of generators in degree 7 in a minimal generating
set for I [I2]. We can also give the projective dimension of a complete
intersection ideal strictly in terms of the generator degrees by using the
pfaffian method of Section 4.4. There are several cases to consider when all
generator degrees are less than all relation degrees:

Case 1. q; # g2 # g3. In degree q; the size of the remaining space is 1, in
degree g, it is 1 + (72*?), and in degree g3 it is 1 + (®7272) + (#~2+2),
The sum equals the number of ways of choosing the generators for J. By
subtracting the sum from the number of choices for M, we find the dimension

of the complete intersection to be

9 3 3
%""—2('12_‘;1—3""]1(]2""]1%""]2‘]3“q?—‘2—__2"_3-

Case 2. ¢; = q2 # gq3. The dimension of the complete intersection will be

3qs g
6g; — —> +92 B _4
T 9 N~

Case 3. ¢, # ¢ = ¢3. The dimension is

9g @
- t2me— o -4
Case 4. g, = g, = g3. The size of the remaining space is (*;?) — 3, so the

dimension of the complete intersection is

qf+3q1 +2_

9.
2
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Note that the projective dimension of the complete intersection above is
computed to be 21 using this formula, which agrees with the affine dimension
22 shown in Table 4.2.

When a relation occurs between the two generators of degrees ¢; and g,
before the generator in degree g3, the size of the remaining space in degree ¢3
is independent of g3, so it doesn’t appear in the formula for the dimension.
Case 5. q; # ¢2,p3 < q3. The dimension is

3q1 + 2q1q2 — 2.
Case 6. q; = ¢2,p3 < ¢q3. We get

4.7. Dimensions of Gorr( kn), GOTrr(2,k,n), GOTT(3 k,n)-
Let T'(2,k,n) denote the symmetric Hilbert function with socle in degree n
which follows this pattern:

kE+1 k+2 k+3
e (0 (47) 0 (579 o
CYEICS e
2 2

An ideal determining this Hilbert function has 2 generators in degree k with
a relation in degree k + 1, and no further generators until degree fﬂizr—l] We
assume k < | %].

Proposition 4.11. The projective dimension of

n+2) B (n—k+3> +k2+k+2

5 5 5 =k(n+3)—(n+1).

GOTT(z,k,n) = (

Proof. Denote by g, and g, the two generators of J that occur in degree k.
Since they have a linear relation in degree k + 1, they must share a common
degree k — 1 factor; denote this by g. Then we can express the generators as
g1 = ¢g-ly and g, = g-ly, where [, and I, span a 2-dimensional subspace V of
the vector space with basis (z,y, z). The number of parameters for g; and g,

is counted by first choosing g in dim Grass (1, (k;”)) ways, then choosing
V in dim Grass(1,3) = 2 ways, giving a total of ’°2+2’“+2 parameters for the

generators.
If we let J stand for the ideal generated by g; and g, then the dimension
of J, as a vector space equals ("7;7*) — 1, so that the dual form in degree n
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must be chosen from the ("}?) — (""5**) + 1 forms in P(J,,)*. Therefore the
number of parameters for a dual form f up to nonzero multiple equals

#3)-(5)

The projective dimension of the variety equals ("}2) — ("75+%) 4 Btks2 —

E(n+3)—(n+1). O

Ezample 4.12. Consider the variety Gorr(; 3 s) of Gorenstein algebras having
Hilbert function

T(2,3,8) = (1,3,6,8,10,8,6,3, 1).

This can be determined by requiring M; 5(f) to have rank 8 and making
no additional conditions on My ,(f), allowing it to have the largest rank
possible. The projective dimension of Is(M; 5(f)), the ideal of 9 by 9 minors
of M35(f), is therefore 3- (8 +3) — (8 +1) = 24.

In the same way we define Gorp(sn) to be the variety of Gorenstein
algebras where ideals determining Gorys i) have 3 generators in degree £,
2 relations in degree k + 1 and no further generators until degree [2£1].
We define Gory( k) to be the variety of algebras whose ideals have one
generator in degree k and no further generators until degree [1%“1]

Proposition 4.13. The projective dimension of Gorrkny is k(n + 3) —
(2n — 2). The projective dimension of Gorp( kny s k(n +3) — L.

Proof. We get these formulas by following the same arguments as in Propo-
sition 4.11. 0

The dimension of Gory( k) is the same as the dimension of the generic

and Catalecticant matrices of size (*}%) by (*"+*?) with corank 1.

The following is a table of dimensions for Hilbert functions with socle in
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degree 6 and order 2.

Table 4.14
T projective comments
dimension

(1,3,5,7,5,3, 1) 17 corank 1 condition on
6 by 15 catalecticant
matrix

(1, 3,5,6,5,3,1) 16 complete intersection

(1,3,5,5,5,3,1) 14 sum of 5 powers of lin-
ear forms

(1,3,4,5,4,3,1) 11 T(2, 2, 6)

(1, 3,4,4,4,3,1) 11 sum of 4 powers of
linear forms; complete
intersection

(1,3,3,3,3,3,1) 8 sum of 3 powers of lin-

ear forms; T(3, 2, 6)

The above dimensions are for Gor(T), not necessarily for the subset
prametrizing ideals needing 5 generators. For example, the dimension of the
5-generator subsets (1,3,4,4,4,3,1) and (1,3,5,6,5,3,1) will be less than
the dimension of Gor(T). When fixing the rank of Catalecticant matrices
does not uniquely specify T, then the determinantal variety defined by these
ranks may be reducible.

Ezample 4.15. Let n = 8 and consider the determinantal variety V' associated
to a dual form f such that the rank of Mjs(f) equals 7. The valid Hilbert
functions satisfying rank M; 5(f) = 7 with socle in degree 8 are

T, = (1,3,6,7,8,7,6,3,1)
T, = (1,3,6,7,7,7,6,3,1)
T, = (1,3,5,7,7,7,5,3,1)
T, = (1,3,5,7,8,7,5,3,1)
Ty = (1,3,5,7,9,7,5,3,1)

V = UGors, and each Gorr, is an irreducible subvariety of V. We cannot
specialize Gorr, to Gorr,, since the projective dimension of Gorr, is 20, while
the dimension of Gorr, is 19. We also cannot specialize Gorr, to Gorr,,
since Gorr, requires generators in degree 6 but Gory, does not. Therefore
Gorr, £GorT, and Gory, £GorTy, so V is not irreducible.
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Remark. If we let n vary and parametrize V' by a dual polynomial f where
the rank of M, ,_»(f) = 3, we do get an irreducible variety, since we have
fixed the Hilbert function to be (1,3,3,... ,3,3,1). In general, whenever the
parametrization of f is a rank condition on catalecticant which fixes all the
other ranks, it fixes T. Since I;(My4(f)) fixes a Hilbert function, it is an
irreducible ideal.
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ON THE COHOMOLOGY OF THE LIE ALGEBRA L,

ALICE FIALOWSKI

We compute the 0-, 1-, and 2-dimensional homology of the
vector field Lie algebra L, with coefficients in the modules
Fiu, and conjecture that the higher dimensional homology
for any A and p is zero. We completely compute the 0- and
1-dimensional homology with coefficients in the more compli-
cated modules F) ,. We also give a conjecture on this homol-
ogy in any dimension for generic A and pu.

Introduction.

Let us consider the infinite dimensional Lie algebra WP°' of polynomial vector
fields f(z)d/dz on C. It is a dense subalgebra of W;, the Lie algebra of
formal vector fields on C. We will compute the homology of the polynomial
Lie algebra, and will use the notation WP° = W;. The Lie algebra W, has
an additive algebraic basis consisting of the vector fields e, = z**'d/dz,
k > —1, in which the bracket is described by

lex, €] = (I — k)erq-

Consider the subalgebras L;, & > 0 of Wy, consisting of the fields such
that they and their first k£ derivatives vanish at the origin. The Lie algebra
L, is generated by the basis elements {ey,€xy1,-.. } . The algebras W; and
L, are naturally graded by dege; = ¢. Obviously the infinite dimensional
subalgebras L, of W, are nilpotent for & > 1.

The cohomology rings H* (L), k > 0 with trivial coefficients are known,
there exist several different methods for the computation (see [G, GFF,
FF2, FR, V]). The result is the following;:

smir(e) = (115 + (T1E57) g okzn

Not much is known about the cohomology with nontrivial coefficients for the
Lie algebra Ly, k > 1. Among the known results, we mention the results on
Ly, k > 1 on the cohomology H* (Ly; L,) with any s > 1, see [F], and on Ly,
k < 3 on the cohomology with coefficients in highest weight modules over
the Virasoro algebra, see [FF2] and [FF3].

399
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Let F denote the W;-module of the tensor fields of the form f(z)dz?,
where f(z) is a polynomial in z and X is a complex number; the action of
W, on F), is given by the formula

(9d/dz) fdz™ = (gf' — Afg')dz>.

The module F) has an additive basis {f;; 7 =0,1,...} where f; = z7dz™*
and the action on the basis elements is

eifi = (5 — (1 +1)A) fir;-

Denote by Fy the Wj-module which is defined in the same way, except
that the index j runs over all integers. The Wj;-modules F), with A # 0
are irreducible, but as Ly-modules, they are reducible. For getting an L,-
submodule of F), it is enough to take its subspace, generated by f;, j > p,
where p is a positive integer. Denote the obtained Ly-module by F) ,.

More general, let us define the Lo-module F) , for arbitrary complex num-
ber p, as the space, generated — like F — by the elements f;, 7 =0,1,...,
on which L, acts by

ef; = (G +p—(GE+1)A)fiy;.

Finally define the modules F, , over W; as F), above, without requiring
the positivity of j.

The homology of the Lie algebra L; with coefficients in ), , and F) , are
computed in [FF1]. We consider everywhere homology rather than coho-
mology, but the calculations are more or less equivalent. In the case of F) ,
one can use the equality

(-7'-/\,;4), =F_1-x-u
which implies that
H (Li; Fap) = Hy (L Fo1-a-p) -
In the case of F), , one can use the equality
(Fou) = (Foion—p) [F-1-x-u

(see [FF1] for details).

Let us recall the results of [FF1]. Set e(t) = (3t*> + t)/2 and define the
k-th parabola (k = 0,1,2,...) as a curve on the complex plane with the
parametric equation

A=e(t)—1
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m—k=ce(t)+e(t+k)—1
For k., k, € Z we set
P (ki ky) = (e(ky) — 1, e(ky) +e(ky) — 1)
and let P = {P (ky,k2) : ki, ko € Z}. For a point P of P let us introduce
k(P) = |ky — ky|
and

K(P) = k| + |ks|.

If P € P, then K(P) > k(P),K(P) = k(P) mod 2 and P lies in the k(P)-
th parabola. For k£ # 0 all the points of the k-th parabola with integer
coefficients belong to P. On the O-th parabola there is one point from P
with K = 0, and two points with K = 2, two points with K = 4, and
in general, two points with every even number K. For & > 0 on the k-th
parabola lie 2k +2 points from P with K = k and four points with K = k+2,
four with £ + 4, and in general, four with K = &k + 2z.

Theorem [FF1, Theorem 4.1].
2 if Mp+m)ePand K(A\,p+m)<gq
dim H™ (Ly; Fa,) =41 if (A p+m) €Pand K(\p+m)=gq

0 otherwise.

Corollary. If X is not of the form e(k) — 1 with k € Z and if p € Z, then

H,(L; Fx,)=0.

The homology H,(Ly; F) ,) is also computed in [FF1]. We will not for-
mulate the result in details, only some important for us facts.

Theorem (Modification of Theorem 4.2, [FF1]).
1) If (A p) is a generic point so that (A, +m) does not lie on any of the
parabolas for any integer m, then

H*(Ll;F)\,,u) = H*(LZ)

2) If (A\,p+7) lies on the parabola for some j, then H,(L1; F) ) is bigger
than H,(L,) at least for some q.
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3) In all cases
H/(Ly) =2q+1<dimH,(L; Fy,) <4q+1
and the boundaries are reached.

The next problem is to compute homology of L, with coeflicients in the
modules F, , and F) ,. That is the aim of this paper. The results are the
following.

Theorem 1.

C if A==1Im+pu=-1

HY™ (Lo; Fr) =
o (L2iFau) {0 otherwise.

Theorem 2.

(2 if A=m4p=-1

1 if A==-1,m+p=1,2,3
dimHl(m) (La; Fap) = { orA=0andm+pu=0
ori=1landm+pu=1

L0 otherwise.

These results are analogous to the ones in [FF1] and one can expect that
the picture will be similar for higher homology as well. With this in mind,
the following result is a surprise.

Theorem 3.

1 of A==1Im+p=-1,1,2,3
A=0and =0

dim H{™ (L3 F,) = ora = tandmry

orA=landm+p=1

0 otherwise.

That means that the singular values of the parameters for the two-dimen-
sional homology are the same, as the ones for the one-dimensional homology,
which is not the case for the homology of L,. Moreover, some partial com-
putational results make the following conjecture plausible.

Conjecture 1. H,(Ly; F, ,) = 0 for every A, u for g > 2.

Let us try to explain the behavior of this homology. The main difference
of the L, case from the L, case is that H, (L; F, ,) = 0 for generic A and p,
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while H, (L2; Fy,,) = 0 for all X and p (if ¢ > 2). This might have the follow-
ing explanation. By the Shapiro Lemma (see [CE, Ch. XIII/4, Prop. 4.2]),

Hq (Ly; F) = Hy (L nd} 7 )

and Indﬁi}},# may be regarded as a limit case of the tensor product of
modules of the type Fy , ® F, ,. Namely, Indf’;]-},“ = F®F,, where Fis
the L;-module spanned by g;,7 > 0, with the L,-action e;g; = gj11, €;9; =0
for ¢ > 1; the isomorphism is defined by the formula

k
k —m
o 3 (F) e
m=0

(on the left hand side eff; means the action of €; in Indf; Fau, on the

right hand side ef~™ f; means the action of e; in .7-')‘,”). On the other hand,
F =1limy_, o F) 4 for any a # 2: put

g AN =(@=2)A(a —=2)A+1)...((e = 2)A+ 7 —1)f; € Frax;

then . .
o) = (@ =i= DA+ gy
= (a—2A+3)...((a=DA+j+i—1)
which tends to the action of L; in F when A\ — oo.
Perhaps the homology

H,(Ly; Fy e @ Fap)

depending not on two but on four parameters, has singular values for some
A, pi, X', ' for each q. The problem of computing the cohomology H,(Lz; F ,.)
is the two-parameter limit version of the previous problem, and it is not sur-
prising that the singular solutions of the first problem have effect on the
second problem only for small ¢ values.

Our calculation yields also some results for H,(L,; F) ,). We will formulate
them in Section 3, Theorem 4 and 5.

From Theorem 4 it follows that for generic A, p,

dim Hy (Ly; Fy ) = 2,

and for singular values of A, i, dim Hy (Ly; Fy ) > 2.
From Theorem 5 it follows that for generic A, u,

d1mH1 (LQ;F/\,/,L) = 87
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and for singular values of A, 1, dim H; (Ls; F) ) > 8.
Conjecture 2. For generic A, pu,

dim H, (Ly; Fy,) = 2(q + 1)*
or in more details,

H{™ (Ly; Fa,) = H™(Ls) @ H D (Ls).

This conjecture is motivated by the following observation. By the Shapiro

Lemma,
H{™(Ls) = H™ (Ly;Ind}2 C) .

The module IndIIj: C is spanned by h; (j > 0) with Ly-action eyh; = hjq,
e;h; = 0 for ¢ > 2; the grading in this module is degh; = 2j. Hence

H{™(Ls) = H™ (Ly; Ind}% C + S Indj? C)
where ¥ stands for the shift of grading by one. On other words,
H™(Ls) ® Hém_l)(Ls) = H{™(Ly; F)

where F' is spanned by g;, j > 0, with the L,-action e;g; = gj12, €ig; = 0
for 1 > 2. As above, F = limy_,o, F\ o» (now a # 3), which suggests that

H{™(Ly; F) = H{™ (Ly; Fy )

for generic A, p.
Similarly one can expect that for generic A, p

H{™(Ly; Frp) = H™ (L) @ H™ D (Lgyr) © -+ - @ HW 4 (L)
Remark, that if it is true that generically H,(L; F» ,) = 0 then generically

Hq(Lz;]:,\,u) = Hq—l(Lz; F—l—A,—u)

(HO(Ly; Fa) = Hy(L2; FY,,.) = Hy(L5; Fo1 s,/ F-1-x,,); and the homol-
ogy exact sequence associated with the short coefficient exact sequence

0— F—I—A,—u — .7:_1__)"_” — ]:—l—A,—p/F—l—A,-—u -0

provides the above isomorphism). In particular, if the L,-module L) =
F_, _3 is “generic”, then Conjecture 2 implies

dim H?(Ly; L) = dim H, (Ly; F—, _3) = 8.
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Similarly for L; we have the hypothetical result
H*(Ly; L) = k(k +2).

The paper by Yu. Kochetkov and G. Post [KP] contains the announce-
ment of the equality

dlmHz(LQ,Lz) = 8,
as well as some further computations, including explicit formulas for 8 gen-

erating cocycles, which imply the description of infinitesimal deformations
of the Lie algebra L,.

I. Spectral sequence.

Let us compute the homology Hém)(Lg;f)"u). Define a spectral sequence
with respect to the filtration in the cochain complex C{™(L;Fy ,). The
space C{™ (Ly; F,,) is generated by the chains

e,-ll\.../\eiq®fj

where 2 <4; < ... <1, j € Zand 4;+...1,+7 = m. Define the filtration by
i1+ ...+, = p. Denote by F,C{™ (Ly; Fy,,) the subspace of C{™ (Ly; Fa ),
generated by monomials of the above form with ¢; + ...+ ¢, < p. Obviously,
{F C{™ (Ly; Fi, u)} is an increasing filtration in the chain complex. The

differential acts by the rule

d(eil /\.../\eiq ®f])
q
-_—d(ei1 /\.../\eiq) ®f]’—‘2(—1)seil A"'é’is /\.../\...eiq ®ei,fj-
s=1
As m is fixed, the filtration in bounded.
Denote the spectral sequence, corresponding to this filtration by E (A, u, m).

Then we have
B} = O (Ly; ©)

and dj is the differential 6, : C{P)(Ly;C) — C._;(L2;C). The first term of
the spectral sequence is
EP = H?)(L,; C).

The homology of L, with trivial coefficients is known (see [G]):
. 2 3(g+1)>—(g+1
C if < p< et (el

0 otherwise.

HP(L,) = {
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Hence the E; term of our spectral sequence looks as follows:

(0) Ry | g (T) ] 7B | g (9) [ (20)] fy (1)) (15)] £ (16)
H Hy"V\H™ | H Hy\H ™ |Hy™ |Hy | H Hg 2\H . . .

where all the spaces H, é") shown in this diagram are one dimensional.
The spaces E? do not depend on A and pu, but the differentials of the
spectral sequence do. Let us introduce the notation

+_3¢+gq
‘ 2

e

The differentials
dy_,: Ey_, —E;_, (e;lF <p<eg, e, <r< eq‘)

form a partial multi-valued mapping 6, : H,(L;) — H,_1(L;). We shall
define a usual linear operator 6, : H,(L:) — H,_1(L,) such that (1) if
b,(a) is defined for some o € H,(L,) then §,(a) € 6,(); (2) 6,_1 0, = 0.
(Certainly, the mapping ¢, will depend on A, #,m.) Then the limit term of
the spectral sequence E(),u,m), that is H{™ (Ly; Fy,) will coincide with
the homology of the complex

Hyo(L) & Hy(L,) & Ho(Ly) & ...

To define d;,0,,... we fix for any ¢ and any p, Ef < p < e;},, a cycle
b € C{P)(L,) which represents the generator of H{P)(L,).
It is evident that for each cf there exist chains

Bt e CO(Ly), u>1
93—1 € C;—)l (L2), v < e;_—l
such that
d (CZ ® fm—p - z bf;_u ® fm——p-{-u)
u>1

e, —1
= z aPch;—1®fm-—r+ Z g;’_1®fm_v
+

+

r=e v<<»:q_1

q—1

where «, , are complex numbers depending on A, i, m. These numbers com-
pose the matrix of some linear mapping H,(L2) — H,_1(L>), and this map-
ping is our d,.



COHOMOLOGY OF THE LIE ALGEBRA L, 407

The chains 62" and g;_, may be chosen in the following way. Since
dch = 0, the differential d <ch’ ® fm_,,) has the form »°,  AY | ® frm_y With
hy | € C’éﬂ(Lz). Here the leading term h?~; is a cycle, dh?”; = 0. Since
HP7{(L,) = 0, we have h?"} = db?~! with b»~! € C»~V(L,). Now, the
leading term of d (Cg ® frn—p— 81 ® fm—p+1)' belongs to C’;’:l)(Lz) and it
is again a cycle. We apply to it the same procedure and do it until the lead-
ing term of d (cg ® frnp— LTI ® fm_,,+i) belongs to Csi‘i_l)(Lz). This is

still a cycle, but it is not necessarily a boundary, for H;E;l(Lg) # 0. Now

we choose by’ € (15"‘*7‘1) (L,) such that db* " is our leading term up to

(

some multiple of cZ‘_;_l_l. Then we do the same for quql_Z)(Lg), and so on
et -1
q—1

until we reach C,°7"  (L,).

The matrix |a, .| depends on the choice of the cycles c?. It depends also
on the particular choice of the chains =", but only up to a triangular
transformation. In particular, the kernels and the images of the mappings
d¢, and hence the homology Kerd,/Im d,,,, are determined by the cycles cb.

Remark that dim H,(L;) = 2¢ + 1 and hence the matrix of ¢, is a (2¢ —
1) x (2¢ + 1)-matrix depending on A, 4, m. We get

(%) dimHém)(LQ; Frp) =2¢+1—rankd, —rankd, ;.
II. Computations of H{™ (Ly; F .)-

1. The space H{™ (Ly; Fy )
As the action of W; on F, , is
e ® fi = [J+p— A0+ )fir;

and the nontrivial cycles of H,(L,) are ¢> = e, ¢; = e3, ¢; = ey, the
differentials are the following:

ey ® frna = (M =2+ p—3X) fm,

€3 ® fm3 = (M =3+ p—4X) frm,

1 ® frn-a = (m =4+ p —5A) fm.
The coefficients in the right hand sides depend on A and m + pu, which is
natural, because the whole complex C{™ (Ly;F, ,) depends only on A and
m++p. On the other hand, there is an isomorphism F) , = Fy 41, f, = fi+1

with the shift of grading by 1. Therefore we may put m = 0 and the
differential matrix 6, : Hy(L,) = Ho(L2) has the form

(W—2-=3X|p—3—4\|p—4—5A).
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The rank of the matrix is 0 if A\ = m = —1 and 1 in all the other cases. From
this it follows

Theorem 1.

1 ifa=—1m+p=-—1

1m f1, (2 )"“) {0 otherwise.

2. The space H™ (Ly; Fi,)-

The nontrivial cycles of Cy(L4; C) are

cy=¢esNes —3es Aey
¢S = ey ANeg — 2e3 Aes
cg=3ez/\e7—5e3/\es
el =ey Aeg — ey A eg

cy' =be; Aeg — Tes A eg

of weight 7,8,9,10,11.
Let us put u — kXA — 1 = A(k,1). Direct calculation shows that

d((eaNes —3es Ney)® fr— A(3,7)es Nez ® f_s)
= —-3A(4,7)es ® f_4
+[3A(5,7) — A(3,7)A(3,5)]es ® f-3
+ [~ A(6,7) + A(3,7)A(4,5)]es ® f-2,

hence

8 (c1) = [~ A(6,7) + A(3,T) A4, 5)]c; 1
+[3A(5,7) — A(3,T)A(3,5)]c: — 3A(4,T)c!.

Thus we have
are = —A(6,7) + A(3,7)A(4,5)
Q73 = 3A(5, 7) - A(S, 7)A(3, 5)
Q74 = —3A(4, 7)

In the same way we calculate a,, for p = 8,9,10,11 and r = 2,3,4. We get
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the following 5 X 3-matrix:

A(3,T)A(4,5)
—A(6,7)

—A(3,7)A(3,5)
+3A(5,7)
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—3A(4,7)

1/2A4(3,8)A(5, 6)
—2A(4,8)A(4,5)
—A(7,8)

2A(4,8)A(3, 5)
+2A(6,8)

—1/2A(3,8)A(3,6)

—5/2A(4,9)A(5,6)
—3A(8,9)

3A(3,9)A(5,7)
+5A(7,9)

—3A(3,9)A(4,7)
+5/2A(4,9)A(3, 6)

—1/2A(3,10)A(4,8)A(4,5)
—3/2A(5,10)A(5, 6)
—A(9,10)

1/2A(3,10)A(4, 8) A(3, 5)
+1/2A(3,10)A(6,8)

3/2A(5,10)A(3, 6)
+3A(7,10)

7/2A(4,11)A(4, 8)A(4, 5)
+A(3,11)A(8,9)
~54(10,11)

~A(3,11)A(3,9)A(5,7)
~7/2A(4,11)A(4, 8)A(3, 5)
~7/2A(4,11) A(6, 8)

A(3,11)A(3,9)A(4,7)

+7A(9,11)

We have to compute the rank of the matrix (d,). It is clear that the rank
can not be bigger than 2. Direct computation shows that rk(d,) = 1 if and
only if A\ = -1, p=—-1,1,2)3; A= p = 0; A = g = 1. From this, using
formula (x), it follows
Theorem 2.

(2 if A=m+p=-1

1 if A==1,m+pup=1,23

dim H{™ (Lo; Frp) = orA=0andm+p=0
orA=landm+pu=1

0 otherwise.

3. The spaces Hé’")(Lg;]{\,u) for g > 2.

The next differential d; is a 5 x 7-matrix. Its rank can not be bigger than
3 for any A and p. On the other hand, computation shows that rk(d;) = 3
for every A, u; namely, the first three rows of the matrix are linearly inde-
pendent for every A, u. From this it follows that the dimension of the space
H{™ (L,; F) ) drops only if the rank of the previous matrix (d;) does. This
proves
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Theorem 3.
1 if A=-1,m+pu=-1,12,3
orA=0andm+p=0

dim H{™ (Ls; Fr,,) = orA=landm+p=1

0 otherwise.

By this theorem, for generic A, y, dim Hzm) (L2; Fru) =0.
It seems very likely that the next differential matrices (d;), k > 4, have
the same rank for every A and u (rk(éx) = ¢) which would imply our

Conjecture 1. H,(Ly;Fy,) =0 for every A, pu for g > 2.

III. Computations of H{™ (Ly; F) ).

Recall that the Lo-modules F) , differ from the Wi-modules F, , only in
requiring the non-negativity of j for the generators f;. Consequently the
spectral sequence is basically the same, only it is truncated as follows:

E*(A\ u,m)=0 if m—p<O.
The space C{™(Ly; F) ) is generated by the chains
€, /\.../\Ciq ®fJ

with2 <4, <... <4, 5 >0and % +...+1%, = m. This way, for computing
homology, we have to compute the rank of truncated matrices, consisting of
some of the upper rows of the previous matrices.

Let us compute the space Hy(Ls; Fy ). Obviously,

H(Ly; F\,) = HY (Ly; Fy,) = C.
For m = 2 the differential is the following:
e2 ® fo = (u— 3\ fo

which shows that if 4 = 3), then dim H{® = 1, otherwise H\” (L,; F,) = 0.
For m > 2

1 if A\ = —1and =-1
dimHém)(Lg;FA,u) = { 1 andm ey

0 otherwise.

So we get
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Theorem 4.
C ifm=20,1
=2 and p = 3\
Hém)(Lg; F,) = orm and
' orA=—-1landm+py=-—1
0 otherwise.
Corollary. For generic \,p  Ho(Ls; Fy ) = 2.
Direct computation proves the result for the space Hl(m)(Lg; Fy\ ).
Theorem 5.
1 f p =3\
dim H® (Ly; Py ) = fu=3
0 otherwise,
2 A=—-1l,p=-4
dim H® (Ly; Fy ) = forA=—Lp
1 otherwise,
dim H"(Ly; Fy ) = dim H (Ly; Fy ) = dim H (Ly; Fy )
_J3 forpy=—-4X1=-1
2 otherwise,
2 fp=—-8A=-1 =0,A=0
dim B (Ly; Fy ) = fu=-8 ok
1 otherwise,
(2 ifp=-9)=-1
1 for XA and p lying on the curve
dim H® (Ly; Fy ) = < ~36) + 147X — 2703 + 8u — T2 + 27\ %p
+9u? =2 +p* =0
L0 otherwise;

form>8, dimH{™ (Ly;F\,) = dim H™ (Ly; Fy,.) (see Theorem 2).
Corollary. For generic A\, u, dim Hy(L,; Fy ) = 8.
Conjecture 2. For generic A\, p,
dim H,(Ly; Fy ) = 2(g + 1)?,
or, in more details,

H™(Ly; Fy,) ~ H™(Ly; ©) ® H™ ™V (Ls; C).
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GENERIC DIFFERENTIABILITY OF CONVEX FUNCTIONS
ON THE DUAL OF A BANACH SPACE

J.R. GiLes, P.S. KENDEROV, W.B. MOORS AND S.D. SCIFFER

We study a class of Banach spaces which have the prop-
erty that every continuous convex function on an open convex
subset of the dual possessing a weak * continuous subgradi-
ent at points of a dense G; subset of its domain, is Fréchet
differentiable on a dense G5 subset of its domain. A smaller
more amenable class consists of Banach spaces where every
minimal weak * cusco from a complete metric space into sub-
sets of the second dual which intersect the embedding from a
residual subset of the domain is single-valued and norm up-
per semi-continuous at the points of a residual subset of the
domain. It is known that all Banach spaces with the Radon-
Nikodym property belong to these classes as do all with equiv-
alent locally uniformly rotund norm. We show that all with
an equivalent weakly locally uniformly rotund norm belong
to these classes. The condition closest to a characterisation is
that the Banach space have its weak topology fragmentable
by a metric whose topology on bounded sets is stronger than
the weak topology. We show that the space £, ('), where T is
uncountable, does not belong to our special classes.

We say that a Banach space is a dual differentiability space (DD space)
if every continuous convex function on an open convex subset of the dual
possessing a weak * continuous subgradient at points of a dense G5 subset
of its domain, is Fréchet differentiable on a dense G; subset of its domain.
Spaces of this class include those with the Radon-Nikodym property, and all
those which can be equivalently renormed to be locally uniformly rotund. In
the paper [K-G, p. 472] it was shown that spaces which can be equivalently
renormed to have every point of the unit sphere a denting point of the
closed unit ball are spaces of this class, and in the paper [G-M1, p. 264]
it was shown that spaces which can be equivalently renormed to have every
point of the unit sphere an « denting point of the closed unit ball, (« is
Kuratowski’s index of non-compactness), are spaces of this class; Troyanski
[T1, p. 306] and [T2, p. 179] has shown that spaces with either of these
properties can be equivalently renormed to be locally uniformly rotund. In
paper [G-M2, p. 111], the denting point property was weakened using an
index of non-WCG.
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Information about the class of DD spaces is more easily obtained through
the study of a subclass defined by certain set-valued mappings having special
continuity properties. A set-valued mapping ® from a topological space A
into subsets of a topological space X is upper semi-continuous at t € A if
given an open subset W where ®(t) C W there exists an open neighbourhood
U of t such that ®(U) C W. If X is a linear topological space and ®() is non-
empty compact and convex for each ¢t € A and ® is upper semi-continuous
on A we call ® a cusco on A. A cusco @ on A is said to be a minimal cusco
if its graph does not contain the graph of any other cusco on A.

We say that a Banach space X is a generic continuity space (GC space) if
every minimal weak * cusco ® from a complete metric space A into subsets
of the second dual X** for which the set {t cEA:DH)NX # (Z)} is residual
in A, is single-valued and norm upper semi-continuous at the points of a
residual subset of A.

An open subset of a complete metric space is itself completely metrisable
and a continuous convex function ¢ on an open convex subset of a Banach
space generates a subdifferential mapping z — 0¢(z) which is a minimal
weak * cusco. The subdifferential mapping being single-valued and norm
upper semi-continuous at a point is equivalent to the convex function being
Fréchet differentiable at the point . So the class of GC spaces is contained
in the class of DD spaces.

In Section 1 we show that for any Banach space X, minimal weak * cuscos
from a complete metric space A into subsets of the second dual X** which
satisfy a certain generic property are always single-valued and norm upper
semi-continuous at the points of a residual subset of A. We use this general
result to show that Banach spaces which satisfy certain geometrical proper-
ties are GC spaces. In particular, we show that those Banach spaces which
have an equivalent weakly locally uniformly rotund norm are GC spaces. In
Section 2 we show that a Banach space is a GC space if its weak topology is
fragmentable by a metric whose topology on bounded sets is stronger than
the weak topology. We conclude in Section 3 by showing that the Banach
space £ ('), where I" is an uncountable set, is not a GC' space.

1. A general property implying geometrical conditions for
membership of the class of GC spaces.

For our general result we need the following characterisations of a minimal

Cusco.

Lemma 1.1. [G-M1, Lemma 2.5]. Consider a cusco ® from a topological
space A into subsets of a separated locally convex space X. The following are
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equivalent

(i) @ is a minimal cusco on A,

(i) given any open set U in A and closed convez set K in X where ®(U) €
K there ezists a non-empty open set V.C U such that (V)N K = 0,

(iii) given any open set U in A and open half-space W in X where ®(U) N
W # 0 there exists a non-empty open set V. .C U such that ®(V) C W.

We also use a continuity condition defined in terms of Kuratowski’s index
of non-compactness. Given a bounded set £ in a metric space X such an
index is

a(E) = inf{r : E is covered
by a finite family of sets of diameter less than r}.

Given a set-valued mapping ® from a topological space A into subsets of a
metric space X we say that ® is o upper semi-continuous at t € A if given
€ > 0 there exits an open neighbourhood U of ¢ such that a(®(U)) < €. Such
« upper semi-continuous mappings have single-valued properties.

Lemma 1.2. [G-M1, p. 253]. Consider a minimal weak * cusco ® from a
Baire space A into subsets of the second dual X** of a Banach space X. If
d is o upper semi-continuous on a dense subset of A then ® is single-valued
and norm upper semi-continuous at the points of a residual subset of A.

The proof of our general theorem follows a similar method of proof as
was used to prove Lemma 1.2 which is similar to a theorem of Christensen,
[Chr, p. 651].

Theorem 1.3. A minimal weak * cusco ® from a complete metric space
A into subsets of the second dual X** of a Banach space X where the set

EE{:SEA:(I)(L‘)QWM}

is residual in A, is single-valued and norm upper semi-continuous at the
points of a residual subset of A.

Proof. Given € > 0 consider the open set O, = |J{open sets U in A : a(®(U))
< 2¢}. Suppose that O, is not dense in A. Then there exists a non-empty
open set V, in A such that Vo N O, = 0. Consider a dense G5 subset D.of
A contained in E. Now D is completely metrisable and we consider it with
such a metric d.

We proceed by induction. Consider t; € Vo N D and Z,; € ®(¢;) N X.
Now ®(Vy) € Z, + eB(X**) for otherwise Vo, N O, # 0. Since ® is a minimal



416 J.R. GILES, P.S. KENDEROV, W.B. MOORS AND S.D. SCIFFER

weak * cusco, by Lemma 1.1, there exists a non-empty open set V; such
that V; C V; and (Vi) N (2, + eB(X**)) = 0. We may assume that the
d-diam(V; N D) < 1.

Suppose that the first n iterations of this procedure have been completed.
Then we have a non-empty open set V,, such that V,, C V,,_; and ®(V,,) N
(co{Z1,Zs,... ,Tun} + €B(X**)) = 0 where Z; € &(¢;) N Xandt;€eV,_,ND
for i € {1,2,... ,n}. Now consider ¢,y € V, N D and Z,; € P(t,41) NnX.
Again ®(V,,) € co{Z1,Zs,... ;Tns1} +€eB(X**) for otherwise VoNO, DV, #
(. Since ® is a minimal weak * cusco, by Lemma 1.1 there exists a non-
empty open set V,,; with d-diam(V,1; N D) < 3% such that Vas1 €V, and
® (V1) N (co{Zy, Zay - - - yTnga} + €B(X**)) = 0. Continuing in this way we
form a Cauchy sequence {t,} in D which converges to some t,, € NV, =
N V. CD. ne

neN
Then for each n € N, ®(t,) N (co{Z1,Zs,... ,Zn} + eB(X**)) = 0 and so

®(t,) N (co U {z,.} + eB(X**))

neN

=®(t,) N (U co{Zy,Zay... ,Tn} + eB(X**)) = 0.

neN

So there exists an f € X*, which strongly separates ®(t.,)NX and @0 U {Z.}
neN
and so there is a weak * open half space W generated by f containing

—_—w"

®(to,) N X and disjoint from o | {Z,}. Since ¢, € E, we have ®(t,,) C
n€eN

W. Since ® is weak * upper semi-continuous at ¢, there exists an open

neighbourhood U of ¢, such that @(U) C W. However, for n € N sufficiently
large, t, € U and then Z, € ®(t,) N X C W contradicting the separation by
f- We conclude that O, is dense in A and that ® is o upper semi-continuous

at the points of [} O1 a dense G; subset of A. Our result now follows from
neN "
Lemma 1.2. O

We can now make the following deductions from Theorem 1.3.

Corollary 1.4. A minimal weak * cusco ® from a complete metric space
A into subsets of the second dual X** of a Banach space X where the set

{t €A:®(t)CX } is residual in A, is single-valued and norm upper semi-
continuous at the points of a residual subset of A.

A special case of a theorem of Namioka [N, p. 525] can be deduced from
Theorem 1.3.
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Corollary 1.5. A weakly continuous single-valued mapping from a complete
metric space A into a Banach space X is norm continuous at the points of
a residual subset of A.

A Banach space X is weak Asplund if every continuous convex function
on an open convex subset A of X is Gateaux differentiable on a residual
subset of A. A Banach space X belongs to Stegall’s class S if and only if
every minimal weak * cusco ® from a Baire space A into subsets of X* is
single-valued on a residual subset of A. It has been shown [K-O, Corol. 4.5]
that a Banach space X belongs to Stegall’s class S if and only if every
minimal weak * cusco ® from a complete metric space A into subsets of X*
is single-valued on a residual subset of A.

Corollary 1.6. A Banach space X is
(i) a DD space if its dual X* is weak Asplund,

(ii) a GC space if its dual X* belongs to Stegall’s class S.

Proof. We consider only the proof of (ii). A minimal weak * cusco ®
from a complete metric space A into subsets of X** has the set {t € A :

®(t) is singleton} residual in A. So if the set {t €EA:BH)NKX # (b} is resid-
ual in A then the set {t €A:P(t)C X } is residual in A and we deduce from
Corollary 1.4 that X is a GC space. O

We should note the Banach space ¢, has dual ¢, which is not weak As-
plund, [P, p. 13]. However ¢; has the Radon-Nikodym property and so the
property given in Corollary 1.6 is a sufficient but not necessary condition for
a Banach space to be a DD space or a GC space.

It has recently been proved, that a Banach space belongs to Stegall’s class
S if it has an equivalent norm Géateaux differentiable away from the origin,
[P-P-N].

Corollary 1.7. A Banach space X is a GC space if the dual X* has an
equivalent norm Gateauzx differentiable away from the origin.

We note that the equivalent norm on X* need not be a dual norm.

Corollary 1.8. A Banach space X is a GC space if it can be mapped into
a GC space Y, by a continuous linear mapping T whose conjugate T' has a
dense range.

Proof. Consider a minimal weak * cusco ® from a complete metric space A
into subsets of X** where the set {t EA:P()NX # (Z)} is residual in A. As
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a conjugate, 7" is continuous when X** and Y** have their weak * topologies
8o T" o ® is a minimal weak * cusco from A into subsets of Y**. Since Y is a
GC space and the set {t EA:T"od()N Y # (Z)} is residualin A, so T" o ®
is single-valued on a residual subset A. Since T' has dense range then T is
one-to-one, so & is single-valued on a residual subset of A and we have by
Theorem 1.3 that ® is single-valued and norm upper semi-continuous at the
points of a residual subset of A. J

It is well known that a closed linear subspace of a Banach space with the
Radon-Nikodym property has the Radon-Nikodym property. The following
is an extension of this result.

Theorem 1.9. If a Banach space X is a GC space then every closed linear
subspace Y of X is a GC space.

Proof. The conjugate of the inclusion mapping maps X* onto Y* and so the
result follows from Corollary 1.8. O

This subspace property holds for the larger class of DD spaces, but the
proof uses a different technique.

Theorem 1.10. If a Banach space X is a DD space then every closed
linear subspace Y of X is a DD space.

Proof. Consider ¢ a continuous convex function on an open convex subset
B of Y* where the set {g € B: 9¢(g) N Y # (Z)} D E a dense G subset of
B. Consider T the inclusion mapping of Y into X. The conjugate 7" maps
X* onto Y*. Further, ¢ o T" is a continuous convex function on the open
convex set A = (T")~*(B) in X*. Since 7" is onto it is an open mapping and
therefore D = (T")"'(E) is a dense G subset of A. But further, if f, € D
then exists a yp € Y such that g, € d¢(T" fp). Then

Go(T'f) = Go(T"fo) < H(T"'f) — $(T"fo) for all f € A
SO

Go(f) = To(fo) < (@0 T')(f) — (¢ o T")(fo) for all f € A;
that is, go € d(¢ o T")(fo)-
Then {f €A:0(poT)f)NKX # (Z)} D D a dense G subset of A. Since

X is a DD space there exists a dense G subset G of A where ¢oT" is Fréchet
differentiable. That is, for f € G,

i @O TV +2g) = (6o T()

A—0 )\
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exists and is approached uniformly for all g € X*, ||g|| = 1. Using the fact
the T" is the restriction of each element of X* to Y and that each restriction
has a norm preserving extension on X then

L ST + ) = H(T'F)

A—0 )\

exists and is approached uniformly for all T'g € Y*, ||T"g|| = 1. So ¢ is
Fréchet differentiable on 7"(G) which is a dense subset of B. Since the set of
points where a continuous convex function is Fréchet differentiable is always
a G; subset, [P, p. 15], ¢ is Fréchet differentiable on a dense G5 subset of
B. We conclude that Y is a DD space. Il

A Banach space X is said to be weakly locally uniformly rotund if for
each zy € X, ||zo]| = 1, given € > 0 and f € X*, ||f|| = 1 there exists
a d(e,xo, f) > 0 such that |f(z — zo)| < € for all z € X, ||z|]| < 1 when
||z 4+ zo|| > 2 — 4. A weakly locally uniformly rotund space is rotund but not
necessarily locally uniformly rotund. However, such a geometrical property
on a Banach space does have rotundity implications for the second dual
space.

Lemma 1.11. Consider a weakly locally uniformly rotund Banach space
X. Given zy € X, ||zo]| = 1, for every F € X**, ||F|| = 1, F # Z,, we have
[|[F 4+ Zo|| < 2.

Proof. Suppose that there exists an F' € X**, ||F|| = 1, F # Z,, such that
I|F' + Zo|| = 2. Since F # Z, there exists an fo € X*, ||fo]l =1 and anr >0
such that |(F — Zy)(fo)| > r. Since X is weakly locally uniformly rotund,
given 0 < € < 7 there exists a (€, zo, fo) > 0 such that |fo(z — z0)| < € for
all z € X, ||z|| <1 when ||z + 0| > 2 — d. Since the norm on X** is weak *
lower semi-continuous the set {G € X** : ||G + Zy|| > 2 — ¢} is weak *open

~

in X** and contains F. By Goldstine’s Theorem B (X is weak * dense in
B(X**) so there exists some T € B ()2) such that [|Z + Zo|| > 2 — ¢ and

|(F —Z)(fo)| <e. Then for such an z € B ()?) we have | fo(z — z¢)| < € and
therefore

(F = 20)(fo)] < |(F = 2)(fo)| + | folz — m0)| < 2¢ <1
which contradicts the initial separation property. [
We need the following property of minimimal weak * cuscos.

Lemma 1.12. [K-G, p. 471]. Given a minimal weak * cusco ® from a
Baire space A into subsets of the dual X* of a Banach space X, there exists
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a residual subset of A at each point t of which, ®(t) lies in the face of a
sphere of X*.

Theorem 1.13. A Banach space X is a GC space if it can be equivalently
renormed to be weakly locally uniformly rotund.

Proof. Consider X so renormed. Then since ® is a minimal weak * cusco
on A we have by Lemma 1.12 that there exists a residual subset D of A at
each point ¢ of which, ®(¢) lies in the face of a sphere of X**. So if the set

G = {t €A:Bt)NX # (b} is residual in A then G N D is residual in A.

But by Lemma 1.11, ® is single-valued on GN D and so ®(GND) C X and
we deduce from Theorem 1.3 that X is a GC space. O

We do not need so strong a geometrical condition as weak local uniform
rotundity. To be a GC space it would be sufficient for the space X to
have an equivalent norm such that given z, € X, ||zo|| = 1, for every F €
X**\ X, ||F|| = 1 we have ||F + Z,|| < 2. Such an equivalent norm is not
necessarily rotund. However, it is difficult to find a characterisation of this
property on X.

2. Fragmentability conditions for membership of the class of GC
spaces.

We aim to find fragmentability conditions which imply that a Banach space
is a GC space.

Consider a bounded subset E in a Banach space X. Given f € X*, ||f|| =
1 and § > 0, a slice of E defined by f and ¢ is the subset

S(E, f,0) ={z € E: f(z) >sup f(EF) — ¢}

A slice of a bounded set F in the dual X* defined by a weak * continuous
linear functional on X* is called a weak * slice of E.

We need the following local boundedness property of minimal weak *
CuSCos.

Lemma 2.1. A minimal weak * cusco ® from a Baire space A into subsets
of the dual X* of a Banach space X is locally bounded on a dense open subset
of A.

Proof. 1t is sufficient to show that there exists an open subset of A on which
® is bounded. For each n € N, consider the set

E,={te A:®(t) CnB(X")}.
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Clearly, U, ey Ern = A. Since A is Baire there exists an no € N such that
intE,, # 0. Consider an open set U C E,,. Suppose for some t, € U \ E,,
there exists an fo € ®(ty) \noB(X*). Then f, can be strongly separated from
noB(X*) by a weak * continuous linear functional on X* which generates a
weak * open half space W containing f, and nyB(X*) C C(W). Then since
® is a minimal weak * cusco, by Lemma 1.1 there exists a non-empty open
set V' C U such that ®(V) C W. But this contradicts the fact that there are
points of E,, in V which map into noB(X*). 0

The following characterisation of the class of GC spaces simplifies our
computation.

Theorem 2.2. A Banach space X is a GC space if and only if every
minimal weak * cusco ® from a complete metric space A into subsets of
X** where ®(t) N X #£0 for all t € A is single-valued and norm upper
semi-continuous at the points of a residual subset of A.

Proof. Consider a minimal weak * cusco ® from a complete metric space A
into subsets of X** where {t EA:DH)NX # (0} D A, a dense G5 subset of
A. Then A, is completely metrisable, [K-N, p. 96]. Consider the set-valued
mapping ®; the restriction of ® to A;. Now ®,; is also a minimal weak *
cusco on A; and ®,(t) nX # (Qforallt € A;. So @, is single-valued and norm
upper semi-continuous at the points of a dense G subset D of A; which is
also a dense G5 subset of A.

Consider ty € D. Since ®, is norm upper semi-continuous at ¢, there exists
an open neighbourhood U of ¢, such that ®;(U N A;) C B[®(ty); €]. We will
show that ®(U) C B[®(t,);€]. Suppose not, then since ® is a minimal weak
* cusco, by Lemma 1.1 there exists a non-empty open set V' C U such that
®(V) N B[®(ty); €] = 0. But this contradicts the fact that A; is dense in A
and @, is norm upper semi-continuous at .

The converse is obvious. O

The following norm fragmenting theorem generalises a characterisation of
Banach spaces with the Radon-Nikodym property.

Theorem 2.3. A Banach space X is a GC space if there exists a weak
* lower semi-continuous norm ||| - ||| on X** and every non-empty bounded
subset of X has slices of arbitrarily small ||| - |||-diameter.

Proof. Consider a minimal weak *Acusco ® from a complete metric space A
into subsets of X** where ?(t) NX # 0 for all t € A. Consider the mapping
® from A into subsets of X defined by
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Given € > 0, consider the set
O, = U {open sets V such that ||| - ||| — diam ®(V) < e}.

Now O, is open; we show that it is dense in A. By Lemma 2.1 we may assume
that @ is locally bounded. Consider any non-empty open set U in A where
®(U) is bounded. Then there is a weak * slice of ®(U) with ||| - |||-diameter
less than e. Since @ is a minimal weak * cusco, by Lemma 1.1 there exists
a non-empty open set V. C U such that :I;(V) lies inside this slice and so
] [{|-diam ®(V') < €. So O, is dense in A. Then D = {1,y O1 is a dense Gs

of A and & is single-valued and ||| - |||-upper semi-continuous at the points
of D.

Consider ¢, € D. Suppose that there exists an Fy € ®(ty) \ X.Forr =
1 Fo—Zol||, consider By.;;)[Zo; 7). Since |||-]| is weak * lower semi-continuous,
Bjjj.)1[Zo; ] is weak * closed. So F and Byj\.;[Zo; 7] can be strongly separated
by a weak * continuous linear functional which generates a weak * open
half-space W containing F, and By.[Zo; 7] € C(W). Since ® is ||| - |||-upper
semi-continuous at £y, there exists an open neighbourhood U of ¢y, such that
dUND) C Byji[Zo; 7). Now ®(U) N W # 0 and since ® is a minimal
weak * cusco, by Lemma 1.1 there exists a non-empty open set V C U such
that ®(V) C W. But this contradicts the fact that ®(t) N C(W) # 0 for
each t € V N D. So we conclude that @ is single-valued on D and maps
into X. It follows from Theorem 1.3 that ® is single-valued and norm upper

semi-continuous at the points of a residual subset of A. O

We note that the weak * lower semi-continuous norm || - ||| on X** need
not be an equivalent norm for X**.

A Banach space has the Radon-Nikodym property if and only if every non-
empty bounded subset has slices of arbitrarily small diameter, [P, p. 72]. So
we could deduce the following known result from Theorem 2.3.

Corollary 2.4. A Banach space with the Radon-Nikodym property is a GC
space.

It is possible to give a characterisation for GC spaces in terms of the
behavior of set-valued mappings from a complete metric space into subsets
of the original space. To do this we generalise the idea of minimality for
set-valued mappings from the characterisation of minimal cuscos given in
Lemma 1.1.

We say that a set-valued mapping ® from a topological space A into
subsets of a separated locally convex space X is minimal if for any open
half-space W in X and open subset U in A where ®(U)NW # ( there exists
a non-empty open set V C U such that &(V) C W.
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We use the following selection property of minimal set-valued mappings.

Lemma 2.5. Consider a Banach space X with a separated locally conver
topology T where the norm closed balls are also T-closed and a T-minimal
set-valued mapping ® from a topological space A into subsets of X. If there
exists a selection ® on a dense set D in A which is norm continuous on D
then ® s single-valued and norm upper semi-continuous at the points of D.

Proof. Suppose that at t, € D, ® is not single-valued and norm upper
semi-continuous. Then there exists an » > 0 and in every neighbour-

hood U of t, there exists a ¢, € U such that ®(¢,) ¢ B ((f)(to);r). Now

z, € ®(t,)\ B (i(to);r) can be strongly separated from B [&)(to); g] by a
T-continuous linear functional which generates a 7-open half-space W con-
taining z, and B [iv)(to); g] C C(W). Since @ is norm continuous at ¢, there

exists an open neighbourhood U of t,, such that ®(U N D) C B (&)(to); —;1) .
But ® is 7-minimal and ®(U) N W # (. So there exists a non-empty open
set V C U such that ®(V) C W. But this contradicts ®(V N D) C C(W). So
we conclude that @ is single-valued and norm upper semi-continuous at the
points of D. O

The following theorem characterises a GC space X by the behavior of
weakly minimal mappings into X.

Theorem 2.6. For a Banach space X the following are equivalent

(i) X is a GC space,

(i1) every weakly minimal locally bounded set-valued mapping ® from a
complete metric space A into subsets of X is single-valued and norm
upper semi-continuous at the points of a residual subset of A,

(iii) every weakly minimal locally bounded single-valued mapping ¢ from a
complete metric space A into X is norm continuous at the points of a
residual subset of A.

Proof. (i) = (ii). Consider a weakly minimal locally bounded set-valued
mapping ® from A into subsets of X, and weak * cusco ® from A into
subsets of X** generated by ® where

O(t) = ﬂ {65""(1)/(@ where U is a neighbourhood of t} , [B-F-K, p. 472].

Since ® is weakly minimal then from Lemma 1.1 we see that ® is minimal
weak * cusco. But also ®(¢) N X # 0 for all t € A. Since X is a GC space
we deduce that ® is single-valued and norm upper semi-continuous at the
points of a residual subset of A, and then so is @ also.
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(ii) = (iii) Obvious.

(iii) = (i) Consider a minimal weak * cusco ® from a complete metric
space A into subsets of X** where ®(t) N X # () for all t € A. By Lemma
2.1, we may suppose that @ is locally bounded on A. Consider a selection 3
from A into X. Now ® is a weakly minimal, locally bounded single-valued
mapping from A into X so is norm-continuous at the points of a residual
subset D of A. It follows from Lemma 2.5 that ® is single-valued and norm
upper semi-continuous at the points of D. O

Although this characterisation enables our computation, it is somewhat
unsatisfactory in that it does not give us significant information about the
specific properties which identity GC spaces. When looking for a charac-
terisation of GC spaces, it is logical to look for a condition which includes
the sufficiency conditions which we have already given. A unifying condi-
tion can be found in the concept of fragmentability and its generalisation,
[R1, p. 247].

Given a topological space X we say that a function A: X x X -+ Risa
premetric on X if

(i) Mz,y) >0forall z,y € X and

(i)  A(z,y) =0 if and only if z =y, [Sc, p. 225].

We define what we will call the A-topology on X as follows. A subset U
of X is said to be A-open if for every z, € U there exists an 7 > 0 such that
{z € X : X=z,z9) <r} CU. Given zo € X and € > 0, a subset of the form
{z € X : XM=z, z9) < €} is fundamental in defining the A-topology but it is
not necessarily A-open. We say that A\ fragments X if, given € > 0, for every
non-empty subset E of X there exists a relatively open subset U of E such
that

A\ —diam(U) = sup{\(z,y) : z,y € U} < e.

We note that the A-topology on a subset E of X is stronger than the
relative topology on E if for every z, € E and open set W containing z,
there exists a § > 0 such that {z € E : A\(z,z) < §} C W.

If a topological space X has a fragmenting premetric then there exists
a fragmenting metric on X, [R1, p. 246]. A Banach space which has an
equivalent rotund norm has a fragmenting metric for its weak topology, [R2].
We recall that £, (N) can be equivalently renormed to be rotund but £ (I"),
where T' is uncountable, cannot, [D, p. 120; 123].

Theorem 2.7. A Banach space X is a GC space if it possesses a pre-
metric A\ where every non-empty bounded set has slices of arbitrarily small
A-diameter, and where the A-topology on bounded sets is stronger than the
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weak topology.

Proof. Consider a weakly minimal locally bounded set-valued mapping ®
from a complete metric space A into subsets of X. Given ¢ > 0, consider the
set O, = U{open sets V in A such that A-diam ®(V) < €}. Now O, is open
in A; we show that it is dense in A. Consider any non-empty open set U in A
where ®(U) is bounded. Then there is a slice of ®(U) with A-diameter less
than e. Since ® is weakly minimal, there exists a non-empty open set V C U
such that ®(V') lies inside this slice and so A-diam ®(V) < €. So O, is dense
in A. Then D = (] O1 is a dense G subset of A where @ is single-valued.

neN
Since the A-topology is stronger than the weak topology on bounded set, ®

is single-valued and weakly continuous at the points of D. Now D is a dense
G5 subset of the complete metric space A so D is completely metrisable,
[K-N, p. 96]. Then by Corollary 1.5 there exists a dense G subset E of D
and so of A where ®|p is norm continuous . We conclude from Lemma 2.5
that ® is single-valued and norm upper semi-continuous at the points of E.
Our result now follows from Theorem 2.6. 1

We show that Theorem 2.7 includes Theorem 1.13. We do this using the
following premetric. Given a rotund normed linear space X and using the
notation [z,y] = {az + (1 — a)y : 0 < a < 1}, we define the function
A: X xX = Rby

Az, y) = max{|[z, y]||} — min{||[z,y]l[}, [Se, p. 226].

Clearly, A(z,z) = 0. If z # y then by rotundity A(z,y) > max{||[,y]||} —
|z +y|| > 0. So A is a premetric on X.

We need the following properties of this premetric. Given z, € X and
r > 0 we use the notation

By(zg;r) ={z € X : Mz,20) <1}
Lemma 2.8. Given a rotund normed linear space X,
(i) MKz,y) < Mz,y) + 2|1 — K|||z|| for all K #0 and z,y € X,
(ii) Ba(z;r) C (J|z|| + r)B(X) for all z € X,
(i) givenz € X, for K > 1 and 0 <r < (K — 1)||z||,

Bi(z;r) € Ba(Kz;r + 2|1 — K| ||z]]) N K||z]|B(X).
Proof. (i) For 0 < a < 1, ||aKz+ (1—a)y|| < |laz+(1—a)y||+a|l - K| ||z]|,

so max{||[Kz,y]||} < max{||[z,y][|}+]1-K]|z]|. But also, |laz+(1—a)yl| <
laKz + (1 - a)yl| +all - K|||z], so min{||[z,y][|} < min{||[Kz,y][[}+|1 -
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K|l|z||. Therefore, max{||[Kz,y]ll} — min{||[Kz,y][[} < max{||[z y]|l} -
min{||[z, y]|[} + 21 — K| [|z]|.
(ii) and (iii) come directly from the definition of A and (i). O

We notice that if X is a weakly locally uniformly rotund normed linear
space then given zy € X, o # 0 and € > 0 and f € X*, ||f]] = 1, there
exists d(e, g, f) > 0 such that |f(zo — z)| < ||zo||e when z € ||zo||B(X) and
||z + zo|| > [|zo]|(2 — 8). So if A(z,zo) < ||Zo||$ and z € ||zo||B(X) then

Sl + zoll > minllfz, 201} > max{l|fz, aolll} ~ llzoll3

)
> llaoll (1~ 5)

s0 ||z + zo|| > ||zo]|(2 — ) and it follows that |f(zo — )| < ||zo|le.

Proposition 2.9. A Banach space X which has an equivalent weakly
locally uniformly rotund norm has a premetric A where every non-empty
bounded subset of X has slices of arbitrarily small \-diameter and where the
A-topology is stronger than the weak topology.

Proof. Consider X so renormed and the premetric A defined above. Consider
a non-empty bounded subset A of X and write s = sup{||z|| : z € A}. If
s = 0 then it is trivially true. If s # 0 then given € > 0 there exists an
f € X*, ||f|| = 1 such that the set E = ANS(sB(X), f,e) #0. For z,y € E
and writing r = max{||z||, ||y||} < s we note that z,y € S(rB(X), f,e+r—s)
and so A-diam E < e.

To show that the A-topology is stronger than the weak topology it is
sufficient to show that each subbasic weak open set is A\-open. At 0 the norm
and A-topologies agree so we consider neighbourhoods of z, € X, z, # 0.
Given € > 0 consider the weak open subbasic set

W ={z e X :|f(x) — f(zo)| < 3€||zo||} where f € X", ||f]| =1.

Now we have that there exists a d(e,zo, f) > 0 such that |f(zo — z)| <

l|zo|le when A(z,zo) < [|zo]|$ and z € ||zo||B(X). Choose 1 < K <

2 such that K — 1 < min{é, —M} and then choose 0 < r <
8" |f(zo)| +1

min {||zo]|$, (K — 1)||zo||} . From Lemma, 2.8(iii) we have that

B(zosr) € Ba(Kawir + 2(K = 1)soll) 0 Kllzol| BX)
€ By (Koi faoll3 ) 0 Kol BCY)
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by the choice of K and 7.
So By(z0;7) C By (Kzo; K||z0]|$)NK||z0||B(X). Therefore | f (Kzo—z)| <
K||zo||e when z € By(zo;r). But then

|f (z0) = f(z)] < |f(m0) — K f(zo)| + | f(Kz0) — f()]
< (K = D)f(mo)| + K|zolle
el|zol] | f (o)
< flwo) [ +1
< 3el|zo]]-

+ K||zolle

So By (zo;7) € W and we conclude that the A-topology is stronger than the
weak topology on X. O

It is straight forward to show that Theorem 2.7 includes Theorem 2.3.
This follows directly from the following lemma.

Lemma 2.10. A Banach space X where there exists a weak * lower semi-
continuous norm |||- ||| on X** has the |||-|||-topology stronger than the weak
topology on bounded subsets of X.

Proof. Consider a bounded subset A of X, z; € A and a subbasic weak open
neighbourhood of zp in A, W = {z € A:|f(z) — f(z)| < €} for e > 0 and
f € X*, [Ifll = 1. Given r > 0 the closed ball B [Zo;7] is weak * closed
so B\ [Zo;r] N (A\ W) is weak * compact. If Bjif| [Zo; ] N (A\ W) # 0
for all n € N then there exists an F € QNBI‘]I*_M[EO; =N (A\ W). But this

would contradict the fact that F' # Z,. So there exists an r > 0 such that
B (zo;7) € W and we conclude that the ||| - [||-topology is stronger than
the weak topology on A. [

3. A Banach space which is not a GC space.

The Banach space £, (I"), where [' is uncountable, is not a GC space. To
show this we exhibit a complete metric space P and a weakly minimal, locally
bounded set-valued mapping @ from P into subsets of £, (I") where for each
p € P, ®(p) is not singleton. Our argument is completed by an appeal to
the characterisation given in Theorem 2.6. The construction is based on an
example of Talagrand [Ta]. .

We denote by X the set of characteristic functions of countable subsets
of I' with the topology of uniform convergence on countable subsets of I'. A
base of neighbourhoods for z, € X is given by sets of the form U(z,,J) =
{z € X : z|; = zy|;} where J is a countable subset of I'.
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We use the technique of the Banach-Mazur game played on the topological
space X, [C, p. 115]. This is a game between two players o and 8 where
each player chooses alternately a non-empty open set contained in the other’s
previously chosen set. Player 8 begins by choosing U;. When 3 chooses U,
then o chooses V,, where U,, D V,,; when «a chooses V,, then 8 chooses U, 4
where V,, D U, ;. The sequence of open sets

U2V 20,2V, 22U, 2V, 2 -+

is called a play. The player o wins this play if )V, # 0. The game is said
neEN

to be a-favourable if there exists a winning tactic by which o chooses V,
dependent only on how § chooses U, so that o always wins.

Although the following lemma was proved in [Ta, p. 160}, we will subse-
quently need to refer to the a-winning tactic used in our proof.

Lemma 3.1. The topological space X is a-favourable.

Proof. We define an a-tactic as follows:
For each open set U in X choose a point z € U and a basic neighbourhood

V=U(z,J)CU.

Each play, U; DV, DU; DV, D--- DU, DV, D--- generates a decreasing
sequence of basic neighbourhoods

Vi=U(z, W) 2Vo=U(zy, o) 2 Vo =U(20, Jn) 2 -+ .

Clearly, J,, C J,4, for each n € N and each z,,, is an extension of z,|;, to
Jpt1- So we can define a function z, on I' as an extension of z,|;, for each

n € Non J = U J, and zero on I''\ J. Since J is countable, z, € X. But
neEN
also z, € N U(z,,J,) so we have an a-winning tactic. 0
neN

We note that U(z.,J) € N U(z,,J,) and U(z,,J) has infinitely many
neN
elements.

In Lemma 3.1 we produced an a-winning tactic. We now consider the set
P of all plays

which follow such an a-winning tactic, with metric p defined by

p(p,p) =0 for each p € P and
ifp' = (U.,V,)) # (U], V) =p" then

n’'n

/

1
p(p',p") = - where n is the first integer where U,, # U,,.
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If for some n € N, U;, = U/ then from the definition of the play for such an
a-winning tactic, V,, = V.

Lemma 3.2. The metric space P is complete.

Proof. Consider a Cauchy sequence {p* = (Uf,V})} in P. Then for every
n € N there exists some k, > n such that Uf* = UF, V;* = V} whenever
1<i<nandk?>k,. Sowe can define a new play p* € P by

p* = (U, VF) and p(p*,p*) — 0 as k — oo.
|

A similar metric space was studied in [K-O, Prop. 2.1].

We now consider the natural embedding 7 of the topological space X into
the Banach space £, (T). For z,,z, € X, z; # x5 we have that ||n(z,) —
m(22)||lo = 1 and so it is clear that this embedding is nowhere norm contin-
uous on X. However, the natural embedding 7 of X into £, (I") with its weak
topology is continuous at every point of X. We will establish this through
two preliminary lemmas.

Given z € X, we denote by s(z) the support of z; that is, s(z) = {t € I :
z(t) = 1}. Our first result follows from Zorn’s lemma.

Lemma 3.3. Given f € £ (T') which is not identically zero on w(X)
there exists a non-empty subset A of X which is mazimal with respect to the
properties
(i) {s(z): z € A} is disjoint family in T; that is, for z,,22 € A, 1 # -
we have s(z1) N s(zy) = B, and

(ii) f(w(z)) #0 for each z € A.
Lemma 3.4. The set A is countable.

Proof. Given € > 0, consider the set A, = {z € A : |f(n(z))| > €}. Now

A = |J A1 so it is sufficient to prove that for every ¢ > 0, A, is finite.
neN "
Suppose that for some r > 0, A, is infinite. Then one of the sets 4} = {z €

A: f(r(z))y >r}or A, ={z € A: f(n(z)) < —r} will be infinite. We may
suppose that AF is infinite. For any finite subset A’ of A} we have from
property (i) of Lemma 3.3 that ). .4 7(x) belongs to the closed unit ball
B(l(T)). But f (3, ca 7(2)) = Y ea f(n(z)) > |A'|r where |A'| denotes
the number of elements in the finite set A’. But this implies that f is not
bounded on B(¢,,(I')) which contradicts the continuity of f. U

We are now in a position to establish our continuity property.
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Lemma 3.5. The natural embedding © of the topological space X into
Lo (') with its weak topology is continuous at every point of X.

Proof. Consider f € ¢% (T"). If f is identically zero on 7(X) then the result is
obvious. Suppose f is not identically zero on 7(X). Then from Lemma 3.4,

J*= U{s(:c) :z € A} is a countable subset of T'.

Denote by z* the characteristic function of J* on I'. For every x € X we
have z = z.z* + z.(1 — z%), so f(n(z)) = f(n(z.2*)) + f(n(z.(1 — z*))).
But s(z.(1 — z*)) C s(z)n (T \ J*) so z.(1 — z*) € X \ A. Since A is
maximal with respect to properties (i) and (ii) of Lemma 3.3, we deduce that
f(m(z.(1 — z*))) = 0. Therefore, f(n(z)) = f(n(z.z*)) for all z € X. Now
consider z, € X and a basic neighbourhood U(z,, J*). For any z € U(zq, J*)
we have z s« and so z.z* = zp.2*. Then f(n(z)) = f(n(z.2*)) =
f(r(zg.z*)) = f(n(zo)). This implies the required continuity of the natural
embedding . d

J = To

We now consider the set-valued mapping ® from P into subsets of £, (I')
defined for the play p = (U,,V,) € P by

o(p) = () 7(Un) = () 7(Va).

neN neN

It is this set-valued mapping which establishes that £,,(T) is not a GC space.

Theorem 3.6. The set-valued mapping @ from P into subsets of £ (T') is
weakly minimal, locally bounded and for each p € P, ®(p) is not singleton.

Proof. Clearly, for each p € P, ®(p) C B(£s(T")). For each play p = (U,, V,)

we note from Lemma 3.1 that the set E, = U, = [V, is a subset of X
neN neN

which contains more than one point. So for each p € P, ®(p) = N n(U,) is
neN

not singleton.

Consider f € £ (I') generating a weak open half-space W in £,,(I") and
play p° = (U2, V,?) € P such that z° € ®(p°) N W. Now by Lemma 3.5, the
natural embedding 7 of X into £, (T") is weakly continuous so 7~*(W) is a
non-empty open subset of X. Given § > 0 and ny € N such that ny >
consider any play p’ = (U}.,V,)) € P such that U] = U2, V;/ = V2 for all
1<i<ngand Uy, 4y = U, N} (W). Now p(p',p°) < - < &. But since

(U}, +1) € W we have ®(p') C W. So @ is weakly minimal. |N

Note added in proof
Professor Isaac Namioka has recently given an example to show that £, (N)
is not a GC space.
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MOON HYPERSURFACES AND SOME RELATED
EXISTENCE RESULTS OF CAPILLARY HYPERSURFACES
WITHOUT GRAVITY AND OF ROTATIONAL SYMMETRY

FEI-TSEN LIANG

Let 0.(R) be a domain in R® bounded by two spherical caps
- —-1

nl and R, with "T<R<1.
(cf. Figure 1 for n = 3). We consider the vertical cylinder Z
over 9, (R) and seek a hypersurface ugr(z;,... ,z,) over Q(R)
of constant mean curvature H = 1 which meets Z in the angle
7 (vertically downward) over %;(R) and the angle 0 (vertically

upward) over ¥;(R); intuitively and essentially, this amounts
to seeking a solution to the problem

. n
Y; and ¥, of respective radii

divTuR = n

(0.1) Y Tun < -1 on ¥(R)
= 1 on Yo (R),

v being outward unit normal.

0. Introduction.

In view of the shape of the base domain Q. (R), we shall, as in [FG] for n = 2,
refer to ,(R) as n-dimensional moon domains and as in [F2], refer to the
solution of (0.1) as moon (hyper)-surfaces. Such a moon surface (n = 2) is
chosen to majorize the gradient of solution u(z) of

(0.2) divTu = 2

in BR,R(()Z) < R < 1, with R(()Z) = 0.565406 ... being the unique value of
R for which X, (R) passes through the center of the circle including X, (R).
This enables us to show the existence of apriori gradient bounds for solution
of the equation (0.2) in Bg, R < R < 1, in [FG).

0.1. We note that, an integration of (0.1) over the section Q. (R) yields
(0.3) 1Z2(R)| — [Z1(R)] = n|Q.(R)|.

Thus, the condition (0.3) is necessary for existence of the moon hypersurfaces
UR-
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In §3 and §5.1 of this paper, the existence of n-dimensional moon domains

O.(R), 1>R> "=
for n = 3 and n > 3, respectively. The existence of moon hypersurfaces, for
n = 3 and n > 3, will be proved in §1 and §5.2, respectively. These results
may help us to extend the above-mentioned apriori gradient estimates to
higher dimensions.

, characterized by the condition (0.3), will be verified,

0.2. Asin [F2] and §3 of [L1] for n = 2, we shall, in §2 and §5.3, for n = 3
and n > 3, respectively, in a suitable sense indicated there, construct the
moon (hyper)-surface as a limit of solutions u. to (1.2) defined throughout
the sphere Br including ¥,(R). This result will also be applied in [L2] to
show that absolute gradient estimates cannot hold for solutions of

(0.4) divliu=n

in Bg, R < R((,"), R((,") being the unique value of R for which X, (R) passes
through the center of the sphere including X, (R). As calculated in the ending
of 84, we have

= 0.746421987 - - - (cf. (4.11)).

o _ 2+ 2v/19
0 9

For n > 3, R\ is determined as in §5.1.1.

22 (R)

-e

Figure 1. (n=3)

0.3. The proof of the existence of the moon hypersurfaces ug and the exis-
tence of that sequence of solutions converging to it are reduced to the general
existence results in Finn [F1]. That is, in §1, we shall verify, for n = 3,

(0.5.1)
#[Q°] = |99° N Q.| + |0Q° N Ty | — [09° N y| + n|Q°] > 0
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(0.5.2)
P[Q°] = [09° N Q.| — [09° N S| + |02 N S| — n|Q] > 0

for every Caccioppoli set Q2° C Q,, Q° # ¢, Q,; in §2, we shall verify, for
n = 3, for e sufficiently small

(0.6.1)
P[0°] = [092° N Q.| — (1 — €)]0° N | — B.

(0.6.2)
P[Q°] = 100 N Q.| + (1 — €)]0Q° N S| + B,

80° N i. +n|0Q° >0,

89° N §;| —n|Q°] >0,

for every Caccioppoli set Q° C Bp, 1 > R > 2/3, Q° # ¢, Br where & =
0Br — ¥, and Be(R) is a constant depending on R, and defined by the
equation (2.1); —1 < Be < lforl >R >2/3and -1 < B, < 0 for
1> R > RY). The verification of (0.5.1), (0.5.2), (0.6.1) and (0.6.2), however,
is not a straightforward generalization of that of the two dimensional case,
due to the fact that the hypersurfaces of constant mean curvature are in
general not spherical. A new approach is inexcusably required. We will
draw on the technique of the rearrangement of level curves. The rotational
symmetry of both the boundary surface B and the boundary data will
therefore play a crucial role in our investigation. Also, in this connection,
we find that, in both cases of §1 and §2, it is more easy and natural to discuss
»[Q2°] than $[Q°]; thus because of the respective equivalence of (0.5.1), (0.6.1)
and (0.5.2), (0.6.2), we will restrict our attention to (0.5.2) and (0.6.2). In
either case, a minimizing body for 1[Q°] exists and, using our new technique,
the only possible non-empty minimizing body for [Q°] is shown to have a
spherical cap of radius 2/3 and passing through 0%, as its boundary in
the sphere By (obtained by completing 3,). This only possible non-empty
minimizing body includes or is included in a hemisphere in the case of §1
or §2, respectively, and has i) > 0 in either case, thereby proving that the
empty set is the one and only minimizing body for 1[Q°]. (0.5.2) and (0.6.2)
are immediate consequences of this.

The main tool used in this case of §1 is, what is known as the classical
isoperimetric inequality. We, however, find difficulties in applying this tech-
nique to the case of §2, mainly due to the boundary data 1 — e being unequal
to 1. Steiner symmetrization is suitably modified to prove that the minimiz-
ing body for [Q°] in (0.6.2) is a surface of revolution, with the extremely
useful help of the analyticity of the boundary surface in Bp of a minimizing
body for [Q] and n = 3, (which is provided by Massari [Mal]).
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0.4. For simplicity of writing and convenience of visualization, we deal ex-
clusively with the case of three dimensional domains in §1, §2, §3 and §4.
In the chapter §5, we will extend the results in these chapters to domains
of dimension higher than three. We note that, for n > 7, Massari’s Theo-
rem [Ma] does not yield the analyticity of the boundary surface in B of a
minimizing body for ¥[Q]. This difficulty of extension, however, as we shall
observe in §5.3, is insubstantial. Reviewing the argument used in §2 and
§5.3, incidentally, will enable us to formulate in §6 some existence results of
capillary hypersurfaces whose domain of definition and boundary data are
of rotational symmetry about the same axis.

1. Existence of the Moon Hypersurfaces for n = 3.
In this section, we shall prove.

Theorem 1.1. Let Q, C R® be a “moon domain”, bounded by two spherical
caps 3, and X, with the respective radii % and R,1 > R > %, which satisfies
the condition

(1.1) 12| — | 82| = 3|
Then the problem
(1.2)divTu=3 in L,
/Q (wp, (i + 3n) dz +[2 ndo —/z ndo =0 for alln € H"'(,)

where Ci =Ny W= V 1+ |p|2’ b= (plap27p3)a Di = Vg,

has a solution u(z), unique up to an additive constant.

1.1. Background information. As in §2 of [L1], we reduce the proof of
Theorem 1.1 to the general existence results in Finn [F1], which, although
have been formulated for two dimensional domains, can be easily extended
to higher dimensions by the same argument.

As in [F1], the capillary problem in the absence of gravity can be reduced
to the variational problem for a functional

{[u]=/Q\/l+|Du|2+nH/nudx—/m,H(s)uda,

with B(s), —1 < B(s) < 1, being piecewise Lipschitz continuous on the
boundary 99 of a bounded domain Q2 C R*, and H being a constant. As in
§2 of [L1], for future reference we formulate
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Proposition 1. If, for a piecewise Lipschitz domain Q, both the conditions

(1.3) $[9°] = |69° N Q| -/ Bds +nH || >0
aN%Naon

and

(1.4) p@) =lo*nal+ [ pds—nH|0%] >0
Q0NoQ

hold for every Caccioppoli set Q° # ¢, Q(Q° C Q). Then there is a minimiz-
ing function u(z) € BVjo(Q) for &[u]. Furthermore, the minimizing function
is unique up to an additive constant, is regular and locally bounded in (Q,
satisfies in Q the Eq. (0.1) and the variational condition

(15) [ i+ ntmyas — [ pn=0
Q o0
for any n € HY(Q), ¢; = n,,; here

W= 1+|p|21 p:(plyp%"' 7pn)a Di = Ug,-

1.2. The Proof of Theorem 1.1. In view of Proposition 1, it suffices to
show (0.5.1) and (0.5.2) for every Caccioppoli set Q° C Q,, Q° # ¢,Q,.
To show this, we first observe that if 2 c Q,, then

(1.6) $[0°] = 602° NQ| +3[Q° >0
% [°] = [092° N Q| - 3[Q°] >0

where the last inequality is an immediate consequence of the following Propo-
sition. (Henceforth, we denote the characteristic function of a Caccioppoli
set F as @p/, and the integral || Br |D9E|, denoted as the perimeter of E in
Bg, is defined by [5_|Dyg| = sup [, prdivg among all vector functions
g € C3(Br), lg| < 1. This integral equals the surface area of JF in Bpg
whenever this boundary is smooth.)

Proposition 2. If A is a Caccioppoli set with A C Bg, 0 < R < 1, then

/ID(pA|—3/ padz > 0.
BR BR

Proof. Let v(z), defined on B, describe the lower unit hemisphere, then

(1.7) divTv=3 in B;.
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If AC Bg, 0 < R <1, we can integrate the Eq. (1.7) in A, obtaining

3 (pAdxz/divTvda:::—(DwA,Tv),
Br A

and hence, as [Tv| < 1in A,3 [ padz < [g_|Dpal. d

(We note that this result is alternatively obtained in Giusti [G1], pages
114 and 115.)

Thus it now suffices to consider all those sets intersecting 0f2, with a set
of positive area. We shall show that (0.5.2) holds for all those Q° & Q. which
have either or both of |0Q° N ¥,| and |0N° N Zy| > 0. Once we show this,
since, for all the Caccioppoli sets Q° C §2,,

(1.8) ¢[Q°] =]092°N Q|+ |09° N T,] — [09° N Ty | + 3|Q°
=10Q°N Q| - |2, NI (2 ~ Q)|
+ (22,00 (2 — Q%] - 3|02 —Q°, (by (1.1))
=9 [Q. - 7],

(0.5.2) implies that there also holds (0.5.1) for all the Caccioppoli sets Q° C
Q,, Q° # ¢, Q,. The proof of Theorem 1.1 can thus be completed.

To show this, we first observe that if Q° has |0Q° N X, | = 0, then ¢[Q°] =
[092° N Q.| + |00° N E,| — 3| > 0, again due to Proposition 2.

nz

r=05,CP

Figure 2.

Thus, it suffices to consider all those Caccioppoli sets Q° with |0Q°N%,| >
0 and |0° N (R, UX,)| being connected. We observe also that, for all such
sets we can always assume that 9NQ° N X, = X, for otherwise we could add
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to 2° and e-neighbourhood of ¥; and then pass to limit as ¢ — 0*. (Here
we note that the boundary data (. being = —1 on ¥; enables us to do so.)
We call the collection of these sets as S. For sets in S, we have

(1.9) $ [Q°] = [92° N Q,

— |21 + [0Q° N E,| - 3|Q°);

to minimize this expression (1.9) among all these sets in S, however, is
equivalent to minimizing

(1.10) P [Q%] = [092° N Q|+ |02° N E,| — 3[Q° U Qu.

in the same collection of sets, where 2., is that part of Bg — {2, lying above
the unique plane P passing through the circle I' = 0%, (see Figure 2). Here
and in the following, we assume Bp to be the sphere that is obtained by
completing ¥,, P to be the z,y plane and that side of P containing the
center of Bg to be “above” P.

As in §2 of [L1], we consider a minimizing sequence {Qg’} for the functional
¥*[02°] in (1.10), and use the same argument to conclude from Theorem 1.19
in Giusti [G2] that there is a subsequence of {(pQ?} that converges in L'(Q)

to g and that setting ¥ =060nN90,

£|= [ 1Dgal <inf [ [Dpny].
Q. Q.

Further, we have
b [Q] < inf¢* [Qg] ,
by a reasoning similar to that used for the proof of Lemma 6.3 in Finn [F1].

We proceed to characterize the geometry of .

Proposition 3. If X # ¢, then £ must be a spherical cap passing through
0%;.
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Proof of Proposition 3. We consider an arbitrary body F in Q,UQ,, U3, (cf.
Figure 3), passing through I' = 9%;, and bounded below by the disk PN Bp.
From the discussion below Figure 2 and above (1.9), we may, without loss of
generality, assume that F'\ Q.. is in the collection S. Now that ¢*[FNQ,] =
|OF N (2, U X)| — 3| F|, we shall prove Proposition 3 by constructing a body
F such that F \ Q.. is in the collection S, and that

|F| = 171,
|0F N (R, US,)| > |aﬁ'n Q.U zz)l,

where the last equality holds only when 0F N (€2, U %,) is a spherical cap
passing through I.
We observe first that, for each value V with

Q] <V < Q.U Q..

3

a spherical cap passing through I"' and situating above P exists, the volume
enclosed by which and disk P N Bp is equal to V. (Cf. Figure 4).

Figure 4.
Now that
Q.. < |F| < [ UQ.|,
a body with
=1

exists which has a spherical cap $ as its boundary in 2,. Obviously, 1’7:’\ \ Q.-
is in the collection S. Furthermore, we may extend the spherical cap X to a
full sphere ¥ which is the boundary of a ball B. Then

|F|+|B-F|=|F|+|B-F|=1B|,
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and the isoperimetric inequality for three dimensions (Cf. [MM], p. 92)
asserts that
|0F N (Q, ULy)| + ‘E \ E’ > |3,
that is,
|0F N (2, US,)| > 12[ = |aFm (. u22)|,

and equality holds only when F = F. O

Also, by the analyticity of & (see [Ma]), we may use an argument similar
to that one used to prove Lemma 6.4 in page 148 of [F1] to conclude.

Lemma 1. If S # ¢ then & must consist of surfaces of constant mean
curvature 3/2 and Q lies on the side of ¥ into which the curvature vector
points.

Putting Proposition 3 and Lemma 1 together, we see that a non-empty )
must be a spherical cap of radius 2/3, which can possibly occur only when %;
is a subset of a hemisphere of radius 2/3 and ¥ strictly includes a hemisphere
of radius 2/3. In case that ¥, is included in a hemisphere, denting ¥, as the
spherical cap of radius 2/3, included in €, and €, as the body enclosed by
Yo and X;, we shall show

P [BUR] - 97 10.]> 0, where y* [0.] = 5] - 3|0
and hence

P [Qo] = " [ U Q] — [51] + 3[Q.]
> " [Qua] = [Z1] + 3|2, ]
=0

thereby proving (0.5.2), as minimizing 1) and 1)* are one and the same matter.
In fact, adopting spherical coordinates with origin at the center 0 of By/3
2si —-0,) .

including ¥, we choose 6; < /2 so that the equation r = —Slg(%—l—) is

that for the circle I' (= 8%;). Thus, (cf. Figure 5) as calculated in (3.7) and

(3.8) for R =2 (cf. (3.1), (3.3))

3

* | * _ 8 8 3 8 8 3 )
P [QOUQ**] P* Q] = (277r+ 27,7rcos 91) (277r 277rcos 0,
16
= 2—77'('COS3 01

>0,

as desired.
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Ty

r

Figure 5.

2. Moon Hypersurfaces constructed as a generalized solution
over By in the sense of Miranda for n = 3.

As in Sec. 7.11 of Finn [F1], IT of Finn [F2], or §3 of [L1], let us extend the
spherical cap X, to a full sphere dBp, and write $=0Br—3, (cf. Figure
6). Then if € is small enough, it will be verified in §5 that there is unique
BAR), -1 <B.<1forl1>R>2/3and -1 <fB. <0forl>R>RY,

such that data
1—¢ on X,
=1~ A
Be on %,
satisfies the necessary condition

(2.1) (1—€) ol + B,

i' = 3|Bg

for the existence of a minimizing function u.(z) € BVj,. (Bg), which mini-
mizing the functional

gf[u]z/B Vi+ivup+3 [ wiz— | psuds,

O6Br

and thus (cf. Proposition 1) satisfies
divTlu, =3

in Bp; here (2.1) is necessary because substituting n(z) = 1 (in Bg) into the
variational condition (1.5) for this particular function £[u] yields (2.1).

We shall show that (a) this minimizing function u.(x) indeed exists if € is
small enough, and (b) as € = 0, |Vu,| cannot be bounded in € for any subset
of |24 of positive area.
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2y

S = 0Br\Z,
Figure 6.

2.1. To prove (a), in view of Proposition 1, it suffices to show that, for
sufficiently small €, (0.6.1) and (0.6.2) hold for every Caccioppoli set Q° C
Bpg, Q° # ¢, Bg. To show this, as in §1, we first observe that, if Q0 C Bp,
then

¢ [2°] = [09°| +3|2°| > 0,
W [Q°] = [69°] — 3]Q°| > 0,

where the last inequality readily follows from Proposition 2 in §1. Thus,
it suffices to consider all those sets whose intersection with 0Bp is a set
of positive area. We shall show that (0.6.2) for n = 3 holds for all those

Q° & Q, which have [9Q° N 5| > 0 or '090 N f]' > 0. As in §1, we note that
proof of (a) will be completed once we verify the truth of (0.6.2), because
there holds by virtue of (2.1),

¢ [] = ¢ [Br — Q%]

for each Caccioppoli set Q° C Bp.
To show (0.6.2) for n = 3, we first observe that if € is small enough,

% [2°] = [89° N B + (1 —€) [09° N | — 3]2°] >0

for all the Caccioppoli sets Qg with ’BQO N 2‘ = 0. This follows from Propo-
sition 2 and Giusti [G1], Lemma 1.

Thus it suffices to consider all those Caccioppoli sets Q° with |BQ° N f)] >
0 and 9Q° N (Br U L,) being connected.
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As in §1, we may try to minimize 1 [Q2°] among all the Caccioppoli sets
Q and consider a minimizing sequence { Q‘;} for 1 [Q°] ; the same reasoning

concludes that there exists a subsequence of the {cpgg} converging in L*(Q)
to ¢g such that

b [Q] < infy [93] .

Set & = QN Bg. If £ # ¢, we have shown that [afz N ﬁl > 0.

Due to the very fact that 5. # 1, it seems infeasible to proceed further as
in §1. We may, however, take a different approach and arrive at the same
conclusion. The main idea of the following discussion is provided by Steiner’s
solution to the two dimensional isoperimetric problem.

Our main aim is to show

Proposition 4. The only non-empty candidate for 2 is the spherical cap
31. In other words, the only non-empty candidate for Q is B — (Q,.

We again let P to be the unique plane passing through the circle I' =
0%; N 0By and designate P as the z,y plane so that the center of Bg has
the z-coordinate z > 0.

To prove Proposition 4, we shall proceed to verify

Proposition 3*. If Y # ¢, then ¥ is made up of surfaces of revolution
about the Z-axis.

We will reduce the proof of Proposition 3* to that of the following

Proposition 3**. If S # ¢, then at each point of 3, the tangent of the
horizontal cross-section of ¥ through this point is the normal of the unique
vertical plane ax + by = 0,a,b : constants, passing through this point (and
the origin).

The equivalence of Proposition 3* and Proposition 3** is obvious; in fact,
at each height z,, Proposition 3** yields that

zz+yy=20

for each connected subarc (z(t), y(t), zo) of the horizontal cross-section of %,
which holds if and only if

z? + y2 = constant,

i.e., (z(t),y(t),z) describes a circle with the center on the z-axis. This
amounts to Proposition 3*.
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We thus proceed to give a

Proof of Proposition 3**. Consider a vertical plane P: az+ by =20, a,b:
constants, which divides € into two non-empty parts Q; and Q, (and of
course passes through a great circle of 9Bg). We can assume 9[$;] < 9[€,].
Reflecting the body (2, in the plane 15, we obtain a body 2] on the opposite
side of the plane P such that

QU C Bg.
Then
P[0 U] = P[] + B[] — 2 |aQ2 n P|
+ 9[Q] - |00 0 P’ |60, n P|

since Y[%] = $[%] < %] (cf. Remark 1 below) and |82, N P| =
|892 np ' , by construction. The minimizing property of  yields 1[Q; U

0] =9 [©] (and hence $[] = 9[$2]). The body 2, U} is therefore an-
other minimizing body for 1[Q}] and the theorem of Massari [Ma] thus yields
the analyticity of the boundary surface of 2, U Q) in Bg. In other words,
El U Z is an analytic surface in Bg, where 21 = 09y N By and E is the
reﬂectlon of £, in the plane P.In particular, each horizontal cross-section
of 21 U E must consist of smooth arcs, which is possible only if Proposition
3** holds, (for otherwise a cusp would have appeared at a certain horizontal
cross-section of 3, U 2’1) O

Remark 1. We note that 1[Q]] = ¥[Q] because of the rotational symme-
try of both the boundary surface 0Br and the boundary data ..

In Proposition 3*, we know that 8L N OBy C SuUaL, by the fact that e
can be arbitrarily small and the reasoning used in the proof of Proposition 3
in §1. Thus, (0.6.2) yields that &% N Bx must be a connected subset of %,
for otherwise replacing a part of & below 9%, by that part of X surrounding
it yields a smaller value for 1. Thus, the reasoning used in the proof of
Proposition 3 yields that £ must be spherical. Also, the reasoning following
the proof of Proposition 3 excludes that spherical cap situated above ¥, and
passing through 0% .

Furthermore, in Proposition 3*, were ) situating below X;, then a rigid
motion of it would result in a body meeting ¥ with the same surface area and
therefore yielding the same value for 1 (cf. Figure 7), which, however, would



446 FEI-TSEN LIANG

by no means be symmetric with respect to the z-axis, violating Proposition
3*. We thus precluded the occurence of ¥ being a spherical cap other than
¥,. Proposition 4 is finally proved.

small congruent to ©
and yet asymmetric
with respect to the z-axis

a surface of revolution
of constant mean curvature

Figure 7.

Now that Proposition 4 has been proved, our proof of (a) is complete by
observing that

2/’[Q*] =¢ [BR - Q*]
= 3IQ] + [B1] = [Ba]) + €l5s]
= €|X,|, by (0.3)
> 0.

2.2. Next, to prove (b), we note that a proof for (b) given in §3.2 of [L1]
for the two dimensional domains extends in an obvious may to arbitrary
dimensional domains and we do not repeat it here.

We, however, recall that, in the course of our proof, we have incidentally
proved

Proposition 5.
/ v-Tu.ds — —|%,|, ase—0
PR

and Tu.(z) — v(zo), as € = 0, uniformly for zo € X,.

We therefore gain the rough impression that the solution of (0.6) in Q. has
been constructed as a limit of solutions u, defined throughout Bp, as stated
in §0.0.2. We may proceed to gain a rigid and precise understanding on this.
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As in §3.3.3 of [L1], according to a theorem of Miranda [M], we know that
a subsequence of {u.} can be found which converges in Bg to a generalized
solution u(z) of the equation (0.4), n = 3, in L{,.(Bgr). Set P and N and
normalize the solutions u. in essentially the same way as we have done in
§3.3.3 of [L1]. We again have

Proposition 6. Both the sets N and Bgr — P minimize the functional
(23)  $IQ=]09° N Bg|+ 5 |00° N S| + [82° N 55| - 31020,

among all the Caccioppoli sets Q° C By, Q° # ¢ or Bg, where
3|Br| — | %]

,i, <1

0<,Bo:

Repeating our reasoning for proving Proposition 4, we again know that
the minimizing body for (2.3) must be either empty or else Bg — 2,. In
consideration of our normalization, the results in (b) and the reasoning used
in §3.3.4 of [L1] therefore again yield that P = ¢ and N = Bg —{2,. We thus
prove that the regularity domain of u coincides with €,. Also, the reasoning
used in the ending of §3.3.3 of [L1] or Theorem 7.8 in [F3] again yields
the identity of the function u and the solution to (1.2) (or (0.1)) in 2,. We
therefore arrive at an accurate interpretation of what we asserted.

3. The Existence of Three Dimensional Moon Domains 2, (R) for
1>R>2/3.

Consider the function
(3.1) f(r;0) = og(r) — 3ve(r)

where o¢(z) is the area of the spherical cap D, ) whose boundary 8D, )
is a circle of radius p = rsinf on 0B, and Vj(r) is the volume enclosed by
the spherical cap D, ) and the plane passing through the circle 9D
(cf. Figure 8). We readily see that, if Q,(R), 1 > R > 2/3, exists, the
equation of the circle I' = 9% (R) is p = 2 sin 6, (R) where 6, (R) is the root
of the equation

(3.2) f(Rym—p(0)) — £(2/3;0) =0 (cf. (L.1) or (0.3)),

with

(3.3) $(0) = sin~* 2;;’;9.
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Figure 8.

We shall justify, for 1 > R > 2/3, the existence of 2,(R) by showing the
existence of a root 8 = 0, (R) for the equation

9(R;0) =0,
with
(34) 9(R;0) = f(R;m — (0)) — f(2/3;0).
We have
9
(3.5) og¢(z) = 27r? / sinfdf = 2nr*(1 — cos ),
and

(3.6) Vau(r) =7r/ (r* — 2%)dz = 1r®(2/3 — cos @ + 1/3 cos® 6).

Hence, by (3.1),

2\ _8r 8 3
(3.7 f (5,0) =3 (1 —cos®) 277r(2 3 cos 0 + cos’ )
8 8 3
= 2—7'7(' - E?’R‘COS 0,
and

(3.8) f(R,m—1(0))
= 2w R*(1 + cos ¥(0)) — wR3(2 + 3 cos 1(0) — cos® 1(0)),
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2sin
3R

(3.9) cosh(6) = 11— [ ] (cf. (3.3)).

By (3.4), (3.7), (3.8) and (3.9), we have

>0, ifR<I,

3.10 R,0) = 47R? — 47 R?
(3.10) 9(R,0) = 4x s {:0, HfR=1

and

16 (=0, ifR=2/3,
27

(3.11) g(R,7) =4nR?> — 47R* — —7 .
<0, if1>R>2/3.

The existence of a root 8 = 0,(R), 0 < 6,(R) < , for the equation g(R;0) =
0 readily follows from (3.10) and (3.11).

4. In (4.1), if ¢ is sufficiently small, -1 < B.(R)<1for1>R>2/3
and —1 < B3.(R) <0 for 1 > R > R{.

In (2.1), we have to set

5, 31Bal = (1~ [
2

It follows at once that B.(R) < 1 for e sufficiently small, since 3|Bg| =
ATR?® < ATR? = |5,|+ li‘ , for 1 > R > 2/3. On the other hand, using (0.3),

(4.1) Be(R) - 3|Br — Q*|l‘i‘:‘!21| + €|2s)]

To show that —1 < BG(R) for sufficiently small € we only need verify
(4.2) IS)) = 3|Br — Q| < ji]

To do so, we, as in §1, denote P as the plane passing through the circle 0%,
and denote ,, as the body enclosed by PN Bpg and X; (cf. Figure 2). Then,
we have

(4.3) || > | the planar disk P N B,
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and
(4.4) IS4 = 31Ba — Q] < [Si] - 30,
However, the inequality

(4.5) |P N Bg| > 1] - 3|00

follows immediately from the fact proved in §1 that (., strictly minimizes
*[Q2°] (cf. (1.10) and (1.12)) among all the Caccioppoli sets passing through
the circle 0¥, and situating entirely at one side of the plane P (including
P). The inequality (4.2) is thus proved.

We note that, alternatively, (4.5) can be proved by a direct calculation.
Namely, using the notations in §3,

4
‘PﬂBRl = §7rsin2 91,

and
2 8§ 8 .
— —f(%6,)=2r-2 9 . (3.7)).
IS0] = 30| = £ (3,91) 5= s’ (cf (37))
Hence
[P N Bg| = (|2:] - 3|Br — LI)
4 .
= ﬁﬂ'(?) sinf — 2 + 2cos® 6,)
4 2
= §77r[1 —cos” 6(3 — 2 cos 0)]
20,
for all 6.

We now proceed to prove BE(R) <0fori>R> R(()?’) . We have, as
|Br — .| < 2|9,,]|, that

|21] = 3|Br — ]
> [S4] = 6] ]
8
= 5,?7('(*1 +3cosf; —2cos® ;)

= ﬁrr(l —cosf;)(2cos? 0, +2cosh; — 1)

27
1 3—-1
= %gvr(l —cos ;) [00501 + \/§2+ cos @ — \/—2 :I )
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In view of (2.1), we therefore only need verify

V3-1
2

4.6 6,(R) < cos™! , for 1 > R > RY.
0

To do so, we may observe that, there holds the following
Proposition 7. 6,(R;) = 0:(R,), if R1 S R..

Proof. This is an immediate consequence of (0.5.2). In fact, if R S R,
and 6;(R;) < Bi(R,), then after a rigid motion, ¥;(R;) C ¥;(R,) and
0. (Ry) C Q. (R,) with

PIQ ()] = [52(Ry)| = [Z1(Ry)] = 3[Q(R.)] > 0,
in accordance with (0.5.2) and yet contradicting our original definition (0.3)of

Qu(Ry). Ol

Y2(Ry)

2 (R2)

Figure 9.
Thus, to verify (4.6), it suffices to show that

V3-1
5 .

(4.7) 0, (R(()l)) < cos™! [

To do so, we may observe that, as 3 (R(()S)) passes though the center of
B ), we have, using the notation as in §3,
0

3)
(4.8) " (91 (Rg3>)) - g — 9_{?—), (cf. Figure 10),
that is,
(3)
R cos o (ROS ) = %sin 0, (R(()3))
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3 2 2
and hence
6, (RS
(4.9) sin—l—(2—)— _ %Rf‘ﬁ’,
which yields
0 (R0 z

(4.10) cos 6, (R§Y) = 1 — 2sin’ - =1- ) (R$)
(3

8
Substituting (4.8) into (3.2) or (3.4), we shall obtain R, ) as the root of the

equation
(3)
(w5425 < G ) -0

or, using (3.1), (3.7) and (3.8),

3)

2(R®) (1 i (f’ )>
3 5)

- (Rx()g))a (2 + 3sin —01 (fo ) — sin® ———01 (RO ))

2
= g (1 —cos b, (Rff”)) _ 28_7 (2—3cos01 (R((,3)) + cos® 0, (R((,s))) ,
or, using (4.9) and (4.10)
3\ 2 3 3 31\ 2 9 27 _a\°
o (1 38) - (o )
9\*_ 9 )4, 27 6
= (&) -5 (&) + 5 (&)
that is,

o (R0)" 44 () - ()] -0

QO | =

or,

9 (Rff’)2 +4 (333’)2 —8=0.
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Hence,

= (.746421987 . ..

(4.11) RO — —2+ V76 _ -2+2V19
) Q Q

Figure 10.

Thus, using (4.10) and (4.11)

0, (Rc()s)) = cos™! [1 — g (R(()a))ZJ = cos™! [—i—%—m} )

As [—p;\/ﬁ] > ¥2=1 (4.7) (and hence (4.6)) follows.

5. On Still Higher Dimensional Cases.

5.1. We first verify the ezistence of the n-dimensional moon domain Q. (R),

-1
1>R>n

, characterized by the equation

(5.1) [22(R)| — [Z1(R)| = n|Q.(R)|

where 0Q0, = ¥, UX,;, ¥, and 3, being spherical caps in R™ of the respective
-1

radii R; = n - and R. As in §2, we set

(5-2) f(r;0) = 0p(r) — nwp(r),

where the definition for o4(r) and vy(r) in the beginning of §3 extends to
the present setting in an obvious way. If Q,(R) exists, the equation of the

sinf#, where 6, is the

(n — 1)-dimensional sphere I' = 9%, (R) is p = n-

root of the equation

F(Riw = p(6) ~ 1 (“50) =0,
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with ( 1)sin
n — 1) sin
6) = sin™' .
$(6) = sin o
Denoting wy as the volume of the N-dimensional sphere and setting,
again,

(53) g(Ri6) = f(Rim = p(6)) - 1 (:0).
we have
(5.4 o(R;0) = f(R;m)

=2(n - Dw, R = 2(n — Nw,_ R"
>0, ifR<I,

and
(5.5)
o(Rm) = f(Rim) ~ £ (P i)

-t s [(252) - (252 )

n—1

=0, ifR=
nn-—l
<0, if1>R> —

is the zero of the derivative of the concave function h(

) n

smce r = r) =

n

r*~1— " From (5.4) and (5.5) follows the existence of a root 8 = 6,(R), 0 <

6, (R) < m, for the equation g(R;7) = 0, of which the existence of Q.(R) is
an immediate consequence.

5.1.1. Using the above notation, we may here describe a procedure for de-
termining the value R\, n > 3. Indeed, since R{" is the unique value of

R for which ¥ (R((,")) passes through the center of B ), we may, as in §4,
(o]

obtain R{™ as the root of the equation

(r3+2)-1(50) =0,

with
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and

.0 n? )
cost =1— 2 sin’ —21— =1~ mRZ,
here f(r;6) is defined by (5.2).
The number R((,"), as mentioned of in the end of 0.2 is of significance once
we place it into perspective in the context of the results in [L2].

5.2. Having verified the eistence of Q,(R) for n > 3, we proceed to prove

the existence of comparison hypersurfaces in Q,(R), 1 > R > E-:—, which
n

is the solution to the problem (0.4) and (1.5), setting H =1 and = —1,+1

on ¥;,3,, respectively. We again, using Proposition 2, reduce this to the

proof of the ineq.

(5.6) $*[2°) = [99° N QY + [89° N Sy| — n]Q° U Q.|
> P[] = |E1] - nfQu

for all Q° passing through I' = 9%, with the whole 3, as a part of its
boundary and situating entirely in one of the two half spaces provided by
the hyperplane passing through I'; here €1, is the region bounded by ¥; and
this hyperplane. Repeating the variational procedure indicated in §1, we
again justify the existence of a minimizing body for 4*[Q°]. Set & = 6QN Q..
We readily see that Proposition 3 holds here; that is, nonempty ¥ must be
a spherical cap passing through I', which as Lemma 1 can also be extended,

n— . . . .
must be a spherical cap of radius strictly including a hemisphere and

n
can possibly occur only when X; is included in a hemisphere. However, if
3}, is included in a hemisphere, denoting 2, as the body enclosed by %; and

that spherical cap of radius "~ included in Q,, we have, adopting the

n
notation in §5.1,

PR U QL] — 97 [Q]
= f(2/3;m —0,(2/3)) — £(2/3;0.:(2/3))
= (On—01(2/3)(2/3) — 00,(3/2)(2/3)) — (Vm—p(2/3)(2/3) — vo,(2/3)(2/3))
T—01 2/3 cos 6 =
=(n—Dwp_,(2/3)"! /9 sinfdf — w,_; / (g — Zf) dz

2/3 cos(m—01)

2 n—1 ,r—6; 2\ " m—01
=(n- 1w, (—) / sinfdf — w,_; (—) / sin” 6 d0
3 91 3 01

> 0, obviously.

We therefore prove (5.6) and the existence of the comparison hypersurfaces
for n > 3.
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5.3. A careful examination of the work of §5 tells us that; in order to
construct such a sequence of solutions to (0.4) in By C R*, n > 3, whose
limit, in the sense indicated in 2.2 is our moon hypersurface in Q. (R) C R*,

we only need to (1) verify that —1 < B.(R) < 1, for 1 > R > n-

sufficiently small, where

B.(R) = MUBal = (L % (B)
|

and €

S = OBg — %, the full sphere By, being obtained by extending Z,(R).

(2) Prove the statement of Proposition 3** and Proposition 4 in spite of
the difficulty arised by the possible existence of singular subsets of $NBg in
the case of n > 7. The fact that BE < 1 readily follows from the inequality

n|Bg| = nw,R" < nwnR"‘1 = |8BR| — |22| + lf}'
The fact 3, > —1, by (5.1), amounts to the fact that
] > 1% - nlB, — Q.|

which is a consequence of the inequality

IDp(Bl,"T—l-) > l21| - le**|,

(see the beginning of §3 for notation) obtained immediately from the fact
that ., minimizing 1*[Q)] (cf. (5.6)) among all sets indicated below (5.6).

As of (2), we may, first of all, put Proposition 4, 3* and 3** in a precise
form in the higher dimensional setting. In fact, to extend the existence
results in §2 to the case where n > 3, it suffices to verify that (0.6.2) holds
for every Caccioppoli set Q° C By, Q° # ¢,Bg, 1 > R > u To do so,
as in §2, we may observe that it suffices to consider those Cgccioppoli sets
with |GQ° N il > 0 and 99Q° N (Br U X3(R)) being connected. Thus, as in
§2, we may try to minimize [Q2°] in (0.6.2) among all the Caccioppoli sets
Q) C Bp and the same reasoning concludes that a subsequence of minimizing
sequence {Q0} for {Q°}, Q) C Bg, exists such that {(pg?} converges in
L'(9Q) to pg such that

¥ [0] <infyl0])

Set ¥ = dQN Bg. If & # ¢, we have observed that [i) n i‘,] > 0, and we may
assume ° N (Bg U Z5(R)) to be connected.
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For our present purpose, we only have to show, as in §2.1.

Proposition 4. The only non-empty candidate for f} 1s the spherical cap
3. In other words, the only non-empty candidate for 2 is B — (2,.

We again let P to be the unique plane passing through the (n — 2)-
dimensional sphere I' = 9%, N dBr and designate P as the z,,zs,... ,2Z,_;
plane so that the center of Bx has the x,-coordinate z,, > 0.

To prove Proposition 4, we shall also proceed to verify

Proposition 3*. If ¥ £ ¢, then S is of rotational symmetry about the
T, -0T1S.

In §2.1, Proposition 3* is proved with the aid of a theorem of Massari [Ma],
which, as mentioned above, does not exclude the possibility of existence of
singular points of a minimizing body in the case that n > 7; however, it gives
an estimate for the dimension of singular parts, which has been improved by
Federer. Their results yields

Theorem Of Massari And Federer. If¥ # ¢, then the reduced boundary
0*Q of Q is an analytic manifold of dimension n — 1 and

Hs[(i\a*ﬁ)mBR] =0, Vs>n—17, s€ER

where H, denotes the Hausdorff s-measure.

To prove Proposition 3*, as in §2.1, we consider a vertical plane P: az'+
axx® + -+ ap_1z"! =0, ai,...,a,_; : constants, which divides Q into
two non-empty parts 2; and Q,. We may assume, without loss of generality,
that ¥[Q;] < ¢[Q,]. Reflecting the body €2, in the opposite side of the plane
13, then

0, UQ) C Bg,

and, as in §2.1, we have ¥[0); U] < ¢ Q| and hence [, UQ] = o Ql,
1 1

in view of the minimizing property of Q. Thus, we have

Proposition 3**. If s # ¢, then at each regqular point of i, the nor-
mal of the horizontal cross-section of N through this point is orthogonal to
the normal of the unique vertical plane a;x' + az* + -+ + ap_ 12" =
0, ai,as,... ,a,_; : constants, passing though this point (and the origin).

At height z7, if the horizontal cross-section includes regular points of x,
we may choose a regular point (z},...,z%) of ¥, then, for each connected
curve (z'(t),... ,z" !(t),z?) through this point and included in a regular
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part of the horizontal cross-section of ¥ at the height z}, Proposition 3**
yields that
J.,'lﬂ,'l +i‘2$2 4+ :-Bn—lmn—l — O,

which holds if and only if
() + (2*)* + - + (z"")® = constant,

ie. (z'(t),...,z"1(¢),z}) lies on a sphere with its center at (0,...,0,z7).
Thus, each regular point of this horizontal cross-section of £ must be in-
cluded in a region on an (n — 2)-dimensional sphere with its center at
(0,0,... ,z2) and, furthermore, denoting C' as the component of this hor-
izontal cross-section including this spherical cap, we note that C must be
a whole closed sphere; indeed, were C' bounding a region in the hyperplane
2™ = z§y and C includes only a portion of and not the whole sphere, then
C would have to include at least two disjoint spherical regions and the di-
mension of singular parts of this cross-section would be n — 2, contradicting
above-mentioned regularity result of Massari and Federer; however, were C
bounding no region then a portion of & with positive (n — 1)-dimensional
Hausdorff measure would not be a portion of the boundary of any compo-
nent of  (with positive n-dimensional Hausdorff measure) and removing
this portion of ¥ would result in a smaller value of 1, contradicting the
minimality of Q and X Thus, the proof of Proposition 3* is complete. The
argument following the proof of Proposition 3** in §2.1 again applies in our
present setting and enables us to prove Proposition 1, from which, as indi-
cated above, follows (0.6.2) and the existence of that sequence of solutions
to (0.4) in B C R", described in §0.0.2 and beginning of this section.

6. Some existence Results of Capillary Hypersurfaces without
Gravity and of Rotational Symmetry.

As in Finn [F1] and quoted in Proposition §1 of this paper, we may reduce
the capillary problem in the absence of grativity to the variational problem

(6.1) é[u]=L\/1+IVU,2+nHLUd$— aﬂﬂ(s)uds,

with 8(s), —1 < B(s) < 1, being piecewise Lipschitz on the boundary of a
piecewise Lipschitz domain @ C R*, and H being a constant. As quoted
in Proposition 1, a necessary and sufficient condition for the existence of a
minimizing function u(z) € BV,.(2) for the functional (6.1) is that both the
conditions (1.3) and (1.4) hold for every Caccioppoli set Q° # ¢, Q(Q° C
Q). Furthermore, since H is constant, the conditions (1.3) and (1.4) are
equivalent. Thus, in §1, §2, §5.1 and §5.3 of this work, we have restricted
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our attention to verifying (1.4); the argument used in §2 and §5.3 yields the
existence of a minimizing body 2 for ¥[Q°] and setting ¥ = 9Q N Q, the
argument used to verify Proposition 3* yields.

Proposition 3. Suppose () and B(s) are rotational symmetry of the
same axis. If 3 # ¢ then ¥ is of rotational symmetry about this axis.

We may, without loss of generality assume that this axis of symmetry is
the z,-axis. Suppose, in addition, that G(s) is piecewise constant; i.e., there
exist relatively open subsets ©¢ of 9, such that, if i < j, ©% is “below” ¥7
(in the sense that, for two arbitrarily chosen points z* € %% and z7 € X7,
then z,, component of ! is less than that of z7), and,

(6.2) B(s)|g: = constant ¢;, UX' = 0.

Then, the argument used in §2.1 to exclude those X situating below ¥,
can be applied to yield

Corollary 1. Suppose, in addition to the hypothesis of Proposition 3***,
B(s) is piecewise constant, as indicated in (6.2). Then, if Q # ¢ or Q, there
occurs at least one of the following possibilities:

Possibility 1. 5 NE! = ¢ or .
Possibility 2. There exists at least one ¢, 1 > 1, such that

oxt\ an! C AN

Possibility 3. In (6.2), ‘L_leE" = 0f2 for some integer k < oo and

IMNNTF = ¢ or BF.

Figure 11.
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Indeed, ¥* being open, were Corollary 1 false, a rigid motion of  would
result in a body meeting 37, for each j, with the same area as Q and is
therefore another minimizing body for the functional v, which, however,
would not be of rotational symmetry of the axis indicated in Proposition
3***'
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STABLE RELATIONS II:
CORONA SEMIPROJECTIVITY AND DIMENSION-DROP
C*-ALGEBRAS

TERRY A. LORING

We prove that the relations in any presentation of the
dimension-drop interval are stable, meaning there is a per-
turbation of all approximate representations into exact rep-
resentations. The dimension-drop interval is the algebra of all
M,-valued continuous function on the interval that are zero at
one end-point and scalar at the other. This has applications
to mod-p K-theory, lifting problems and classification prob-
lems in C*-algebras. For many applications, the perturbation
must respect precise functorial conditions. To make this pos-
sible, we develop a matricial version of Kasparov’s technical
theorem.

1. Introduction.

Suppose R is a finite set of relations on a finite set G of generators so that
C*(G|R) is isomorphic to the dimension-drop interval

I,={f € C[0,1] | £(0), f(1) € CI}.

For simplicity, we assume the relations are of the form p(g;,... ,g,) = 0
for some *-polynomial p. Weak stability means that an approximate rep-
resentation (zi,...,z,), meaning an n-tuple of elements in a C*-algebra A
such that each p(z,,...,z,) is close zero, can be perturbed slightly within
A to an actual representation (Z,...,Z,). That this (and a little more)
can be done was shown in [8], but only for one specific set of relations.
The relations R are stable if the pertubation can be done so that whenever
there is a *-homomorphism ¢ : A — B which sends (z;,... ,z,) to an exact
representation, then ¢(Z;) = p(z;).

There are several advantages to stability over weak stability. It is far more
useful when dealing with extensions of C*-algebras and it depends only on
the universal C*-algebra, not the choice of relations for that C*-algebra.
The reason for our focus on the dimension-drop interval is primarily that
this is the most complicated building block used in the inductive limits,
called AD algebras, that appeared in Elliott’s first classification paper [7].
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See [5] for an application of stable relations to the extension problem for AD
algebras. See [4] for a discussion of the role of the dimension-drop interval
in mod-p K-theory. Our results will be stated in the more general context
of dimension-drop graphs, but certainly the dimension-drop interval is the
most important case.

In §2 we give a characterization, in terms of lifting properties, of the uni-
versal C*-algebras for stable relations. Since this property, called semipro-
jectivity, depends only on the C*-algebra, this frees us from having to specify
generators and relations in many cases. We have a third, equivalent prop-
erty involving corona algebras. This characterization formalizes some of the
ideas used by Olsen and Pedersen [11] to show that nilpotents always lift.

For any C*-algebra A we let M(A) denote the multiplier algebra of A and
C(A) denote the corona algebra M(A)/A.

By a dimension-drop graph, we mean a C*-algebra of the form

{f € C(X,M,) | f(v) € CI for all vertices v}

where X is the underlying topological space for a graph and n is a positive
integer. We call this a dimension-drop interval in the special case where X
is the unit interval with 0 and 1 as vertices.

To handle these algebras we need several generalizations of Kasparov’s
Technical Theorem. The purpose of these results is to show that, inside
of a corona algebra, one can find good substitutes for elements that would
exist if only the corona algebra were a von Neumann algebra. For example,
there is an acceptable substitute for the logarithm of a unitary with full
spectrum. Also, if M,,(A) sits inside the corona algebra, there are elements
that function just like matrix units in the way they multiply against M,,(A),
even if A is not unital but only o-unital.

These technical lemmas are very similar to the second splitting lemma in
BDF [3, Lemma 7.3]. The basic form of these results is to show that every
¢ : A — C(E) factors through some injection A — A;. In the BDF case, A
and A; are commutative and C(F) is the Calkin algebra.

Once we have shown that a dimension-drop graph is universal for a stable
set of relations, a host of perturbation, lifting and homotopy results follow
regarding homomorphisms (and asymptotic morphisms) out of dimension-
drop C*-algebras. For most of these we refer the reader to [8] but we will
mention one of these, [8, Theorem 3.8]. If a separable C*-algebra A has the
property that any finite set of its elements can be approximated by elements
of a C*-subalgebra isomorphic to a quotient of a dimension-drop graph, then
A is the inductive limit of dimension-drop graphs.

A Cr-algebra that will figure prominently in all this the cone C M, =
M, (Cy(0,1]). By [8, Theorem 4.9] we know that C M,, is projective. This is
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a very useful fact as there are many copies of C M,, inside of a dimension-drop
graph.

The author is grateful to Gert Pedersen for discussions which lead to much
simplified proofs in Section four.

2. A characterization of stability.

We begin with a characterization of projectivity in terms of corona algebras
that is suggested by [11]. This then generalizes to give a characterization of
semiprojectivity and of stability for relations. One consequence is that two
finite sets of relations that determine isomorphic universal C*-algebras are
either both stable, or both not.

All our definitions are with respect to the full category of not-necessarily-
unital C*-algebras and *-homomorphisms.

Definition 2.1. A C*-algebra A is projective if, for every surjection
w : B = C and every *-homomorphism ¢ : A — C, there exists a *-
homomorphism @ : A — B such that mo@ = ¢. We call A corona projective
if this holds only in the special case where C = C(FE) for some o-unital
C*-algebra FE.

Theorem 2.2. Let A be a separable C*-algebra. Then A is projective if and
only if A is corona projective.

Proof. The forward implication is trivial. Suppose that A is corona projec-
tive and that ¢ : A — C and a surjection 7 : B — C are given. Replacing B,
if necessary, by the closed span of a lift of a dense sequence in ¢(A) reduces
the problem to the case where B is separable.

Let I = ker() and let I+ denote the annihilator of I in B. As INI+ =0
and I + It is an essential ideal in B, we have the following commutative
diagram with the left square a pull-back.

B —— B/I* ——  M{I+IY)/I*+
A 2= B/l —— B/(I+1T") —2— MI+14Y)/(I+1%)
By the corona projectivity of A, we have
A= M +IY)/I+

which is a lift of the composition of the bottom row:
We now claim that 75! (im(s,)) € im(¢;). Suppose b € 7 ' (im(5)). Thus
7o (b) = 15(c) for some c. But ¢ = 7, (a) for some a, so

T (t1(a)) = ta(mi(a)) = ta(c) = ma(b).
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This implies
u(a) — b € ker(m) = (I + IY)/I+ C B/I* = im(i,)

and hence b € im(¢y).

By the claim, we may regard 1 as a map into B/I‘. The pull-back
property now shows that ¢ and 1 together determine the desired lifting
to B. O

Following Blackadar [1] we define semiprojectivity as a lifting property.
This turns out to have better closure properties than the version of semipro-
jectivity due to Effros and Kaminker [6], which is better suited to some
homotopy calculations.

Definition 2.3. A C*-algebra A is called semiprojective if, for every *-homo-
morphism ¢ : A — B/ 1,, where the I,, are increasing ideals in B, and with
T : B/I,, — B/UJI, the natural quotient map, there exists, for some m, a
*-homomorphism ¢ : A — B/I,, such that 7, o § = ¢. We call A corona
semiprojective if this holds only in the special case where B/|J I, = C(E)
for some o-unital C*-algebra E. O

Theorem 2.4. Let A be a separable C*-algebra. Then A is semiprojective
if and only if A is corona semiprojective.

Proof. The proof is similar to that of Theorem 2.2 except that one uses the
following diagram, with I = |J I,.

B/I, — B/(I, +IY) —%» M+ IY)/I*

A—%5 B/I —— B/(I+1*) —2— MI+IY)/(I+1I')

Notice that {J I, + I+ = I + I't, so corona semiprojectivity applies, and the
left square is still a pull-back since I N (I, + I*) = I,,. (|

If A is unital, then it is easy to see that one need only check the corona
semiprojectivity condition in the special case p(1) = 1.

We now recall the definition of stability from [8]. We shall assume that
G ={gi1,-.. ,9} is a finite set of generators and R = {p,,... ,px} is a finite
set of *-polynomials with zero constant terms. By C*(G|R), we denote the
universal (not-necessarily-unital) C*-algebra generated by g, ... , g; subject
to

”gJ” <1 and pi(gla s 7gl) =0.
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By C?(G|R), we denote the universal unital C*-algebra generated by g;,... , g,
subject to
lgill <1+e and |pi(gs,--- )l <e

Sometimes, to be more explicit, we will denote the generators of C*(G|R)
by g{,...,9;. We let P, denote the surjection

P.: C}{G|R) — C*(G|R)

which sends g; to g;.

If, for every 1 > 0, there exists € > 0 and a *-homomorphism
o.: C*(GIR) — C:(G|R)

such that
llaf(g])—gjllsn’ .]:1’)1
and P, oo, = id, then R is stable.

Theorem 2.5. For a finitely presented C*-algebra C*(G|R), the following
conditions are equivalent:
(1) R is stable.

(2) C*(G|R) is semiprojective.
(3) C*(G|R) is corona semiprojective.

Proof. The implication (1) = (2) follows from [8, Theorem 3.2] while (2) <
(3) is a special case of Theorem 2.4. For (2) = (1), applying semiprojectivity
to the identity map immediately gives a map 6 : C*(G|R) —C*(G|R) with
P; 05, =id. Let o, equal the composition of &, with the natural surjection
of C:(G|R) onto C*(G|R) for e sufficiently small, 0 < e < €. O

3. Generalizations of Kasparov’s Technical Theorem.

Using the techniques of [8] and [11] we derive several generalizations of
Kasparov’s Technical Theorem (KTT). Our goal is to find the closest possible
thing to matrix units inside a corona algebra for C*-subalgebras of the form
A ® F where A is o-unital and F is finite-dimensional.

All our theorems involve a subset D with which these ersatz matrix units
are to commute. Easier proofs exist if one ignores D and sticks with the
separable case. Indeed, one may use the projectivity of C M,,, or @ Cy(0, 1],
and [12, Proposition 3.12.1] along the lines of an observation of Cuntz de-
scribed in [2, §12.4]. We will discuss this further in recent joint work with
Gert Pedersen [10].
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In this section, E will always denote a o-unital C*-algebra and C(E) its
corona algebra.

Theorem 3.1. Suppose A,,...,A, are o-unital C*-subalgebras of C(E).
Let D be a separable, unital C*-subalgebra of C(E) such that

A;DA, =0, j#k.
There ezist gy,... ,gn in C(E)N D' such that
OSQJSL j:].,...,’fL,

99k = Oa .7 7é k?
g;a =ag; =a, VYac€A.

Proof. For n = 2 this is equivalent to KTT. Indeed, it is very close to
the equivalent result [11, Theorem 3.7]. An induction argument gives the
general case. a

Notice that A; A, = 0 implies that the C*-algebra generated by A; U A,
is isomorphic to A; & A,. Therefore, Kasparov’s Technical Theorem implic-
itly involves a *-homomorphism A; & A, — C(E). A natural setting for
generalization is M, (A) — C(FE).

Theorem 3.2. Suppose A is a o-unital C*-algebra, ¢ is a x-homomorphism
¢ : M,(A) = C(E)

and im(yp) commutes with a separable subset D of C(E). There exists a *-

homomorphism
v:CM, - C(E)nD'

such that, setting q;; = P(t ® ey;),

g;0(a®en) = dipla®ey), Vae€ A

Proof. Without loss of generality, D may be assumed to be a unital C*-
algebra. Applying Theorem 3.1 to

D’ (P(A ® 611)7 e a<p(A ® enn)
we obtain g,... ,g, in C(E) N D’ such that

0<g:<1, gig;=0(0#7),
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girla®e,;) = pla®ej;).
Let h be a completely positive element of A. Since, for any a in A,
gip(hah ® ejr) = g:9;0(h ® e;)p(ah @ ey
= (SZJ(P(h(l.h ® ij)
we conclude
(1) gipla®eyr) = d,50(a ® ejy)

for all 7, 7,k and all a € A.
Let z = ¢(h ® w) where

Since z is normal and both z and |z| = ¢(h ® I) commute with D, we may
apply [11, Theorem 4.4]. Thus, there exists u in C(E) N D', with ||uf < 1,
such that = u|z| and z* = u*|z|.

Multiplying z = ul|z| by ¢(ah ® e;;) yields

up(hah ® e;;) = p(hah ® e;y1;).

(Addition taken mod n.) Therefore, by this and a similar calculation based
on z* = u*|z|,

(2) upla®e;) =pla®ey;) and u'pla®ey) =pla®e ;)

for all j,k and all @ € A.
We now make a first approximation on what shall be the images, under
1), of the generators t ® e;; of CM,,. Let

ap = gnunﬁlgla
and then for j=n—-1,...,2,
aj_l = gj_l’u,j—’2la]'|.

Clearly a, € D' and

(3) |02| < |a3| <. < lanl <L
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By induction, a; € g;C(F)g,. This forces some of the relations determining
C M, (as in [8, Proposition 2.7]) to hold, namely

ajak=0, j,k=2,...,n,

(4) ajar, =0, j#k.
We claim that, for all b € A and all ¢, j, k,
(5) a;p(b®ejr) = 01;0(b @ e) and afp(b® e;i) = 6;;0(b  eq).
For i = n this follows directly from (1) and (2). But then
lanle(b ® €ji) = b10(b ® i)

so one may handle the case i = n — 1, et cetera.
As done in the proof of [8, Lemma 4.8], for j = 2,... ,n we define

d; = lim a;((1/m) + aja;) " (aza2)".

By the calculations done in the proof of [8, Lemma 4.8] we conclude that
setting (¢ ® e;;) = a@; defines a homomorphism

Yv:CM, - C(E)nD'
For every b € A, (5) implies
(6)  Gip(b®ejr) = b10(b® eix) and ajp(b ® ejx) = 6;;0(b @ e1x)
whence

Pt ® ei;)p(b® en) = djnp(b® eq).

4. Interval stretching in corona algebras.

We continue in this section to assume C(E) is the corona algebra of some
o-unital C*-algebra.

Let us consider a simple case of Kasparov’s Technical Theorem. Given
hi,he in C(E) such that

(7) 0 < h,’ < 1 (Z = 1,2) and hlhz = O,
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the conclusion is there exists an additional element so that now

0<2z<1L,0<h<1(i=1,2),

(8) hlz = 0, hzZ = hz and h1h2 =0.
The universal C'*-algebra for these relations are as follows:
C*(hy,hs | (7) holds ) = Cy([-1,0) U (0,1])

and
C*(h1,h,2 | (8) holds ) = Cy([-1,0) U (0,2]).

For this reason, we think of Kasparov’s Technical Theorem as a device for
stretching an interval algebra at a point.
We introduce some notation to be used for the rest of this section.
Let X C C denote the union of the unit circle and the interval [-2, —1].
Let
A, ={f € C(X,M,) | f(—2) is scalar}

and let a : M,(Cy(0,1))~ — A, denote the inclusion of the subalgebra of
functions in C(X, M,,) that are constant and scalar on [—2, —1].

Lemma 4.1. Let B denote any separable, unital C*-algebra. Given a *-

homomorphism
v : M,(Cy(0,1))” ® B— C(E)

whose image commutes with a separable subset D C C(E), there exists *-

homomorphism
p: A, ®B— C(E)

such that ¢ o (a ® idg) = ¢ and whose image commutes with D.

Proof. Since A, and M, (Cy(0,1))™ are nuclear there is no ambiguity in the
tensor product. As the tensor products involve unital C*-algebras they are
characterized as the universal C*-algebras containing commuting copies of
the two factors. By altering the subset D one easily shows that it suffices to
prove this result only when B = C.

Proposition 2.8 of [8] shows that M, (Cy(0,1))~ is the universal unital
C*-algebra generated by z,a,,as,... ,a, subject to the relations

la;l <1, j=2,...,n,

ajar, =0, 2<73,k<n,
a;a'k = Oa .7 7£ k?
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* o
aja; = 1'z,

*

*r = zz* = —x — z*.

Similarly, one may show that A, is the universal unital C*-algebra generated
by z,b,,bs,... ,b, subject to the relations

oIl <1, §=2,...,n,
bjby =0, 2<j4,k<n,
bibp =0, j#k,
bjb; = brby, 2<j,k<m,
(b56; — 1)(zz” + x*x) = 0,
rz* =z'r=—x— 1",

and the inclusion a corresponds to the *-homomorphism determined by the
assignment z — z,a; — b;|z|. Working with the same relations, but in
nonunital category, one sees that this is a special case of Theorem 3.2.

O

Lemma 4.2. Suppose J is an ideal in A and A is a sub-C*-algebra of B.
Let Jp denote the ideal of B generated by J. There is an isomorphism

&:B/Jg — By (A)J)

defined by ®(b+ Jg) =b.

We will need to prove technical results regarding maps from general di-
mension-drop graphs into corona algebras. For clarity we will concentrate
on the most important case, that of the dimension-drop intervals, I,,. Recall

I, = {f € C[0,1]| f(0),f(1) € CI},

this being the unital version of the dimension-drop interval.
Although isomorphic to I,, we also consider

J.={f € C[-1,2]| f(-1) and f(2) are scalar}.
Let ¢ : I, = J,, denote the inclusion that extends a function to be constant
on {—1,0] and on [1,2].

Theorem 4.3. Suppose ¢ : I, — C(E) is a x-homomorphism whose image
commutes with a separable subset D. Then there ezists a *-homomorphism
@:J, = C(E)ND' such that por = .
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Proof. Consider M,,(Cy(0,1))~ ® C[0,1] which we identify with
C,={feC(0,1?% M,) | f(0,t) = f(1,t) € CI, Vt}.
Restriction to the diagonal gives us a surjection
p: M,(Cy(0,1))~ ® C[0,1] — I,.
One can check that by the last lemma we have the commutative diagram

(A, ® C[0,1]) *¢, [, —— T,

T(a®id)*id TL

=3
Cr*c, In —

=i

n

and so this result thus follows from Lemma 4.1. O

Remark. The generalization of Theorem 4.3 to the case of extending maps
of dimension-drop graphs into corona algebras follows by the same methods,
but the notation is significantly worse.

5. Stability for dimension-drop graphs.

Suppose X is a graph. We denote the associated dimension-drop C*-algebra
by

Coert(X, M) = {f € C(X,M,) | f(v) € CI for all vertices v}.

Theorem 5.1. For every graph X, and every positive integer n, the C*-
algebra Cyeri (X, M,,) is universal for a stable set of relations.

Proof. We may reduce to the case of X connected using Proposition 3.10
and [8, Theorem 5.1]. For connected graphs, the proof is by induction on
the number of vertices. If there is but one vertex then

Cvert(X’ Mn) = (é Mn(CO(07 1)))

i=1

where J is the number of edges. This has stable relations by [8, Theorem 5.1].
Now suppose X has at least two vertices, v, and v;. We will need an
auxiliary space, X, which is obtained from X by stretching all edges attached
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to vy or v;. Topologically, X will be a copy of X. We shall use vy and v; to
denote the appropriate vertices in X.

Choose a function

ho: X = [-1,2]

such that hg'([~1,0]) consists of the union of half-closed subintervals, con-
taining vy, of each edge adjacent to vo. We may assume a similar statement
holds for hy'([1,2]) and v;.

We will identify X with the quotient of X obtained by collapsing

hs'([-1,0]) to a point and hy'([1,2]) to a different point. We will also

c0n31der two copies of the graph obtained from X by collapsing the two des-
ignated vertices together. We let Y denote the quotlent of X obtained by
identifying vy with v; and Y denote the quotient of X obtained by collapsing
he*([-1,0]) URg*([1,2)]) to a point.

Accordingly, we will be making identifications of the various dimension-
drop algebras with subalgebras of C (f( , M,,). Of course, C’ve,t(f( ,M,) is de-
fined as such a subalgebra. The remaining identifications are:

Cvert(X7 Mn) = {f I f(l‘) = f(UO) if hO(‘Z‘) <0
and f(z) = f(v) if ho(z) > 1},
Curert (Y, M) = {f | f(z) = f(vo) if ho(z) < 0 or ho(z) > 1}

Cvert(?7Mn) = {f l f('UO) = f(vl)}

Our strategy is based on the observation that C.er (X, M,,) is generated
by the subalgebra C,e (Y, M,,) and the element

h=h ®I where h;(z)=max(min(hy(z),1),0).
A way to express the relation between A and Ci. (Y, M,,) is that
e27rih — 621rih1 ® I

By Theorem 2.6, our task is reduced to proving corona semiprojectivity
for Cyers (X, M,,) while assuming it for Cyer(Y, M,,). So suppose that we are
given a unital *-homomorphism

¢ : Crert(X, M) = C(E) = B/ In.
By Theorem 4.3 and the remark following, there is an extension of ¢ to
@ : Cer(X, M,,) = C(E).

By the induction hypothesis, the restriction of @ to Cvert(f’,Mn) can be
lifted to _
1/) : Cvert(Y7 Mn) - B/Im
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for some m. This leads to the following commutative diagram:

Cvert(f/aMn) L4 B/Im

Tm .

i -
S

Cvert (

©

Overt(K Mn) - vert(X’ Mn) = C(E)

Let H be any lift of ¢(h) to B/I,, such that 0 < H < 1. Now define
H = p(i(ho) ® T) + p(m(ho)/* © ) Hy(m(ho) /> & I)

where [ and m are the functions

0, t<0, —t, t<0,
(t)=¢ ¢t 0<t<l,m{)=4 0, 0<t<I,
2-t1<t<2, t—1,1<t<2.

These are defined so that | + mhy, = hy, where h, is the function

0, ¢t<0,
ho(t) =48, 0<t<1,
1,1<t<2.

Notice also that hao(ho) = hy.
Clearly H is selfadjoint. In fact, it is also a lift of ¢(h) since

T (H) = @(l(ho) ® I) + @(m(ho) ® I)@(h2(ho) ® I)
= @((I +mhy)(ho) ® I) = (h).
For any f ® T € Cyert(Y, M,,)
(fOT)mh)*®I)=0 = (f@T)H=Hy(fT).

By replacing H by h,(H), we have found a lift of p(h), with 0 < H < 1, and.
a lift of ¢|c,...(v,m,) that commute.
Expressing this conclusion differently, we have shown that given a unital

map
Cvert(Xa Mn) - C(E)
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we can find an m and a map making the diagram commute where D is the
universal unital C*-algebra generated by a copy of Ce (Y, M,,) and a central
element h such that 0 < h < 1. e,

D = Cyeri (Y, M,,) ® C[0, 1].

We have no further need for X so v, and v; again denote the specified
vertices in X. We regard Y as the quotient of X, with quotient map n: X —
Y which collapses vy and v; to a single vertex we call wy.

Let us identify D with

{g € C(Y x[0,1], M,,) | g(v,t) € CI for all vertices}.

The copy of Cier (Y, M,,) and the extra element h appear as functions in D
constant in one variable or the other. There is a sort of diagonal map

A:X =Y x[0,1], Alz) = (n(z), h(z))

which induces a surjection 8 : D — Clen (X, M,,).
We need also a quotient of D where the relation (9) holds approximately.
Consider

Zs = {(n(@), 1) € Y x [0,1] | |e2mM @) — 27| < g},
where ¢ is a small number to be named later, and let
Ds={g € C(Z,M,) | g(v,t) € CI for all vertices}.
Since A maps into Z it induces
Bo : Ds = Cyers (X, My,).

By increasing m we may assume that the map D — B/I,, factors through
Dj;. Therefore, we are done if we exhibit a right-inverse to By. This exists
because there is a retraction of Z; onto im(A) which sends (v,t) to (v,t')
for every vertex v. To be able to describe this retraction we break up Zs as
Zs = Z1 U Zy U Z3 where

2 = {(n(@), ) | Ihy(e) — | < 1/4,0 < t < 1},
Zy = {(n(), ) | Iha(w) + 1 —t] < 1/4},
Zs = {(n(z),4) | |ha(z) — 1 — ] < 1/4}.

The retraction sends Z, to (wp,1) and Zz to (wp,0). Each point (n(z),t)
in Z; is sent to (n(z),s) where s is the unique number in (0,1) such that
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e?ms = emih1(=) By choosing d sufficiently small, we ensure that (v,t) ¢
Zy U Z3 for any vertex v except for v = w,. Therefore this is the desired
retraction. O
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SINGULAR MODULI SPACES OF STABLE VECTOR
BUNDLES ON P?

Rosa M. Mi1rS-Roic

The goal of this paper is to give an example of singular
moduli space of rank 3 stable vector bundles on P3.

Introduction.

In 1977/78, M. Maruyama proved the existence of a moduli scheme
Mpn (731, vy Cmin(r,n)) Parametrizing isomorphic classes of rank r stable vec-
tor bundles on P™ with given Chern classes ¢i,..., Cmin(n,r) (cf. [M1, M2]).
The goal of this note is to give, to the best of my knowledge, the first ex-
ample of singular moduli space of stable vector bundles on P3. It has been
motivated by a recent work of Ancona and Ottaviani where they show that
the moduli space MIps(k) of stable instanton bundles on P® with quan-
tum number k=3 or 4 is singular. Moreover they claim that MIps(3) and
M1Ips(4) are the first examples of singular moduli spaces of stable vector
bundles on projective spaces (cf. [AO]). Ancona-Ottaviani’s result together
with the well known fact that Mp:(r; ¢, ;) is a smooth quasi-projective va-
riety of dimension 2rc, — (r — 1)c} + 1 — r? gives rise the following question:

Is there any example of singular moduli space of stable vector bundles on
P37

As I pointed out before my aim is to give an affirmative answer to this
question (cf. Theorem 2.10).

1. Preliminaries.

In this section we recall some well known results needed later on.

1.1. Let H(18, 39) be the open subscheme of HilbP} parametrizing smooth
connected curves C C P? of degree 18 and genus 39. (See [EF) for a precise
description of H(18, 39).) Let H; C H(18,39) be the 72-dimensional irre-
ducible, generically smooth component whose general point parametrizes an
arithmetically Cohen-Macaulay curve X C P23 having a locally free resolu-
tion of the following type:

(1) 0— O(-7)* - O(-6) ® O(—4) = Ix = 0.
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Let H, C H(18,39) be the 72-dimensional irreducible, generically smooth
component whose general point parametrizes an arithmetically Cohen-Ma-
caulay curve Y C P2 having a locally free resolution of the following type:

(2) 0= O(—6)* ® O(—8) = O(=5)* =+ Iy = 0.

It is well known that there exits an irreducible subset H = H; N Hy C
H(18,39) of dimension 71 whose general point parametrizes an arithmeti-
cally Buchsbaum curve C' C P? having a locally free resolution of the fol-
lowing type:

(38) 0— O(-8) = O(-7)*® O(-8) = O(—6)* ® O(—4) = I — 0.

1.2. Remark. For all curve Z € H; U H,, wz(2) is globally generated.
From now on, for all curve Z € H; U H,, we set o := dim H®(wz(2)) (=74;
by Riemann-Roch’s Theorem).

1.3. Fact. Let 0 > F - F — G — 0 be an exact sequence of vector

bundles. Then, we have the following exact sequence involving alternating
and symmetric powers:

0> 8E—>S"'EQF - .. > EQAN'F 5 AF - NG = 0.

1.4. Hoppe’s criterion for the stability of a vector bundle. Let X be a
projective manifold with Pic(X) & Z and let E be a vector bundle on X.
If H(X,(AYE)porm) = 0 for 1 < g < rk(E) — 1, then E is stable. As usual,
given a vector bundle E on X, we denote by E, ., the twist of E whose first
Chern class c; verifies —rk(E) +1 < ¢; <0.

2. Main results.

2.1. Let us call £, the irreducible family of sheaves F on P? constructed as
an extension:

o= (01,.,0q) : 0—-0%— EQ1)—>Ix(2) =0

where X € H, and o0y,...,0, € H’(wx(2)) = Ezt'(Ix(2),0) are general
global sections which generate the sheaf wz(2) everywhere.

It is easy to see that E is a vector bundle on P3 of rank « + 1.
2.2. Let us call £, the irreducible family of sheaves F' on P?3 constructed as
an extension:

A= (A1, Aa) 050> F(1)—>Iy(2)—>0

where Y € H, and )\,,...,\, € H(wy(2)) & Ezt'(Iy(2),0) are general
global sections which generate the sheaf wz(2) everywhere.
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Again it is easy to see that F is a vector bundle on P? of rank a + 1.
2.3. And let £ C £; N L, be the irreducible family of sheaves G on P?
constructed as an extension:

= (l1y s ba) 050> G(1)—>1:(2) =0

where C € H C H, N Hy and piy, ..., o € H(wc(2)) = Ext'(16(2),0) are
general global sections which generate the sheaf w;(2) everywhere.
Again it is easy to see that G is a vector bundle on P? of rank a + 1.

Proposition 2.4.
(1) A general vector bundle E € L, has a locally free resolution of the
following type:

0 O(-5)"— 0(-4)'®0(-2) ® 0* = E(1) - 0.

(2) A general vector bundle F € L, has a locally free resolution of the
following type:

0— O(=6) ®O(-4)*> - O(=3)® O* = F(1) = 0.

(3) A general vector bundle G € L has a locally free resolution of the
following type:

0— O(=6) = O(=6)®O(-5)* = O(-4)*'®O(-2)dO* — G(1) — 0.

Proof. (1) From the exact sequence:
00— E(l) > 1Ix(2) >0
and the locally free resolution of Ix(2) (See 1.1):
0— O(=5)" = O(-4)'d O(-2) = Ix(2) = 0

we get the following commutative diagram:

0 0
| |
O(-5)* — O(-5)*
| |
0 > O 5 0“9 O(-2)®O(-4)* —— 0(-2)d0(—-4)* —— 0
H I l
0 y O > E(1) — Ix(2) — 0

! !

0
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which gives what we want.
(2) and (3) Analogous. (|

Corollary 2.5. Given a vector bundle E € L,UL,, E(t) is globally generated
for all t > 5.

2.6. Let F, be the irreducible family of rank 3 vector bundles P on P3
defined as the cokernel:

0->0(-5*% —— E->P—=0

814..4982

where E € L; and s; € H°(E(5)) are general global sections of E(5).
2.7. Let F, be the irreducible family of rank 3 vector bundles Q on P3
defined as the cokernel:

0 — O(-5)>2 ﬁ F->Q—-0

where F € £, and f; € H°(F(5)) are general global sections of F(5).
2.8. Let F C L; N L, be the irreducible family of rank 3 vector bundles R
on P3 defined as the cokernel:

0-350(-5*2% —— G—>R—0
91,--+,92

where G € £ and g; € H°(G(5)) are general global sections of G(5).

Proposition 2.9.
(1) A general vector bundle P of F, is a rank 3 stable vector bundle on P?
with Chern classes (287,42065,4195775).

(2) A general vector bundle Q of F, is a rank 3stable vector bundle on P3
with Chern classes (287,42065,4195775).

(3) A general vector bundle R of F is a rank 3 stable vector bundle on P>
with Chern classes (287,42065,4195775).

Proof. (1) Using the exact sequence:

(*) 0> 0(-5)**5E—-P—0

and the locally free resolution of E given in Proposition 2.4(1) we get:
c(P) = (1 —3)(1 — )™/ (1 — 68)*(1 — 5t)).

Hence ¢, (P) = 287, c2(P) = 42065 and c3(P) = 4195775.
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Let us see that P is stable. Using Hoppe’s criterion we need to prove that
H®(P)norm = H°(A?P)porm = 0. Since ¢;(P) > 0 and ¢;(A%*P) > 0, we have
(P)norm = P(A) and (A2P)porm = (A2P)(p) for some p, A < —1. So it siffices
to prove that H°(P)(—1) = H°(A?P)(-1) = 0.

Using the exact sequence (*) and the locally free resolution of E given
in Proposition 2.4(1) we easily get that H°E(—1) = H°P(—1) = 0. Again
using the exact sequence (*) and taking wedge powers we get the exact
sequence

0= S20(=5)*"2 > O(=5)*2® E — A2E — AP -0

cutting in short exact sequences we get H°(A2P)(—1) = H°(A’E)(—1) =0
where the last equality follows from the locally free resolution of E given in
Proposition 2.4(1) taking wedge powers and cutting in short exact sequences.

(2) and (3) are analogous. O

Theorem 2.10. The moduli space Mps(3;—1,14609,1917791) is singular.

Proof. We have constructed two irreducible families /; and F, of rank 3
stable vector bundles on P? with Chern classes (287,42065,4195775) which
meets along an irreducible family 7. Hence in order to see that M :=
Mps(—1,14609,1917791) = Mps(—287,42065,4195775) is singular it is
enough to prove that F; and F, belongs to two different components of
M. Using proposition 2.9 and 2.4 we get:

(1) If P is a general vector bundle of F; then:

H!P=HP(3)=0
R°P(3) = 1+ 10a, A*P(3) = 0.
(2) If @ is a general vector bundle of F, then:
H.Q=HQ(3)=0
h°Q(3) = 10a, K*Q(3) = 1.

Therefore, by semicontinuity F; and F, are contained in different compo-
nents of M which gives what we want. 0
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THE GODBILLON-VEY CYCLIC COCYCLE AND
LONGITUDINAL DIRAC OPERATORS

HiTosHI MORIYOSHI AND TOSHIKAZU NATSUME

The goal of this paper is to prove the index theorem for
the pairing of the Godbillon-Vey cyclic cocycle with the index
class of the longitudinal Dirac operator for a codimension one
foliation. Let (X, F) be a foliated S'-bundle over an arbitrary
spin manifold M. The Dirac operator on M lifts to a longi-
tudinal elliptic operator D, the longitudinal Dirac operator,
on (X, F). The index class of D is an element of the Ky-group
of the foliation C*-algebra C*(X,F). A densely defined cyclic
even-cocycle on C*(X, F), the Godbillon-Vey cyclic cocycle, is
constructed. The main result gives a topological formula for
the pairing of the Godbillon-Vey cyclic cocycle with the in-
dex class of D. The proof of the main theorem uses a new
technique, the pairing with the graph projections.

1. Introduction.

Over the past decade K-theory has come to play significant roles in the study
of C*-algebras. One such role is as a receptor of indices of pseudodifferential
operators on foliated manifolds. If P is a longitudinal elliptic operator on a
foliated manifold (X, F), then the index of P is an element of the Ky-group of
the foliation C*-algebra C* (X, F) [10]. A transverse invariant measure v for
the foliation generates a trace on the C*-algebra C*(X, F). This trace defines
an additive map ¢, from the Ky-group into the scalars. Evaluating ¢, on the
index of an operator, we obtain a numerical invariant (an analytic index),
which depends on the transverse invariant measure v. The index theorem
of A. Connes [6] describes the analytic index in terms of the symbol of the
operator and the foliation cycle corresponding to the transverse invariant
measure.

For many interesting foliations, e.g. Anosov foliations, there does not
exist a nontrivial transverse invariant measure. Thus, in order to obtain
numerical invariants of operators on such foliations, we need an alternative.
A natural candidate is the pairing between K-group and cyclic cohomology.
In fact, a trace on a C*-algebra may be regarded as a densely defined cyclic
0-cocycle. Our aim is to give an index formula for higher dimensional cyclic
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cocycles. In this direction several authors have obtained results for certain
cocycles, see for example [11]. Connes and H. Moscovici [9] studied the
pairing between cyclic cocycles associated with group cocycles and Dirac
operators on a Golois covering. In order to compute the pairing they use
idempotents constructed by A. Wasserman. Our arguments use graph pro-
jections associated with the operators; the advantage is that they provide a
direct construction and result in a simple argument.

We focus on a particular cyclic cocycle for a special class of foliations. Let
I" be a discrete group acting freely on a manifold M so that M /T is a closed
manifold. Suppose that a I'-action on the circle S*, by orientation preserving
diffeomorphisms, is given. The S'-bundle over M/T' associated with the
action is equipped with a foliation F, whose leaves are transverse to the
fiber of the bundle. The S*-bundle X with F is called a foliated S-bundle.
When the action satisfies a certain condition (Condition 2.2), the foliation
C*-algebra C*(X,F) is strongly Morita equivalent to the reduced crossed
product C(S*) x I'. The foliation F is of codimension one, and transversely
orientable. To such a foliation, is assigned a characteristic class, called the
Godbillon-Vey class [13]. It is a 3-dimensional de Rham cohomology class of
X. For foliated S*-bundles, this characteristic class is interpreted as a group
2-cocycle with values in the space of 1-forms on S* [5]. Based on this picture,
A. Connes studied an analytical interpretation of the Godbillon-Vey class
[8]. He constructed a densely defined cyclic 2-cocycle 7 on the C*-algebra
C(S') x T and showed that the additive map, induced by 7, coincides with
the map, which the Godbillon-Vey class induces on the geometric group
K°(S',T), via the index map K°(S*,T') — Ko(C(S*) % T).

If P is a longitudinal elliptic operator on a foliated S'-bundle (X,F),
its index ind(P) is regarded as a class in Ko(C(S*) x I') via the strong
Morita equaivalence. We will explicitly compute the value of the additive
map mentioned above on the indices of longitudinal Dirac operators. More
precisely, we will consider the case where an even-dimensional manifold M
is endowed with a I'-invariant metric and a I'-invariant spin structure. We
will study the index of the associated Dirac operator D. In order to carry
out an explicit computation, the following points have to be taken care of.
(1) Since ind(D) is defined to be a class in the Kyp-group of the foliation C*-
algebra, we have to obtain a formula for a densely defined cyclic cocycle on
C*(X,F) (Section 6). The strong Morita equivalence between C*(X, F) and
C(S") xT yields a homomorphism from C(S*) xT into C*(X, F). Thus, once
we obtain a densely defined cyclic cocycle on C*(X, F), we can compare this
cocycle with Connes’s cocycle (Section 9). (2) The index ind(D) is described
in terms of a parametrix of D [10], [9], and there is not a canonical choice
of a parametrix. Thus it seems infeasible to compute the evaluation on
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such an element. Hence we need a projection “canonically” attached to the
operator. The operator extends to a closed operator T'; the graph of T is a
closed subspace, and the associated orthogonal projection is called the graph
projection of T'. It will be shown that the graph projection represents ind(D).
A disadvantage of using graph projections is that they lack the regularity
which idempotents in [9], [10] can enjoy. Thus it has to be verified that the
graph projection does indeed belong to the domain of the cyclic cocycle.

A use of graph projections in the index problem is a new idea. Once
(1) and (2) above are done, the proof of the actual computation of the
evaluation (Theorem 8.10) will be straightforward by employing Getzler’s
symbolic calculus method [12].

This work grew out of a study of the K,-group of the C*-algebras of
Anosov foliations on the unit circle bundle T} ¥ of a closed Riemann surface
3 of genus g > 1 furnished with a metric of constant negative curvature.
Those C*-algebras are strongly Morita equivalent to crossed product C*-
algebras C(S") x m,(Z), where 7, (Z) acts on C(S*) through linear fractional
transformations. Since Anosov foliations on 77% have nonzero Godbillon-
Vey classes, there must be a class in K on which the cyclic cocycle attains
a nonzero value. Our motivation was to describe this class as clearly as
possible. This matter will be discussed in Section 10.

2. Foliated Bundles and Its C*-algebras.

In this section we study the properties of C*-algebras associated with foli-
ated bundles. On these C*-algebras we will construct densely defined cyclic
cocycles in Section 6. .

Let M be a closed Riemannian manifold, and let M — M be a Galois
covering with deck transformation group I'. Given a right ['-action on a closed
manifold V' by diffeomorphisms, we can construct a fibre bundle X — M
with fibre V. This is the associated bundle

p:X=MxpV—oM/T=M,

where the right I-action on M xVis diagonal. The product foliation on
M x V with leaves M x {z},z € V, descends to a foliation F on X. The
projection p restricted to any leaf of F is a covering map. We call the
V-bundle X — M together with F a foliated V -bundle.

Condition 2.1.  Through the paper we assume that a I'-action on V
satisfies the condition: for g € T, if there exists an open set U in V such
that zg = z for all z € U, then g is the identity element of T'.

The Condition 2.1 guarantees that the holonomy groupoid G of F is a
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Hausdorff space, and that
G=(MxMxV)/T,

where I' acts by (m,n,z)g = (mg,ng,zg), (m,n,z) € MxMxV,geTl.
The groupoid structure of (M x M x V) /T is described as follows. Denote
by [m,n,z] the class of (m,n,z) € M x M x V. The source map s and the
range map r are given by

T([mvn’x]) = [m,x]’

s([m,n,z]) = [n, z].

Two elements [m',n’,z'] and [m,n,z| are composable if and only if there
exists a g € I such that n' = mg, =’ = zg. In this case,

[m',n', z'|[m,n,z] = [m'g~", n, z].

The lifting to M of the Riemannian metric on M induces a leafwise Rie-
mannian metric. The latter gives rise to a left Haar system {v*} of the
groupoid G [18].

We recall the definition of foliation C*-algebras with coefficient [11]. Let
E be a Hermitian vector bundle over X. Denote by C°(G, E) the space of
all compactly supported smooth sections of the bundle (s*(E))* ® r*(E). So,
if f € C>(G, E), then

f(’Y) € Hom(Es("{)7Er('y))7 Y € G

The space C°(G, E) has a *-algebra stucture:

()M = [ LRG0 ),
Grv)
F =0,
where fi(v')f2(7 ~'7) is the composition of maps, and
(f(v7))" € Hom(Ey(y), Eiry))

is the adjoint of f(y™") € Hom(E}(y), Ey(+))-
Let 7, § be the lifting of r, s to MxMxV — M x V, respectively. Thus

7(m,n,z) = (m,z) and 3(m,n,z) = (n,z).

Denote by E the lifting to M x V of E. It is easy to see that C®°(G, E) is iden-
tified with the space K, of those I'-invariant smooth sections of (5*(E))* ®
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7 (E) which have I'-compact supports. Here we say that a subset of M x
M x V is D-compact, if its image in (M x M x V)/T" is compact (Definition
8.3 of [3]).

Let M, = =M x {z}, £ € V, and let , be the strictly positive smooth den-
sity on M, corresponding to the I'-invariant smooth density on M through
the canonical identification of M, and M. Set

H, = L*(E,, 1)

where E, is the restriction of E to M,. Then the collection H = (H,)scy
together with the space C.(E ~) of compactly supported continuous sections
of the bundle E over J M x V, defines a continuous field of Hilbert spaces over
V. The I'-action on M x V and E gives rise to an action on H. We denote this
action by £ — g€, for g € ', and a section & of H. The space Endr(H) of T'-
equivariant bounded measurable fields of operators T' = (T,), T, € B(H,),
is a C*-algebra, where the norm is given by

IT|| = sup{||T:||;z € V}.
There is a faithful representation p : K. — Endr(H). For f € K., the
operator p(f) is defined by
(22) p(£)atlm) = [ f(m,m,2)¢(m) dps(n),
for £ € H,. The norm-closure of K, with respect to the norm

A= 1NN = sup{[lp(f)ell;z € V}, f € Ko,

is, by definition, the C*-algebra C*(X,F, E) of the foliated bundle (X, F)
with coefficient E.

Let C(V) x T be the reduced crossed product C*-algebra arising from the
(left) I-action on C(V') given by

(ga)(z) = a(zg), g€ C(V).

The C*-algebra C(V) x T is exactly the reduced C*-algebra associated with
the following groupoid. As a topological space this is V x I'. The space of
units is V, with s(z,g) = zg and r(z,9) = z. Thus C(V) x I contains the
following dense *-subalgebra C.(V x T') :

(a'b)(xa g9) = Z a(z, h)b(zh, h—lg)a

hel’

a*(z,9) = a(zg,97")
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for a,b € C,(V x I'). For each z € V, one has
s (z) ={(xg~',g9) €V xT; ge T}
Define a *-representation L, of C.(V x I') on I?(s~(z)) by

[La(a)é](zg™",9) = Y a(zg™,h)é(zg~ h,h7"g),

her
where a € C.(V xT') and ¢ € I?(s7!(z)). Then
llal| = sup{||Lz(a)||; = € V} < o0,

and C(V) x T is the completion of C.(V x I') with respect to the norml| - ||.
If U, denotes the characteristic function of V' x {g}, then U, belongs to
C.(V x T), since V is compact. Any a € C.(V x I') can be expressed as a

finite sum

a=>Y aU, a,€CV).

g€r

The x-algebra C.(V xT') is generated by C(V') and (U,),er, subject to rela-
tions: U,Uy = Ugn, 9,h €T, Uy = Uy-1, and UgaU,; = g(a), a € C(V).
Remark 2.3. The collection {I?(s7!(z))},ev forms a continuous field of
Hilbert spaces, and the correspondence z — L,(a) is a continuous field of
bounded operators.

Proposition 2.4. There ezists a Hilbert C(V) x I'-module € such that
C*(X,F,E) is isomorphic to the C*-algebra K(e) of compact operators of e.
In particular, C*(X,F, E) is strongly Morita equivalent to C(V) x T

Proof. Choose a base point * € M. The image T of {*} x V in X is a
complete transversal of F, where GT = s™'(T) Nr~*(T) and Gy = s~(T)
are identified with V x T and M x V, respectively. Then Proposition 3 of
[14] implies the assertion. (|

We now describe the module ¢, as we will need the description later. Let
S = C.(E). A right C.(V x I')-action on § is defined by

Ef)(m,z) =3 flzg™ 9)(g7 ) (m,z), E€S, feC(VxT).

gel

A C.(V x I')-valued inner product (-,-) on S is defined by

(€,6)(,0) = [ (6:(m,), (982)(m,2)) g diaa(m),

£
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where (-,-)z is the Hermitian product in E. The module € is the completion
of S with respect to the norm ||¢|| = ||(£, &)[]*/2.
The representation of C*(X,F, E) on e given by Proposition 2.4 is:

(FrOm = [ G arO),
for f € C.(G,E), { € C(Gr,r*E). Through the identification G = (H X
M x V)/T, the left C.(G, E)-action is described as

(F+€)m,a) = [ flm,n,2)¢n, ) dus(n),

where (m,z) € MxV Gr, and f is regarded as a ['-invariant family
of integral kernels on M x M x V. Proposition 3 of [14] says that the left
C.(G, E)-action extends to a faithful representation of C*(X, F, E) on ¢, and
that the image of this representation is precisely the space K(€) of compact
operators of the Hilbert C*-module € over C(V) x T N

Let C’f"’o(E) be the space of compactly supported sections of E over M xV
of class C°> ([6]). In an obvious way C**°(E) can be regarded as a subspace
of sections of the field H. Consider the *-algebra of intertwining operators
of # which map C°°(E) into itself. Its C*-closure in Endp(#) is denoted
by 8.

Proposition 2.5. There exists a *-monomorphism ® from B into the
C*-algebra L(€) of all bounded operators of the Hilbert C*-module € over
C(V)yxT.

Proof. For ¢ E~C’§°’°(E‘), denote by £, the restriction of £ onto M,. Then
& € H, = L*(E,). For f € C.(GY), define S; .(f) € C>°(E) by

Seo(f)(m) =D (g7 ) (m,z)f(zg™", 9).

ger

For u € C*°(E), define T; ,(u) € C.(GT) by
Tﬁ,z(u)($9-17g) = ((g_lg)zau>z,

where (), is the inner product of H,.
We need the following lemma.

Lemma 2.6. The linear maps S¢, and T , extend to bounded maps

SE,I : 12(GZ) - H:Ea
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and
T{,il: : Hz: — l2(Gg')

Moreover,
(1) 8¢ is the adjoint of Tg,.;
(2) for &,n,( € C®O(E) and f € I>(GT), one has

S&»an,m(Cm) = (£(n,())as
TE,zSn,z(f) = Lz((fanﬂ ))f7

(3) 1€l = sup{l|S¢ell; = € V} = sup{||Te.ll; z €V},
where ||€|] is the norm of € in €.

Proof. By a straightforward computation,

(Sﬁ,z(f)’ u)m = (fa Tﬁ,z(u))v

where f € C.(GY) and u € C.(E), and the right-hand side is the inner

product in I?(GT). Let a € C.(V xTI') and &,n € Cg>°(E). Then
Se(aler) = (€a)s,
T; = (n:) = (€, MG
From this

Sﬁ,zTn,z (Cﬂv) = S{,w(("% C)lGET)
= (é('r]ag))a:

As for the second equality in the assertion (2), we have

TE,zSn,z(f) = T&,z((na‘)w)
= (£,m0)|G7
= ((¢,ma)lG
= L, ((&; M)/,

where a is an element of C,(V x I') such that a|gr = f. Thus
1Se2 (MI* = (Se.z(f), Se.a(f)) = {f5 L ((§, ) )-

From this and facts that C.(GT) is dense in [*(GT), and that L,(({,¢&)) is
positive, it follows that S, extends to a bounded linear map, and

IS¢zl = 11 L= (&, EDII-
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Consequently, T¢ . also extends to a bounded linear map, and

1T ol = 115, 11-
Finally,
ENP = 1€ O = sup [| Lo ((&, )]
= sup || Se..||”
= sup HTE,zHQ'
This completes the proof of the lemma. L]

We return to the proof of Proposition 2.5.

Assume that P = (P,) € Endr(H) and its adjoint P* = (Pr) preserve
the space C>°(E). Since P is I'-equivariant, it is readily seen that P defines
a C.(V x T')-module homomorphism P of C**°(E). Furthermore, for ¢ €
C>Y(E), one has

(2.7) 1P(€)]] = sup ||Spe).|
= sup || P, S¢ .||
< sup || || sup || S o]

= [Pl ]E]l-

Thus P is a bounded operator of e. Similarly P* defines a bounded operator
P* with
(P& m) = (£, P™n)

for £,n € e. Therefore P € L(e).
We show that the correspondence P — P is injective. From the inequality

27), )
1Pleco < 1171

Assume that P = 0. Let P = lim; PY in norm in Endr(H) where we
have that P preserves C®°(E). Then, for £ € C>°(E), we have

lim [P (¢)]| = 0.
j—ooo

Notice that any & € C>0(E) is written as & = a(8,7) for some a, 8,7 €

C>9(E). Then

PO, = PO (afB,7))s = PP SauTpu(Va)-
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Therefore

sup | P&, || < sup [P S, .| sup | T30 (72)
< C|PY(a)|

for some C > 0. Thus sup ||[PY¢,|| — 0 as j — oo. Hence P,¢, = 0 for all
z € V. This means that P = 0 in Endp(#). Thus P — P is an injective
x-homomorphism, and in particular,

I1Plle = 1P|l = sup [| Pl
This ends the proof of Proposition 2.5. M

Remark 2.8. The foliation C*-algebra C*(X,F, E) is a subalgebra of ‘B,
and the restriction to C*(X, F, E) of the embedding of B into L(e) is exactly
the isomorphism

C*(X,F,E) - K(e)

given in Proposition 2.4.

Remark 2.9. When the I'-action on V does not satisfy the Condition 2.1,
the structure of the holonomy groupoid is more complex, and C*(X, F, E) is
not strongly Morita equivalent to C (V) xI'. Thus the arguments above do not
apply to this case. However, if one uses the C*-algebra of the fundamental
groupoid, in place of the holonomy groupoid, then the results in this paper
remain valid.

3. Algebra of Pseudodifferential Operators.

For a given foliated bundle (X, F), the C*-algebra C*(X,F, E) defined in
the preceding section contains pseudodifferential operators. In this section
we will introduce a dense Banach subalgebra 2 of C*(X, F, F) and will show
that 2 is holomorphically closed. N

Let E° and E' be I'-equivariant Hermitian vector bundles over M x V.
Let P : C®0(E°) — C~°(E") be a continuous linear map. We say that P
is a I'-equivariant family of pseudodifferential operators of order r if

(1) P is I'-equivariant, .

(2) for each z € V, the operator P restricts to M, to give a pseudodiffer-
ential operator of order r

P, : CR(EQ) = C™°(Ey),

(3) the distributional kernel of P has I'-compact support.
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Conditions (1) and (2) imply that the distributional kernel is regarded as
a distribution on M x M x V and is I-invariant.

Denote by ¥t (EO, El) the space of all I'-equivariant families of pseudod-
ifferential operators of order < r from E° to E!. When E° = E! = E, we use
UL.(E) instead of UF, (EO, El) . A basic fact is that if P € UF. (EO, E’l) , Q€
s (El,E?) , then QP € T+ (EO, E?) IfP e U (EO, El) , then its formal
adjoint P* belongs to UL (E‘l, EO) . So, in particular, U2(E) is a *-algebra.

Recall [11] that by a tangential operator we mean a continuous linear
operator D : C®O(E%) — (C>° (El) such that D is I'-equivariant and
that for each z € V, D restricts to M, to give a continuous linear operator
D, : C®(E%) — C=(EL). N

Let A, be the Laplacian on M, twisted by E‘x Then A, acts on the
sections of E,. Denote by W3 (E) the completion of C®(E,) with respect to
the Sobolev s-norm:

11z = (f, (T + A2) fa,

where (-,-), is the inner product of H, = L?(E,). We obtain a continuous

field W#(E) = (W;(E’)) o of Hilbert spaces over V, which we shall call a

tangential Sobolev field [f5, p. 78].
A tangential operator D is smoothing if D induces a bounded operator

W;(E) - WHE)

for all s,t € R. A smoothing operator is compactly smoothing if its distribu-
tional kernel has I'-compact support.
For a tangential operator P, and s,t € R, set

1Pl = sup { (1Petllse) /el € € C2(B)
and

I1Pllst = sup{||P:lls.0; z€V}.

Of course, || P;||s,, | P|ls,; might be infinite. However it is true that if P €
UL(E), then
|Plls-r,s < o0,

for any s. In particular, P extends to an intertwining operator

Wi (B) —» Wi (B).
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If P belongs to U5 (E) = ﬂ\IlT r(E), then P is a compactly smoothing oper-

ator. Moreover, one can see that U (E) is contained in C*(X, F, E), here
E is the lifting of E to M x V.

Let S*F be the unit cosphere bundle of F, and let m be the canonical
projection S*¥ — X. Let E°, E' be Hermitian bundles over X, and let
E°, E" be the liftings to M x V of E°, E, respectively. The principal symbol
map is o, : Uf (E°, B') — C=°(S"F, Hom(n" E°,n* E*)). We say that P €

i (E°, B) is elliptic if o,(P) is invertible.

Proposition 3.1. ([15, Prop. 7.12], [6, p. 128]). Let P € VL. (E’O,E'l) be

elliptic. Then there exists Q € Vg™ (E’l,E’O) such that I — PQ and I — QP
are compactly smoothing.

The operator @ given by Proposition 3.1 is called a parametriz of P.
Every P € U{(F) is regarded as an intertwining operator in Endr (Wf(E)) .

Thus $2(E) C B. Let g, denote the C*-closure of U%(E) in Endy (W,‘.’(E)) .
The principal symbol map oy extends to a *-homomorphism

o :po — C(S*F,End(r*E)),
and the sequence
0 C*(X,F,E) = po > C(S*F,End(n*E)) = 0

is exact. N
Fix an N > dim M. For P € ¥5' = U ' (E), set

1P} = max (|| Plli-n,-~, [Pl v,n-1) -

Then by the interpolation method of Calderon, for all —-N < s < N —1, one

has
1P|ls,s < [IPlls41,s < [IIP]I-

Certainly, ||| ||| is 2 norm on ¥5'. A staightforward computation shows that

PRI < 1P QI

for P,Q € Uy'.
Let 2 be the Banach algebra completion of ¥r' with respect to ||| - |||-

Lemma 3.2. There exists an injective homomorphism o : A — gq.

Proof. Since ||Plloo < |||P]l||, there exists a homomorphism a : A — gq.
We prove the injectivity of a. Let {P;} be a Cauchy sequence in ¥5' with
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respect to ||| - |||. It suffices to show that if &(F;) — 0 in g, then P; — 0 in
2. Since {P;} is a Cauchy sequence in %, it is a Cauchy sequence also with
respect to || - ||s+1,5, —N < s < N — 1. Therefore, there exist intertwining

operators P(®), of fields of Hilbert spaces W?(E) — W+ (E) such that
1P — P(s)”s+1,s -0 as j— oo.

Recall that C°(E) is a total subspace of W#(E). For ¢ € C9(E) and
for s > —1, we have
1PNl < 11(P; = PNl + 1 Piéllo
<P = POYElsrr + 11 Psllooll€llo
<P = POl lElls + 1P llo.0lléllo — 0

as j — oo. N
Hence P®)¢ = 0 for all ¢ € C°(E). Consequently P®) = 0.
Assume, now, that s +1 < 0. Then
1POE |11 < NI(P; = POY]|sr + [|1Pi€)lsa
<Py = POYE|or + |1PEllo
<Py = P)lsga,sll€lls +[1Psllooll€llo — 0

as j — oo. _
Hence P(¢ = 0 for all ¢ € C>°(E). Thus P; — 0 in 2. O

From now on, we regard 2 as a subalgebra of g,. In particular, an element
P € 2 is interpreted as a collection of operators P = (P,) such that P, :

W:E(E) — W:+(E) is bounded for —N < s < N — 1, and such that
P|W:(E)=P, if s<t.

Let A+ be 2 with unit adjointed. As an algebra, A% is identified with the
algebra generated by 2 and the identity I of g,. Then a sequence {\;I + P;}
in At converges to AI + P in A" if and only if

Ai — A in C,
and

P, - P in 2.

Theorem 3.3. The dense subalgebra A+ of C*(X,F,E)* is holomorphi-
cally closed.

In order to prove Theorem 3.3 we need the two lemmata below.
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Lemma 3.4. If P+1, P €, is invertible in C* (X, F, E)*, then (I+P);, :
WE(E) — WEtH(E) is invertible for |s| < N.

Proof. Let 0 < s < 1. Obviously, (I + P)s : W2(E) — WZ(E) is injective. By
the Open Mapping Theorem, if (I + P); is surjective, then it is invertible.
Let n € WO(E). Since (I + P), : WO(E) — WP(E) is invertible, there exists
a £ € WO(E) such that (I +P)¢ =1n. Then & = n— P¢ € WH(E)+W(E) C
W:(E), since P¢ € WX(E). Thus (I + P), : W2(E) — W2(E) is injective.

By an induction, using the fact that P maps WN-1(E) into WY (E), we
can show that (I + P), is invertible for 0 < s < N.

As for —N < s <0, use the nondegenerate pairing
W*(E) x W:(E) - C

and the fact that (&, (I + P)sn) = (({ + P*)-s&,n) to deduce the conclu-
sion. O

By Lemma 3.4, we know that when I+ P is invertible, it induces invertible

operators at each level W?(E) — W:(E).

Lemma 3.5. Let I+P, P € U5, be invertible in po. Then (I+P)~! € A*.

Sublemma. If Q € U is invertible in o, then there exists a sequence {A;}
in U such that I — A;Q is compactly smoothing, and that

[ —A:Q|ls: =0 as i —o00 forall s,t.

Proof of Sublemma. Since Q is invertible in gy, its principal symbol o(P) is
invertible, i.e. Q is elliptic. Then there exists R € ¥ such that I —QR, I —
RQ are compactly smoothing.

Since @ is invertible in gy, there exists a sequence {B;} in ¥Q such that

HQ—I - BiHO,O —0 as ¢ — o0.

Put A; = 2R+ B; — RQB; — B;QR — RQR + RQB;QR. Then A; € ¥2. We
have

I-AQ=(I-RQ)I - BQ)I - RQ).
Since S = I — RQ is compactly smoothing,

1T — AQl|lse = |IS(Q7" — Bi)QS||se
< |IS)ls,01lQ~" = Billo,ollQllo,0llS]lo,e =0 as 4 — oo,
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and the sublemma is proved. |

Proof of Lemma 3.5. By the sublemma, there exists a sequence {4;} of order
zero YDO’s such that I — A;(I + P) is compactly smoothing, and such that

N —A;(I+P)|lss =0 as i—0 forall s,t.

Notice that I — A; = A;P+ (I — A;(I+ P)) belongs to ¥r'. Thus A; = I+ B;
with B; € Ur'. Set

T, =I—(I+B){I+P) € 0.

We have (I + P)™' —1I = B;+T;(I + P)~!. The operator (I + P)~! — I maps

Ws(FE) into Wi+ (E) for —N < s < N — 1. Therefore
H (([ + P)*l - I) — Bi“s+1,s 18 ﬁnite,

and
(T +P) = 1) = Billowrs = 1T + ) flasns
S”Ti[|s+l,sH(I+P)_‘IHs,s_)0 as 1 — oo.
This means that (I+P)~! = I+Q, with Q € 2. Thus (/+P)~! € A*. O

Proof of Theorem 3.3. The proof uses the well-known fact that an algebra
is holomorphically closed if and only if the resolvents are contained in the
algebra itself. Since 2 is an ideal of C*(X,F, E)*, no elements of %A are
invertible in C*(X,F, E)*. So it is sufficient to consider elements of the
form I + P, P € 2. Since P € , there exists a sequence {P;} in ;' such
that

[l|1P; — P||| >0 as i— oo.

Then, in particular, ||({ + P) — (I + P)|lop — 0 as i — c0. As [ + P is
invertible in C*(X,F, E)™, one may assume that I + P; is also invertible in
C*(X,F,E)* for all i. From

(I+P)y'—I={I+P)'I-(I+P)=—-I+P)'P

it follows that (I +P)~' —I maps W} (E) into W+ (E) for —-N <s < N-1.
As bounded operators on W#(FE), one has that
NI+ P)~" = (I+P)7 s
< (T +P) = I+ P)llaall(T + PYY,)

[ (LH T+ B) = (I + P11+ P)TH2,)
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From this, it follows that sup {||(I + P;)~"||ss; ¢} < co. Moreover, one can
see that sup {||(I + P;)™!{|s.s; ¢, |s| < N} < co. Then we have

I +P)7 =) = (I +P)" = Dllssrs
S H(I_*_P)_l - (I+ Pi)_llls—}-l,s
SNT+P)HI+P) = (I + P+ P) st
< + P) Mlsrrs41 1P = Pllsaa, o 1T + P ls,o-
Since ||(I + P;)7!||s,s is uniformly bounded, as ¢ — oo one has

I +P)™ =1) = (I +P)™" = D)]|ss1,s = 0.

This means that |||(I+P)~' —(I+P;)" ||| = 0. By Lemma 3.5, (I+P;)"* €
A+, Consequently (I + P)~! e At. O

Applying Theorem 3.3 to the bundle E*, one obtain that M} ()" is holo-
morphically closed in M (C*(X,F,E))*. From this we get the following
(see [3)).

Proposition 3.6. The canonical inclusion A C C*(X,F,E) induces an

isomorphism
K] — Ko[C*(X,F, E)].

4. Modular Automorphism Groups.

A volume form on the fibre of the foliated bundle (X, F) gives rise to a weight
on C*(X,F, E). We will show that the modular automorphism group, asso-
ciated with the weight, leaves the Banach algebra 2l invariant, and induces
a one-parameter group of automorphisms.

Throughout the rest of the paper, assume that V is oriented, and I' acts
on V by orientation preserving diffeomorphisms. Let wy be a volume form
on V. For g € T, a positive real-valued function A, on V is determined by

Agwy = g(wy).
The correspondence g — A, satisfies the cocycle condition:
(4.1) Aon=g(M)A, g h€ET.

Let ¢ be the state on C (V) x I associated with the volume form wy. Then

o) = | fov
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if
f= ngUg € CC(V x F)
The modular automorphism group (o;) of ¢ leaves C(V) x I invariant.

We have
= Z A;thgUg

for f =3 f,U,. Actually, o, is implemented by the following unitary A on
L*(V) ® I*(T") defined by

[A%E] (z,9) = A; " (2)€(zg).

Let @ be a I'-invariant volume form on A]\i/.f/ . Choose an orientation on X so
that for a I'-invariant volume form w on M x V, there exists a positive smooth
function ¥ on M x V such that

wAwy = Yuw.

As above, let E be a I'-equivariant Hermitian bundle over M x V. Recall
S = C.(F). Define a linear operator A” (¢ € R) on S by

(4.2) AT =y, LES.

Lemma 4.3. The linear operator A% extends to a bounded operator A™ :
€ — € which satisfies:
(1) (A™(&),A%(n)) = o4
(2) A*(&a) = (A™(8))o(
(3) AlsAlt(f) Az(s+t) 5

&m), &nee,
a), E€e, acCV)xT
) t,seR, £E€FE.

Proof. (1) By the definition of C'(V') x I'-valued inner product and (4.2), the
equality holds for £, € §, t € R. Then

sup {[|A*(E)II/11éll: € € S, € #0)
= sup {|lou (€, /1€ I €€ 8, € £ 0} = 1.

Hence A" extends to a bounded operator on a Banach space €, and the
equality holds for all £ € e.

(2) A straightforward computation shows that the equality (2) is true for
€ €€ a€ C(V)xT. By continuity, the equality holds for all £ € € and
aeCV)xT

(3) From the definition of A* and continuity, the conclusion follows.

O
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Statement (2) of Lemma 4.3 means that A® is not C(V) % I'-linear.

Lemma 4.4. (1) IfP € L(¢), then A*PA~ € L(e), and ||A*PA~|| =
[1P1]-
(2) We have A®K(e)A~% C K(e).

Proof. (1) Let £ €€, and let a € C(V) x I'. By Lemma 4.3,
(A*PA™Y) (€a) = A™P ((AT(8)) 0-+(a))
= A" (P (AT*(8)) 0-4(a))
(AthA—zt(é‘ )
We have also that

((A*P*A™) (&),n) = oo (P*AT*(£), A™"(n))
= 0(A™*(¢), PA™(n))
= (¢, A" PA™"(n)).

This means that (A*PA~#)* = A®P*A~%, Obviously, AYPA~%, A#pP*A~#
are bounded. Thus
APPA™™ € L(e).

Since A% : € — € is a surjective isometry,
lA*PA™|| = P]|.

(2) Let &,m € e. By the definition of rank one operators 6, and Lemma
4.4,
AitegmA—it = OAHE,AM".

Therefore A®K(e)A~ C K(e). O
Definition 4.5. For P € L(e), set

G,(P) = ATPA™* € L(e).

Proposition 4.6. The operator {G;}icr on L(€) amounts to a one-parameter
group of automorphisms of the C*-algebra L(€). Moreover, {G.} preserves
K(e).

Proof. It is easy to see that ¢ — &; is strongly continuous. The conclusion
follows from Lemma, 4.4. |
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Notice that A% preserves Co°(E).

Lemma 4.7. If P € V{(E), then A*PA~" € UI(E).

Proof. We only have to show that A*PA~* is I-equivariant. (Other prop-
erties of elements of U.(F) are obvious.) For g € ', £ € C®(E), we
have

9(A™(€)) = g(™"€) = g(p)*g(&) = A, ™" g(€) = A A*(E).
Hence
g(AitPA—it) — )\;itAitgPA—it — )\g—itAitPgA—it
— Ag—itAitP)‘;tA~—it — (AitPAﬂit)g,

because the multiplication by A¥ € C*(V) commutes with operators A*
and P. (|

Lemma 4.8. The linear operator A extends to a bounded operator on
WE(E) for all s.

Proof. Recall that the L*-inner product induces a well-defined pairing
() :WEXW P —>C

such that [(€,7)2] < & lslme]|-s. Let s > 0. Set @ = 1*A**9p~*. Thanks to
Lemma 4.7, Q € U#(E). We have

IA™(©)aIF = (A% (€)s, A A¥(£):)
= (£s, (@€)a)
< e llsl1QzEall -
< 1allsllQall-s,s] 1€l -

Therefore A" : W2(E) — W2(E) is bounded for s > 0. Then by nondegen-

eracy of the pairing W2 x W — C, we see that A" : W (E) — W} (E) is
bounded for all s. O
By Lemma 4.8, there exists a constant C > 0 such that

NA*PATH||| < CIIIP|Il for P e p'(E).

By continuity, 6;(P) = AYPA~" P € 2, gives rise to an R-action on the
Banach algebra 2. Denote by ¢ the generator of (d;), i.e.

5(P) =1imi(&,(P) — P)/t, Pe%.
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Then & is a closed derivation of 2, whose domain contains Wr'(E). Set
¢ = log 1. Then by a straightforward computation we obtain that

§(P) =[p,Pl =P — Pp, P e U:'(E),
where @ is regarded as pointwise multiplication operator.
Proposition 4.9. If P € U5 (E), then §6(P) € Ur2(E).
Proof. Recall first the definition of 1, i.e.

wAwy = Yw.

From this, g(@) A g(wy) = g(¥)g(w), g € T. Since @ and w are I'-invariant,
and g(wy) = A wy, we have

AW Awy = g(y)w.

Therefore we have

(4.10) A =9g(), geT,
and
(4.11) log A, + ¢ = g(¢p).

Since ¢ € C*°(M x V), both ¢P and Py are continuous linear operators
C2O(E) — CO(E), and (pP); = ¢u P, (P9); = Py, are YDO’s on M,
for every z € V. By asymptotic expansion of the symbols, we can see that
0, Py — Py, is a DO of order —2. Hence we only have to show that [p, P]
is '-invariant. We have

g(wP — Py) = g(p)Pg — Pg(p)g
= (9(0)P — Pg(p))g
= (P — Pyp)g + (log \,P — Plog \,) by (4.11)
= ((pP - P(p)g,

because log A\, commutes with P.
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5. Godbillon-Vey Classes.

Throughout this section, V' denotes the circle S* with the canonical volume
form dz. The foliation F on X = M xp V is transversely orientable and
codimension one. To such a foliation, a characteristic class gv(F), called the
Godbillon-Vey class, is assigned. In this section we will give a description of
gv(F) in terms of function 1 introduced in the preceding section. We will
use this description in Section 8.

Let 6 be an arbitrary 1-form on X defining F. By integrability, there
exists a 1-form 7 such that df = n A 8. The Godbillon-Vey class then given
by [n A dn] € Hig(X) ([13)). N

Let 6,7 be the lifting of 0,7 respectively to M x V. Let 2 be the pullback
ofwby MxV — M. Thenw = QA0 is a I'-invariant volume form on M x V.

Since 6 and wy = dz define the same foliation on M X V, there exists a
nowhere vanishing smooth function f on M x V such that 8 = fwy. Then

w=QA0=fQAwy = frhw.
So f = 1/1. Consequently, 8 = (1/4)wy . From this
do =7 A0 = (1/)7 Awy.
On the other hand
d = d(1/pwy) = d(1/9) Awy,
for wy is closed. From these,
(5.1) (/) Awy = d(1/9) Awy.

Recall that ¢ =log® and & A wy = Ypw. Thus —dp Awy =nAwy.
The tangent bundle T' of M x V has a splitting

T — T/®T”,

where T" (resp. T") consists of vectors tangential to M,, z € V (resp.
{a} xV, a € M). Set

Qn,m — COO(An(TI)* ® Am(TII)*).
The exterior derivative d splits as
d=d + (-1)"d" on Q™™

where d’ and d" are exterior derivatives in the direction of M and V, respec-
tively.
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The (1,0)-component and (0, 1)-component of the 1-form 7 are denoted 7’
and 7", respectively. Since the wedge product with wy induces an injection

1,0 1,1
Qv — QY

it follows from (5.1) that

Then

(5.2) fAdy =@ +7") ANd@ +7")
— —ﬁl /\d"ﬁ, +';i, /\dl~ll’

because dif' = —d'd'p = 0 and Q™™ = 0 for m > 1. We have

(5.3) d('ﬁl Aﬁl!) — (d,'ﬁl _ dllﬁ‘l) /\,Fill _ 'ﬁ, /\ (dl'ﬁ” + d”ﬁ”)
— __ﬁl /\dlﬁ'll.

Notice that 7' A" is I'-invariant, sine the I’-action on MxV preserves the
decomposition T =T' & T".

Proposition 5.4. The Godbillon-Vey class of F is given by the cohomology
class

[~d'p Ad"d'g] € Hpp(X).
Proof. By (5.2) and (5.3),
FAdi = —d'pAd"de — dGF AF").

Since 77 Ad7j and ' A7" are I'-invariant, so is d'p A d"d'¢. Therefore —d'p A
d'"d ¢ defines a 3-form on X, and

[nAdn] = [—d'p Ad"d'p] € Hpp(X).

O

Remark 5.5. Equality (4.11) together with the fact that log A, on MxV

o~

is constant in the direction of M implies that d'¢ is I-invariant.
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6. Cyclic Cocycles.

In this section we will construct a densely defined cyclic cocycle on the
algebra 2. This cocycle can be interpreted as an analytical variant of gv(F).

As in the preceding sections, let E be a given [-equivariant bundle over
M x S*. Define a new right [-action by

(6.1) v-g = A (z) vy, vE E(m,z), gerT,

where vg is the given I'-action. Denote by E’ the vector bundle E equipped
with this new action, and denote by g[¢] the action of g € T" on & € CX°(E").
Then

(6.2) gl€] = A,9(8)-

With respect to the new action (6.1), the Hermitian metric of E is no
more -invariant. However, we have the relation

(v-g,w-g) = Ag(x)—2(vaw)a v,wE E’(m,m)'

This enables us to obtain continuous fields of tangential Sobolev spaces.
Let P € VL(E). Then

glP(©)] = X9(P(£)) = g¢] = A, P(9(£))
—P(f\gg(ﬁ))
P(gl¢)),

here we used the fact that P commutes with the multiplication operator A,.
Thus P € UL(E'). ~
Conversely, if Q € Y[.(E'), then

A,9(Q(8)) = 9[Q(&)] = Q(gl¢])
= Q(A9(¢))
= AQ(g(¢))-

Since A, > 0, we have g(Q(¢)) = Q(g(¢)), i.e. Q € VA (E).
Denote by 0,¢ the partial derivative of ¢ in the direction of S*. Regard

the pointwise multiplication by 8¢ as an operator C®?(E) — C®°(E"),
and consider the commutator of operators

[02p, P = (8,p)P — P(B,p) for P € U(E).
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Proposition 6.3. We have [0,p, P] € U}~ (E, E').

Proof. The proof is similar to that of Proposition 4.9. We only have to show
that [0,¢p, P] is ['-equivariant. We then have

9[(B20) P — P(0200)] = Agg((8200) P — P(8,¢p))
= X(9(0ap)g P — Pg(02¢)g)
= Ag(820) Pg — Ay Pg(02¢0)g
= (O2tp + Oa(log Ag)) Pg — P(0,p + 02(log Ag))g
= ((O2p) P — P(02¢0))g + O2(log A\y) Pg — PO, (log A,)g.

Since log ), is constant along M,, z € S, so is 8,(log Ag). Thus 0;(log A,)
commutes with P. Hence

9(02, P] = [0, Plg,

i.e. [G2p, P] is I'-equivariant. O
Let N be as in Section 3,~an£1 let N > r > 0. As in Section 3, we can
define a norm ||| - ||| on Y£"(E, E') by
[IPI|| = max {||P||-N+r,-n, || Pllv,n—r} -

Denote by OP7"(E, E') the completion of ¥r "(E, EL) with respect to
Il - ]l It is easy to see that if P € YR(E), Q € ¥{(E, E'), then PQ, QP €
UH(E, E').

Proposition 6.4. The space OPr‘z(E’,E’) is a Banach A-module.
Proof. Straightforward. O

Notice that the correspondence P — [dy¢, P] is an unbounded derivation
from 2 into OP%(E, E') with domain W5!(E). Closability of the multipli-
cation operator O, implies that the derivation P — [9y¢, P] is closable.
Denote by 4, its closure with domain Dom(4; ).

Consider the multiplication operator A# on both E and E'.

Proposition 6.5. If Q € UL(E, E'), then A*QA~* € UL(E, E").

Proof. It is sufficient to show that A¥*QA~" is I'-equivariant. Let ¢ €

C>°(E). Then

(6.6) gl(ATQAT™)E] = X, g(A*QATE) = Ayg(A™)g(QAT)
= g(A*)A,g(QATHE) = g(A™)g[QAT™¢]
= g(A™)Q(g(A™"))g(8).
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By (4.10), g(A®) = A'. Hence the equality (6.6) is equal to
A EAMQAT AT g(€)) = (A*QAT)(E).
This is the end of the proof. Od
For Q € Ur2(E, E'), set 61(Q) = A*QA~, t e R

Lemma 6.7. The linear operator G, extends to an automorphism of

OP*(E,E).

Proof. By Lemma 4.8, the operator A” is bounded on Sobolev spaces. There-
fore

IIAitQA—it“s,s—2 S CsIIQ”s,s~2-
In particular, there exists C' > 0 such that

HAHQA_”H—N-H,—N < CllQll=N+2,—n,
IA*QA™||nn—2 < C||Q|N, N2
It follows that |[13(Q)] < ClIQII. -

It is clear that (0}) is a one-parameter group of automorphisms. Denote
by 45 the generator of (), and by Dom(d}) its domain.

Proposition 6.8. If Q € U:-*(E,E'), then Q € Dom(d}), and 86,(Q) =
[p, Q.

Proof. Same as that for the derivation §,. O
Proposition 6.9. If P € U7Y(E), then 6,(6,(P)) = 65(6,(P)).

Proof. From Proposition 6.8 and the definition of J;, the conclusion fol-
lows. O

Recall that the underlying Hermitian vector bundle structures of Eand E'
are the same. Therefore L2(E) = L2(E'). Then, if Q € U5"(E, E'), r > 0,
the operator P, can be regarded as a bounded operator on L2(E'm). Let o
be a compactly supported smooth function on M x § 1 and let o, be the
restriction of o to M,, z € S*.

Proposition 6.10. Let s > dim M. Then o,A;*/? and A;*/?0, are Hilbert-
Schmidt class operators.

Proof. Recall that A = (I + A)*/2. For the Laplacian A’ on M, we have that

(I+A)Y2¢ P forany p> dimM.
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From this, ((I + A’)}/2)~*/2 is a Hilbert-Schmidt class operator. If Q is
a ¥DO of order —1/2 on M, then Q is a Hilbert-Schmidt class operator,
because ) .

Q=Q(u+ay)" (u+ay2)™".

In particular, the Schwartz kernel of () is measurable and square-integrable.

Let P € Ur*/*(E). Then the Schwartz kernel of P is measurable [6].
The observation above, combined with I'-compactness of the support of the
Schwartz kernel, implies that o, P, and P,o, are Hilbert-Schmidt class op-

erators. B
Let P € U;*/?(E) be a parametrix of A*/?, so that T = PA*/2 — [ is a
compactly smoothing operator. We have

Az—s/Z — Pz _ TmA;s/2,

as operators on L*(E,). From this, 0,A;*/> = 0,P, — 0,T,A;*/%. Since
both o, P, and T,o0, are Hilbert-Schmidt class operators, so is o,A;%/. As
A;#/% is self-adjoint, we see that A;*/20, is also a Hilbert-Schmidt class
operator. [

Corollary 6.11.  Let g,0' be compactly supported smooth functions on
M x S'. Then for every P € Vg (E E’) with s > dim M, the operator
0. P,0. is a trace class operator on L2(E,), for any © € S*. Moreover, there
exists a constant C > 0 such that

[Tr(02P20,)| < Cl|Plls/2,~s/2-

Proof. We have
UzPIU (O‘ A—s/Z)(As/2P As/z)( —3/2 1 )
Consequently, o, P,0., is of trace class, and

|Tr(02Pooy)| < |1(02A7**) (A2 P A ) (A7 07)
< Nlow Az L lIAY2 P A ool A7/ |I2
< Moz Azl A7 20 ol AY 2 Pe A2 ||z, 2,

where || - ||; (resp. || - ||2) is the trace class norm (resp. Hilbert-Schmidt.
norm).
Continuity of the family (A;*/2), implies the existence of C > 0 such that

lloaAz*ll2, 1Az a5l < C.
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Thus
|Tr(o'xPIo"1)| < C”PHS/2,—s/2-

g

Let ¢ be a compactly supported smooth function on M x S! such that

> gl0)? =1

g€l
i.e. {g(0)?},er is a T-invariant partition of unity on M x SI.
Definition 6.12. For P € Ur*(E, E') with s > dim M, set
(6.13) tracer(P) = | Tr(c.P,o,)dx.

St

Notice that the integrand in (6.13) is continuous. A modification of the
proof of Lemma 4.9 of [1] shows that tracer(P) is independent of the choice
of 0.

Let P € Ur*(E, E'), Q € 5" (E) = U5 (E').

Then PQ, QP € U7 (E, E').

Proposition 6.14. Letr + s > dim M + 2. Assume that either 0 < r < 2,

or 0 < s<2. Then
tracer (PQ) = tracer(QP).

Proof. Since P and @ have ['-compact Schwartz kernels, there exists a finite
subset S of I satifying:
i) S=81,
(ii) suppg(o), Nsuppo # & = g € S,
(i) 0,P.2g(0)s = 0.P. X g(0)a, and
0:Q:29(0)s = 0.Q:X'9(0)s,

where the summation ¥ (resp. ¥') is taken over all g € T' (resp. g € 5).
Then

TT(Uz(PzQz)Uz) = TT(Uz(Png(U)iQm)Uz)
= TT‘(UZ (Pzzlg(a)in)aa:)
= E,TT(Uszg(U)wg(o)zQzUz)'

The last expression is equal to

EITT'(Q(U)ZQzazazpwg(a)w)7
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because either o, P,g(0), or g(0). Q.0 is a trace class operator, by Corollary
6.11 and our assumption on s,r.

Let U(g) be the canonical unitary mapping L*(E,,) — L2(E,). It is easy
to check that, as multiplication operator,

9(0)s = U(g)oz,U(9)~".

Then we have

Q(U)zQz%Uszg(U)z
=U(9)0:,U(9) "' Q.U(9)U(g) ' (02)’U(9)U(9) "' PU(g9)o,U(9)~".

Since Q is I'-equivariant, U(g)'Q,U(g) = Q.,. As for P, we have
U(9) ' PoU(9) = Ag=1(2) "' Py = Ay() Pry-
Hence

traceF(PQ) = E/TT(Q(U)zQzUzUxng(O)z) dz
St

= o S'T7(029Qzg9 ™ (0)gd ™ (0)gAg (%) Prg0zg) dz

= | ETr(02Qus07 (0209 (0)ay Prgo) dlz9)
N / S'Tr(0:Qeg7(0)eg ™ (0): Pr0) da

= /S 2'Tr(0,Q:9(0)29(0). Pro,) dz

= | Tr(0:Q:%'(g7(0)2)* Puor2) do

= [ Tr(0.Q.5(s7 ). Puc) da
Sl
= tracer(QP).
O

By Corollary 6.11, tracer is continuous with respect to || - ||s/2,—s/2, Pro-
vided that s > dim M. This implies that tracer extends to a continuous
linear functional on OP;*(E, E') with s > dim M. (Caution: our tracer is
not the same as tracer of [1]. Our tracer is not an actual trace on any
algebra, it is just a linear functional, while Atiyah’s tracer is an actual trace:
on an algebra.)

Lemma 6.15. (1) tracer([fyp, P]) = 0 for all P € U;*(E) with s >
dim M.
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(2) tracer(85(Q)) = 0 for all Q € Ur*(E, E') with s > dim M.
Proof. (1) Notice that P,o, and P,(0y¢).0, are trace class operators. Then
Tr(0,(029); Pro,) = TT(Pyo,0,(02¢0),)

= TT(Pw(82(p)zazaz)
=Tr(o,Ps(02):04).

Thus T'r(o, [0, P),0,) = 0. Hence tracer([d2¢, P]) = 0.
(2) The proof is the same as that of (1). O

Furnish € = Dom(d;) N Dom(d,) with the locally convex topology given
by the graph norms associated with ¢; and d,.

We will construct a densely defined cyclic cocycle on 2. Let us first con-
sider the case where dim M = 2. Set

(6.16) 7, (P°, P, P?) = tracer (P°6; (P') 6, (P?))
— tracer (P%, (P') 6, (P?)) for P°, P'.P’ec €& C

Proposition 6.17. The trilinear functional 15 is a cyclic 2-cocycle.
Proof. If P°, P!, P? € ¢, then the products
P%, (P°) 6, (P°) and P°, (P°)é, (P°)

belong to OP-°(E, E'). Since 6, and &, are derivations, 7, is a Hochschild
cocycle By Proposition 6.14 and Lemma 6.15, 7, is a cyclic cocycle on
WUrl(E) C €. Then by continuity and the fact that U;'(E) is dense in €, we
can see that 7, is a cyclic cocycle on €. |

Proposition 6.18. The densely defined cyclic cocycle 15 is a 2-trace on U
in the sense of [8].

Proof. We have that
75(a’dzta’dz?®) = tracer(a®d;(z')a' 65(z?)) — tracer(a’dy(z')a' 6, (z?)),

and

| tracer (a°0, (z")a'0,(2%))| < C1|a%8y (2")a'63(3%)]|3/2,-3/2
< CHGOH3/2,1/2H51 ($1)||1/2,1/2||al||1/2,—1/2||52(132)||~1/2,—3/2
< Cuallla®ll] a1l

for some constant C) , depending only on z! and z?.
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Similarly
| tracer (a°d;(z")a'd1 (z*))] < Cp,|lla®ll] [la*]]]-
This completes the proof. O

Let us now consider higher dimensional cases. Let dimM = 2n. The
formula (6.16) defines a cyclic cocycle on ¥z *°(E), but not on € when n > 1.

Consider the cyclic 2n-cocycle S"!7,, instead. For P°,... , P?" we have
(6.19) ((n— 1)) (2mi) "SI (P,... , P?")
> {tracep(P°P' ... P24, (P* ') P*
1<i<j<n

.. P2j—162(P2j)P2j+1 . P2n)
— tracep (P P! - - - P22, (P%~1)p2
. 1)2_7'—-1{51 (P2j)P2j+1 .. PZn)}'

Denote by 7, (P°...,P?) the right-hand side of (6.19). Notice that
Ton (P°, ... , P?™) makes sense when P, ...  P?" € €.

The proof of Proposition 6.18 can be generalized to show that 75, is a
2n-trace on 2.

Definition 6.20. When dim M = 2n, the Godbillon-Vey cyclic cocycle gv
is the 2n-trace
gv = (n —1)7,.

By [8, Lemma 2.3; Corollary 2.4], gv extends to a cyclic 2n-cocycle on
a holomorphically closed dense subalgebra of 2, consequently it induces an
additive map from K, [2] into the scalars. By Proposition 3.6, the canonincal
inclusion 2% C C*(X, F, E) induces an isomorphism of Ky-groups. Hence gv
induces a map Kp[C*(X,F, E)] — C. In Section 8 we will compute the value
of this map on a specific class in K,[C*(X,F, E)].

7. Dirac Operators and Graph Projections.

In this section we will show that the graph projection of a longitudinal Dirac
operator belongs to the domain of the 2n-trace gv on .

Let M be as in the preceding sections. Assume further that M is even-
dimensional and is furnished with a I-invariant spin structure. Denote by _
D the associated Dirac operator on M [ acting on the bundle S of (complex)
spinors. Since M is even, the bundle § has a Z,-grading e. Thus

(7.1) S=5teS-,
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where 5% are +1 eigenspaces of ¢, respectively. With respect to the decom-
position (7.1), the operator D has the form

~ 0 D-
D=1 2
<D+ o)’

where D# are first-order, elliptic differential operators. Since the I'-action
on S preserves S * respectively, D* are I'-equivariant operators. Moreover,
D is essentially selfadjoint and has a closed extension. The closure D** of

D has the form
~ (O

where T is the closure of l~)*, and D** is selfadjoint.
The graph G(T) of T is, by the definition of T, a closed subspace of

L2(5%) @ L*(5~) = L*(S). Denote the corresponding orthogonal projection

by e, and set
~. (0T 10y [(0-T
X=D €—<T 0) <0—1>—(T 0 >

Lemma 7.2. We have

(I+TT)"' ([+TT)'T* 10 i

Proof. Define 1 : L2(S+) — L2(S*) @ L?(S™) by
_ I * —-1/2 __ (I + T*T)_l/2
'= (T) I+TT) = (T(I +T*T)2 )

It is easy to see that +*2 = 1. Since (I + T*T)~'/? is an isomorphism from
L%(S*) onto the domain Dom(T') of T', the image of 1 is precisely the graph
G(T). Thus the projection e is given by

. _(Ud+TT)Y (I4TT)'T
=" = \ra+ 1) TU + TT) T

As for the second equality, from the equality

e == (G ) (08)
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it follows that

e=(I+X) ((1)8) (I+X).

Set

(10 (00
by = 00 ’ - = 01 .

Set u = (I + X)e. Then
=(I+X)e(I+X)e=(I+X)I-X)=1-X>,

because Xe = —cX.
Let € = e — p_. Then using the equality

e = (I +X)py —p_(I+X),

we can see that

(7.3) e=e—p_.=T+X)p,(I+X)'—p_
=((I+X)ps —p-(I+ XNUI +X)™!
=e(I+X)™

From this,

(7.4) @ =u?=(I- X

A straightforward computation shows that

(7.5) oo ( I+TT) (I+ T*T)"lT*)

T(I+T*T)" —(I +TT*)

As in the preceding sections, suppose that I' acts on S* by orientation pre-
serving diffeomorphisms. For each z € S, identify M, = M x {z} with M
in a natural way. Via this identification, we obtain a vector bundle S, and
a differential operator D,. By abuse of language, denote the family (ﬁ ) by
D. 1t is clear that D is a I'-equivariant family of elliptic operators, acting on
a I'-equivariant vector bundle S = (S,), i.e

D € TL(85).
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The T-equivariant differential operator D on M x S' descends to a longi-
tudinal elliptic operator D on X = M xp S' which we call a longitudinal
Dirac operator.

The operator D is of the form

~ 0 D~
D=1~
and D* = (D}) € WL(§*,57). Consequently, we can consider a continu-
ous field e = (e,) of projections: each e, is the orthogonal projection of
L*(S})® L*(S; ) onto the graph of the closure of D;}. The matrix p_ can be
regarded as the orthogonal projection of (LZ(S'VT)) &, onto (L2(§;))
zeS1 '

Then, obviously p_ € U2(S).

We devote the rest of the section to show that e belongs to the domain
of the cyclic cocycle gv. For this purpose we employ the method of bounded
propagation [20], [21], [23]. Since the Dirac operator D is the lifting of the
Dirac operator on a closed manifold M, it has bounded propagation speed.

Recall that the space S°(R) of symbols of order zero is the collection of
all C*°-functions f on R such that for each 7 = 0,1,2,... , it holds that

z€ST ’

sup{(1 + [z])’|fV(2)] : z € R} < oo.

We need the following:

Proposition 7.6. ([15, Thm. 7.25], [20, Thm. 21]). Let P € VL(E) be
a longitudinal, tangentially essentially selfadjoint, first-order elliptic differ-
ential operator of bounded propagation speed. If the Fourier transform f of
f € S°(R) is compactly supported, then

f(P) € Up(E).

If the Fourier transform g of a Schwartz function g is compactly supported,
g(P) is compactly smoothing.

Let py : R — [0, 1] be a C*-function such that
pr =1 on t<1-4,
and
pr =0 on t>1+49¢
for some sufficiently small 0 < § < 1. Set p_(t) = p,(—t). For A > 2, set

palt) =pi(t—(A=1))p_(t+A—1)
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to obtain a C°-function p,(t) : R — [0, 1] such that
pa(t) =1 on [t|<A—-1-4,
and

pa(t) =0 on |t|>A—-1+4.

Lemma 7.7. For any positive integer i, there ezists a positive constant C;
such that

PP <C; forall At

Proof. By the construction of p,, it is straightforward. [
Set
(7.8) ox() = @) [ ety .
R

Lemma 7.9. (1) The function @, belongs to S°(R), and its Fourier
transform is py(t)e~It.

(2)  The function ¥x(z) = (21)"/2(1+x2)px(z) — 1 is a Schwartz func-
tion with compactly supported Fourier transform.

(3) As X\ — o0, 9y converges to zero in Co(R).

Proof. (1) Using integration by parts twice, we get that

(7.10) (27) "2, (z) = P (t)el= D iz — 1)2 dt

0
+ / Pr()el =) (iz + 1)~ dt.
—00

From this, it follows that sup{(1 + z?)|ps(z)|; z € R} < oco. This, in turn,
means that ¢, € L'(R), because ¢, is continuous. Then by the Fourier
inversion formula,

Pa(t) = pa(t)e .

For a given nonnegative integer j, consider

ha(t) = (i) pa()-
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Notice that A (0) = 0 for £ = 0,1,... ,5. Then

()20 (1) = [ (i) pa(t)e ™ dt

(e’ 0
=/ h,\(t)e(”_l)tdt+/ ha(t)e=+Vt dt
0 —00
= (-1 [ W @el Vi — 1) de
4]
0 ) . .
+ / B9 (£) e+ (i 4 1) d.

It is easy to see that there exists a constant C' > 0 such that
I (z)] < C(liz — 1) + iz + 1|79) for all =z.
Thus .
sup{(1 + |2])’|¢{’ (z)l; =€ R} < oo,

(2) The equality (7.10) implies that 1, € Co(R). We need the following
Sublemma, which we will prove later.

Sublemma. As distributions, we have the identity

2
(1 — dit‘2‘> e_lt, = 260,

where &y is the delta function at t = 0.

We now have that

~ d?
(7.11) = (1 - Eg) pre” 1 — 6

= —ple ! + 20\ e Msgn(t) (as distributions).

Since both sides of (7.11) are compactly supported C*°-functions, they are
actually equal as C*°-functions. It is now clear that ¢, is a Schwartz func-
tion.
(3) The Fourier transform induces an isomorphism from Cy(R) onto C*(R).
So R R
lallcom) = [oalles@) < llWallorw)-

By our construction, pY, p} are bounded uniformly in A. Therefore the equal-
ity (7.11) implies that

ldallimy = 0 as A — oo

This concludes the proof of Lemma 7.9. W]
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Proof of Sublemma. Let f(t) = e~ !!l. For g € C®(R), applying integration
by parts twice, we obtain that

[sogwa= [ roe@d+ [ fog @

= ~2(0) + [ fO9(®)dt
Therefore
<%(1—5—;)f’9>=<f’%(1-%3)9>
-3 a3 1o

For P € \P?(E), by a straightforward computation we get that
(7.12) Pl psr = 1T + A)2P(I + A)~* 02|,

_ In the definition of tangential Sobolev spaces for the bundle S, we can use
D? in place of the Laplacian, thanks to the standard elliptic estimate. Thus
we may assume that the Sobolev s-norm is given by

for &€ CX.

lell = | (r+52) "¢

0

Consider an (unbounded) intertwining operator T' = (T3) of w2(S) =
(L*(S:))z, where T, is the closure of D}. As before, set

0 -7
X_(T 0).

(7.13) e=(I+X)e(I1+D7)

Then

By Proposition 7.5 and Lemma 7.9,

oa(D) € BL(5),
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and
(D) = V2r (1 + 152) on(D) — I € Up>(S).
These imply that ¢, (D) € U72(S). Hence
(I + X)epr(D) € T'(S).

The equality (7.13) means, in particular that € is an operator of order —1.
Therefore we can consider the norm “e —V2n(I + X)epy(D “ fpt”

By (7.12)

Ha — V21 (I + X)ep, (15)“

kk—1

= (1 +X)e (1+ D)~ Van(l + X)epa(D)

Ek—1

— (I+ f)g)k/z (I + X)e ((I+I~?2)#l B \/2—7;('0/\(5)) (I+l~)2)(1—k)/2
— |+ x)e ((1+82) 7 = VEme(D)) (1+ ) "

0,0

0,0

= (I +X)e (145 (1 Vam (I + D7) oa(D))
“I Var (I+D?) px(D

0,0

IA

(I+ X)e (I+D2

Ho,o )

In this computatlon we have used the fact that (I + D?)'/2 commutes with
(I + X)e(I + D*)~! — /21y (D). Now by Lemma 7.9, (3),

Ha— V2r(I + X)g%(ﬁ)“ 50 as A — oo

k,k—1

Thus € is in the closure of ¥5'(S) with respect to the norm ||| - |||. Therefore
ee

We show that € belongs to the domain of ;. Recall that ¢ = v =
(I+X)e)™! = (D+¢)~1. If ¢ is bounded, then the commutator [p, (D+¢)~]
is a bounded operator, and
lim [<p, Vor(I + X)sgo,\(f))] = [(,0, (D + 5)_1] :

A—00

Unfortunately, ¢ is unbounded in general (see (4.11)). Thus [(p, (D + 5)‘1} is
defined only on a subspace which may not be dense. So, even if [ap, (15 + 5)“1]
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extends to a bounded operator, the extension may not be unique. However,
“formally” we have the equality

[e.(D+e) | =pD+e)™ = (D+e)p
=(D+¢e)7'[D+e,¢(D+e) Y,

and (D +8)_1[ﬁ +¢,¢](D+¢)"! is a bounded operator, because [D +¢, ] =
[D, o] € ¥2(S). Thus it is natural to expect that
5,(8) = (D + €)Y [D +e,9)(D +¢)7".

Notice that [, (D+E)\/27r<p,\( D)] € U53(S), and that (D+¢)~*[D+e¢, ¢|(D+
g)~! is an operator of order —2 (not a ¥yDO). We will show (Proposition 7.17)
that

|0 (D +e)V2mpa(D)] - (D +e)* [D+2,0] (D+e)7Y|| =0
as A — oo for any s. It is enough to show that
”(5 +¢€) [(p, (D + 5)\/27r<p>‘(1~))] (D+¢€)—[D+e¢,¢ L 0

as A — 00. Recall that ¥, (z) = 1 — (1 + z?)pa(z).
Lemma 7.14. We have
” [(p, P (D) (I+ ﬁz)] “0,0 -0 as X —o0.

Proof. For simplicity, set ay(z) = (1 + z2)1x(z). Then
(D) (I+ l~)2) =a,(D) = /&,\(s)e“ﬁ ds.
Since [¢p, 15] extends to a bounded operator, by Duhamel’s formula,

[cp, (D) I + D2 / / isEt[(p, is ﬁ]e“ﬁ(l‘“ dtds.
From this
[[e.93B) (1+5%)]],, < llle, Dlllon [ 18r()]Isl .

By the definition of 1, when A — oo, the integral [ |@x(s)||s|ds behaves
like Ae™?; i.e. there exists a constant C > 0 such that

/ |Gx(s)| |s|ds < CAe™™.
R
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Thus B B
s (1 B, < 0

Lemma 7.15. We have

|[owa D) (1+2%)'"]

—0 as X — oo.
0,0

Proof. We have
[o.0n(D) (1+5?)" 2]
—lp (D)) (1+5°) 4w D) |(1+57) " o]
= lpunD) (1+0?)] (1+5°) "
+ (D) (1+ 52" [(I +p?)” ,LP] (r+0?) "
+uD) |(1+5%)" 4.
Then

|[o.0aD) (1+57)”]

0,0

<[len@ (1+ 2], |+ 2)

—-1/2

0,0

(1+02) (14 5) " o] (14 57) "
[(I+ 52)1/2,90}

(notice that [(I + D?)Y/2,¢] is an operator of order 0). By Lemma 7.14, we
get the conclusion. [l

+ 12 (D)oo

0,0

+ [19a (D)oo

0,0

Lemma 7.16. We have
” [cp,z/))\(f))] H L 0 as A — oo.

Proof. By (7.12),

[levn@],

1-s)/2

= (r+ )" o waiDn (14 52)'

0,0
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Case (i). s > 0. In this case

(14 5)" o] (12)

~ 1-s)/2
[I+D2 ]¢ I+D2)( /

o) (1+07)""
)(1—3)/2

’

— (D [(I+D2) }(I+1~)2

~._\5/2 ~
here we have used the fact that [(I + D2) ,(,0] € Ui 1(S) provided that
s > 0. We have
~.\ /2 ~ ~,\ (1—5)/2
“ [(I + D?) ,cp] (D) (1 + D?)

“flw+)"

which converges to zero as A — oo.
Similarly,

0,0

Heon (D) ls—1.5—1 (1 N Ez)(l—s)/z

)
s—1,0

0,s—1

-0 as X — oo.
0,0

0[5 ] (125

Then, by Lemma 7.15, we obtain the conclusion.

Case (ii). s < 0. In this case —s/2 4+ 1/2 > 0 and [p, (I + D?)1=9)/?] is
a ¢DO. Making use of [, (I + D?)1=9/2] in the place of [(I + D?)*/?,¢] in
Case (i), we can deduce the conclusion. O

Proposition 7.17. The element € is in the domain of d5, and

5,(8) = (D +¢) ' [D+e,¢)(D+e)?
=(D+e)'[D,@)(D +¢)".

Proof. As mentioned above, it is sufficient to show that
(D +e) [, (D +e)V2mpr(D)] (D +e)

converges to []5 + £,¢] as A — 0o, as operator of order zero. By a straight-
forward computation,

[15 + €, <p] —(D+e) [(,0, (D + E)\/2_7r_<p)\(ﬁ)] (D +e¢)
= [D + £, ¢]1a(D) + [0, Y1 (D)I(D + ).
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We have that

1l x (DY)(D + €)lls,s < s ¥ (D)l 51 [1D + lls15-
Then by Lemma 7.16,

o, ¥a(D)(D +¢€)|]s.s =0 as A — oco.

By construction, 1, (D) commutes with (I + 132) . Hence

1A (D)]ls.s = H (1+ 132)5/2 (D) (I +D?) o

0,0

= H?!)A(D)Ho,o —0 as A — oo.
From these it follows that ||[D+¢, |1 (D)]]s.c — 0as A — co. Consequently,
[% (D + E)V%w(ﬁ)] — (D4 €)™ D +¢e,¢)(D +¢)7".

Recall that (D + €)v/2mpy (D) — € in 2. Therefore, by closedness of 6, we
obtain that N B N
5,8)=(D+¢e) ' [D+e,o)(D+e) "

O

By the same argument, we can verify that € is also in the domain of §,,
and that

(7.18) 5,(8) = (D + &) [D +¢,0)(D +¢)".

8. Main Theorem.

In this section we will compute the pairing between the 2n-trace gv and the
class of the graph projection of the longitudinal Dirac operator. Throughout
this section dim M = 2n.

Let D be the longitudinal Dirac operator for the foliated S’-bundle (X, F).
Denote by C*(X,F,S)~ the C*-algebra generated by C*(X,F,S) and the
projection p_ in gpy. We then have a split exact sequence:

0—-C*"(X,F,S) —-C(X,F,5" - Cp_ — 0.
In Section 7, we showed that

e=e—p_ € ACC(X,F,9).
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Set © = [e] — [p_]. Then O € K,[C*(X, F, S)].
Proposition 8.1. The class © is equal to ind(D).

Proof. Recall [9, Lemma 6.1] that

ind(D*) = [(ng+ S"(ffg%‘,’)Q)] - [(g (1))] € Ko[C" (X, F, S)],

where () is a parametrix of D+, and

So=1-QD* € C*(X,F,8%),
S, =1-D*Q e C*(X,F,8").

Set
- (gurz sus by

D*(I+D-D*)"' D*(I+D-D*)'D~)’

and
. <~so I+ so)é~> .

DSy DI+ So)Q

Then,
u,v € C*(X,F,S)~,

and

wo— [ 58 SoI+S0)@
Sipt I1-8 )’

and vu = e. Thus

ind(D*) = © in K,[C*(X, F, S)].

O

Denote by C*(X,F,S)* the C*-algebra C*(X,F,S) with unit adjoined.
Notice that C*(X,F,S)* is identified with the C*-subalgebra of p, gener-
ated by C*(X,F,S) and I € gpy. The 2n-cocycle gv, constructed in Section

6, extends to C*(X,F,S)* by setting

gv(a®,at,... ,a®™) =0,
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if one of a®, a!,... ,a®" is a scalar multiple of I.
In terms of C*(X,F,S)*, the class O is expressed as a difference
O = [P] - [q]7
where

(I+D-D%)™ 00 (I+D-D*)'D-
B 0 00 0
p= 0 01 0 ’
D*(I+D-D*)~*00 D+(I + D-D+)~*D-

and

0000
~|ooo00
9= o010

0001

Notice that p,q € M,(C*(X,F,S)*). Then it is easy to see that
{9v,[p] — [a]) = (2mi)"nlgu(, ... ,@).

The main focus of the section is to explicitly compute gv(,... ,€).
We have

go(&,... ,8) = (n— )Y {tracer (€715, (8)e¥ b, () 8> >%2)

— tracep (8276, (€)8¥ 6, (6)8° =% 2)},

525

where the summation is taken over all 7 and j such that 0 <47 and i1+ 5 <

n — 1.
Lemma 8.2. We have

(1) €2i+151 (é\)€2j52(€)é\2n—2i—2]v—2

= (1+0°) """ 1D,0:0) (1 + 5?) """ (D, ]
< (1+0%) "7 (Do),
and
(2) €16, (e)e¥ 6, (e)en 222
_ (I+ 52)—(i+1) D, ¢l (I+ Dz)—(m) (B, 0s]

—(n—i—-j—1) ~

x (1+D?) (D +¢).
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Proof. Recall that u = (I + X)e = D + €. In Section 7 we showed that
51(8) = (D+¢€)7'[D+¢,80)(D +¢) = u'[D, dhplu,

and
52(8) = u™'[D, plut

Therefore

415, (2)2 6y ()2

= (77D, By 7 D, g
= (1+D?) "B, 0] (1+D0%) B, g
X (I + ﬁz) ey (D +¢)7 L.

Similarly we obtain the second equality. O

For 4,7 with 0 <i,j,and i+ j <n—1, let
AY = §2i+15 (g)A2;5 ( )A2n 24—25— 2

BY = g*t15,(e)e¥ 4, (e)e®n %2,
Then
gu(&,... ,8) = (n—1)!'Y_ (tracer (A7) — tracer (B*)),
tracer (A%) = / tr (0,A% 0,) dz,

S1
tracer (B*Y) =/ tr (0,BY0,) dz,

S1
where Al (resp. Bi) is the restriction of A" (resp. B“J) onto M, =
M x {z}, z € S*. We must compute tr(c, A% 0,) and tr(0,Bi70,). In order
to do so, we make use of Getzler’s symbolic calculus method [12]. Fix an
arbitrary z € S'. For a while we do analysis on the manifold M, = M. In
order to simplify the notation we supress the subindex, as long as it is clear
on which manifold we are working on. o
Consider a one-parameter family of operators on M = M,,

—(i+1) —(j+1)

A () = (1 +¢2D?) [tD, 8:0] (I +2D?)

—(n—i—j—1)

x [tD,¢] (I +12D?)

(I+D~D*)~' (I+*D-D*)"'tD 50
tD¥(I +t*D-D*)™' —(I+*D+*D~)™! '
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Similarly, define B*?(t).

In the symbolic calculus method, a key notion is that of asymptotic order.
Assign to the parameter ¢ the order —1, and to a Clifford multiplication the
order +1. The total order is called the asymptotic order. For instance, the
following symbols have the asymptotic order 0 [9]:

Q) o ((A + D) 1) (m, ),

(i) oD, [)m.&) = tdfm, fEC>(M).

In (i) the operator (A\+¢D?)~! is a ) DO. However, its distributional kernel
does not have I'-compact support. In (ii) df,, is a Clifford multiplication
operator.

Although in [12] only compact manifolds are studied, the method devel-
oped there works for compactly supported 1»DO’s. In particular, the follow-

ing “Fundamental Lemma” is valid for such yDO’s (we use the notation of
[12] and omit the proof).

Lemma 8.3. ([9], [12]). (1) If A= A(t) has asymptotic order 0, then
o-1(A(t)) = 0o(4) + O(1),

where o1 is the rescaled symbol, and o¢(A) is the asymptotic symbol of A.
(2) If A, B are operators of asymptotic order 0, then

UQ(.AB) = (70(14,) * UO(B),
where x is the Getzler multiplication of symbols.

(3) IfII(t) € OpS—°, then

Trs(II(t)) = (2m)~ ™M _ T*ﬂtrs(at—l(ﬂ(t)))(maﬁ) dmdg, t>0,

where dmd€ is the symplectic measure on T*M.
We return to the computation. It is easy to see that
tr (0 A" (t)o) = Tr, (Hfj(t)) ,
and
tr (0B (t)o) = Tr, (TIE(1)),
where
A (t) =o (I + t2f)2)'(l+l) [tD, 85¢] (1 + t252)‘u+1>

—(n—i-j)

x [tD, ¢] (I + t2ﬁ2) o,
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and

(d —(5+1)

b, gl (1+¢:D?)
)—<n—i—j>

mE(t) = o (I+#D%)

X [tﬁ, 2] (I + 2D? o.

Next, notice that the operators considered in [9] and [12] are the operator
v/—1D. For simplicity, let ) =+/~1D.Then "=~ and P 2= _Dp2
We have [D, o] = —v/=1[ P , ], and [D, dy¢] = —v/—1[ P , 0>¢]. From this
it follows that

~(i+1) —~(+1)
m4) =-o(I-£p%)  kp,%el(I-£D7)
—(n—i—j)
x[tB,w](I—t2E2) ( "
Similarly,
~(i+1) —(G+1)

tP,el(I-£p7)

~(n—i~j)
o.

nE)=o(I-£p7)
x [t o) (I-£ D)
The operators Hfj and Hfj satisfy the assumption of Lemma 8.3. Therefore
(8.4) tr (A" (t)o) = Tr, (I2(1))
— —2n A
= (2n) /T Lt (001 (T12,)) (m, ) dm de
— —2n A
— (2n) /T e (00 (112) ) (m,£) dm dé + O(t).
Similarly

(8.5) tr (0B (t)o) = (2m)"2" / e (00 (112))) (m, &) dmdt + O(2).

We compute the asymptotic symbols oy (H{,‘j) and oy (Hfj) . Symbols which
are independent of £ commute with those dependent on £, with respect
to Getzler multiplication. By [9, Example (3.2)], oo([tP ,¢]) = dyp and
0o([tP ,02¢]) = d(82p). Hence

g0 (Hf}j) = —0d(d2) A dpoog ((I ey 2) —(n+2)) ,
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and
o (Hfj) = —adp A d(Bs0)00, ((I —$? D 2)*(n+2))
= 0d(dy) A dpoay ((I —-2D 2)~(n+2))

= —0y (H?,]) .
Using the formula:
—k-1 1 o 272
42 2 - k_—s_st°Pp
<I tE) —-k!/osee ds,
we obtain

1 o0 2 1;n2
oo (Hfj) = —0d(0y9) /\d(pan—H—)—!/o s"te fog(e™* P ) ds.

(
By [9, p. 362],

1/2
st? p ? — g T t SR/2 >
/*ﬂao(e )dE§ = n"s " de (——sinth/2 ,

where R is the curvature tensor of the T-invariant metric on M.
Applying the super trace, which amounts to multiplying (2/7)" and taking
the top degree term, we get that (8.4) is equal to

—(27)~" /:rz\? od(Dsp) A dwam

o 9 \1/2
X /o s"tle S s T det <Sl—j}%§> dsdmd¢ + O(t)

- (%) " (2m) "2 g™ /ﬂ o2d(8y0) A dgo det (55%%/‘2) 1/2+ o(t).
Therefore
(8.6) Y _[tr (0 4™ (t)o) — tr (¢ B (t)o)]
= — Card({(3,5); 0<1i,j, and i+j<n—1})-2(2r)"2"z"
x (%) « /ﬁ o2d(Dy0) A dgor det (5%/—2) "o

()R gy

: B2\
X ./1\710 d(02p) A depo det (m> + O(t).
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R/2 \'?
The piece of degree (2n—2) of det < - ) is homogeneous of degree

sinh R/2
(n — 1). Hence (8.6) is equal to the following (8.7)

B (%)n@”) “2nain(n 4+ 1)(=2mi)" !

2 —(1/2mi)(R/2) \'?
X /M o”d(0yp) A dpo det (sinh(——(l/Zm’)(R/Z))) + O(%).

Proposition 8.8. Ast — 0, the term Y [tr(0, A" (t),0,)—tr (0, B (t),0,)]
converges to

- (%)n (27) "1™ n(n + 1)(—27)"

) —(1/2mi)(R/2)
X /ﬂ 07d((82)2) A d(p) det (sinh(—(1/27fi)(R/2))> '

Moreover, convergence is uniform in z.

Proof. Convergence follows from the equality (8.7).

Recall that we are dealing with a family of operators D= (15 ) on M x St
such that D, = D via the canonical identification of M, and M, and ¢, 0>
are smooth functlons It follows that, when one applies Lemma 8.3, (1), one
obtains an estimate O(t), which is uniform in z. Then the conclusion is
immediate. a

Proposition 8.9. We have that
S [ fr(.dido,) - tr(o,Bido.) do,

= Z/ [tr(o, A% (t),0,) — tr(o, B (t),0,)]dz  for all t> 0.

Proof. The right-hand side of the identity above is precisely

((n =D gv(e,...,&),

where €; is the graph projection of the operator tD*, and & = e, — p_.
Clearly, (e;) is a continuous path of projections. Therefore

(]~ [p-] = e ~ [p-] in Ko.

Hence

gu(€;,... ,e) =gv(e,...,e) forall t>0.
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From Propositions 8.8 and 8.9, it follows that

gu(e,...,e) = gu(é,...,&)

= lim gu(ey, ... &)
= lim(n - 1)! Z/Sl [tr (00 A% (1),0,) — tr(0s B (),0,)] dx
=(n-1)! Z ot lgré[tr(ozA”( )e0z) — tr(o, B (t),0,)] dz

n

= —(n + 1)1(27) 7" (=2mi)" (

)
/Sl/ 02d((92p)) A d(pg) det sinh( 1/12;;77-5{(/;;2)))1/20!1:
= —(n+ i) (-2miy (3)
<[ [ sawontonim)

= —(n + 1)!(2n) 2 1" (—2m) " (%)H/Xd’d”w/\d’go/\ﬁ(l%),

where X = M xpS', and A(R) is the A-polynomial of M given in terms of the
curvature R of the I-invariant Riemannian metric on M. Since dd"o Nd'y
is T-invariant, so is d'd”¢ A d'¢ A A(R). Consequently the integration of
dd"o Ndy A /I(R) on X is well defined. By Proposition 5.4, the 3-form
—d'd"p A\ d' ¢ represents the Godbillon-Vey class gv(F). On the manifold X,
the cohomology class of E(R) is exactly the pullback of A-class X(M ) of the
spin manifold M. Thus

(8.10) gv(@, ... , @) :~(n+1)!(—1)"“1(2m')”1/Xd’d’%p/\d’go/\ﬁ(R)

(n+ DI(=1)"""(2mi) " (gu(F) U A(M)) [X].

il

Summarizing the arguments above, we have the main result:

Theorem 8.11. Let X be a foliated S*-bundle over a 2n-dimensional closed
spin manifold M, and let D be the longitudinal Dirac operator. Then

(g, ind(D)) = (=1)"" (n + 1)(2mi) ! (gu(f) U E(M)) [X].
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Corollary 8.12. If (gv(f) U E(M)) [X] # 0, then the class © = ind(D*)
is nontrivial in Ko[C*(X,F,S)).

Example 8.13. Let (71X, F,4) be an Anosov foliation associated with the
geodesic flow on the unit circle bundle T; ¥ over a closed Riemann surface ¥
of genus > 2. Since dim ¥ = 2,

(gv,ind(D*)) = —2(2m) *gv(Fa)[T1 Z].

It is known [18] that gv(F4)[T;X] # 0. Therefore, © = ind(D™) is nontrivial
in Ko[C*(T1 X2, Fa,S)]. In the next section we will show that © together with
other known elements generates the whole K,[C*(T1 X, F4, S)].

Remark 8.14. In (8.10), the righthand side is always purely imaginary.
This is due to the fact that the cyclic 2n-cocycle gv is purely imaginary, i.e.

g'u(a;n, a’;n—-la s 10’3) = "gv(aO) ai,..., a'2n)

for ag, ... ,as, € Dom(gv).

9. A relationship between the cocycle gv and Connes’s cocycle.

In this section we will study the relationship between the cyclic cocycle gv
and Connes’s cocycle [8].

Let us recall his construction. Denote by 7, the transverse fundamental
class for C(S*) x I'. That is

SOOI S I ACHUACS

where f9 =Y fiU, € C(S"* x T'). Its derivative 7, defined by

(91) 7--1 (f07 fl) = }I_I)% ;-];t(Tl (Ut(f0)70t(f1)) - Tl(f[), fl))7

is (o¢)-invariant. The cocycle which Connes studied is ip,(71). We will see
that there exists a homomorphism II from C(S*) % T into C*(X, F, E) such
that
n* (g’U) = 7;Dtp('i-l)
on
C®(§*xT)C C(S*) xT.
There exists a compactly supported C°°-function o on M such that

> glo) =1;

ger
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i.e. {g(0)}ser is a I-invariant partition of unity for M. We can choose o
so that o takes the value 1 on some open set U. We may further assume
that the fundamental domain D is contained in suppo. Assume that E is
a I'-equivariant vector bundle on MxS 1 which is the pullback of a vector
bundle E on M by the composition of two canonical maps

MxS - M3 M.

The bundle S of spinors considered in the preceding two sections satisfies
this assumption. Choose a section £ € C°(p*E) such that supp¢ C U, and

[ (& du(m) = 1.
M

In a natural way, € can be regarded as a compactly supported section of E.
By the choice of £, we have that

(9.2) suppé Nsuppg(§) = 2 unless ¢ = 1.
Moreover
(9.3) [ 46602 disafim) =1

M

for all z € S'. From this follows that
(£,6)=1€0(S") T,

where (-,-) is the C(S') x I'-valued inner product on € in Section 2.
In general, for a right Hilbert module over a unital C*-algebra 2, if there
exists an 7 € € such that (n,n)y = 1, then the map II defined by

(9.4) M(a) = 60y0, ac,

is a *-homomorphism from 2 into K(e), which induces an isomorphism of
K-groups. Apply this principle to £ above to obtain a *-homomorphism II
from C(S') x T into K(e) = C*(X, F, E).

__Let dz and @ be as in Section 5. Let 1) be a real-valued C*°-function on
M xS 1. It is easy to see that w = 9@ A dz is a I'-invariant volume form on
M x S' if and only if 9 is never zero, and 9 = g(¥))\, for any g € I'". Set

P = Z Agg(0).

g€er
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Since {g(o)} is a partition of unity, and A\, > 0, the function 1 is always
positive. Moreover

Ag(1) =D Xgg(An)(gh)(0)

= Anlgh)(o) = 4.

heTl

Thus w = Y Adz is a ['-invariant volume form. Using the definitions given
in Section 5, obtain (A*) and (G,).

Lemma 9.5. The section ¢ (as a section of E over M x S') has the property
that

A%(€) = ¢, teR
Proof. Obvious from the fact that ) = 1 on suppé. O

Lemma 9.6. The x-homomorphism I given by (9.2) is R-equivariant; i.e.

5:(Il(a)) = I(o.(a)), forall a€C(S')~xT and teR

Proof. For each a € C(S*) x I and ¢t € R, by Lemma 4.3,

6:(Tl(a)) = A", e A
= Oait(e.a), At ()
= Oan(©)a(a)a0(9)
= O¢.0.(a) 6

= Il(o¢(a)).
O

For a € C>(S* xT'), the operator II(a) is a compactly smoothing operator.
Therefore tracer (II(a)) is well defined.

Proposition 9.7. For a°a! € C*(S* xT'), we have

tracer (I1(a%)é; (I(a"))) = 71(a’, a').
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Proof. We have, using (9.2) and (9.3), that

tracer (I1(a®)d; (TI(a")))

~/S// > a’(zg,9 ') ((820)(n, ) — (B20) (m, z))

g,h,g" ,h'
x a'(zg', g "'K')(E(nh, zh), E(ng', 2g"))
x (E(mhb',zh'), &(mg, zg)) dus (n) dp, (m) do

= [ [, [y S 0.0 m(@:0)mn,2) = @) m2)a (0,07
et ) (g 5) P i) d o)
= [ [ [ ¥ @ nat @h, i) (@:)(n,2) = (a0 (m,2))
el ) (g, 20 s () e )
Since ¢ = 1 on supp¢, we have (9o)(m, z) = 0 if m € D. Hence
tracer (I1(a")d; (TI(a')))
= [ [, J; St ma e n) @) im0l nh, b lemg,zg) I
X dp,(n )duz( ) dz

.—:/Sl /MZa0($,h)a1(xh,h‘l)(az(p)(rr%x)”f(nh,xh)“iz dyy (n) da.

If nh € D, then ||{(nh,zh)||> = 0. By the choice of 1, if ||£(nh,zh)||* # 0,
then

$(n, z) = A (z)h(0)(n),
and

o, 7) = 1(h1)(z) + log(h(0) ().
Therefore (d"¢)(ns) = dI(h™!),. Consequently

tracer (T1(a®)5,(IT(a'))) = Z /5 ¥z, h)a (eh, ) dI(h )

~T(ao a').
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Finally we can relate the two cocycles:
Proposition 9.8. For a°a!,a? in C(S! x I'), we have

iD.p (7.-1)(0'07 alv a2) = (H*g'l)) (a07 a'17 a2).

Proof. This is immediate from Lemma 9.6, Proposition 9.7 and [8, Lemma

6]. O
Remark 9.9. Suppose that F is the trivial line bundle. Then the formula

(9.10) ///~ko(m,n,x)d"kl(n,m,z)dndmda:
stpJm

defines the transverse fundamental class on K.. The cocycle (k° k') —
tracer (k°6; (k')) = tracer (k°[d", k']) is the derivative, in the sense of (9.1),
of the cocycle (9.10) with respect to the modular automorphism group (&;).

10. The K,-groups of the C*-algebras of Foliated S*-bundles.

In this section we will determine the generators of the group K,[C*(X,F)]
for an arbitrary foliated S*-bundle over a closed Riemann surface.

Let ¥ be a closed Riemann surface of genus g > 2, and let I' = 7, (X). To
any (right)action of I on the circle S* by orientation preserving diffeomor-
phisms, a fibre bundle with fibre S is associated (Section 2). By evaluating
the Euler class of this bundle on the fundamental class of ¥, we get an integer
X, Which is called the Euler characteristic.

This group I is an amalgamated free product I' = F, 7 F5,_,. By [17] we
have an exact sequence, a part of which looks like

Ko(A;1) ® Ko(A2) = Ko(A) = Ki(4p) = Ki(A1) @ Ki(42),

where Ao = C(Sl) X Z, Al = C(Sl) x F3, Ay, = C(Sl) X Fgg_g, and
A = C(S") xT'. The computations done in [16] enable us to obtain

(10.1) Ko[A|=2Z* ®Z & Z/XZ.

The subgroup Z?¢ in (10.1) is generated by Rieffel projections. It is straight-
forward to see that those 2g generators lie in the kernel of the map Ky (A) —
C induced by the pairing with the cyclic 2-cocycle ip,(71) described in the
preceding section. The torsion subgroup Z/xZ is generated by the class of
the unit. As for the remaining generator, we know only of its existence, by
applying an exact sequence to compute the K-groups. We will show that this
missing generator is given by the class © associated with the Dirac operator.
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Recall that the upper half plane H, is the universal covering of X. The
I'-equivariant Hermitian vector bundles S = S+ @S- , associated with the I'-
invariant spin structure on H, , give rise to a Hilbert C*—module €, over C*I
in the fashion used to create € in Section 2. Let £ be as in Section 9. Then
¢ yields x-homomorphisms IT: C(S') xT' = K(e) and IT; : C*T — K(e,),
which induce isomorphisms of K-groups.

Proposition 10.2. There ezists a *-homomorphism from K(e;) into K(e)
such that the diagram

CT — K(e)
C(SH T —L5 K(e)
is commutative, where C*T' — C(S') x T is the canonical inclusion.

Proof. Recall that K(e) is generated by operators with I'-compactly sup-
ported, I'-invariant C*-kernels. Let P € K(€;) have the kernel k. Then the
T-invariant C*°-kernel k defined by

k(m,n,z) = k(m,n),  (m,n,z) € Hy x H, x S,

determines an operator P € K(e). Using the definition of norm, it is not hard
to check that the correspondence P — P extends to a *-homomorphism
j: K(er) = K(e).

Commutativity of the diagram is also easy. l
The Dirac operator D on X lifts to a [-equivariant differential operator
T CR(Hy,SY) - C2(H,, 57).

The graph projection et associated with D' is a bounded operator on
L*(H,, ST @ S™) and determines a class

©o = [€7] — [p-] € Ko[K(e1)]-
Proposition 10.3. The class Oy and the class of unit 1 € C*I" generate
Kg[’C(Gl)] = Kg[C*F] = Z2.
Proof. By the fact that the index map from the K-homology of ¥ into
K,[C*T] is an isomorphism [2, Thm. 3], we can see that K,[C*I'] is isomor-

phic to Z? and is generated by the class of the unit and the index indr (D).
As in Section 8, it is not hard to see that © coincides with indp (D). O
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By the construction of 7 we can see that
jE —p)=e-p_.

From this we see j.(©,) = O, where 7, : Ko[K(e1)] = Ko[K(€)] is the
induced map.

Theorem 10.4. The class © is the missing generator of Ko[C(S*) x '] =
Ko[K(e1)].

Proof. We claim that ©, together with the known generators, spans the K-
group. Let Ag, A;, A2, and A be as above. We have a commutative diagram:

Ko[A1]® KolAz) ~ ——— KolA] ——— Kj[Ag] —— K1[A1] ® K1[A2)

I I T T

* * 6 *
Ko[C* Fo] ® Ko[C* Fag_2] ——— Ko[C*T] ——— K;3[C*Z] ——— K31[C* F2]® K1[C* Fag_s],

where horizontal rows are exact, and all the vertical arrows are induced from
the canonical inclusions of C*-algebras.

The map K;[C*Z] = K,[C*F,] ® K;[C*F5,_,] is a zero map, and the
kernel of K;[A4y] = K;[A1] ® K;[A,] is an infinite cyclic group generated by
the class of the unitary of C(S*) x Z corresponding to the generator of Z.

Since the class of the unit and the class ©, generate K,[C*T'], we see
that 6(©) must be the generator of K,[C*Z]. From this and the observation
above, §(©) is the generator of the kernel of K;[Ay] = Ki[A:] ® Ki[A,].
Therefore the class © and the image of the map Ko[A,] ® Ko[A2] — Ko[A4]
generate Ko[A]. g
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NEVANLINNA’S COEFFICIENTS AND DOUGLAS
ALGEBRAS

ARTUR NICOLAU AND ARNE STRAY

Some relations between Douglas algebras and coefficients
appearing in Nevanlinna’s matrix parametrization of the so-
lutions of the Nevanlinna Pick interpolation problem are stud-
ied.

1. Introduction.

Let U denote the analytic functions bounded by one in D = {z : |z| <
1}. Given a sequence {z,} C D, we consider the classical Nevanlinna Pick
interpolation problem

(NP) f(zn) = wy, n=12,..., feU.

If this problem has more than one solution, R. Nevanlinna [4] found ana-
lytic functions P, @, R and S such that the set of all solutions is given by

(1.1) E:{%:—g%, weU}.

The functions P,Q,R and S are unique subject to the normalization
S(0) =0 and PS — RQ = 7, where

n(z) = [[ 22l 2222

2, 1—Z,2

is the Blaschke product corresponding to {z,}.

While the funcions P, Q, R and S arose from classical function theory, it
turns out that they are also connected with more recent developments. It
is part of Nevanlinna’s theory that the functions P/R,Q/R,S/R and 1/R
belong to U and are linked with 7 in many ways. (See Lemma 1.)

Suppose (NP) has a solution fy satisfying sup{|fo(2)|, z € D} < 1. Our
main result is that then P/R,Q/R,S/R and 1/R all belong to a certain
subalgebra of H® depending only on 7 which we shall denote by CDA,.
This algebra is part of the theory of Douglas algebras through the work of
S.Y. Chang and D.E. Marshall ([1], [2?]). Our results in particular answer

541
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a problem raised by V. Tolokonnikov in [11] where other relations between
Douglas algebras and the Nevanlinna Pick problem are studied.

Our methods are based on Nevanlinna’s ideas in [4] and last but not least
on the more recent treatment of the Nevanlinna Pick problem given by J.
Garnett in [2], where dual extremal methods are used. We also give a new
proof of a recent result of Tolokonnikov concerning questions whether (NP)
has a unique solution.

Next we introduce some notations and well known results.

Let m denote normalized Lebesgue measure on the unit circle T = {z :
|z| = 1}. If 1 < p < oo, HP denote the Hardy space consisting of all f €
L?(m) whose harmonic extension to D is analytic there. If p = oo, the norm
||fll, in LP(m) can also be given by

Iflleo = sup{|f(2)|: z€ D}  feH™.

For basic properties of H?, we refer to Garnett’s book [2].

We recall that I € H*™ is called an inner function if |I(e**)| = 1 almost
everywhere with respect to m. Any Blaschke product is inner, but there are
many others ([2, p. 75]).

Considering H*® as a subalgebra of L*(m), let D, = [H*, 7] be the
Douglas algebra generated by H> and the restriction 7|t of 7 to T. Then let
QD, = D,ND, be the maximal C*-subalgebra of D,. Define also QDA, =
QD,.NH®* and let CD A, denote the subalgebra of H* generated by all inner
functions I invertible in D,. It is evident that CDA, C QDA,. For more
about these algebras, see [1], and [2] for example. Let I be an inner function.
The property of I being invertible in D, has a very concrete formulation: If
{¢.} € D and |7(¢,)| —= 1, then |I(¢,)] — 1.

The special solutions I, to (NP) given by

P —Qe"

I, = ———
* R — Set

play an important role in this theory. Nevanlinna showed that each I, is
inner [4], and in fact almost all I, are Blaschke products [9]. A Nevanlinna
Pick problem is called scaled if it has a solution f, satisfying || fo||ec < 1.
For general properties of Douglas algebras and more on the Nevanlinna
Pick problem, Garnett’s book [2] is a good reference.
The letter C; will be used for different absolute constants, while C(t).
indicates a constant depending on the parameter ¢.
Acknowledgements. We thank the referee for several helpful remarks
which have improved our work. Theorem 2, which is stronger than our pre-
vious result, is due to him. This work was done during a visit to University
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of Bergen by the first author and to CRM in Barcelona by the second au-
thor. Both of us wish to express our appreciation of the hospitality and nice
working conditions.

2. Main result.

If (NP) has more than one solution, R. Nevanlinna considered the “Wertevor-
rat” A(z) = {f(z) : f is a solution of (NP)}, z € D. Using (1.1), one can eas-
ily check that A(z) is a disc of center ¢(z) = (—Q(2)S(z)+P(z)R(z2))(|R(z)?
—|5(2)|*)7", and radius p(2) = |7 (2)|(|R(2)[* —[S(2)[*)~"

For later use, we collect some of the properties of Nevanlinna’s coefficients.

Lemma 1. Assume (NP) has more than one solution and consider the

Newvanlinna’s coefficients P,Q, R, S appearing in (1.1). Then

(i) P,Q,R,S have radial limit almost everywhere and Q = —7R, P =
—7S, |R|2 [SI? =1, QS — PR = 0, almost everywhere on the unit
circle.

(ii) [R(2)* —1S(2)]> > 1, [R(z) = |P(z)? 2 1, z€D.

(i) For any e** € dD, (R — Se**)~? is an exposed point of H'.

(iv) IfueU and f = (P — Qu)(R— Su)™", one has

S/R —

[flleo = —m

oo (D)

(v) If (NP) is scaled, one has p(z) — 1 as |7(z)] = 1.
(vi) If (NP) is scaled and v = inf{||fol|co : f is a solution of (NP)}, then
R € H? for all p < w(arcsin(y)) ™.

Proof. (i), (ii), (iii) are well known (see [8] and the references there given to
[2]). Using the relations in (i)

‘P—Q’U, 1.0
R — Su

P/Q-u

1 - uS/R ()

I

’Q
R
| 5/R , ae. e e oD,

uS/R
and this is (iv). A proof of (v) can be found in [10]. Now, let us prove (vi).

Consider I, = (P — Qe*)(R — Se**)™ !, for fixed o, 0 < @ < 27. Using (i).
one can easily check

a.e. on dD.
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Since v = dist(I, 7, H*) < 1, there exists g € H* satisfying

(R — Sei)=2 ”
1>y= oot —gll .
> “l(R—Sew)-2| M.,

Since I,(0) € 8A(0), one has dist(I,7, H) = 1, where H® = {f € H* :
f(0) = 0}. The proof of Lemma 4.3 in ([2, p. 386]) shows [g(2)| > 1—7, z €
D. Let Arg(z) be the principal branch of the argument. One has,

|Arg (g7 (R — Se'*)™?)| < arcsin(y), a.e. on 8D.
So, the same is true on D and using a result in ([2, p. 114]), one gets

-1(p _ quiay—2)~1 P -
(g (R Se ) ) e H I p < 2arcsin(’y) .

Hence (R — Sei*)? € H?, for p < m(2arcsin(y))™* and it follows R € H?, for
p < w(arcsin(y))~!. This finishes the proof of Lemma 1. O

Let (NP) be an scaled Nevanlinna problem, V. Tolokonnikov proved that
the extremal solutions I, are invertible in D, [11]. Our next result is an
extension of this.

Proposition . Let (NP) be a scaled Nevanlinna Pick problem and I, one
of its extremal solutions, 0 < a < 2m. Then Dy, = D,.

Proof. As mentioned before, it is known that I, is invertible in D,. We
present another proof of it. From (v) of Lemma 1, p(2) — 1 whenever
|w(2)] = 1. Since I,(2) € JA(z), one gets |I,(z)| — 1. Hence, I, is invertible
in D, and Dy, C D,.

For the converse assume

[Io(2n)| — 1.

Since the Nevanlinna Pick problem (NP) is scaled, the “Wertevorrat” A(z,)
must meet a fixed disc inside the unit disc. Actually, fo(z,), I«(2,) € A(2,),
where f, is a solution to (NP) with ||fs]|oo < 1. Hence, for large n,

r(zn)] = p(za) = (1~ [lfolloo) > 0

and one deduces that 7 is invertible in Dy .
The Proposition can also be immediately deduced from the proof of The-
orem 2.1 in [1]. O



NEVANLINNA’S COEFFICIENTS 545

Remark. The hypothesis on the scaling of the Nevanlinna Pick problem
is essential. In fact, there exist non scaled Nevanlinna Pick problems and
points 8, € D such that

sup{lw| : w € A(Bn)} — 0, |m(Ba)l —> 1

n—oo

see [5]. Then, I,(83,) — 0, 0 < a < 27, and no 1, is invertible in D,.
The following result is known although we have not found it in the liter-
ature. We thank the referee for pointing out it to us.

Lemma 2. Given u,|u| =1 and z,|z| < 1, one has that

/27r ueza da
7 =
1 — Zueie 27

can be uniformly approzimated by its Riemann sums.
Proof. Multiplying by @ if necessary, one may assume u = 1. For w = ez"i"“l,
one has

Zn—1 —IZP
z——zl_wk = I || < 1.

This can be shown expanding in a series and using
n
> =0
k=1

unless p = 0 mod n. By continuity the same holds if 2" # 1. Now, the
inequalities

S el PACa (Ra T USTE)
n 1l —whz 1—|z»
1+ 2| < 2
T+ 2] 4+ 2|~ —
finish the proof. O

Assume (NP) is scaled. In [11] it is proved that the functions P/R,
~2(S/R)*, k > 0, belong to CDA, and it is asked if R=' € CDA,. Next,
we complete these results.

Theorem 1. Let (NP) be a scaled Nevanlinna Pick problem, E the set of

its solutions and P_Q
w

: U

E= {R sw € }
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its Nevanlinna’s parametrization. Let D, be the Douglas algebra generated by
H* and 7|r. Then, the functions P/R,Q/R,S/R,1/R belong to the algebra
CDA,.

Proof. Since |S/R(e?)| < 1, Lemma 2 shows

1 27 . . )
— I(e®)da = P/R(e?), a.e. e’ €T,
27 0

and the integral can be uniformly approximated by its Riemann sums. Since
I,, are inner functions invertible in D,, one gets P/R € CDA,.
Since @/ R is an inner function, one only has to show that Q/R is invertible

in D,. If |7(2)] — 1, by (v) of Lemma 1, the disc A(z) tends to the unit
disc, that is to say,

_ 1Q/R(z) - PIR@S/RG)

o) L= [5/R()P
_ P/R(2) - Q/R(=)8]R()
A ) T
Hence,
o PLECISIR QIR g/
_ P/R()S/R() — Q/R()IS/RG)P
T [S/RG)

and one gets |Q/R(z)| = 1. Therefore Q/R € CDA,.

Since by (i) of Lemma 1 QS = PR ae. on the unit circle, one has
S/R = (P/R){(Q/R) € CD, and since it is analytic, S/R € CDA,.

Using R = Qr a.e. on the unit circle, one gets (1/R)Q/R = n/R € H™.
Then, for 0 < § < 1,

(Si —i/%' %ew(*’%‘j o
0

R 2r)o 1+e~(§/R)Q/R

uniformly on the unit circle. Since @/R is an inner function invertible in
D, sois
Q/Re** + /R
1+e(0/R)Q/R’

and one gets R™! € CDA,. O

e € 9D,
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3. An example.

The results of last section may suggest that if one takes w € CDA,, we U
in Nevanlinna’s formula, the resulting function f = (P — Qw)(R — Sw)™!
may also belong to CDA,. This is of course the case if ||w|| < 1, because
of the relation

o0

f=(P/R-wQ/R) Y (wS/R)".
n=0

It has been surprising to us that for general w € U N CDA,, the function f
may not belong to CDA,. In fact, f may not belong to the bigger algebra
QA,, which consists of the holomorphic functions in the unit disc which
belong to D, N D,. To show this, we need to construct a scaled Nevanlinna
Pick problem such that the corresponding function R is not bounded. We
will do the construction in the upper half plane.

Consider z, = 1y,, where y,., < cyp, for some fixed 0 < ¢ < 1 and
2t =z, +1y,, where z,, > 0 is a decreasing sequence, sup z,y, ' is a small

n

number to be chosen later, z,y;' — 0 as n — oo, but

(3.1) (") = +oo.

n

Let B and B* be the Blaschke products in the upper half plane with zeros
{z,} and {z;;} and B,, B} the Blaschke products with zeros {¢(z,)}, {¢(2)},
where ¢ is a conformal map from the upper half plane to the unit disc.

Lemma 3. With the notations above, the Nevanlinna Pick problem
(%) fle(z)) = Bi(o(z)), n=12..., feU

18 scaled. Moreover, if

{feH>: [ solves (*)}:{%—:—% wEU}

is Nevanlinna’s parametrization of the set of its solutions, one has
lim |R(e)| = +oo0.
6—0
Proof. We will prove the Lemma in the upper half plane. Let z € R, as in
([2, p. 432]), one can compute
(3.2)
B*(z) T — 2z, z— 2z n Yn
A S Arg () A Fn) _o / U gy
"8 B(x) z,; rg<m—z) rg(m—z*) o @—t7+y2

n




548 ARTUR NICOLAU AND ARNE STRAY

Now, if F' € H', one has

l/F x)Arg%( F(z)dzdt

R(.’E—t + 2

<2Z/ F(t +iy,)| dt < 2K sup(z.y;")||F|lx

because the linear measure o on U[iy,, T, + iy,] is a Carleson measure, with
n

o(Q) < sup, (z,y;')I(Q) where Q is a square lying on the real line and I(Q)
is the length of its side. So, given ¢ > 0, if sup, z,y,,' is sufficiently small,
one gets || Arg(B*/B)||smo < €, and hence

(3.3) Arg(B*/B) =u+79, ||ullo <C¢, ||Vl <Cl,

where ¥ is the conjugate function of v and C is an absolute constant ([2, p. 248]).

Now, _
||B*/B — e"*"||o < 2CF,

hence
(3-4) dist(B*/B,H*) < 2Ce < 1

and (x) is scaled.
On other hand, 5
[|B/B* — e ""%||o < 2CF,

SO
(3.5) dist(B/B*, H®) < 2Ce < 1.

Now, (3.4) and (3.5) give that B* is an extremal solution of (*), that is to
say, there exists 0 < a < 2,

P — Qe

B = ————.
R — Seic

Thus, applying (3.3) and (i) of Lemma 1,

. Ny o (R—Se*)7?
exp(i(u +9)) = B*/B = ———————-I(R my e ETE

Consider H = exp(iu — % + v + i0) € H' and hence

H _ (R—S8e*)?
|H| (R~ Sei)=2|’
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By (iii) of Lemma 1 (R — Se'*)™2 is an exposed point of H*, so
H=M(R-Se®)2, MEeC,
and |[M(R — Se**)~2(z)| = exp(v(z) — u(z)). Now, by (3.3),

r—1
(.'c—t2+y

v(z) — @i(z) = —Arg(B"/B)(z Z /
e

Now, let £ > 0. Using the inequality In(¢') < ¢(d)(1 —¢) for d <t <1, one
gets

—1

_ 2 2
> hl((w xn)-+yn)
z* +v;

Tn:lTn—z|<2z

_ 2 2
= ¥ ln(i-'z_wrﬁ_t_%)
z? +y;

TpilEn—z|<2

2z, — 22
S C Z $2 + y2

Tni|Zn—z|<T

Tnilzn—z|<z

On the other hand, considering k& with z; > 2z > z;,; one has

(z — +y> (:v—a:n +y2)
1 —"_ 1 A TR, dIn
> om(E z .

Zni|zn—z|>2
Tn(Tn — 2, 2
> >Cy ) ziy.”.
nZ_:l o +yn Z g/

Also, if z < 0, v(z) — @(z) > —Cs + v(—z) — u(—z). So, (3.1) gives
hm| (R — Se™)~ | = 400,

and thus lim,_,¢ |S/R(z)| = 1. So, by (i) of Lemma 1, lim,_,o |R(z)| = +00
and this finishes the proof of Lemma 3. O

Now, consider the Nevanlinna Pick problem (*) given by Lemma 3 and
= inf{||f||le : [ is solution of (x)}.

For 1 > t > +, Proposition of last section gives that there exists an inner
function J, tJ = (P — Qwp)(R — Swy)™! € CDA,. Using Theorem 1 one
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can see that wy € CDA,. Now consider an interpolating sequence {c,}
approaching to 1, with |m(a,)] — 1 as n — oo, where # = B, and let
I be the Blaschke product with zeros {a,}. Then, by Lemma 3, R~?] is
continuous up to the circle. Also (iv) of Lemma 1 gives

g/ﬁ*‘ Wo

Lo (D)

(3.6)

and then |wo(e?)| < |S/R(e?)| + c¢(1 — |S/R(e¥?)]), 0 < 6 < 2w, for some
fixed ¢ = ¢(t) < 1. Therefore w; = wo + (1 —c¢)R™2I € U N CDA,.
Now, assume f = (P — Qu,)(R — Sw,)™! € QA,. Thus,
f—tJ =7m(w; —wo)(R — Swe) (R — Sw;)™! € QA,.
Let o denote the pseudohyperbolic metric, o(z,w) = |z—w| [l —wz|*. Since
|m(a,)] = 1 as n — oo, writing g = (w; — wo) (R — Swo) " (R— Sw,;) ™, from
the fact that 7g € QA, one can deduce

max_|g(z)| = min_|g(z)| =0, asn— oo,

o(z,0,)<T o(z,a,)<r

for any r < 1, because otherwise, taking a subsequence of {a,}, for some
fixed r < 1, there would exist § > 0 and z,,0(ay,2,) < r, such that

(1 - Iznl) |gl(zn)l Z d.

Then, by subharmonicity, for m < 1, it would follow

[l )P dmiw) > Gym)3

n

where D,, is the disc of center z, and radius m(1 — |z,]). So,

|l @P (1= ) dm(w) = Ca(m)3(1 ~ |z

n

and using a result in [2, p. 381], this would contradict the fact mg € QA,.
Since g{a,) = 0, one gets

(3.7) max |g(z)| =0, asn — oo.

o(z,an)<T
But, (3.6) and (v) of Lemma 1 give
11-5/R(2)wi(2)| < Ci(t) (1 = |S/R(2)]*) < Ci(t)|R(2)|™*, i=0,1, z€D,

S0,
l1—-c¢

> ma. I(z)].
Ldax V0@ 2 T max )]

Since {a.} is an interpolating sequence, this contradicts (3.7). Therefore

[ € QA;.
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4. A question about uniqueness.

The question whether (NP) has a unique solution is in general delicate.
A necessary condition for uniqueness is of course that ||f||c = 1 for any
solution f to (NP). If there is f, € H* with || fo||o < 1 solving the reduced
problem f(z,) = w,, n > N for some N > 2, we shall call (NP) semiscaled.
In [11], Tolokonnikov obtained the following nice result

Theorem 2. (Tolokonnikov). If a Nevanlinna Pick problem is semiscaled,
but not scaled, then any solution is inner and hence must be unique.

It should be observed that previous results due to T. Nakazi [3] an K.O.
Oyma [7] easily follow from Theorem 2.

Proof. Let us use the notation from the introduction and assume that the
Nevanlinna Pick problem (NP) is scaled. One can assume N = 1. If {zp, wy}
is an extra pair of points consider the extended problem

(*) f(zn):wnv n:Oa1727"'7 fEU

One can assume z; = 0. The sets F' = {f € H® : ||flleo < 1, f(2z,) =
Wy, n > 1} and B ={f(0): f € F, ||fllo < 1} are convex. Suppose B is
non-empty and that the only functions in F' with f(0) = w, have norm 1.
We will show that such f are inner. Since the average of two inner functions
is not inner, this will also prove uniqueness.

If|flle <1, ||l < 1 and 0 < € < 1, then |leg + (1 — €) flleo < 1,
and hence B = {f(0) : f € F}. The assumptions mean that w, € B \ B.
The proof in [2, p. 152] works verbatim, and shows that any f € F with
f(z0) € OB must be inner. U
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SOBOLEYV SPACES ON LIPSCHITZ CURVES

MARIA CRISTINA PEREYRA

‘We study Sobolev spaces on Lipschitz graphs I', by means
of a square function of a geometric second difference. Given
a function in the Sobolev space W!?(I') we show that the
geometric square function is also in L?(I'). For p = 2 we prove
a dyadic analogue of this result, and a partial converse.

1. Introduction.

The Sobolev space on the real line, W?(R), is the set of functions in L?(R)
whose distributional derivatives are also functions in L?(R).

There are several characterizations of these spaces. In the early 80’s
Dorronsoro (see [Do]) gave a mean oscillation characterization of poten-
tial spaces, extending earlier results due to R.S. Stritchartz. In the late 80’s,
Semmes showed that the Sobolev spaces W12(M) have many of the proper-
ties of WH?(R") when M is a chord-arc surface (see [Se]). Dorronsoro and
Semmes used square functions closely related to the square functions we use.

There is a characterization, due to E. Stein (see [St1] Ch.V) that involves
the second differences of the given function. More precisely, let

Af(z) = flz + 1) + flz —t) — 2f(x),

and define the square function

s = ([T 1auE@rd)"

Then the following result is true (see [St1]):

Theorem A [Stein]. For 1 < p < oo, f € W"?(R) if and only if f, Sf €
L?(R). Moreover |Sfl, ~ /'l

For p = 2 the proof of this theorem is just an application of Plancherel’s
theorem. In this case |Sf]. = | f'|-

It is important for applications (eg. boundary problems for PDE’s) to
obtain similar results when R is replaced by a curve I'. Smooth curves can
be treated reducing to the case I' = R after a suitable change of variables.

553
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Difficulties appear when the curve is merely Lipschitz, as it often happens
in harmonic analysis (eg. boundedness of the Cauchy integral on Lipschitz
curves, see [Ch], [M], [CJS]).

Let I" be a Lipschitz graph:

F={z=z+4+1A(z): |A')ew < o0}.
We define the Sobolev space on the curve just pulling back to the line,
(1) W) ={f € L") : f(A) e W'"(R), Alc) ==z +iA(x)}.

We introduce a geometric second difference, to do it we must restrict our
attention to Lipschitz graphs with Lipschitz constant less than one. From
now on I is always a Lipschitz graph, with ||A'{|.. < 1. For any z € T, let

(2) Auf(2) = f(=") + f(z7) = 2f(2),

where 2z are the unique points on T at distance ¢ from z. It is clear that one
point lies on the right and the other on the left of z, denoted respectively
2} and z;. Let us denote the corresponding z-coordinates z, i, see figure
below,

We define the geometric square function, Sf, by analogy with Stein’s
square function Sf; just replacing the second difference by the geometric
one,

5 0 diN 1?2
510 = ([ Bs@PE) . el

We can prove the following result,

Theorem 1. Let I' be a Lipschitz graph with Lipschitz constant less than
one. Assume f € WYP(T') then Sf € LP(T") for 1 < p < oco. Moreover

1Sf Loy < CIF ey
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We can prove dyadic analogues of Theorem 1, and a partial converse. We
assume the reader is familiar with the dyadic intervals on the line, and with
the Haar basis (see definitions in Section 3).

Let us consider the case I' = R.

Denote by D the collection of dyadic intervals on the line. Let x; denote
the characteristic function of the interval 1.

Define the dyadic square function by:

9 1/2
(3) Saf (2) = (Z "T}{;‘ x,(m) :

1€D

where A;f denotes the second difference of f associated to the interval
I =[z;,z]] centered at z;, namely:

Arf = flz]) + flzy) = 2f(2r).

The square function S; is a dyadic analogue of the square function defined
in the begining of the paper.

In this case, the analogue of Theorem 1 is very simple. The main ob-
servation being that the second difference A;f of an absolutely continuous
function f is, up to a scaling factor, the Haar coeflicient of the derivative f
corresponding to the interval I. More precisely:

Alf = <f,a hl>‘I]1/2a

where the Haar function h; is the step function supported on I that takes
the values £1/|I]*/2 on the right and left halves of I, respectively.

The Haar functions indexed on D form a basis of L*(R). Hence if f €
Wh2(R), an application of Plancherel’s Theorem for orthonormal systems
implies:

) N Arfl?
1718 = S s b = 3 1B
IeD Iep
The right hand side coincides with the L? norm of the dyadic square function,
hence:
feW(R) = [1Safllz = If'll2-

We also get a partial converse.
Define the dyadic derivative, Df, of f € L*(R), as the L? limit (when it
exists) of the sequence:

D, f(z) = f—(m—ﬁﬁﬂ z€leDy
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where I = [z} ,2]], and D, denotes the n**-generation of dyadic intervals.

In this case if f and S;f are in L?(R), then the limit exists, so Df
is in L?(R). Moreover, ||Dfll. = ||Saf]ls- This is another application of
Plancherel’s Theorem, once we observe that:

A
Df(@) = X i7thu(a).
IeD

We are ready now to describe the results for Lipschitz curves. We will
replace the dyadic square function S, by a geometric dyadic square function
Sd-

We construct a family F of intervals related to the geometry of the prob-
lem. F is what we call a regqular dyadic grid. It preserves the nesting prop-
erties of the standard dyadics, but the scaling is more involved. (For the
precise definitions see Section 3.2.)

Let T be a Lipschitz graph with Lipschitz constant less than one. For a
function f on I" define the geometric second difference corresponding to the
interval I by:

Arf = f(zF) + fz7) — 2f(21);
where zf are the points on the curve I' whose projections coincide with the
endpoints, & of I. And z; is the unique point in T' which is equidistant to
both zF.

Define now the geometric dyadic square function:

9 1/2
Sulz) = (z "TI’IJ;' xl(w(z))) ;

IeF

where 7(z) is the X-coordinate of z.
We can then prove an analogue of Theorem 1 (for p = 2):

Theorem 1'. Let I' be a Lipschitz graph with Lipschitz constant smaller
than one. Assume f € WY2(T') then Syf € L*(T). Moreover

8afll2 < ClIll2-

We also get a partial converse, which is the main result of this paper.
Define the dyadic derivative of f associated to the grid F, Drf, for f €
L?(T"), as the limit in L?(T") (when it exists) of the sequence:

D.f(z) = %}f}zﬂ m(z) € I € F,,

where F,, is the n*h-generation of F (see Section 3.2).
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Theorem 2. Let T be a Lipschitz graph with Lipschitz constant smaller than
one. Assume both f and Suf are in L*(T'). Then Dxf ezists as a limit in
L*(T"). Moreover, ||Dxf|l2 < C||Sall2-

It should be clear that if we know a priori that f € W?(T'), then f' =
Dzf, and hence ||f'||; < C||Saf|2.

To prove these theorems we try to mimic the argument described in the
case I' = R. We build a Haar basis adjusted to the Lipschitz curve T’
and supported on the grid F which itself is related to the geometry of the
problem. This can be done without great difficulty, we will not get a basis but
a frame, exactly as in [CJS] for the study of Cauchy integrals on Lipschitz
curves.

In this setting the Haar coefficients of the derivative will not be exact
multiples of A;f. There will be an error that can be controlled by the
geometry of the problem.

The proof of Theorem 2 is not as straightforward as in the case of the
line. Surprisingly enough it is here where operators like the ones studied in
[P] appeared first. We will use the techniques developed there. For more
details see the introduction to the third section.

The norm ||S'd fl3=Y1er 'A"I{ L can be regarded as a Riemann sum for

[ [ 1ds@rsa =15

In the case I' = R we could use Theorem 2 to prove the full converse of Stein’s
theorem, averaging over translations and dilations of the dyadic intervals.
In the general case it is not clear how to do the averaging, since we no longer
have the group structure of the line available. (See [GJ] for examples on
how to go from dyadic to continuous situations.)

The paper is organized as follows: We will prove Theorem 1 in the next
section; we will use a result of Dorronsoro and some Carleson type estimates.
This proof, suggested by the referee, greatly simplifies the original proof of
the author. In Section 3 we will prove Theorems 1’ and 2, together with all
the discrete ingredients (see the introduction to Section 3 for more details).

Throughout this paper C is a constant that might change from line to
line. We will use the notation a ~ b, for positive numbers a and b, whenever
there exists a positive and finite constant C such that C~'b < a < Cb; we
will say, in that case, that a and b are comparable.

These results are part of my PhD thesis. I would like to thank my advisor
P.W. Jones for suggesting the problem and guiding me through the comple-
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tion of this work. I extend my warmest thanks to R.R. Coifman and Stephen
Semmes for very helpful conversations. Finally, I am grateful to the referee
who carefully read this paper, and made a lot of valuable suggestions.

2. Proof of Theorem 1.

We are going to prove in this section the necessity of the boundedness of the
geometric square function Sf for a function f to be in the Sobolev space of
a Lipschitz curve. The idea is to control the geometric square function by
Stein’s square function. There will be some left overs that can be controlled
in turn by Dorronsoro’s mixed norm estimate on the approximation of these
functions by affine functions. Further errors can be handled by Carleson-type
estimates given by the geometry of the curve.

Let us state some geometric lemmas that we will prove at the end of this
section.

Recall that z are the projections onto the real line of the points on the
curve I' which are at distance ¢ from a given point z € I' whose projection
is .

Lemma 1. Let u} (t) := zf —z := t}, for t > 0; then u} > 0 is an increasing
homeomorphism of t. Moreover it is uniformly bilipschitz on z, i.e.
1 dut()
¢~ dt

<C Vaz,t.

Similarly for u;(t) ==z —z; ==t >0.

Let us define the following quantities, as they are defined by Peter Jones
[J] in the Traveling Salesman Problem.
For a point 2z € K, K a subset of the plane; and ¢ > 0, let

B(z,t) =inf  sup ' dist(w, L)
weK,|lw—z|{<2t

where L is any line in the plane. This quantity measures how close is the
set K N{w: |w — z| < 2t} to a line.

In our case K =T and, since it is a graph, we will talk indistinctly about
z € I or its projection z € R.

In general ¢} # ¢;. This assymetry is what causes most of the problems.
Since the curve is flat enough, we can control the difference

Lemma 2. |tf -t | < Cp(z,t)t.

We will prove Lemmata 1 and 2 at the end.
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Recall that p is a Carleson measure on the upper half plane if
/du(m,t) <C|lIl VICR
Ji

where I is any interval of the line and I is the cube lifted above I.
Finally we can control the 8’s in the sense that

Lemma 3 (P. Jones’ Geometric Lemma). The measure given by

dt

d,u(x, t) = ﬁ2($7 t)Td:E,

. 2
is a Carleson measure on the upper half plane R .

For a proof of this result see [J] and also [Do].
We will need the following facts concerning Carleson measures:

Carleson’s Lemma. Given a Carleson measure pu in the upper half plane,
and o positive function F(x,t) then

// xt”du(xt<0/ )Pdz, 0<p<oo

where F*(x) = SUDPy0, y—z| <t F(y,t).

For a proof of this lemma and the next see [St2], Corollary 2.4 in Ch.IL.

As an immediate consequence of Carleson’s Lemma and the Hardy-Little-
wood Maximal T heorem, we conclude that for the case F(z,t) = |m,fl,
where m,  f = - “*' f(y)dy the following inequality is true:

Lemma 4. Given a Carleson measure p in the upper half plane, and f €
L?(R) for 1 < p < oo, then:

// ]m“j|duxt<C/ z)|Pdz.

We can deduce from this lemma the following mixed norm estimate; here
the (3’s, are the ones given by the geometry, which in particular are bounded
by a constant.

Lemma 5. Given the Carleson measure in the upper half plane,

du(e, 1) = (o, 1) L

and f € LP(R) for 1 < p < oo, then:

[ mesteen®) wsc [ irepa
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We will prove this result at the end of the section.
We are going to use the following result due to Dorronsoro:

Theorem [Dorronsoro]. Let f € W'P(R) be given, with 1 < p < co. Then
for each x € R and t > 0 there is an affine function a,, with the following
properties:

z+t

@ ad<cet [ 1wy

z—t

2 p/2
R dt i
(5) /R ( /0 (t ;f_?:)ng (v) - aw,t(y)l) 7) dz < C /R If'(z)|Pdz.

If we drop the condition (4) this is a special case of Theorem 6 (i) in [Do).
The affine function a, ; used by Dorronsoro is the unique one such that:

T+t
[ U@ -olta =0, k=0,1.
It can be computed explicitly. It is not hard to see that:

C 1

e d < 5[4 15w~ maflay]

The following inequality is true for absolutely continuous functions:

T+t z+i
2 [ —metlay<© [ IFwldy

(it is a calculus exercise to check it). Since functions f € W'P(R) are
absolutely continuous after modifications on a set of measure zero, we see
that condition (4) holds in Dorronsoro’s Theorem.

Proof of Theorem 1. We want to bound with a constant times the LP norm
of the derivative of a function f € WHP(R) the following expression

© ( L ([ + ) - 210r %) dz) "

Recall that z} = z +t. To get a symmetric second difference, add and
subtract f(z — t}), we can bound (6) by Minkowski’s inequality, up to a
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constant by:

" </R ([T 1o - ) 25 %) da:) "

(o (L= sa-erg)” )

The first summand can be reduced to the euclidean case. Let us do the
change of variable s = ¢t7 = u}(t); by Lemma 1, s ~ ¢, ds ~ dt. We can
bound the first term by:

’ (/R ([ vero+se=s —2f(x)|2§§)p/2 dw)l/p,

which is bounded by C||f'||, by Theorem A.

We are left with the second integral in (7). This time we will add and
subtract a, ;(z —t;) and a, ;(z —t}); where a, , is the affine function given
in Dorronsoro’s theorem. Certainly:

If(z —5) —ase(z — )| < sup [f(y) = ase(v)]-

ly—z|<t

1/p

We can then bound (7) by a constant times:

2 p/2
I8 (/m (t_l ,f_‘i‘[;'f(y)—az,xy)l) f’}) dz
(o)

The first term is bounded by C||f’|l, by Dorronsoro’s theorem. The second
can be rewritten as:

oo dt p/2 1/p
(/R(/ L Plet - %) dx) ;
0

and using Dorronsoro’s estimate (4) and Lemma 2, we can bound this by

(/R(/om[%/ |f|] - )dt>"/2d$)””;

1/p

1/p
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which in turn is bounded by Carleson’s mixed norm lemma (Lemma 5), and
P. Jones geometric lemma (Lemma 3) by C||f'||,-

This finishes the proof of Theorem 1 except for the geometric lemmas,
and Carleson’s mixed norm lemma. O

Proof of Lemma 1. We want to prove that uf(t) = tf = zf —z is an

increasing bilipschitz homeomorphism. Clearly u} is increasing (because I’
is a Lipschitz graph with Lipschitz constant less than one). The inverse of
this mapping is given by the distance between the images on the curve I of z
and y = z+s, namely (u})~(s) = |A(z+5)— A(z)|, where A is the Lipschitz
map defining I' and A(y) = y+iA(y). By hypothesis, |A(y+h) — A(y)| < nh
where n < 1.

Showing that u} is bilipschitz is equivalent to show that its inverse is
bilipschitz. To show this it is enough to show that there exists a constant C
such that Vz, s >0, h >0

1 _ () (s+h) - (ug)"'(s)
c- h

We can assume without loss of generality that z = A(z) = 0. We want to
bound (|A(y + k)| — |A(y)|)/h, from above and below.

The upper bound is trivial by the triangle inequality and by the fact that
the map A is bilipschitz, since

h<|A(y+h) —Ay)l = |h+i(Aly + h) — A(y))| < AV/T+ 7.

<C

Note that for all z and v,
[A(2)]* = AW = 2° =y + (A°(2) — A*(y))-
It is not hard to check that for every 0 <y < z
A%(z) = A2(y) > -1 (2* — y),

therefore |A(z)[* - A@y)? > (1 —n?)(2® — ?).
Since |A(2)| < |z|v/1+ 7?, then

Ay oL
[A(2)] +1A(y)] ~ VI+7*

hence, choosing z =y + h, h > 0 we get that

A +m) - 1AWl 17
h VI
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which is certainly larger than zero, since n < 1.
This finishes the proof of the lemma. 1

Proof of Lemma 2. We want to show that there exists a constant C' inde-
pendent of z and ¢ such that

tr — t;] < Cth(z,1),
where the #’s were defined for z = A(z), by

B(z,t) =inf  sup ¢! dist(w, L),
L wer, Jlw—2z|<2t
and L is any line in the plane.

Notice that the height h of the isosceles triangle drawn through the images
on the curve of z, 77 = z + ¢t and z; = z —t; (which we will denote
respectively by z, z;" and 2;) is certainly bounded by t8(z,t).

Therefore it is enough to show that [t7 — | < Ch.

Let a = a(z,t) be the common angle in the isosceles triangle. Let 6§ =
0(z,t) be the angle between the horizontal and the chord through z; and z; .
We can assume without loss of generality that 8 > 0 and that arg z > arg z; .
Then high school geometry shows that

t, =tcos(a+6), h=tsing,

i —
2
Therefore t; = Z; — hsinf. and tF = Z, + hsiné.

Hence

_ _ = + _ (ot - -
tcosacost = = Iy, tz—(ﬂvt--’ft)‘tz-

[t5 —t;| = 2hsiné < 2h.

We can have a better bound if we notice that sinf < ﬁ’n—Z

This finishes the proof of Lemma 2.
U

Proof of Lemma 5. The case p = 2 is an immediate consequence of Lemma 4.
We will get the inequality for 1 < p < 2 using the atomic decomposition of
the tent spaces T for ¢ <1 (see [CMS]), as suggested by the referee. For
2 < p < oo we will get the result interpolating between a mixed L? norm
space and the space of Carleson measures.

Case 1 < p < 2: Denote by I'(z) the standard cone whose vertex is z, i.e.,
I'(z) = {(y,t) : |y — 2| < t}. For a function G on R?%, define A, (G)(z) =
SUP(, ner(z) |G (Y ).
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The tent space T2 consists of exactly those functions G' continuous in Ri,
so that A, (G) € LY(R), and for which G(z,t) has non-tangential limits at
the boundary almost everywhere. We define ||G||7s, = || Ao (G)ll,-

A T%-atom is a function a(z,t) supported on a tent I, and such that
SUp(, 4 |a(:p, t)] < 1/|I|'/9; where I is an interval centered at z;, and I =
{(z,t) e R2 : z € I,t < |I|/2 — |z — z(|}. Clearly |la|lzz, < 1. The atomic
decomposition for TL when g < 1 given in Proposition 5 on p. 326 of
[CMS], says that if G € T2, ¢ < 1, then G(z,t) = 3 Ajaj(z,t), where a;
are T2 -atoms. Moreover ). I)\ |7 < ||G|| .

Let f € LP(R) be given and set =

F(z,1) = [mq, fI".

Then F lies in the tent space T2 of [CMS] with ¢ = p/2 < 1. Moreover, as

an application of the Hardy-Littlewood Theorem, ||F ||’7’,/,,";2 < Cliflz.

It is simple to check for T?/2-atoms, a(z,t), that the quantity:

© L ([ atwnsen®) "

is bounded by a constant C' independent of the atom a. More precisely, using
the support and size properties of the atom we see that (9) is bounded by:

1 e dt ?/2 1 11/2 dt P2
— — <= 2 - <C:
|I|/I(/o ,B(x,t)t) dr < III/I/O ﬁ(:z:,t)tdx < C;

the first inequality by the Cauchy-Schwartz inequality with p’ = 2/p > 1,
the last one by P. Jones’ geometric lemma.

Finally, writing an atomic decomposition for F(z,t) = 3 Aja;(z,t), using
the above estimate for atoms, and the fact that p/2 < 1, we conclude that

oo dt p/2
L ([ FeorenT) a<Sox <clrg. <cis
Case 2 < p < 0o: Let us introduce the mixed norm spaces, 1 < p < oo

[P — {f RZ = R; ||/l = (/R (/ L )P/z dx>1/p : Oo}'

Define the Carleson measure space by:

, 1 mo, g\
CM = qg:R; = R;llgllcnu = sup ——-/ 9°(z,t)— dr <ooy.
IchIl I \Jo ¢



SOBOLEV SPACES ON LIPSCHITZ CURVES 565

These are Banach spaces with the corresponding norms. We can interpo-
late between mixed norm spaces and Carleson measure space. In the sense
that, given a linear operator T bounded simultaneously from L? into L??2,
and from L* into CM, it is also bounded from L? into L*?, for 2 < p < oo.
See [CMS] and [AM].

Define the linear operator T for integrable functions by:

Tf(.’L‘, t) = IB(:E’ t)mz,tf-

T is bounded from L? into L?2, it only remains to check that is bounded
from L*™ into CM. We want to show that:

" 1/2
i ([ imeppen®) o<

Certainly |m,.f| < ||flleo; substituting it into the integral, applying the
Cauchy-Schwartz inequality, and using once more P. Jones’ geometric lemma
we get the desired inequality.

As it was pointed out by the referee, the result for p > 2 is related to
Remark b on p. 320 of [CMS]. This remark addresses essentially the same
point, but with integrals in ¢ replaced by integrals over cones.

This finishes the proof of the mixed norm Carleson’s lemma. O

3. Dyadic Version.

3.1. Introduction. Let I" be a Lipschitz graph, I' = {z = z + iA(z) :
JA"|oo < o0}. We will assume that ||A']|, < 1, as before.
When I' = R it is not difficult to see that

feW?(R) < f,5f € L*(R).

As we pointed out in the introduction of the paper, in this case this result
can be regarded as a continuous version of Plancherel’s theorem for the Haar
basis. The key observation being that the Haar coefficients of the derivative
f' of an absolutely continuous function f are, up to a scaling factor, the
second difference of f at the corresponding interval.

We will take advantage of this natural dyadic interpretation in order to
develop a discrete approach to the problem.

In Section 3.2 we will introduce the regular dyadic grids (substitutes for
an ordinary dyadic grid). We will construct some Haar systems associated
to these grids and to a nice complex measure do (by nice we mean absolutely
continuous with respect to Lebesgue measure, and such that |o(I)| ~ |I| for
all intervals I in the grid, where o(I) = [, do).
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In Section 3.3 we will construct a regular dyadic grid F adjusted to the
geometry of the problem and the corresponding Haar system {h%},cx, asso-
ciated to the measure do = (1 + 1A'(z))dz (this measure is certainly nice).
We will show that this particular Haar system is a frame, i.e. it behaves
almost like an orthonormal basis (see [CJS].) The deviation from the stan-
dard basis is controlled by a geometric quantity estimated in a Geometric
Lemma (dyadic version of P. Jones Geometric Lemma 3, which in this case
is very easy to prove; see [J]), and a discrete version of Carleson’s Lemma.

Define the geometric second difference associated to the interval I =
(z7,27) by )

Arf = f(=) + flzr) — 2f (21),

where 2 = zf 4+ iA(z}), and 2; € T and is equidistant to z7.
Define the geometric dyadic square function

5 1/2
Sz (Z LoC Lo ))) ;

IeF

where 7(2) is the X-coordinate of z.
We can prove the dyadic analogue of Theorem 1, for p = 2,

Theorem 1’'. Given f € WH%(T') then

ArfP?
||

”Sdfuiz(r) = Z < C"f’"%R(I‘)'

IeF

If we do not know a priori that f € WH2(I') we can still show a partial
converse. Let F,, denotes the nth generation of the grid F. Define the dyadic
derivative of f associated to the grid F, Dxf, as the limit in L?(T"), when it
exists, of the sequence:

Dy f(2) = M; n(z) € I € Fi(J).

Theorem 2. Assume that f € L*>(T') and that

N A fI2
1Saf Iz = Z | III{I <00

IeF

Then Drf exists and is in L*>(T"). Moreover

1D 132y < CISaf 3 2ry-
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It will be enough to prove local versions of these theorems. By this we
mean to replace R by an interval J and prove the corresponding statements
uniformly on J.

In Section 3.4 we will prove a local version of Theorem 1. To do this
we will use the orthogonality of the Haar system constructed and Carleson’s
Lemma for regular dyadic grids.

In Section 3.5 we will prove a local version of Theorem 2. We will reduce
the problem to the boundedness of an operator, P, ,, that formally looks like
the operator defined in [P] by,

Pyg = Z{)Ang I 1(1 + Ajb);
n= j=n+

where g is a square integrable function, b comes from the geometry and is
in the space of bounded mean oscillation functions (BMO), and A, f is the
projection onto the subspace generated by the Haar functions corresponding
to the n'* generation of the dyadics.

In Section 3.6 the operator F,, is analized. The strategy is the same
as in [P]. We can rewrite the paraseries P, in terms of the weight w =
[1;26(1 + Ajb) (see p. 581). The necessary and sufficient conditions for
the boundedness of the operator P, in L? are described in [P], and they
reduce to a reverse Holder condition on the weight. In our case the grid will
be the regular dyadic grid F; the Haar functions will not be the standard
ones either. Nevertheless, we can mimic what we did in [P]. As we could
expect, the boundedness of the operator will depend upon the boundedness
of a weighted maximal operator, and this will be so provided the weight w
satisfies a Reverse Holder condition on the grid. The proof in this case is
simpler than in [P]; after a minute of reflexion we see that both the weight
and the grid come from the geometry and some of the difficulties are cancelled
out.

3.2. Dyadic grids and Haar functions. Consider a fix interval J. A
dyadic grid associated to J is a collection of nested intervals F(J) such
that F(J) = Us—y Fu(J). The generations F,, are defined inductively by
Frir(J) = Urer, sy F1(I), and given any interval I, its first generation
Fi(I) = {I,,I,} is a partition of I into two disjoint intervals that we will call
the children of I.

A regular dyadic grid associated to J is a dyadic grid such that there is a
constant 3 < C < 1, such that given any interval I € F(J) and I a child of

I then 3 3
(L=-O)| < || <O
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If C = % we get the ordinary dyadic decomposition of J. In this case
given any I € F.(J), |I| =27"|J|.
If C > 1 then we can only say that for any I € F,(J)

Q-0 < <l

This implies that given any point z € J, if I, is the unique interval in the
nt® generation that contains z then

[o o]
n I, = {z}; nll)ngo .| = 0.
n=0
It also implies that intervals of a given generation are comparable, but
the comparison bounds are not independent of the generation.

We say that F is a dyadic grid on R if there exists a sequence of intervals
{Jn}n>0 such that:
(i) Jn € fl(Jn+1)a
(ii) R =UpsoJn;
in that case F = U,,>0F(J,). The generations can be defined by:
5 {unzofnJrk(J,,) for k >0
7 Uns i Fnar(Jn) for k < 0.

F is a regular dyadic grid on R if there exists a constant 1/2 < C <1
such that (1 — C)|I| < |I| < C|I|, for all I € F, I parent of I.

Given any regular dyadic grid associated to an interval J, F(J), and an
absolutely continuous measure o, such that |o(I)| ~ |I|, for all I € F(J);
there is a Haar system associated to them. More precisely for each I € F(J),
let I, I; be the right and left children of I respectively, define

10 o) = (PN () @)

and

v 1
(11) hy(z) = WXJ(QC),
where x; is the characteristic function of I.
Clearly each h{ is supported on I and is constant on each child. Moreover
its mean value with respect to do is zero. Therefore, if we denote by (.,.),
the bilinear operation (f, g), = [ fgdo (notice that there is no conjugation),



SOBOLEV SPACES ON LIPSCHITZ CURVES 569

the system {h{};cr(s) behaves like an orthonormal system with respect to
this pseudo inner product, i.e. (h¥,h% ), is zero if I # I', and one if I = I'.
The function A is certainly “orthogonal” with respect to the bilinear form
(.,.)o to all the h9’s and (h?,h%), = 1. Let us state this result as the first
part of the next lemma.

Lemma 6. The Haar system associated to the regular dyadic grid F and
the measure o as defined above satisfies the following properties:
e  “orthonormality” with respect to the bilinear form (.,.),.

e “reconstruction formula” for functions f € L} .(J,do):

(12) flz) = Z (f,h))ohi(z), o —a.ex

IeF'(J)

where F'(J) is the grid F(J) with a second copy J, of J and we agree
that hg := hj.

The proof of this lemma is an standard application of Lebesgue’s Differen-
tiation Theorem (see for example [P] p. 631), replacing by the corresponding
expectation and difference operators as defined next.

Define E? the ezpectation operator with respect to do, associated to the
grid, by

1

(13) 1@ = ;5 [fwiot) we1eF ).

Define the difference operator,

(14) Ag;f = EZ+1f - ng
Observe that E? f(z) = (f,hl)shI(z), and for n > 0,
(15) ALf(@)= D (f,hf)shi(2).
[€F.(J)

We can use Plancherel’s Theorem for orthogonal systems if the measure
do is positive (in that case we have an honest inner product); to get that

“f“QL?(J,da): Z l(f,h7)0|2-

I1€F!(J)

In particular, if do = dr we have the standard Haar basis associated to
the grid F, that we will denote by {h;};cx. for the record, note that,

(16) @) = ()™ (L) o).
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We want to deal with complex measures, and we want to say something
about the function being in ordinary L?(J). That is we would like to know
under which conditions the system {h{} cxs) is a frame in L?(J). By this
we mean that we can reconstruct the functions as in (12), and we can also
recover the L2 norm. More precisely, there exists a constant C > 0 such that

A & X KA < U Bay SC X 1R

IeF'(J) IeF(J)

In [CJS] a Haar system adjusted to a Lipschitz curve is built. There the
grid is the ordinary dyadic grid and the measure involved is do = 2'(z)dz,
where 2 is the arclength parametrization. It turns out that in this case the
system is a frame.

In the next section we will construct a Haar system associated to a regular
dyadic grid F and to a measure do related to the given Lipschitz curve. We
will show that this particular system is a frame.

Carleson’s lemma, is still valid in this context. A Carleson sequence with
respect to F(J) is a sequence of complex numbers {b;};c#(s) such that there
exists a constant C' (Carleson’s constant) such that

> bl <ClL|, VI, € F(J).

IeF(1,)

Lemma 7 (Carleson’s Lemma). Given {b;} a Carleson sequence with respect
to F(J) and any sequence of positive numbers {1} then

> bl <€ [ N(@)de

IeF(J)
where C is the Carleson constant of the {br} and X*(z) = sup, ¢ cr(s) Ar-

A proof for the standard dyadic grid can be found in [M] p. 273. The
proof for regular dyadic grids is essentially the same.

3.3. Our Grid. Given the Lipschitz graph T' = {z = z + {A(2); | 4|
n < oco}. We assume, as before, that n < 1.

Fix an interval J, let I'j = A(J), i.e. the piece of the graph I" whose
projection is J.

We will construct a Haar system, adjusted to the Lipschitz graph I';, but
also to the geometry of our problem. In general the supporting dyadic grid
will not be the ordinary dyadics (except in the trivial case when I'; is a line)
but it will be a regular dyadic grid. The measure will be

(18) do = (1 +iA'(z))ds.
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To define the grid it is enough to indicate how to produce the children
of a given interval. Let [ be any interval, let us denote its left and right
endpoints by z7 and z] respectively. Let zf = 27 + 1A(z]) and similarly
z; . Let z; be the point on the curve I' which is equidistant from 2] and z;
(it is well defined because ||A’||oo < 1). Let z; be the point in I such that
zr = x5 + iA(z). The children of I will then be

Il:(ﬂil_,l']), IT:(.’L'I,QT})_).
Lemma 8. The grid F(J) defined by this procedure is a reqular dyadic grid.

Proof. Clearly, the vector 2] — z; = [, do(z) = o(I).

Let 6; = argo(I). Notice that by construction, |o(I})| = |o(I,)| := tr.
Therefore ay := 6, — 0; = 6; — 6;_ (here o is the common angle in the
isosceles triangle defined by z;, 2; and 27). Since the curve is a Lipschitz
graph, then certainly both #; and «; are bounded in absolute value by
0 := arctan |A'| < w/4. In particular, since |I| = |o(I)|cos@; and by
construction |o(I)| = 2|o(I)| cos a; (where I is a kid of I) then

1+7n?

(1=O| <1 <CI}; for C=——.

Since 0 <7 < 1clearly 1 <C < 1. l

The Haar system associated to F(J) and to do = (1+iA'(z))dz is, as we
can see by (10) and the fact that o([,)/o(I;) = e*®!, given by:

(19) K@) = gy (€7 2) = e ).

Proposition 1. The Haar system defined above is a frame on L*(.J).

Proof. The proof is essentially the same as the one in [CJS].
Let us compare the standard Haar basis, {hs};ex(s), associated to the
grid F(J) (see (16)), and the new system. It is not hard to see that

hg(z) = crhr(z) + 11> sina,&f_}if_),
1

where |¢;| ~ 1, |d;] ~ 1, uniformly on I.
Therefore,

1
(f k), = c,/fh,da + dy 1] sinay fdo.

mh
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Recall that do = (1 + iA'(z))dz and let us denote the mean value with
respect to the Lebesgue measure by m;g = ,—}-, J; gdz, and recall that (.,.)
denotes the ordinary inner product in L?. Then we can rewrite the right
hand side in the last equality as

cr{f(1 +iA"), hy) + d|I)*? sinaymy, f(1 +3A4").
Also notice that,
(fa hg)a = cJ(f(l + iAl)a ha)a

where |c;| ~ 1 as well.
Since |¢f| ~ 1 and |d;| ~ 1 independently of I; then

200 > [ALADP<C Y (FA+iA), R

IeF(J) IeF'(J)
+C Y H|sin®ar|my, f(1+i4").

IeF(J)

The first term on the right hand side of this inequality is clearly bounded by a
multiple of | f|z2(s), since {hr}rer (s) is a basis on L?>(J) and |1 +iA'|e < 2.

The second term can be controlled by Carleson’s Lemma on regular dyadic
grids, provided we can show that

Lemma 9 (Geometric Lemma). The sequence by = |I|sin’ oy, I € F(J)
satisfies Carleson’s condition with Carleson’s constant independent of the
base interval J.

We will prove this lemma, at the end of the section. Assume it is true, and
let A\f = |my, f(1 +1A4')|%. Clearly

X (z) < CM?|f,

where M is the ordinary Hardy-Littlewood maximal operator.
By Carleson’s Lemma and the boundedness on L? of M, we get that

> Hisin® agfmy, f(1+iA) < Clf e

IeF(J)

Therefore, for all f € L?(J)
(21) > KRG < ClF i)

IeF'(J)

The converse now follows from a standard polarization argument (see
[CJS])).
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This finishes the proof of the proposition. O

We will say that a locally integrable function b is in BMO(F, o, J) if there
exists a constant C' such that

(22) > bR < ClL| VI, € F(J).

IeF (1)

Remark. Since the square of the absolute value of the sequence b; =
io/?(I)sina; is a Carleson sequence with respect to do and F(J) (Geo-
metric Lemma 9), the function

be) = 3 bihg()

I€F(J)

is a well defined L?(J) function and is in BMO(o, F, J); moreover, there
exists constant 0 < e < 1 such that for all I, |b;hf(z)] <1 —e.

Proof of Lemma 9. This proof is the same as the proof of the Lipschitz case
in the Travelling Salesman Problem (see [J].)

Since |I| ~ |o(I)|, it is enough to show that the sequence |o(I)]|sin® oy
satisfies Carleson’s condition.

Denote by I';, the image curve of the interval I,.

Certainly the arclength of I';, is comparable to |I,|. We can compute this
length I[(T';,), by successive polygonal approximations to I',.

Let oy = {z = 27 +to(I) : 0 < ¢ < 1}, be the chord built joining the
images of the endpoints of I on I'. Clearly, |o;| = |o(I)].

Let I'; = o7, and define for n > 0

IeF.(1,)

Clearly I', — T'y, and (') — I(T'y,).

Therefore

UTr) = UT) = 2 HTwys) = UT)

n=0

It is easy to compare the lengths of two succesive polygonals,

(Tas1) = UTa) = D, (o) +lo@)] = lo(D)]).

IeF.(1,)

By definition of the grid, |o(I)| = 2|o(I)]| cos o}, for I parent of I; hence,
since T is Lipschitz, |o(I,.)| + |o(L)| — |o(I)| ~ |o(I)|sin® a;.
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Therefore
UTr) =UTo) ~ X2 lo(Dlsin® ar.
IE€F(I,)
Finally since I(T',) = |o(I,)| ~ |I,| and I(T';,) ~ |I,| we see that for all
I, € F(J)
Z lo(I)|sin® oy < C|L,].

IeFa.(1,)

This finishes the proof of Lemma, 9. O

The bilinear form (.,.), is not an honest inner product. We would like
to study the boundedness in L? of certain operators and their adjoints with
respect to the bilinear form. Let us state here a lemma that we will use
later. The proof of the lemma is an exercise in functional analysis left to the
reader.

Lemma 10. Given T and T* linear operators in L?(J) such that

<Tf7g)0:<f’T*g>0" Vf7gEL2(J),
then T is bounded in L*(J) if an only if T* is bounded in L*(J).

3.4. Proof of Theorem 1’. Suppose f € W2(T'), where I' = {z + 1A(z) :
|A'|o =7 < 1}. Let A(z) = z + iA(z).

By definition of the Sobolev space on the curve, f(A) and (f(A)) are in
L*(R). We can assume that f(A) is absolutely continuous.

Let do = (1 + 1A'(z))dz, be the measure used in the previous section.
There we showed that given an interval I then (see (19))

]' —ia,

hi(z) = S (D) (e xr, (z) — e xy(2)) -

Clearly (f(A)) = f'(A)(1 +iA4’), and by the fundamental theorem of
calculus,

(A 5), = s [ i)+ 1 (27) = 2eosan f(a)]

where I, = [z}, z}], I, = [z7,z;] and 2F = A(z¥).

The right hand side is almost the geometric second difference that we
associated to I, namely A;f = f(zF) + f(z7) — 2f(2r1)-

Let us introduce an adjusted geometric second difference

(23) Arf = e f(2f) + e f(z;) — 2cos ar f (1)
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Observe that when I' = R, the two differences A; f and A; f coincide with
the ordinary second difference.

Remark. This adjusted second difference is, in some sense, a better behaved
object. If we define

A f(z) = 20 f(2f) + e f(27) — 2cos alz, 1) f(2);

then A; will annihilate linear holomorphic functions. This is something that
an ordinary second difference does but ours does not!! The nonlinearity in-
troduced in the construction of zi° is compensated in A, by the introduction
of the correction factors e***(**) and cos a(z,t).

Fix an interval J. We just showed that if f € W*(T') then for all [ €
F(J),

(), B, = it

Also recall that

A 4 _ )_f(z;)
(f'(A),hg)e = 01/2 /f ——W—

Let T'; = A(J). Notice that | /|2, = [(f(A) lr20) ~ 1 (D2,
therefore by Proposition 1 it follows that

AP () — F(5)P
2 A To)

24 ' 22 ~
( ) ”f ”L ry) 'S |O’(I)|

If we replace A; by A; we can still show a local version of Theorem 1'.
Since |I| ~ |o(I)], we can use either of them in the estimates.

Theorem 1’ (Local version). Given f € W'2(T'), then for every interval
JeF

AP 1F(5) = £
P Ty BT

uniformly on J.

< Clf'lt2 )

Remark. This local version implies Theorem 1’. Since it holds uniformly on

J, and clearly f € W'3(T') implies that —fﬁLI)—UL)(L < 1f'132r,) (more is ac-
tually true: [ € W?Y3T), f absolutely continuous, implies that

+ z . .
EAC |)a(f )(‘ Pl 0, as J — R, this is a consequence of the elementary fact



576 MARIA CRISTINA PEREYRA

that for any function f € L*(R), ; (f, f)? = 0 as |I|] = o0.) Denote by
F = Up>oF(J,) where J,, € Fy(Jny ) and R = U,>0J,, then certainly

A ,
= | ’f ' < Clf oy

IEJ:

which is the conclusion we were seeking.

Proof of Theorem 1' (Local version). After observation (24), we see that it

is enough to compare 3¢5, |Arff2/|o(I)] and Yierwy [1ALf*/lo(I)].
In particular

(25) Arf =cosarArf +isiney (f(2F) — f(27)) .

Since f E I/V1 2(]f‘) we can assume that f (;1) is absolutely continuous; i.e.
F(A)(b) - f (f(A)) (z)dz = f f'(A)do. Hence if we denote the
mean value of g w1th respect to o on I by mfg, then

f(z}l_) - f(zl_) — m}'f'(fi)

o(I)
Therefore
|ALf)? g 2
> <C Z "y > lo(I)]sin® arlmg f'(A))%.
1€F () lo(Dl ~ I€F(J) (I)| 1€F())

The second summand on the right hand side is bounded by |f'(4)|2 ~
|/'132r by Carleson’s Lemma and the same argument with the maximal
function that we used at the end of Proposition 1.

This finishes the proof of the local version of Theorem 1'. O

3.5. Proof of Theorem 2. If we do not know a priori that f € W2(T)
but only that f € L?(T") and that for a fixed interval J,

7 - £ AP _
(26) o2 el <

we can still say something. Certainly (26) does not carry enough information
about the smoothness of f. for instance it only considers the values of f at a
countable number of points which is negligible. Nevertheless, if (26) is true
the sequence

) _ f(ym
D,{f(z)zf—(z’-—zf(#(—’—), 7(z) € I € Fu(J)
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will converge to a function D?f in L%(T';), that we will call the dyadic
deriwative of f on J with respect to the grid F(J) (clearly if we start with a
differentiable function f then the sequence converges pointwise to f’ in J).
More precisely, we can prove the following:

Theorem 2 (Local version). Let f € L*(T';) and assume (26). Then,
the sequence Dj f defined above converges to a function D’f € L*(y).
Moreover,

Jen \f(zF) — £(z7)I? ALf?
1D Mz < © ( lo(J)] i IG;J) lo(1)] ) ’

where the constant C' is independent of the base interval J.

Remark. To get the global estimate, denote by F = U,>oFi(J,) where
Jn € F(Jns1) and R = U,50J,, as in the remark right after the local ver-
sion of Theorem 1'. Clearly, F(J,) C F(Jp41) C ... C F, assume that

E,Ef% < 00. This implies that (26) holds uniformly on J, (since

1f(z7) = FDP/lo(D] < eXgcrer|A1fP/lo(D)]). Given f € L*(I'), we
will get a sequence of functions D™ f defined by D7~ f on T'; and zero other-
wise, uniformly bounded in L?. By construction D"*' f|; = D"f|;. , hence
D"f — Dxf in the L? sense as n — oo, and

Aff)?
1D flay <0 3 1210

Hence, Theorem 2 is proved, up to the local version.

Proof of Theorem 2 (Local version). Fix an interval J. Let us drop the
superscripts J in the notation for dyadic derivative (i.e. Dy and D will be
used instead of D{ and D’).

We do not know a priori that f' exists, so we cannot use Carleson’s Lemma
straight away as we did in the previous section.

Nevertheless, notice that for every z; € I € Fi(J) we can write by (25)

(27) A[f:COSQ[A[f+7:0'(I)Sina[Dkf(.’I)[),

by an abuse of language, we are identifying Dy f with Dy f (A), and we are
writing Dy f(z) instead of Dy f(A(z)).
It is not hard to see that
Arf

Dyi1f(z) — Dif(z) = ;/Q—Ujh}’(ﬂv)a z €l e F(J).
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Therefore, multiplying (27) by h¢/0'/?(I) and using the last equality we
get for every z € I € Fi(J)

(28) ~
Djy1 f(z) = cosay 32{1)”7( z) + (1 + i0"/?(I) sin ayhg (z)) Dy f (z).

By hypothesis and Proposition 1, the function

(29) Z Cos o 32{1)#’( )

IeF(J)
is in L2(J).
Let b(z) = ¥ je 5y brh§ (z), where by = ig'/?(I) sin ;. By the remark on
p. 573, b is in BMO(F, 0, J).
Moreover, with the notation of Section 3.2 p. 569,

Afg(z Z cosay 1/2f)ha( ), Eg9=0,

IeFi(J)

and similarly for Ab(z).
With this notation we can rewrite (28) for all £ > 0 as

(30) D1 f(z) = Afg(z) + (1 + A7b(z)) Dif ().

This is the recurrence equation that we solved in [P] under some conditions
on b.

Let us replace D, f by the corresponding sum and continue down until we
reach k = 0. We get

k-1 k k
(31) Dk+1f=AZQ+ZAZQ H (1+A7b) + D, f H(1+A;b)'
n=0 j=n+1 j=0

The last summand on the right hand side of this equation is a multiple of
D,f = &1})—(})(—2—# which is not necessarily zero.
Lemma 11. The sequence wy = H;?:O(l + AJb) converges in L*(J) and
a.e. to the function w = [[;2,(1 + AJb). Moreover |w|r=(s) < 1.

We will prove this lemma at the end of the section. These products had
been studied in [FKP].

The first two summands in the right hand side of (31) look formally like
the finite sum operator Pf in [P]. The only differences are that here the
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supporting grid is not the standard dyadic grid and the measure is do instead
of the Lebesgue measure. The function b comes from the geometry, just as
the measure do and the grid do. All the algebra is still valid, including the
algebra to pass to the corresponding finite paraseries.

Let us define the analogous finite sum operators, for b € BMO(o, F, J)
and g € L2(J,do) (the space of functions in L?(J) with mean value zero on
J with respect to do)

k—1 k
(32) Plg:=3 A%g [ (1+A%) + Afg(a).
n=0 j=n+1

Proposition 2. The operators Py, converge to a bounded operator in L*(.J).

To show the convergence of the martingale Dy f (see (31)), it is enough
to show that Pf,g converges to a function in L?(J) since the other term
converges to wD, f, a multiple of w € L?(J) (by Lemma 11), where D, f =

&%UJ;—(—’— As a consequence of Proposition 2,

1ALfI?
lo

P9l < Clollizg SC 3 o

I€F(J)

It is clear that |wD,f|72(; < C——%;]J— because by Lemma 11, |w| < 1.

Therefore, in the limit, the function Df = limy_,o, Dy f, will be in L*(J) and
moreover,

> ALf1? | (D) =
IDflz2) <C +C ,
) Z) o ()] o (J)]

IeF(J

where C' is a constant independent of J. The local version of Theorem 2 is

proved up to the study of the operators Py, and the weight w (Lemma 11).
U

3.6. Convergence of the operators Pb’fa. Since formally the operators
PF_ look exactly like the ones treated in [P], we want to analize them in a
similar way.

In this setting we can define the paraproduct

(33) g =Y EJgA%b

§=0
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and its adjoint with respect to (.,.),
(34) (I7)*g = > AJgA7b.
=0

(It is easy to check that (IIg, f), = (g, (II7)* f),.)

For b € BMO(F, 0, J) the paraproduct is bounded in L?(J) by Carleson’s
Lemma and so is its adjoint by Lemma 10.

The basic product and composition rules for the expectation and difference
operators are true (see Definitions (13), (14), and see [P], and [Ga]), namely

A ifn>j
A7 = J N
E, A’ {0 otherwise ’

A f x Afg= A7 (f x Ajg) when n > j.
Therefore for all 4; < i, < ... <ip and n <iy

(35) E7 (AL fix ... x A7, fm) = 0;

1 M

and for all M > n
(36) EZ ) A7) =o.
E>M

Let b= Y, (s brh§, where by = i0'/*(I) sina;. By the remark on p. 573
b € BMO(F, 0, J).
We can now reproduce word by word what we did in [P], except for

Proposition 3. The operator

(37) Prg=> Azg J[ (1+A3b),

is well defined and is bounded on L?(J).

Nevertheless we can do similar computations to the ones done in [P] to
prove the analogous result. Let us assume that it is true for a moment, and
let us go back to our problem. We want to study the convergence of Pb’fdg
as k — oo. Let by = Y _j A%b.

Then clearly

Ppg=P,g+ (9 9)

Therefore Pf,g will converge simultaneously with Py, g (since (g — gi) —

0). But reproducing the proof of the corresponding theorem in [P], we see
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that Py, g converges to Pyg = (I-II7)~'g. Therefore P} ,g converges to Py g,
which is a function in L?, by Proposition 3.

Proof of Proposition 3. As in the proof of the analogous result in [P], the
weight w (see Lemma 11) can be used to rewrite the operator so that it will
now look like the operators P, treated in [P].

Recall that

(38) w(z) = f:o[(l + AZb(z)).

As a byproduct of the proof of Lemma 11 we will get (see (56)) that

n—1
(39) Ejw=[[(1+A%),
j=0
which is equivalent to
(40) miw = [[ (1 +brhG(z1)), =€l

o1
With this in mind we can rewrite the operator Py as

O
w(x)(9, h7)ohi ()

4D - mgw(l + b3 ()

IeF(J)

Written in this way the operator looks formally like what we called P, in
[P]. The main step over there was to study the boundedness of the adjoint

operator.
Let
(42) o) = X | [ 12 do] ki)
m?w 1+b1h?

1€F(J)
It is easy to check that for all f,g € L*(J)
<Pl;7f>g)d = (fa (PI;T)*g>U'

Therefore by Lemma 10 it is enough to show the boundedness of the
operator (P7)*. Since {h{} is a frame, it is enough to show that there exists
a constant C such that for every g € L*(J)

(43) >

IeF(J)

1 wgh{

2
< Clol?.
miw J 1+ brhg < Cll-

do
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We can rewrite the operator in a simpler form.
Let I € F(J) be a child of I. Then by (40), for any z; € I,

(44) miw = miw(l + bsh$(zy)).

Therefore, recalling that o (I;) = e**’o(I)/2 cos oy and o(I,.) = e~ %1 o(I}),
we get

1 wghg 1 [ e [, wgdo e”* [, wgdo ]

miw ) T+bhg " o 2(D) |miw(l +bhs(zr,))  mgw(l + bhg(zr,))

mJ w miw
:2cosa101/2(I)[ .29 _ T g].

o a
my w mgw

Let dy = wdo. With this notation (43) is equivalent to

(45) Y le(D)llm}, g — mhgl* < Clgl3,
IeF(J)

where mf g denotes the mean value of g on I with respect to .

Remark. The left hand side of (45) resembles the L?(do) norm of the
standard dyadic square function Sf(z) = (X c;(mr,. f —mr, f)?)'/2, namely,

1SF 1220y = D o(Dlmy, f = my, fI.

IeD

It is known that such an operator is bounded in L?(do) for do = vdz if and
only if the weight v is in the Muckenhoup class A, (see [GC-Rf] for the
general weight theory). There is a very nice proof of this result in [B]. Our
proof follows the ideas in that paper.

Lemma 12. The measure p restores dyadicity to F. More precisely, for
every I € F(J), I child of I, pu(I) = 2u(I).

Proof. By definition and using (44) for any z; € I

=

() _ o)
u(D) ~ o(p o)

It is not hard to see that for x € T

l

(46) 1+ b7 (s { o omay sl

“eicosajr €I
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Also recall that o(I) = €*'|o(I)|, 8;, = 0; — a;, 0, = 0; + a; and
lo(I.)| = |o(L))| = |o(I)|/2cos ay. Therefore for z € T
o(l) 1

o(I)  2(1+bhe(zy))

~

This finishes the proof of the lemma. ]
It is not hard to see, after the last lemma, that

myg+mj g .
2 e

We recall that for all complex numbers z, w the following identity holds,

el = (e - [2) + (ho - 25 )-

Let z = mf g, w = mf g and (z + w)/2 = mfg. Then (45) is equal, up to
a constant, to

(47) > lo(D)l (Imlgl? - Imtgl?) .

T1eF(J)

z+w
2

z+w

Adding and subtracting 2|0 (I)||m4g|* we get

(48)
> (lel=2lo(D]) Imfgl?+ 3 (2oDlimtgl® = lo(DlIm4gl?) -

IeF(J) IeF(J)

The first summand in the last expression can be bounded by

(49) C Y sii’aqlo(I)llmygl,

I€F(J)

because l]a(f)| — 2]0(1)[‘ =2|cosay — 1|jo(I)| < C'sin® a;lo(I))].
This last expression can be bounded in turn using Carleson’s Lemma by

¢ [ IMrg(a)Pd,

(50) M*g(z) = sup |mfgl.
zeleF(J)
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Let

am= Y 2o(I)|lmigl?
IeFn(J)

= . lo(Dlimigl.

IE]'.m-H(J)

Clearly the second term in (48) is a telescopic sum for this sequence, hence
it equals to Y o> (@ — Gm—1) = liMy, 00 G — ao.
But

am < C/gfn(:r;) dz;
J

where

gm(@) = > |miglxi().

IEFm(J)
Clearly for all m
gm(z) < M*g(z),

and therefore a,, < |[M*g[32,)-

Finally we can bound (47) by a constant times the L? norm of M*g,
and we will be done as soon as we can show that this maximal function is
bounded on L?(J).

Lemma 13. The mazimal operator M* is bounded on L*(J).

Proof. By definition
b [;wgdo
g = Jjwdo

It is enough to show that w satisfies a weighted Reverse Holder (2 + €)
condition; namely, that there exists € > 0 such that for all I € F(J)

1 L (wpreas) <ol | [ wa
(51) (m'/llwl :1:) < m—/fwal.

Let us assume that (51) is true. for I € F(J), g € L*(J), and by Holder’s

inequality withp =2 +¢, g9 = fﬁ we get

2 1 1 » 2/p 1 . 2/q
sl < oo iy fetraet) (77 flatiael)

Since |do| ~ dz and by (51) we can bound this by

2/q
c[l—}—, / |g(x)|‘1dw] <C(Mgl(w)™, yel
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where M is now the ordinary Hardy-Littlewood maximal operator which is
bounded in L* for all s > 1. In particular, since g € L? then |g|? € L*9,
where 2/q > 1 by hypothesis, and therefore,

| gfaz < ¢ [ 1M(gPdz < ¢ [ lgPds.
J J J

This proves the lemma; the only missing step is (51). il

It is enough to show that w satisfies (51) for € = 0. This resembles the
classical result of Gehring (see [Ge]), that says that if a weight satisfies a
Reverse Holder condition of order p, it does satisfy a condition of order p+ ¢
for some positive e.

Lemma 14. There ezists a constant C such that

m /|w|2dm < Clmswl?, VI e F(J).

We will prove this lemma at the end, and as a corollary of it and of the
precise description of w, we will conclude that,

Lemma 15. There ezist € > 0 such that (51) is true for all I € F(J).

Proof of Lemma 11: Let

(52) =11 H (14 brhs (x)).
Notice that by (46)

. k
(53) wi(z) = € Do sn(@)an(®) H cos a,(z),

n=0
where for £ € I € F,(J) we define a,(z) = oy, 0,.(z) = 6;, and s,(z) =

si(z) = {1_1 z E 2 . Recall that 6; = 6; — ay, 0;, = 0; + ay; therefore

Ors1(z) = 0,(z) — s, (x)an(z) and TF_, spa, = Oy — Opys.-
Hence

k
(54) wi(z) = e®7~Oer1(@) H cos a, ().

n=0
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Clearly |wg(z)| < 1, therefore wy € L*(J) and |wg |2y < C|J|/?, Vk.
Moreover, |wii1| < |wk|, hence it is a decreasing sequence. Therefore there
is a subsequence convergent to a function w € L*(J).

We can also say something about a.e. convergence. Since I' is a Lipschitz
graph parametrized by A, then A is differentiable a.e. Let z € J be a point
where A'(z) exists. Clearly 0;(z) — arctan A’(z). On the other hand, the
infinite product [Jo, cos a,(z) converges for each fixed z simultaneously

with 3% (1 — cos ap(z)) ~ 32, sin® a, (z).

But
fEwe)e-£1( 5,

= Z |I]sin® ay;

IeF(J)

sin® ay x1 (:1:)) dz

this last expression is bounded by C|J| by the geometric lemma (Lemma 9).
Therefore 3%, sin® a, (z) < oo for a.e. z € J.
Hence foraez € J

oo

Jim wk(x) = g0y —arctan 4'(z) I cos an(=).
n=0

In conclusion, w is well defined as the L? limit of the w; and also as a
pointwise limit; for a.e. z ,

(55) w(z) = (1 +iA'(z))™! H cos o (z
This finishes the proof of the lemma. O

We can safely write

w(z) = [](1+Asb().
n=0
It is not hard to see that
j-1
(56) Ejw(z) = [ (1 + AZb(z)),
n=0

which is equivalent for z; € I to

(57) myw = [[ (1 +brh5 (2)).

I'>I
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To prove this last statement, observe that w = [[7_(1 + A%b) [T (1+
A7b). The first factor is constant for all z € I € F;(J) and the second factor
looks like 1+ sums of products of A{b where k > 5. When we compute the
mean value on intervals I € F,(J) we pick the value of the first factor at a
point z; € I times the mean value of just the function f(z) = 1, because all
the other summands have mean value zero by (35).

Now (56) implies that 1 + A%b = EJ ,w/EJw, which in turn implies that

o o o
B w—Ew Afw
Erw Erw

A%b =

Therefore
(w9

g
me

(58) by = (b,h7)s =

Proof of Lemma 14. Because the system {hJ};er (s, is a frame for L*(1,)
and w € L*(1,) for all I, € F(J) then

[ loldz~ S [l + mf wl (L)1
L I1eF(I,)
But by (58), (w, h?)s = bymw.
Therefore to prove the lemma, it is enough to check that for every I, €
F(J)
> b’ miwf < Clmg wl?|L|.
IeF(L,)

But for I,I' € F(1,) and z; € I, by (57), and (54)

o . o _ o i(07,—90
miw =mj w H (1+bphp(zr)) —mjowe( 1, =01) H CoSs .
Icrci, Icr'ci,

Hence |m{w| < |mJ w| and since by = io?/?(I) sina; then
S o miwl < miwl? 3 Je(D)]sin’ ar.
IeF(1,) IeF(I,)

But the second factor on the right hand side is bounded by C|I,| by the
geometric lemma (Lemma 9.)

Notice that the constants involved are independent of the base interval J.

This finishes the proof of the lemma. O

Proof of (51) (Lemma 15). We conclude immediately from Lemma 14 that
for all I € F(J),

(59) Imfw| ~ my|wl|.
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This observation and Lemma 14 imply that the weight |w| satisfies a Re-
verse Holder condition of order two on the intervals of the grid. Namely, for
all I € F(J),

(60) (% /I |w|2d:1;) Y o Cmylw].

This is enough to ensure that the weight |w| satisfies a Reverse Holder
condition of order 2 + ¢, for some € > 0. Namely, for I € F(J),

1 1/24€
(61) (-'—I—I/I|w|2+€dx) < Cmy|w|.

Since |mJw| ~ my|w| (see (59)), we then get the desired result.

That condition (60) implies condition (61) for some € > 0 is Gehring’s
Theorem. One can follow word by word the proof in [G] p. 260; you need
the RH, condition to be true on a lot of subintervals of the starting interval
J, enough so that a Calderon-Zygmund decomposition argument can be
used. Usually the intervals used are those that come from a standard dyadic
decomposition of J, but it is straightforward to check that it can also be
done if the intervals are given by a regular dyadic grid associated to J.

This finishes the proof of (51). O
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A TYPE OF UNIQUENESS FOR THE DIRICHLET
PROBLEM ON A HALF-SPACE WITH CONTINUOUS DATA

HIDENOBU Y OSHIDA

Dedicated to Professor F.-Y. Maeda on his 60th birthday

In this paper, we shall prove a property of the harmonic
function H defined on a half-space T which is represented by
the generalized Poisson integral with a slowly growing con-
tinuous function f on the boundary J7T of T. Then we shall
investigate the difference between H and more general har-
monic functions having the same boundary value f on 0T.
These give a kind of positive answer to a question asked by
Siegel.

1. Introduction.

Let R and R, be the sets of all real numbers and of all positive real numbers,
respectively. We introduce the spherical coordinate (r,®), © = (0,60,,...,
0,.1), in the n-dimensional Euclidean space R® (n > 2) which are related to
the cartesian coordinates (X,y), X = (z1,Z2,... ,Zn_1,Yy) by the formulas

n—1
;=T <H sin9j> , y = rcosfy,

i=1

and if n > 3,

Jj=1

E—1
Tpp1-k =T (H sinHj) cos 8, 2<k<n-1),

where
0<r <400, 27w <0, <2737

and if
n>30<0;,<7(1<j<n-2).

The unit sphere (the unit circle, if n = 2) and the upper half unit sphere
{(1,61,0,,...,0,_1) €R™; 0 < 6; < I} (the upper half circle {(1,6;) € R?;

591
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—27'r < 6; < 27'w} if n =2) in R* (n > 2) are denoted by S™! and ST,
respectively. The half-space

{(X,9) eR; XeR"Ly>0}={(r,0) eR*; ©€ ST}, 0<r < +00}

is denoted by T,. Then the boundary 9T,, of T, in R® (n > 2) is identified
with R"~!, which is represented as

{Q=tHerR™; |Q=t>0, {€08}7}

by the spherical coordinates, where 8S ™! is the boundary of 77" in S*~ (if
n > 3, then 8S}™' =S"?and if n = 2, then 8S}, = {-%,%}, (t,Z)=t€eR
and (t,-%) = -t e R (¢ >0)).

Given a continuous function f on dT,, we say that h is a solution of the
(classical) Dirichlet problem on T,, with f, if A is harmonic in T,, and

lim h(P)=f(Q)

PeTH,P—Q

for every Q € 0T,.

Helms (4, p. 42 and p. 158] states that even if f is a bounded continuous
function on 9T, the solution of the Dirichlet problem on T, with f is not
unique and to obtain the unique solution H(P) (P = (X,y) € T,) we must
specify the behavior of H(P) as y — +o0o. With respect to this fact, Siegel
[6, Theorems 1] proved the following result. Let Fy (¢ > 0) be the set of
continuous functions f(z) on R such that

/+°°—de<+00.

—oo 1+ lz|2+l

If f € F,, then there exists a solution H,5(f)(P) of the Dirichlet problem on
T, with f satisfying

Hyo(F)(P) = o(r**/ cos 6;) (r = +00)
(P = (rsin6,, rcosb,) € T,).

If h(P) is a solution of the Dirichlet problem on T, with this f such that
h(P) = o(r**'/cos ;)  (r = +00) (P = (rsin6,, rcosb,) € T,),

then
h(P) = He(f)(P) + U(h)(P)

for every P € T,, where U(h)(P) is a harmonic polynomial (of P = (z,y) €
R?) of degree at most £ vanishing on 8T, = {(z,0) € R?*; z € R} . Further
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he stated the following result without proof (Siegel (6, Theorem 3]). Let £ be
a non-negative integer. If f is a continuous function on 0T, (n > 2) such
that

(1.1) If@I<F(z) (QeIT.=R"", |Q =2z

for some F(z) € F,, F(z) = F(—z) (z € R), then there exists a solution
H, .(f)(P) of the Dirichlet problem on T, with f satisfying

(1.2) Hyn(f)(P) = o(r*™/ cos 6;) (r = +00)
(P=(r,0) €T,, ©=(61,0s,...,0,_1)).

If h(P) is a solution of the Dirichlet problem on T, with this f satisfying

(1.3) h(P) =o(r**'/cos ) (r = +00)
(P=(r,0) €T,, ©=(0,0...,0,_1)),

then
h(P) = Hyo(f)(P)+U(R)(P) (P €T,),
where U(h)(P) is a harmonic polynomial of P = (£1,%2,... ,Zp-1,y) € R®
of degree at most £ vanishing on 0T, = {(X,0) e R*; X e R*"'}.
In connection with these results, Siegel [6, p. 8] asked whether the condi-
tion (1.1) of f(Q) can be replaced by more natural condition

(1.4) /R %%1% dX < 400 (£20),

under which H,,(f)(P) exists.

A special case of the following result of Yoshida shows that this question
is solved affirmatively in the case where ¢ = 0. To state it, we need the
following notations. Let ®(r, ©) be a function on T,,. We put

N(®)(r) = ®(r,0)cos0,dog (O = (61,02,...,0,_1))
s;t
and

po(®) = lim r= N (2)(r),

700

if they exist, where dog is the surface element on S™~*. Let G,(P,, P,) (P,
P, € T,) be the Green function of T,. By Ko .(P,Q) (P € T,, Q € 9T,),
we denote the ordinary Poisson kernel of T,

2w, (n=2)
(n—2)sn, (n>3)’

9

c ——
" ov

G (P =2 P-Q = {
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0 . . .
where — denotes the differentiation at @) along the inward normal into T,

ov
and s, is the surface area 27"/2{I'(n/2)}~! of S™1.

Theorem A. (Yoshida [8, Theorem 3 and Lemma 3]). Let f(Q) be a con-
tinuous function on T, (n > 2) satisfying

+oo
(1.5) / £ (/@S £ (2, §)|da§> dt < +00,

where dog is the surface element of 8ST ™' =S"2 (n > 3) and

[ seenasc=lr (s D)+ |1 (6-5)] @=2

+

Then the Poisson integral

Hon(£)(P) = [ 1(QKon(P,Q)dog
s a solution of the classical Dirichlet problem on T, with f such that

po (Hon(|f1)) = 0.

If h(P) is a solution of the classical Dirichlet problem on T, with this f,
then two limits po(h) (—oo < po(h) < +00) and uo(|h|) (0 < po(lh]) < +00)
erist, and if

(1.6) po([R]) < +oo,
then
(1.7) h(P) = Hon(f)(P) + 2ns;" po(h)y

for any P = (X,y) € T,.

We remark that (1.5) is equivalent to

|£(Q)]
/Rn_ll_{_landQ<+oo.

If h is a solution of the Dirichlet problem on T, with this f such that
h = o(r/cosb;) (r — oo), then uo(|h]) = 0, wo(h) = 0 and hence h(P) =
Hy .(f)(P). This shows that Theorem A gives a positive answer to Siegel’s
question in the case where £ = 0. However Theorem A gives a form of & not
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only in the case where po(|h|) = 0 but also in the case where 0 < puo(|h]) <
+00.

In this paper we shall show that a solution of the Dirichlet problem on T,
with f satisfying (1.4) satisfies a natural condition weaker than (1.2) (The-
orem 1) and other solutions with this f satisfying some growth condition
different from (1.3) are specified in a certain sense (Theorem 2), which con-
tains a positive answer to Siegel’s question in every case (Corollary 1) and
gives a generalized form of Theorem A (Corollary 2). We shall also state
Theorem 2 in more general form (Theorem 3).

I would like to thank the referee for suggesting a much simpler proof of
Lemma 3.

2. Statement of results.

We denote the origin of R* by O. Let k£ (kK > 0) and n (n > 2) be two
integers and let Lj .o be the (n + 2)-dimensional Legendre polynomial of
degree k, where Ly .o = 1. We also put

<k +n— 1)
Ckont2 = L -

We note that ¢ 0Ly n12(t) is equal to the ultraspherical (or Gegenbauer)
polynomial P/ of degree k associated with 2 (see Stein and Weiss [7, p. 148]).
The following theorem gives the Fourier expansion of K ,,(P, Q).

Theorem B. (Armitage [1, Theorem E| and Gardiner [3, Theorem B]).
Let Q = (Z) = (t,&) e R*™ — {0}, |Q| =¢, £ € S"?(n > 2). The function
Jeng of P=(X,y) =(r,0) e R*, © = (0,,0,,... ,6,_1), given by

2.1) Jino(P) =11 cos@, Ly nis(siné; cosy
1, Q ;
(v s the angle between (X,0) and (Z,0))

s a homogeneous harmonic polynomial of degree k + 1. Further the function
independent of t and r

Ling(©) =17 Jg no(P)

(which is the restriction to the surface S™™' of Jy, n.o(P) and hence a spherical
harmonic of degree k + 1) satisfies

(22) ’Ik,n,ﬁ(e))’ S COS 91
for each P = (r,©) € R*. Ifr <t and © € ST then Ky ,.(P,Q) is given by

s o
Kon(P,Q) = P ch,n+2t‘k ¥ I ne(©).

n k=0
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For an integer £ > 1 and two points P = (r,0) € T,,, Q = (t,£) € 0T,

we put
£-1

2
Vin(P,Q) = o Zck,n+2t_k—nrk+lIlc,n,£(e)'

7 k=0
We see from Theorem B that for any fixed @ € 9T, the function V; ,,(P, @) of
P € T, is harmonic on T,, and vanishes on dT,. We define another function

VenP,Q)  (PeT,Q=(¢) €9T,, 1 <t < +00)
0 (PeT,,Q@=(t&8)€edT,, 0<t<l).

In addition to K, ., (P, Q), the Poisson kernel K, ,(P,Q) (P € T,,, Q € 9T,)
of order £(£ > 1) is defined by

Kt,n(P7 Q) = KO,n(P7 Q) - Wl,n(P’ Q)

(see Siegel [6, p. 7] and also see Armitage [1, p. 56)).
Let £ be a non-negative integer. Given a function ®(r,0) on T,,, we set

we(®) = lim r* N (@)(1),

Wl,n(P’ Q) = {

if it exists. By F,, we denote the set of continuous functions f(Q@) on
9T, = R*! (n > 2) such that

(2.3) /R i 1—;'_%% dQ < +oo,

which is equivalent to

[7e

Hence F;, is equal to Fj.

llf(t,§)|df7§) dt < +oo.

n—
+

Theorem 1. Let £(£ > 0), n(n > 2) be two integers and f € F;,. Then

Hon(f)(P) = / FQKon(P, Q) dog

n

15 a solution of the classical Dirichlet problem on T, with f satisfying

(2.4) pe (|Hen(f)]) = 0.

Remark 1. Further, suppose in Theorem 1 that f € Fj , for some ¢' less
than ¢. Then

Hy n(F)(P) = Hoal£)(P) = 2= 3 st F)(P),

N fo gl
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where

-+o00o
TialPP) = rt [k (/asn_lfk,n,gw)f(t,adog) dt P=(r,0).

We note from (2.2) that

J;,n(f)(P)l < ¥ cos 6, /+oo tk2 (/a
1

Put Jeno(P) = yYino(P), and observe from (2.1) that Ty, o(P) is a
polynomial of P = (z;,z5,... ,Z,_1,y) € R* of degree at most k£ and even
with respect to the variable y. Hence, if we set J; ,.(f)(P) = yY; .(f)(P),
then Y} (f)(P) is a polynomial of P = (,%3,... ,Zn_1,y) of degree at
most k and even with respect toy (k=¢',0'+1,¢' +2,... ,£—1). Thus

Heo(f)(P) = He o (f)(P) +yL(f)(P),

where L(f)(P) is a polynomial of P = (z1,%Zs,... ,Zn-1,y) € R* of degree
at most £ — 1 and even with respect to y.
Remark 2. If (1.2) is satisfied, then (2.4) also holds. Since Siegel assumed
(1.1) which is stronger than (2.3), he could obtain (1.2). It is interesting to
ask whether (1.2) follows under (2.3) or not.

The following result is just a generalization of Picard’s theorem stating
that a positive harmonic function in the Euclidean space is a constant. Let
H(r,0) be harmonic on R™ (m > 2). If, for some positive t > 1,

|f(t,§)|daf> dt < +00.

n—1
Si

r T IMHY)(r) 50 (r— +o0), MHT)(r) = H*(r,0)doe,

m—1
S+

then for some positive integer £ less than t

¢
H(r,0)=C+ Y E(r,0) ((r,®) € R™),
k=1
where C is a constant and Z;(r,0) = r¥Y,(0©) is a homogeneous harmonic
polynomial of order k (Y3(©) is a spherical harmonic function) (see e.g.
Brelot [2, Appendix; §26]).

It is well known that many results on harmonic functions in R* can easily
obtained by a passage to R"*2. By using this fact and the result with m =
n + 2 stated above, Kuran proved the following Theorem C. To state it, for
a function ®(r,©) on T, we define

D(yd,r) = (o7)" / _y®(r,0) dS},
ST
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if it exists, where S} = {(r,0) € T,; © € S}7'}, o is the surface area of
the spherical part of S} and dS} is the surface element of S;.

Theorem C. (Kuran [5, Theorem 10]). Let h(X,y) (= h(r,©)) be a har-
monic function on T, such that h vanishes continuously on 9T,.
If, for some positive t,

(2.5) lim r 2D (yh*,r) = 0,

T—>00

then
h = yII(h)

in T,,, where II(h) is a polynomial of (z1,%a,... ,Zn_1,y) € R™ of degree less
than t and even with respect to the variable y.

Remark 3. Let ®(r,0) be a function on T,. Then
(2.6) D(y®,r) = 25 'rN(®)(r),
if they exist. Hence (2.5) is equivalent to

lim 7~V N(hH)(r) = 0.

T—00

The following theorem answers affirmatively Siegel’s question in the case
where £ is a positive integer.

Theorem 2. Let £ (£ > 1), n (n > 2) be two integers and
(27) f € Fé,n'

If h(r,®) is a solution of the Dirichlet problem on T, with f satisfying

(2.8) pe(h™) =0,
then
(2.9) h(P) = Hyn(f)(P) + yII(R)(P)

for every P = (X,y) € T,,, where II(h)(P) is a polynomial of P = (z,, %2, ..+
Zn-1,Y) € R" of degree at most £ —1 and even with respect to the variable y.

The result obtained by Siegel immediately follows from the remark fol-
lowing Theorem A (the case £ = 0) and Theorem 2 (the case £ > 1).
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Corollary 1. Let ¢ be a non-negative integer and f(Q) be a continuous
function on 0T, = R*! (n > 2) satisfying

f@QI<F(z) (QeR,|Q=12>0)

for some F(z) € F, (¢ >0), F(z) = F(—z) (x € R). If h(P) is a solution of
the Dirichlet problem on T, with f such that

h(P) = o(r*™/cos6;) (r — o0) (P=(r,0)€T,),

then
h(P) = Hen(f)(P) + U(R)(P) (P=(r,0)eT,),

where U(h)(P) is a harmonic polynomial of P = (z1,Z2,... ,Zpn_1,y) € R*
of degree at most £ vanishing on OT,.

Theorems 1, 2 and Remark 1 also give a generalized form of Theorem A.

Corollary 2. Let ¢ be a positive integer and f(Q) be a continuous function
on 0T, (n > 2) satisfying f € Fy_y .. Then the Poisson integral

Hesn(DP) = [ FQKi-1a(P,Q)dog
s a solution of the classical Dirichlet problem on T, with f satisfying

(2.10) pre—1 ([ He1n(f)]) = 0.

If h(P) is any solution of the classical Dirichlet problem on T, with this f
satisfying
Ne(h+) = 07

then
(2.11) h(P) = He_1,n(f)(P) = yII*(R)(P)

for every P = (X,y) € T,,, where II*(h)(P) is a polynomial of P with degree
at most £ — 1 and even with respect to the variable y.

Remark 4. Since
pre-1(h) = pe—1 (yII*(h))

from (2.10) and (2.11) and

yII'(R)(P) = rp(h)(©){1 + o(1)}  (r— +00) (P =(r,©)€T,)
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for some ¢(h)(®) on S} _,, it follows that
pea(h) = [ o(k)(©)cost doe
+

exists. Put £ = 1 in Corollary 2. Then II*(h)(P) is a constant C' and

po(h) = Cuo(y) = %S"' Thus we obtain (1.7) under the weaker condition
p1(h*) = 0 than (1.6).

It may be more desirable to restate Theorem 2 in the following form.
Theorem 3. If h(r,0) is a solution of the Dirichlet problem on T, (n > 2)
with some f € F,, (£ > 0) satisfying

- +
1' rﬁww < +OO,
logr

then
h(P) = Hyu(f)(P) + yA(R)(P)

for every P = (X,y) € T,,, where A(h)(P) is a polynomial of P = (z;,z2,... ,
ZTn_1,Y) € R® and even with respect to the variable y.

3. Proofs of the Theorems 1, 2, 3 and Corollary 2.

For a set E, E C R, U {0}, we denote {(r,©) € T,; r € E} and {(r,©) €
OT,.; r € E} by T,E and 0T, E, respectively.

Lemma 1. For a positive integer £ we have

|Ko,n(P, Q) — Ve (P, Q)| < Cirttt "t cos 6,
for any P = (r,0) € T,, © = (0,,0,,... ,0,_1) and any Q = (t,€) €
T, — {0} (n > 2) satisfying 0 < gtz < 1, where C, is a constant depending
only on £ and n.

Proof. Take any P = (r,0) € T,, and any Q = (t,£) € 9T, — {O}. Put

2
Rl.—_—t’i,a:%and@l:@in

a"*G, ((aRy,0:1),(aR;,0,)) = G, ((R1,0:), (R,,0,))
(O'ERF (Rl, ) (R‘Za@Z) GTn)'

When (R, ©,) approach to (2,£) € 9T, along the inward normal, we obtain

61 (2)"7 Kon(@0), ) =Ko ((%,0), 20).
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2
Suppose that 0 < -tt < 1. From Theorem B and (2.2) we have that

(3.2)
2r _ el _ 2\ k1
Kon ((F:0), 29) -2 L ernaz ™ (T) Lrne(®)
k=0
1 1 - g (2r .
< 8; 9—n+t ch,n+22_ <?) IIk,n,ﬁ(@)‘
k=t
2 £+1 oo
< s 2t (T) cos 6, ch,n+22_’“.
k=¢
Since
- - +-1) V21 =1
R
kz:l’“* 2 (n-De-1)"J \2 (1—u) !
is finite, we immediately have
-1
Kon((r,©), (£,6)) =25, Ck,n+2t_""'“7"°+lfk,n,g(9)'
k=0

< Oyttt cos 0, (C, = 2t1s71CY)
from (3.1) and (3.2), which is the conclusion. U

Lemma 2. Let ¢ be any positive integer. Let f(Q) be a locally integrable
function on 0T, (n > 2) satisfying (2.3). Then Hy,(f)(P) is a harmonic
function on T,,.

Proof. For any fixed P = (r,®) € T,, take a number R satisfying R >
max(1,2r). Then from Lemma 1 we have

(3.3)
/mr (B 400 ()| |Ken(P,Q)| dog

)
= [ IfQIKon(P,Q) = Ven(P, Q)| dog
BT n[R,+00)
+oo
< Cyrt cos Hl/R -2 (/351—’ ‘f(t,§)|dor£) dt < +o0.

Thus H,,.(f)(P) is finite for any P € T,. Since K, ,(P,Q) is a harmonic
function of P € T, for any fixed Q € 9T,, H,(f)(P) is also a harmonic
function of P € T,. O
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Lemma 3. Let £ be any positive integer. Let f(Q) be a locally integrable
and finite-valued upper semicontinuous function on 0T, (n > 2) satisfying
(2.3). Then

lim p -, et Hen(f)(P) < f(Q7)

for any Q* € OT,,.

Proof. Let Q* = (t*,£*) be any fixed point of OT, and € be any positive
number. Take a positive number §, § < 1, such that

(3.4) FQ) < f(Q) +e

for any Q € 9T, NUs(Q*), where Us(Q*) = {P € R*; |P — Q*| < ¢} . From
(3.3), we can choose a number R*, R* > 2(t* + 1), such that

(3.5) L s, V(@ 1Ken(P, Q) dog <
for any P € T, NUs(Q*). Now we write
Hal)P)= [ [(@KenlP,Q)dorg
AT .NUs(Q*)
+ F(QKen(P,Q) dog
OTx[0,R*)—Us(Q*)

+ f(Q)Kn(P,Q)dog
8T n[R* 1+00)
= I,(P) + L,(P) + I3(P),

wp)= [ JQKn(PQ)dog
- / F(@QWen(P,Q) dog
BTnﬂU‘;(Q“)
=1,(P)+ I ,(P)

and
L(P) = / F(Q) Ko (P, Q) dog
AT .[0,R*)~Us(Q*)

- [ F(QWen(P, Q) dog
OTA[0,R*)-Us(Q*)
== IQJ(P) + Igyz(P).
First we see from (3.5) that

(3.6) |I;(P)| < &
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for any P € T, N Us(Q*). Since
1 _/ KO,n(Pa Q) dUQ

AT .NUs(Q*)

-/ Ko,u(P,Q) dog
T ,—Us(Q*)
2

= [P — Q™" dog
Sn JOT.—Us(Q*)

for any P = (X,y) € T,, we have

lim / Ko, (P.Q)dog = 1
PeT,, P-Q* T nNUs(Q) 0, ( Q) Q

and hence from (3.4)
(3.7) lim per,, poo-f1,1(P) < F(QF) + e

Also observe that
2y 5 " R n—2
Gs) @l Z(5) [ e el ) d
Sp \2 0 osn
for any P = (X,y) € T, NUs,2(Q*). Since
L @1 Wen(P,Q)] dog < Cacost
OT.[0,R*)

for any P = (r,0) € T, NUs(Q*), © = (61,6,,... ,6,_1), where

-1 R*
Cp =2s," Z Chmpa(t” + 1) / th (/
o 1 as

we obtain that

‘f(ta §)| dg{) dt:

n—1
+

(39 BaPI < [ IH@IWe(P Q)] dog
< CQ COS 01 =0
and
(310)  |Ba(P)< [ F(@)1Wen(P, Q) dog
OTx[0,R*)=Us(Q*)

< Csycos6; — 0,
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as P = (r,0) - Q*. All (3.6), (3.7), (3.8), (3.9) and (3.10) give
HIEPGT,., Po@-Hen(f)(P) £ F(QF) + 2,

from which the conclusion immediately follows. O

Proof of Theorem 1. If £ = 0, then Theorem 1 is included in Theorem A.
Hence we can assume that £ > 1. It immediately follows from Lemma 2 and
Lemma 3 that H,,(f)(P) is a harmonic function on T,, and

Lim Ho(f)(P)=f(Q)

PET,, PQ

for any Q* € 9T,,.
To prove (2.4), we see first that

B1) N (Hea)D )
< [ ([, @1 1P, @) dorg) cos0s do
= I(r) + Iy(r)

for any P = (r,0) € T,,, © = (6,,0,,... ,0,_1), where
Loy = [ ( [ 1@ KR Q) doQ) cos 6 dora
s \JoT.[2r,+00)

and

mo)= | ( [ 1@ 1Ken(PQ) daq) 056, doe.
sn AT n[0,27)

Let € be any positive number. Take a sufficiently large number r, such

that
+o00
/ 12 (/ |F (¢, 8)| da£> dt < n(Clésn)—1 €,
21‘0 351_1

where C] is the constant in Lemma 1. Since

(3.12) /S

we have from (3.3)

. cos® 0, dog = (2n) 'sp,,
+

(3.13) I(r) < =rtH?

N O™
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for any P = (r,0) € T,,, r > 70.
Suppose P = (r,0) € T,[3, +00). For any Q = (¢,€) € 9T, (0 <t < 2r)
we obtain
-1

[Ven(P,Q)| < 25, 't "r cos b, Z 2 % cp naa (20 /1)F

k=0
< Cat ™t cos 0, O =(0,,0,,...,0,_1)

from (2.2) and hence

Ky (P Csrtt—"1cos b, t>1
|K£,n(P,Q)| S 0, ( 7Q)+ 3T CoS 1 ( - )
KO,n(PvQ)a (0<t< 1))
where
_ pol.—1 —k
Cs; ={2%s, Oglilggc_l 27%Ch nt2-

Hence we have
(3.14) I(r) < L (r) + L(r)
from (3.12), where

_[2,1 ('I") = / |f(Q)I B KO,n(P) Q) COS 01 dO'@ dUQ
8T ,[0,2r) st

and

L(r) = C5(2n)'s,rt /12r gt </as"—1 [f(2,€)] d"&) dt.

Here, consider the function Ky ,(P,Q) of P = (r,0) € T, for any fixed
Q = (t,€) € OT,,. Then we see from (2.5) that

Sn
N (Ko,n) ('f’) = 2_,;7) (yKO,nv'r)
and from Kuran [5, Lemma 2| and Helms [4, p. 109; Example 2] that

P e o)

which gives

nirim, (t<r)

n7lrtm, (r<t)
(© = (01,05, .. ,0n_1)).

S n—lrl—n

Ko n(P,Q)cos b, dog = {

n—1
S+
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Hence we obtain

(3.15)

2r
Iy(r) < n—lrl—"/ 2 (/
0 asy!
1
=n*ﬂ”/"f*(/ lﬂtﬂw%)ﬂ
0 asy !
i [P 2
+n7r t |f(t,€)|dog | dt
1 asy

2r
< Gt ptptn [ gt gy ( [ rwel dag> dt
+

1

|f(t’ 5)' dO'{) dt

= Cyn~lr!™" 4+ p T2 by,

where .
@:Aﬂ“(&ﬁuwmwgﬁ
and
P(r) =/1 g—t-1 (/as:_l|f(t,§)|dag> dt.
Then
(3.16) L 5(r) = C3(2n) s,riy(r).

Thus if we can show
(3.17) P(r) = o(r) (r — o00),

then we have
L(r) = o(r*™) (r — o00)

from (3.15),
L,(r) = o(r”l) (r —= 00)

from (3.16) and hence from (3.14) we can find a number r; such that

(3.18) Lr) < zr+!

for any r > 1.
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To see (3.17), we note that (r) is increasing,

+oo1_/’l.(ﬂdr:2/+oot‘e“z (/ lf(taf)ldaé) dt < 2C5
9 asy!

1 T

and

P(r) r —0—2
<2/ ¢ ( . lf(t,ﬁ)ldvg> di < 205,

Cs = /1oo gt (/BSn_llf(t,g)MQ) dt.

From these we see

where

—+00
/ r=2(r)dr < +oo
1
by the integration by parts. Since
P(r)

r

= (r) /+Oo z72dx < /+OO z7%(z) dx,

this gives (3.17).
If we put r, = max(ry,r;), then we finally have from (3.11), (3.13) and
(3.18)
rT TN ([Hen(F)]) () <€

for any 7, r > r,, which gives (2.14). Il

Proof of Theorem 2. Cousider the function h — H, ,(f). Then it follows from
Theorem 1 that this is harmonic in T, and vanishes continuously on 90T,.
Since

(3.19) 0< {h—Heo(f)}(P) <hHP) + {Hen(f)} (P)

for any P € T,, and
ue ({Hewl£)} ) =0
from (2.4) of Theorem 1, (2.8) gives that
pe ({h = Hen(1)}) =0.
From Remark 3 and Theorem C we see that

h(P) = Hyx(f)(P) = yI1(h)(P)
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for every P = (X,y) € T,, where II(h) is a polynomial in R" of degree at
most £—1 and even with respect to the variable y, which gives the conclusion
of Theorem 2. O

Proof of Corollary 2. The first part follows from Theorem 1. Since f € F,,,
Theorem 2 gives

h(P) = Hn(f)(P) + yII(R)(P)
for every P = (X,y) € T,, where II(h)(P) is a polynomial of P € R* with
degree at most £ — 1 and even with respect to the variable y. Remark 1 also
gives

Hyn(f)(P) = Heo1,n(F)(P) + yL(f)(P)

for every P = (X,y) € T,, where L(f)(P) is a polynomial of P € R* with
degree at most £ — 1 and even with respect to the variable y. From these, we
evidently obtain (2.11). O

Proof of Theorem 3. Put
—_ logN(h*)(r)

lim ,_,

logr

It immediately follows that pp.41(h*) = 0. Take an integer £* satisfying
¢* > max(4, [a) + 1). Since f € Fy. ,, and py-(hT) = 0, Theorem 2 gives that

(3.20) h(P) = He (f)(P) + yII(h)(P),

where II(h)(P) is a polynomial of P and even with respect to y. If £ = ¢*,
then (3.20) gives the conclusion. Suppose that £* > £. From Remark 1 we
also see

(3.21) He- n()(P) = Hen(F)(P) + yL(F)(P),

where L(f)(P) is a polynomial of P and even with respect to y. From (3.20)
and (3.21) we have

h(P) = Hen(F)(P) + yA(R)(P), A(R)(P) =1II(R)(P) + L(R)(P),

which is also the conclusion of Theorem 3. ]
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