Vol. 174, No. 1, 1996

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Rigidity of isotropic maps

Fernando Cukierman

Vol. 174 (1996), No. 1, 29–42
Abstract

We consider a rigidity question for isotropic harmonic maps from a compact Riemann surface to a complex projective space. In the case of the projective plane, we prove that ridigity holds if the degree is small in relation to the genus. For a projective space of any dimension we obtain coarser results about rigidity and rigidity up to finitely many choices.

Mathematical Subject Classification 2000
Primary: 30F15
Milestones
Received: 14 January 1994
Published: 1 May 1996
Authors
Fernando Cukierman
Departamento de Matemática
Ciudad Universitaria
Buenos Aires
Argentina
http://mate.dm.uba.ar/~fcukier/