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ON THE STRUCTURE OF TENSOR PRODUCTS OF
¢,-SPACES

ALVARO ARIAS AND JEFF D. FARMER

We examine some structural properties of (injective and
projective) tensor products of {,-spaces (projections, comple-
mented subspaces, reflexivity, isomorphisms, etc.). We com-
bine these results with combinatorial arguments to address
the question of primarity for these spaces and their duals.

Introduction.

A Banach space X is prime if every infinite-dimensional complemented sub-
space contains a further subspace which is isomorphic to X. A Banach space
X is said to be primary if whenever X =Y @& Z, X is isomorphic to either Y
or Z. The classical examples of prime spaces are the spaces £,, 1 < p < oo.
Many spaces derived from the £,-spaces in various ways are primary (see for
example [AEO] and [CL]).

The primarity of B(H) was shown by Blower [B] in 1990, and Arias [A]
has recently developed further techniques which are used to prove the pri-
marity of ¢;, the space of trace class operators (this was first shown by Arazy
[Arl, Ar2]). It has become clear that these techniques are not naturally
confined to a Hilbert space context; in the present paper we wish to extend
the results to a variety of tensor products and operator spaces of /,-spaces
(and in some cases L,-spaces). We also include some related results.

Some of the intermediate propositions (on factoring operators through the
identity) may actually be true for a wider class of Banach spaces (those with
unconditional bases which have nontrivial lower and upper estimates). In
fact, the combinatorial aspects of the factorization can be applied quite gen-
erally, and may have other applications. The proofs of primarity, however,
rely on Pelczyniski’s decomposition method which is not so readily extended.
We have thus kept mainly to the case of injective and projective tensor prod-
ucts of £, spaces throughout. The results we obtain apply to the growing
study of polynomials on Banach spaces since polynomials may be considered
as symmetric multilinear operators with an equivalent norm (see [FJ], [M],
or [R]).

Our main results are:

(1) Ifl1 <p< oo, then B({,) =~ B(L,).
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14 ALVARO ARIAS AND JEFF D. FARMER

(2) If pi‘ + 1—)1; < 1 for every i # j, or if all of the p;’s are equal, then
0, ®---®¢,, is primary.

(3) ¢, embedsinto £, & ---®¢,, if and only if there exists A C {1,2,--- ,n}
such that = min{} ;¢4 -, 1}-

(4) If1 < p < oo and m > 1, then the space of homogeneous analytic
polynomials P,,(¢,) and the symmetric tensor product of m copies of
¢, are primary.

The paper is organized as follows. In Section 1 we set notation, definitions
and some necessary but more or less known facts. In Section 2 we show that
B(¢,), the Banach space of bounded linear operators on £, is isomorphic to
B(L,), and in fact to B(X) whenever X is a separable £,-space, along with
some more general results we require later. In Section 3 we will construct
a multiplier through which a given operator on tensor products may be
factored; we then use this to show that some projective tensor products are
primary. In Section 4 we will prove that the £, subspaces of £, & - - - ®¢,,, are
the “obvious” ones and use this to prove that some projective tensor products
are not primary (for example, £,&¢, 5 is not primary). Section 5 covers the
question of primarity in the injective tensor products and operator spaces,
a situation not always dual to the projective case and calling for somewhat
different techniques. Section 6 is an appendix in which we prove the technical
lemmas we use in Section 3.

We would like to thank W.B. Johnson for organizing the summer work-
shops in Linear Analysis and Probability at Texas A&M University in 1991-
1993, and the NSF for funding them.

1. Preliminaries.

Unless explicitly stated, all references to £, spaces will assume that 1 < p <
0o, and will adhere the notational convention that p% + qi = 1 or sometimes
T+ E=1
Define
X=0,8&,.

We can identify its predual X, and dual X* as follows

X, =0,® -,
X" =By, (£p,® - ®,,)")
= B4y, B(--Blpy_11lyn) " ))-
The elements of X, X,, or X* have representations as an infinite N-dimen-

sional matrix of complex numbers (we must keep in mind, however, that
this representation may not be the most efficient for computing the tensor
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product norm) where the element in the o = (o4, -+ ,ay) € N¥ position is
the coeflicient of the “matrix element” e, = e,, ® - -+ ® €4, Wwith e,, being
the a;-th element in the unit vector basis of £,,. All subspaces we consider
are norm-closed, and when we indicate the linear span of elements we always
mean the closed span.

The following elementary lemma is very important to the structure of
projective tensor products.

Lemma 1.1. Let X and Y be Banach spaces and S € B(X), T € B(Y).
Then S®T € B(X®Y) is defined by SQT (zQ®y) = S(z)®T (y) and satisfies
IS eT| < ISITI-

As a consequence of this we get that projective tensor products of Banach
spaces with bases have bases.

Proposition 1.2. Let X and Y be Banach spaces with bases (e,), and
(fu)n respectively. Then X®Y has a basis. Moreover, we take the elements
of the basis from the “shell” OM, = [e; ® e;: max{i,j} =n|; i.e., e1 ® fi,
e2 ® f1,62 ® fo,e1 @ f2, €3 ® f1,e3® fo,3® fs,€0® fz,61® f3,---, ete.

The proof of this is easy. On the one hand it is clear that the span of
those vectors is dense and using Lemma 1.1 (with the operators replaced by
projections) we see that the initial segments are uniformly complemented,
because M, is clearly complemented.

As a consequence we get that £, ®--- ®{,, has a basis consisting of e,’s.
Moreover, we can use Lemma 1.1 to prove that

OM, = [ea: @ € NV max{ay, -+ ,an} =n]

is 2-complemented and that (0M,), forms a Schauder decomposition for
0, & ®L,,; we also see that (L,), is a Schauder decomposition for
0, & &L, where « € N¥"1 and L, = [e, ®e;: j € N]. (A more com-
plete discussion of this situation appears in [R].) We will use these facts in
Section 3.

The next theorem gives us the two most basic ingredients of our analysis.
We will prove that the main diagonals are 1-complemented and will identify
them exactly; we will also state under what conditions the triangular parts
of £, &---®¢,, are complemented. It is known that the main triangular
part of £,&¢, is complemented if and only if >+ 2 > 1. (See [KP], [MN]
and [Be].)

Theorem 1.3. Let X = £, ® ---®¢,,. Then the main diagonal D =

len® - ®e, : n€NJ is l-complemented and satisfies D = £, where L =
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min{l, N1 } . As a consequence we get that X ~ (3 ®X),. Moreover, if

i=1 p;
J,k are fized, then the canonical projection onto

[ei ®ei, ® - ®eiy : ik > 14]
is bounded if and only if - + 171,7 > 1.

This theorem is known for n = 2, and in some respects for larger n as well
(see for example [Z]). For completeness we show here how the case n = 2
may be extended.

Proof. For 1 < k < N, let P, € B({,,®¢,,) be the main diagonal projection
and I, ;, be the identity on £,,®- - &4, &€, & --&¢,,. Then P, ; @I
is the projection on €p1®---®ZpN defined by Py, ® I) yeq = €, if a1 = o
and zero otherwise.

Let P= (P2 ®L5) - (Pin ® I v). It is easy to see that Pe, = e, if
a; = --- = ay and Pe, = 0 otherwise. This tells us that D is complemented.

When N = 2, the main diagonal of £, ®¢,, is isometric to £, where
= min{l, -+ -t. We apply an induction step for N > 2. The key
to the induction step is the following: Let D be the “diagonal-projection”
on a projective tensor products of ¢,-spaces. Then it is easy to see that
D(gm® T ®emv) = D(D(£P1® e ®€PN-—1)®6PN)'

Notice that if the P, ;’s above are block projections, then we conclude that
the block diagonal projections are bounded. By taking those to be infinite
and using the previous paragraph, we see that X ~ (3 ®X )T.

For the last part let T} ; be the upper triangular projection on £, ®¢, and
Iy,; be the identity on ®izx,;€y. Tk, is bounded if and only if - + - < 1.
Therefore, the same is true for T} ; ® Iy ; € B(£,,® - - - ®4,,,). O

Remarks. (1) To prove that X ~ (3 @®X) we used Pelczyriski’s de-
composition method. This says that if two Banach spaces X; and X, embed
complementably into each other and if for some 1 < p < 00, X; = (- ®X))
then X; = X,.

(2) We will work in Section 3 with 7 = [e,: a3 < a2 < -+ < ay]. Some
of the results from Theorem 1.3 hold for this space. For instance, the block
projections are bounded. This implies that 7 ~ (3 7), where r is as in
Theorem 1.3.

(3) It is clear that when r = 1 then £, &® - - - ®¢,,, is not reflexive. It is not
very difficult to prove that if r > 1 then £, ®--- ®¢,,, is reflexive.

P,

2. Isomorphisms of Spaces of Operators on /,.

In this section we will show that B(¢,) is isomorphic to B(X) when X is
any separable L,-space. In particular, B(¢,) is isomorphic to B(L,|0,1]).
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A consequence of this is that B(¢;) embeds complementably in B(£,) for
1<p<oo.

Theorem 2.1. Let X and Y be separable L,- and L,-spaces respectively
with 1 < p < q. Then B(X,Y) ~ B((,,£,) ~ (Z;‘;l ®B(L2, £ ) .

We also obtain an isomorphic representation for (£,,®---®¥,,)* when
DN ,,L,. 21

Theorem 2.2. Let X = £, ®--- &, be such that 1 = min {1,2?;1 pi} =
L. Then X* ~ (02, 4,8 &8, )

oo

The proof of these two theorems is very similar; they use Pelczynski’s
decomposition method.

For Theorem 2.1 notice that B(£,, 4,) = (£,&¢,)* where 5—1—;117 = 1. Hence,
if p <q (ie, 3+ % > 1), Theorem 1.3 tells us that £,®¢, ~ (X DlRLy),
and then B(¢,,¢,) = (3 ®B({p,£,)),,- For Theorem 2.2, notice that Theo-
rem 1.3 implies that X ~ (3 ®X),; therefore, X* =~ (3 ®X~)_..

Then it is enough to prove that each space embeds complementably into
the other. We prove these facts for Theorem 2.1 in the next two lemmas and
indicate how to do it for Theorem 2.2 at the end of the section.

A Banach space X is £, if its finite dimensional subspaces are like those of
¢,. If 1 < p < o0, the separable L -spaces are the complemented subspaces
of L,[0,1] not isomorphic to £,.

We use the following properties of a separable £,-space X: (1) X contains
a complemented copy of £,, and (2) There is an increasing (by inclusion)
sequence of finite dimensional subspaces which are uniformly isomorphic to
finite dimensional £,-spaces. Moreover, they are uniformly complemented
and their union is dense in X. For more information on £,-spaces see [LP]
or [JRZ].

Lemma 2.3. Suppose that 1 < p < q and let X and Y be separable L, or L,
spaces. Then B(X,Y) embeds complementably in W = (fo:l eB(4;, Z;‘)) .

Proof. By the assumptions on X and Y, we can find ¢, : B(£y,£}) — B(X,Y)
and ¥,: B(X,Y) — B(£p,£;) satisfying: (1) ¥n¢, = I,, the identity on
B(£2,£7), and (2) for every T € B(X,Y), ¢nthn(T) = T in the w*-topology.

Then define ¥ : B(X,Y) - W by ¥(T) = (4n(T))s. Let U be a free
ultrafilter in N and define ® : W — B(X,Y) by ®((T..)) = limpecy ¢n(T})
where the limit is taken in the w*-topology. We can easily verify that ®¥ =

I, the identity on B(X,Y), and the conclusion follows. O
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Lemma 2.4. Let X andY be L, and L,-spaces respectively, with1 <p < q
and let W be as above. Then W embeds complementably into B(X,Y)

Proof. 1t is clear that W embeds complementably into B(¥,,¢,), because
B(¢,,¢,) has £,-blocks down the diagonal. Moreover, if X is a separable
L,-space, 1 < p < oo, then X contains a complemented copy of £,. Since
the same is true for Y we see that B(¢,,¢,) embeds complementably into
B(X,Y). a

Remark. For Theorem 2.2 notice that

Z" = B( ;l’B(' ) B( ZN—l’etIN) ’ ))
is isometric to £7.®--- @7 and is 1-complemented in X*. (We use this to
show that (}°, ®Z,),, embeds complementably into X*.) Moreover, U, Z,
is w*-dense in X*. (We may use this and an ultrafilter argument to show
the reverse complemented inclusion.)

3. Primarity of Projective Tensor Products.

We devote most of this section to the proof of the following theorem.

Theorem 3.1. Let X = £, &+ &L, be such that -+ ;- <1 for every
i # 3. Then X is primary.

The proof of this theorem will follow easily from the next proposition
that was inspired by results of Blower [B] and was used in [A] in a similar
context. The ideas involved in this “factorization” approach are well-known
(see for example Bourgain [Bo]).

We have to introduce some notation.

Let X = £,® &y, @ = (a1, -+ ,ay) € NV and denote by e, =
oy ® €ay ® - ® €4y Then X = [e, : @ € NV]. We also define |a| =
max {ay, - - @z} ; and introduce an order between different multiindices. Let
a € N* and 8 € N™; we say that

a<p if max{a;,---,}<min{B, - ,Bn}-.

Let 0,049, --0on : N = N be increasing functions (it will also be useful
to think of the o0;’s as infinite subsets of N); and let 0 = (01,02, ,0n) b€

a function on NV defined by o(a) = (01(a;), -+ ,on(an)). Then define
Jy 10y, ® -+ &
K, 0,® - ®

P
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by

Jyea = €or and K,eq = eg if there. exists 3 such that o(8) = «
0 otherwise.

J, and K, have many important algebraic properties. J, is one-to one,
K, is onto and K,J, = I. Moreover, they compose nicely; that is, if o =

(01702""10N) a‘ndd):(/(/)l?""w]\/)) then
JUJ,J, = Jm/) and KUK.,p = Kmp-
We are now ready to state the proposition.

Proposition 3.2.  Let i + pij < 1 for every i # j. Then if & €
B(,,®---®¢,,) and € > 0 there exist 0 = (01,04, - ,0n) and X\ € C
such that

IK,®J, — M| < e.

Thus one of K,®J, or K,(® — I)J, is invertible.

It is immediate from this proposition that I, the identity on £, & - - - &,
factors through @ or through I — ® which implies trivially that if
b, @ R, ~ X @Y then £, ®---®¢,, embeds complementably into X
or Y. Since £, ®---®¢,, is isomorphic to its infinite r-sum, the Pelczynski
decomposition method implies that £, ® - -- ®¢,, is primary.

We will present a sketch of the proof. For ® € £, ® ---®¢,, and o € NV

we have,
<I>eo, = Z )\a,geg,
BENN

for some A\, 53 € C. Our goal will be to come with a series of the aforemen-
tioned J-maps and K-maps which will allow us to get K®J ~ M. We will
do this is several steps, fixing progressively more restrictive portions of the
range of 8. We can do this since this maps compose nicely; however we must
be careful not to destroy previous work (see the assumption below). More
precisely, Step 1 asserts that we can find K, J; such that K;®J, ~ ®; and
for every n € N,

a e NV, lal=n = @, = Z )\S,)ﬁeﬂ,
[Bl=n

for some As)ﬂ € C. This is clearly an improvement in the range of 3, but
we still have that {8 € NV : || = n} is a big set. After Steps 2, 3 and 4 we
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have Ky, J; such that K, ®J,; =~ ®, and for every n € N, j € N,

a €NV Jal=n, |aj<j = P4(e.®e¢;)= Z /\( 3es ® ej.
penn

Step 5 gives us K5, Js such that Ks®J;5 =~ ®5 and for every n € N, v € N?,

ae€ N2 Jol=n, a<y = O5(e.®e,)= Z A(S)eg®e7.

18l=n
BENN~-2

Finally Step 6 provides the general induction argument.

We will apply our arguments on 7 = [e, : @; < ap < --- < ay| with-
out loss of generality in order to simplify notation, keeping in mind that
they will be repeated many times when the order of the «;’s is different.
We will choose o so that J, and K, “respect” that order. More precisely,
consider the permutation group II, and a multiindex a = (ay, - ,an) €
N7V. We choose o so that the (not necessarily complemented) subspaces
T(7) = [ea : ar) < ey < -+ < an(n)] are invariant for J, and K,; i.e.,
J,T(w) C T(w) and K, T (w) C T(w). Notice that the 7 (n)’s “exhaust” the
N-dimensional matrix array on which we represent £, ®---®¢,, (modulo
diagonal elements, which we always ignore; see Step 2).

Assumption. Assume from now on that whenever we choose
g = (0'1,0'2," : 7GN)1

it always “preserves the order”, that is, if i < j, then o0+ (7) < 0,(j), for every
k,l < N.

We can always satisfy this assumption by passing to subsequences when-
ever we are choosing the sets o, which our technical lemmas allow us to
do.

Example. It might be instructive to consider the following example “far”
from a multiplier. Let ® : £,&¢, — ¢,&¢, be the transpose operator, i.e.,
Pe; @ e; = e; @e;. Then choose o, the set of even integers, o, the set of odd
integers and o = (0;,03). We verify easily that K,®J, = 0 thus satisfying
the conclusion of Proposition 3.2.

Our steps require the repeated use of two technical lemmas whose proof
we delay until Section 6.

Step 1. Let OM,, = [en : @ € NV |a| = n] with projection @Q,. Then for
every ® € B(£,,® - ®¢,,) and € > 0, there exist 0 = (01,02, ' ,0n)
and ®, € B(£,,®---®¢,,) such that ||®, — K,®J,|| < € and for every n,
®,0M,, C OM,,.
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The proof of this step is an immediate consequence of the following lemma.
Remember that (OM,,),, forms a Schauder decomposition for £, & - - - ®¢, .

Basic Lemma 1. Let ® € B({,,&---®¢,,). Then for every €nm > 0
we can find 0 = (01,02, - ,0x) such that if z € OM,,, and n # m, then
1QmK2Joz|| < €nmllzl.

We prove Basic Lemma 1 in the appendix (if X = ¢, the proof is very
easy).

Choose €, ,, in Basic Lemma 1 so that e, = Y °_  €nm and Y272 €, < 5.
Then define ®, on £, ® - -- ®¢,, as follows: For z € IM,,, let

?,(z) = Q.K,®J,z.

If z € OM,, then ||(®; — K, DJ,)z|| < €,]|z|. fz € £, & - &4, , we have
that £ = Y_.° | z,, where z,, € OM,, and ||z,|| < 2||z|. Therefore,

“((I)l - K,‘I)JU)IH < Z ”((I)l - Kaq)]ﬂ)xn“ < 6”55”

n=1

O

Step 2. Let ® € B(£,,&®---®Y,,) be such that ®OM,, C IM,, for every n,
then we can find 0 = (01,02, -+ ,0n) such that &, = K,®J, “respects” the
place where o € N¥ takes its maximum; for example, if the maximum takes
place in the last coordinate, i.e., « € N¥~! and |a| < j, then

q)g(ea ® e]) = Z Aa,ﬁ,jeﬁ ® €5,
18l<i”

and we also have similar results for the other coordinates.

We attain this by “disjointifying” the different faces. For i < N let 0,(j) =
N(j—1)+i,and 6 = (01,02, - ,on). It is easy to see that &y = K,PJ,
satisfies the required property. Indeed, if « € NV¥~! and |a| < n, then
e ® €, € OM,,, and J,(e, ® e,) € OM,,(n). Hence,

(I)Ja(ea ® Cn) = Z )\a(a,n),’ye’)"

|¥l=on(n)

Recall that K,e, = e, if o(n) =  for some  and K,e, = 0 otherwise.
Since the ranges of the ;’s are disjoint, oy (n) is nonzero only for the last
coordinate. Therefore, if |y| = on(n) and o(n) = v, the last coordinate of 7~
must be n; i.e., e, = eg @ e, for some § € NV¥~!, and since o preserves the
order, || < n. That is,

Kgéjﬂ(ea (034 6n) = Z /\a(ayn)’a(gyn)eﬁ & €p.
|Bl<n
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We denote Ay (a,n),0(8,n) DY Aa,8,n- =

To make the notation a bit clearer we will state the hypothesis and the
conclusion of the steps when the maximum takes place in the Nth coordi-
nate. However the other cases are identical and we will assume that (after
repeating the step for the other coordinates) the same result holds for these
cases.

Step 3. Let ® € B(£,,®--- ®{,,) be such that whenever c € NV}, j € N
satisfy |a| < j, then ®(ey ® €;) = X ip<j Aapi€s ® €;. Then for every
€ > 0 there exist 0 = (0y,03,+- ,0n) and ®3 € B(£,, & --- ®¢,,) such that
|®5 — K,®J,|| < € and whenever o € NV~ j € N satisfy |o| < j, then

Ds(ea ®J) = Y Hhapes ® J.
181<j

The proof of this step follows from the next lemma.

Basic Lemma 2. Let ® € B({,,®--- ®{,,) be such that whenever o €
NV=1, j € N satisfy |a| < j, then ®(ea ® €;) = X5« Aa,p.j€s ® €. Then
for every €, 5; > 0 with j > max {|e|, |B|}, we can find 0 = (01,02, -+ ,0n)
(respecting the order) such that if we set & = (01,09, -+ ,0n_1) then

Jim As(a).5(8).0n () = Ad(e).5(6);

IXs(a),5(8).6n () — Ao(@),58)| < €apj-

We also give the proof of Basic Lemma 2 in the appendix. Then set
o = K,®J,, and let L, = [e, ®e; : j € N] with projection P,. Since
0, ® - ®C,,_, has a basis consisting of e,’s, we have that (L,), forms a
Schauder decomposition for £,,&® - - - ®¢,,, .

Define ®; € B(,,® - ®¢,,) by

Ps®s(en ®e;) = Aoaraoes ®¢;  if max {laf, |} <73
e ’ P30 (e, ®e;) otherwise.

Let , 8 € N¥; €05 = %o max{lal o)) Cai> A T € Lyjie, T =372, €a®
cje;. Then,

Ps®yz — Pa®z = > €5 ® (As(a),5(8) — Ao(a)5(8).0m (7)) CiE5-
j>max{[al,18]}
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Hence,

|Ps®3z — Ps®z|| < Y eap,;maxle| < eapllzl-
j>max{|al,|8]}
If we choose 3", 3 5€q3 < € small enough, ®3 is well defined and satisfies
the required properties. O

Step 4. Let ® € B(£, ®---®¢,,) be such that whenever « € NV~1
j € N satisfy |a| < j, then ®(eq ® €;) = 3_5/<; Aa,€s ® €;. Then for every
€ > 0, there exist 0 = (01,03, - ,0n) and &, € B(£,,® - - ®¢,, ) such that
|®4 — K,®J,|| < e and whenever @ € NV-!, j € N satisfy |a| < 7, we have

(1)4(60 ® ej) = Z Ha,p€8 ® €;.
1Bl=]a

Define ¥ € B(£,,® - ®¢,,_,) by
(\Ifea,eg) = )‘a,ﬁ-

Since (Ve,,e5) = lim;, o (Pe, D €j,e5 ®e;), ¥ is a bounded map.
Remark. Ideally we would like to apply an induction step and replace ¥,
after a factorization of the form K'WJ, by a multiple of the identity and then
combine this with ®. Controlling the norm of the perturbation requires a
more delicate argument, however.

Apply Basic Lemma 1 to ¥ with its respective 0M,, and projections Q),;
then find 0 = (0,09, ,0n_1) such that whenever z € OM,,, and m # n,

1Qm K, U J,z|| < €n,mllz]-

Let U = K,vJ,, &6 = (01, ,0n_1,0N—1) and ® = K;®J;. Denote by
P, = @Q, + -+ + Q, the projection onto [e, : « € NV¥~! |a] < n]. Notice
now that if [a| < j then ®(e, ® €;) = (P;Te,) ®¢;.

Let L, = [eo ® €; : j € N|. Then as we explained after the Basic Lemma
2, (La)o forms a Schauder decomposition for £, & - - - ®F,,, .

Define ®4 on £, ®--- ®¢,, as follows

By(eq ® €;) {@(ea@)ej) if |a| > 7
eaRe;) = ~ _ '
' ’ (Qio1Veq) ®e; if |af < j.

o0

Let n € N; a € NV~ with |a| = n; €, = > m=1,m#n €nm and T € L,; ie.,
T =37, eq ®cje;. Then,

d(z) — By(z) = Z(Pj\i/ea - Q.Ve,) ® cje;

ji>n
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= Z ZJ:(Qk\ilea) ® cjej

>n ,1::111
bt ~

= Z(lellea) ® Z cje;.
I’::}l j>max{k,n}

Since || 35 maxrny €5l < |lll, we have that

124(z) — &(2)Il < eallll.

Since card{a : |a| = n} is finite, it is enough to choose €, so that

z card {a : o] =n}e, <€

n=1

to insure that @, is well defined and satisfies the required properties. O

Step 5. Let ® € B(£,, & - ®¢,,) be such that whenever & € NV~! and
J € N satisfy |a| < j, then ®(e, ® €;) = X i5=ja| Aa.g€s ® €j. Then for
every € > 0, there exist 0 = (01,0, -+ ,0n) and &5 € B(£,,® - ®4,,)
such that ||®; — K,®J,|| < € and whenever 4,5 € N and o € NV~2 gatisfy
la| <4, |a) < 7, then

Ds(eq ®e; Qej) = Z Ha,p€s @ €; @ €;.
18]=|ej

Proof. Disjointifying for £,,& - - - ®¢,,_, as in Step 2, we can assume without
loss of generality that whenever ,j € N, o € NV~2 satisfy |a| < i < j, then

q)(ea ®e;® ej) = Z )‘a,B,ieﬁ Re; €;.
18]<e

Apply Basic Lemma 2 to the sequence {A,s;} and assume that (after
factoring ® through K,®J, and renaming it ¢ again) this sequence satisfies
the conclusions of that lemma.

Let L, = [ea®e;®e;:14,5€N] with projection P,. Since
£, ®---®L,, , has a basis consisting of e,’s, then (L,) forms a Schauder
decomposition for £, ® - - - ®¢,,.

Define @ € B(£,,® - -- &¢,,) as follows:

Aapes®e; ®e;  if o] VB <i<j;

Péea®ei® i) =
o ) {Pﬁ¢(6a®ei®ej) otherwise.
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Let o, € NV=% ¢, 5 = 2 ilalvig] €a8,i and T € Laj ie.,

T = E Zcmea(@ei@ej.
ig

Then,
Pydz — Pydx
= Z ( Z Cij [Pﬁ{)(ea@)ei@ej) —P[;(i)(ea ®€i®€j)]>
>la|Vv|B] \J=i+l
= Z (Aa,ﬁ,i - Aa,ﬂ)eﬁ ®e ® ( Z Cij€5 | -
i>|alv|g J=i+l

Since || 3272, ,; cijeill < llzll,
| Ps®z — P3®@z| < eqpllzl|-

If we choose ¢, 4 small enough so that 3_, ;€45 < §, then & is well defined
and satisfies ||® — ®|| < £; moreover, whenever |a| < i < j, we have

é(ea ®e Qe;) = Z Aag€s ® €; ® €;.
18] <

Let T : L, — Lg be defined by T(z) = Py®z. T is clearly a bounded
map and L, = Lg = ¢,,_,®¢,,. It follows that if |a| V |8] < i < j then
T(ex ®e; ®e;) = Appgep ® e; @ e;. Since all the arguments work if the
maximum is attained at the (N — 1)-st coordinate and the next maximum is
attained in the last coordinate, we can also assume that if || V |B] < 7 < ¢
then T'(e, ®e; ®e;) = pqges ®e; ®e;. Thus T takes value A, g in the upper
triangular part of a copy of £,,_,®¢,, and the value y, s in the lower part.

Since we assumed that ) )
+ — S la
Pn-1 DN
we have that Ay g = pa 5. (If Ao g # lag, then (T'—p, gI) /(Ao —pa,p) would
be a projection onto the upper triangular part of £,,_,®¥,,, contradicting.
Theorem 1.3.)
Let o = (04, - ,an_s) and v = (an_1,an). We now have that if o < v,

then

é(ea ® 67) = Z )\a,geg X® €qy-

B<y
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Define a map ¥ € B({,,& - ®¢,,_,), as in Step 4, by
(Yeq,e5) = Aap-

Since ¥ is bounded, we apply Basic Lemma, 1 to it and assume without loss
of generality (after factoring K, ®J, and then renaming it ® again) that if
x € OM,, (here OM,, is a subset of £, ® - - - ®¢,,_,) and m # n,

1Qm ¥z < €nmllz]l-

Let L, = [e, ®€; Qe¢; : 4,5 € N] with projection P,, and define ®; €
B(£,,®---®¢,,) as follows

(Qa1Ves) ®e, ifa<y

Ps(e, ®e,) =< -~
o ") {@(ea®e7) otherwise.

Let r € L, |a| = n;ie, z =3 ce, ®e,. Hence,

bz — Dz = Z [c.,‘iea ® ey, —cy(Qn¥ey) ® e,,]

T>a
o0
=) (QiPe)® | Y cea®e, |-
Kn T>mk
Since || 3,5 nk Cv€a @ €4]| < ||z||, the result follows. O

The induction step is an extension of Step 5.

Step 6. Let ® € B({,,® - ®£,, ) be such that whenever o € N¥, y € NV—F
satisfy @ < 1, then ®(e, ® €,) = 35,2 Aases ® e :I‘hen for every
e > 0, there exist o = (01,02, -+ ,0n) and @ € B(£,,®---®¢,, ) such that
|®x — K,®J,| < € and whenever & € N*~! and v € NV=*+! gatisfy o < v,
we have

Dy, (ea®e’r Z Ha,3€p @ €.
|8l=le

Sketch of proof. Disjointifying as in Step 2 we assume that whenever a €
N*-1 i € N and v € NV~* gatisfy a < i < 1, then

Ple,Qe; Re,) = Z Aa,p,i€ e ® e,.

B<i

Assume also that the sequence {\,gs;} satisfies the conclusion of Basic
Lemma 2.
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Let « € N* L, = [ea®e; ®e, i €N,y € NV*] with projection
P, and define ® as in Step 5. Since for every o, || 3=, Cior€io ® 4] <
| 32; ., Cinei ® 4], then [|® — @|| < € and whenever o € N*~!, 4y € NN~k
satisfy a < i < v, then

&)(ea ®e Qe,) = Z Aa,6a @ €; Q €.

B<i

Fix o, € N*! and define T : L, — Lg by Tz = P;®z. Since T is
bounded and L, = Lz = £, ®---®{,, we assume that T is defined on
Z=1,,8 - Olpy.

Decompose Z into (E;)I.,, where E; = [eg : 6; < ; for every i # j]; (i.e.,
E; is the span of those ey where the minimum occurs at the jth coordinate).
For instance, if ey € Ey, then ey = e; ® e, for some ¢ < vy and hence T'ey =
Ao g€s = MPey. Since all the arguments work for the other permutations of
the coordinates we can assume that there exist A\ such that if z € E;, then
Tr =Xz, j=Fkk+1,---,N.

We will use that pL,' + plj < 1 for every i # j to conclude that the A\()’s

have to be equal. Indeed, let . = (m,m,--- ,m) € NV~*=3 and consider
Kn=[ei®e;®en 1,5 <m]. It is clear that K,, = {7 &€y  and that T

restricted to it gives us A(®) in the upper triangular part and A%+ in the
lower one. If A(®) £ X\(*+1) we would have that the m-triangular parts are
uniformly complemented and this is not true. A similar argument proves
that the A()’s are all equal.

In conclusion, if & € N*¥~1, v € N¥=%1 and a < 7, then

Blea ®e,) = Z Ao g€s ® €.
B<y
Define ¥ € B(£,,® -+ ®¢,,_,) by (Pe,,e5) = Aa,s; apply Basic Lemma 1
to it and finish the proof as in Step 5. O

Iterating Step 6 we finish the proof of the proposition.

We will see in the next section that, for most cases, if pl + p%_ >1, X is
not primary. This is not always true, however.

Theorem 3.3. Let 1 <p < oo andn € N. Then X = £,®--- ®¢, (n times)
s primary.

Proof. We divide the proof into two cases. If % < 1, this is a partic-
ular case of Theorem 3.1. If % > 1 then the triangular projections are
bounded. This implies that the “tetrahedrals” are complemented. (An ex-
ample of this is T = [eq: @y < @y < --- < ay).) Since all of them are iso-
metrically isomorphic and there are finitely many of them we conclude that
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X = eq: a1 <y <+ < ay] by Pelczyniski’s decomposition method. Then
the proofs of Theorem 3.1 and Proposition 3.2 apply to this space. O

The proof of Theorem 3.1 dualizes (formally) to X, = £, ® - -- &£, . De-
fine J, and K, on B(£,®---®{,,) as in B(£,,®---®¥,,). The key to the
dualization argument is that (J,)* = K, and (K,)* = J,.

Theorem 3.4. Let X, = £, Q- Q¢,, be such that i + % > 1 for every
1 # j. Then X, is primary.

Proof. Let ® € B(£, & --- ®F, ) and0 < € < 1. Then ®* € B(£,,®--- &4, )
and whenever i # j we have 1 e L <. Therefore Theorem 3.1 tells us
that there exist o and A € C such that | Ko ®*J, — Mx || <e.

Since K, ®*J,—AIx = (K,®J,—\x,)* we have that || K, ®J,—\x | <e.
Therefore, ® or Iy, — ® factors through X,, and since X, is isomorphic to
its r'-sum, we conclude that X, is primary. O

4. ¢, subspaces of £, ® - &4, .

Theorem 1.3 tells us that £, embeds into £, & - - ®£,,N if there exists a non-
empty A C {1,--- ,N} for which p = r4, where - = mln{l Yica = - } We
will see in the next theorem that the converse holds

Theorem 4.1. £, embeds into £, ® - ®L,, if and only if there exists a
non-empty A C {1,--- , N} such that p =r4.

We will use this theorem to prove the following:

Theorem 4.2. Let X = £, ®--&®¢,, and assume that for some i # j,
i + pl—j > 1 and that py, & {ra: k & A} for k =14,j7. Then X is not primary.
Remark. Theorem 4.1 could probably be generalized to characterize when
m-fold tensor products embed into n-fold tensor products for m < n and
this would slightly improve Theorem 4.2:

We will use Theorem 1.3 to decompose X = [e, : a; > ;] ®B[eq @ o < o).
The condition p; & {ra:t¢ ¢ A} insures that ¢, does not embed into
lea : a; < j]. (This is easily seen for example when N = 2. In this case
X =4, &¢,, and py & {ra: k & A} means p, # p.; we can then observe that
¢,, does not embed into [e; ® e; : i < j].)

We will prove Theorem 4.1 by induction. Assume for the remainder of
this section that X = £, ®--- ®¢,,; = mln{l »N, } and that ® : £, —
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£y, ® - ®F,, is an isomorphism. We can assume without loss of generality
that there is a sequence of increasing natural numbers n; such that

(%) Pe; € [eq i n; < || <nyyq]  for every i

If p > 1 this is true because ®e; — 0 weakly. If p = 1 and Py, is the
projection onto [e, : @ < n], we can find infinitely many pairs of e,’s (say ey
and ¢;) such that Py, ®(ex — ¢;) = 0. Then we replace the e;’s by differences

of unit vectors and get (*).
We say that U : £, — £, is an £,-average isometry if there exist a sequence
of subsets of N, 07 < 0, < --- and scalars a; such that

Te,; = Z arer, and Z lar|P =1 for every i.

k€o; k€o;

Finally we will let E, = [e, : min{a} < n] for every n € N. The key to
the induction step is that

E, =~ (£p2®' ’ .®£PN) @ (£P1®£pa®'“®epzv) -0 (epl®' : '®€PN—1) .

(The isomorphism constant goes to infinity with n.) Notice that each one of
those summands is an (N — 1)-projective tensor product.
We need two lemmas.

Lemma 4.3. Let ®:¢, > £, &®---®¢,, be as in (x) with p > r. Then for
every € > 0 we can find n € N such that ||(I — Pg,)®|| <e.

Lemma 4.4. Let ® : 4, - £, ®---®L,, be as in (x) with p < r, then
for every € > 0 there exists U : £, — £, an {,-average isometry such that
1Y <e.

Proof of Theorem 4.1. The theorem is clearly true for N = 1. Assume that
the result is true for (V — 1)-projective tensor products and let ® : £, —
£, ®---®L,, be an isomorphism satisfying (*).

It follows from Lemma 4.4 that p > r. If p = r there is nothing to prove
since ¢, clearly embeds in the main diagonal. If p > r, Lemma 4.3 tells us
that ®¢, is essentially inside F,, and therefore it is inside one of the (N —1)-
tensor products. Hence it has to be of the form r, for some nonempty A by
induction. o

We used in the proof the well-known fact that if £, embeds into X @Y
then £, embeds into X or into Y.

For the proof of Theorem 4.2 we need one more lemma.
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Lemma 4.5. Let X = £, ® - - ®¢,,, i,7 < N, i # j and assume that
pi € {ra:i¢& A}. Then £, does not embed into (e, : o; < a].

Proof of Theorem 4.2. Use Theorem 1.3 to decompose X = [e, : a; > ;] @
[es : 0; < 0], Lemma 4.5 tells us that £,, does not embed into [e, : a; > o],
and that £,, does not embed into [e, : @; < @;]. Therefore neither of them
is isomorphic to X, and so X is not primary. [l

Proof of Lemma 4.3. If the lemma were false, we could find some ¢, > 0; a se-
quence of normalized vectors {z;},. in £, satisfying supp {z;} < supp{zis1}
for every ¢ and an increasing sequence n; € N satisfying
||P;®z;|| > o where P; is the projection onto the diagonal block

[eq 11 < @ < njyq].

Theorem 3.1 implies that [P;®z; : ¢ € N] =~ £,. Let P be the diagonal pro-
jection onto [P;®z; : i € N] and consider P® : £, — £,. Since ||P®e;|| > €
for every i+ € N we have that P® is not compact. This is a contradic-
tion. O

Sketch of the proof of Lemma 4.4. For N = 1 the result is easy. The condition
(x) says that @ : £, — £, is diagonal; i.e., ®e; = A;e;. Moreover since ® is
bounded, there exists M > 0 such that |\;] < M for every i. We get the
blocks by taking the a;’s constant in every o. Let o C N be of cardinality
n (say). Then || See, ()7 eill, = 1 but | She, (2)Y7 Pexll, < Mnt/r=1/p
goes to zero as n goes to infinity.

Assume the result for N — 1 and let & : £, = £, ®---®,, be as in
(). The idea is to find an £,-average isometry ¥ € B(¢,) such that ®V is
essentially supported in a diagonal block; then since the diagonal block is
like £,, the case N = 1 takes care of it.

To find ¥ we have to find an increasing sequence n; € N and a normalized
sequence {z;};.y in £, satisfying supp{z;} < supp{zi;} for every i € N
and ®z; € [e, : n; < @ < niyq]. (The last inclusion is an “almost” inclusion;
that is, for a given ¢; > 0 there exists n; € N such that the distance from
Dz; to [eq 1 n; < @ < myyq] is less that €;.)

It is clear that it is enough to do this for z; and z, because we can iterate
it to conclude the lemma. Clearly ®z; € [e, : @ < n] for some n. We want
to find z, such that ®z, is supported outside E,,. Since E, is isomorphic to
the sum of (N — 1)-projective tensor products, we can apply the induction
step to insure the existence of z,. 1

Sketch of the proof of Lemma 4.5. The proof of this goes by induction too.
The result is clear for N = 2. Suppose it is true for N — 1 and false for N.
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Then let Z = [e, : a; < ;] C £, ®---®¢,, and, by the assumption, find
® : ¢,  — Z, an isomorphism satisfying (*).

The main diagonal of Z is isomorphic to ¢, and p; > r. Hence, by Lemma
4.3, there exists n € N such that ®/,, is essentially inside F,,. We will look
at the N-summands of Z () E,, to get a contradiction.

One of those summands does not contain the ith component and hence is
isomorphic to

£P1® T ®£Pi—1 ®€Pi+1® o ®£PN'

The condition p; & {r4 : ¢ ¢ A} and Theorem 4.1 imply that £,, does not
embed there.

Another summand does not contain the jth component. This really means
that a; < n. Therefore, o; < n as well and the summand is isomorphic to
Qi jlp.- We conclude as before that £,, does embed here.

The remaining summands will have the same structure but with NV — 1
terms. Then the induction hypothesis implies that Z,, does not embed into
any one of them.

Therefore, £,, does not embed in Z. This is a contradiction. D

5. Primarity of Polynomials and Operator Spaces.

In this section we discuss the primarity of (£,,&®---®#£,,)*. There will be

really only one case to consider; namely that of r = 1 (recall that % =

i=1 p;
gain [Bo] and Blower [B].

It is interesting to note that completely different factors determine the
primarity of (£,,®---®¢,.)* when r = 1 and r > 1. When 7 > 1 it is
the unboundedness of the main triangle projection in each pair (taken sep-
arately) that is the most important factor, while for r = 1 we will see that
the main point is that we have £.,-blocks down the diagonal.

min {1, DA }), which we demonstrate below using techniques of Bour-

Theorem 5.1. Let X = £, & &€, be such that : = min {1, 5%, L} =
1. Then (£, ®---®L,,)* is primary.

This result will solve the question of primarity for spaces of polynomials.
Since the space of analytic polynomials of degree m on ¢, is isomorphic
(with constant ﬂmmT) to the dual of the symmetric m-fold tensor product
®'¢,. That is P, =~ (&, £,)*. (Here m is the number of times that one
takes the tensor product.)

Lemma 5.2. For any 1 < p < oo and m € N we have that £,®--- &, ~
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&, Cp.

Proof. We use Pelczynski’s decomposition method again. Since £,& - - - ®¢,
is isomorphic to its infinite s-sum (s = max {1, £}) we only have to prove
that they embed complementably into each other. It is clear that ®:n€p
embeds into £,&---®¢,. Indeed, S € B({,®--&¥,) defined by Se, =
L 3 rerl,, €n(a) Shows that the embedding is 1-complemented. On the other
hand, for i« < N let 0;(j) = m(j — 1) +4, 0 = (01, ,0,) and define
T € B((,®---®¢,) by T = K,SJ,. It is clear that T factors through
&®™¢, and it is easy to see that Te, = e, Hence, £,&---&¢, embeds
complementably into ®™¢, and the result follows. a

Corollary 5.3. Let1 < p < oo and m > 1. The space of homogeneous
analytic polynomials Pn(¢,) and the symmetric tensor product of m copies
of £, are primary.

We now proceed to the proof of the theorem. Notice that if
X = £P1®' ’ '®ep1v

is such that 1 = min{l, >N, pi} =1, then Theorem 2.2 tells us that

o0
(£m® Tt ®£Z’N)* ~ (Z egl® T ®22N)
n=1 o)

This decomposition allows us to use the technique developed by Bourgain
[Bo] to prove that H* is primary; namely, one obtains the general theorem
from the finite dimensional version.

The proof is an exact generalization of the proof of Blower [B] that B(H)
is primary; it has no surprises, and so we will simply sketch the part that is
different for the case N > 2, and refer the interested reader to [B] for other
details. The proof follows from the following 2 lemmas, as indicated in [Bo].

Proposition 5.4. Given n € N, ¢ > 0 and K < oo, there ezists Ny =
No(n,€,K) such that if M > Ny and T € B(fM&--- ®¢M) with ||T| < K,
then there ezxist subsets 01,04, ---0on C {1, -+, M} of cardinality n, and a
constant A such that if o = (0,,0,--- ,0N) then,

1K, TJ, — M| < e
Thus, one of K,TJ, and K,(Ixy — T)J, is invertible.

Remark. Here J,: £2&--- &0 — £YQ .- &M is defined by J,e, =
€qs(a) Where o(a) = (01(a1), -+ ,on(an)), and 0; = {0:(1),0:(2), -+ ,0:(n)}.
Moreover, o;(k) < 0;(I) iff k < l. The definition for K, is similar.
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Proposition 5.5. Given n € N and € > 0 there ezists Ny = Ny(n,¢€)
such that if M > Ny and E is an n-dimensional subspace of £)/®--- L)
then there exists a subspace F of £){®--- QL) , isometrically isomorphic to

Q-2 , and a block projection Q from LY ®-- &L to F such that
|Qz|| < ellz|| for every z € E.

Sketch of the proof of Proposition 5.4. Let T € B(£)/®--- ®¢)) such that
IT|| < K. We will find a copy of £7 & - ®£7 inside £M&--- ®£)7 such that
T is essentially a multiple of the identity when restricted to this subspace.
We accomplish this in two steps.

Step 1. Find a large subset ¢ C {1,--- , M} and A € C such that whenever
a = (ag, - ,ay) is such that oy < -+ < ay and a4 € 9 for i < N, then
[(Teq,eq) — M| < €.

Step 2. Find 0y < 05 < --- < oy C 9 each of cardinality n, such that
whenever a = (ay, -+ ,an), 0’ = (ai, - ,aly) are are such that oy, o) € oy
for every k < N and a # <o, then |[(Tes,eq)| < €. Then define § =
[ea: ak € o;). One can easily verify that if € > 0 is chosen small enough then
T restricted and projected into S is essentially a multiple of the identity and
that S is isometrically isomorphic to £, ®--- @7, .

Both steps depend on Ramsey’s Theorem and they are very minor modi-
fications of Blower’s argument.

For Step 1 divide the disk {z: |z| < K} into finitely many disjoint subsets
Vi of diameter less than €, and define the coloring on N-sets of {1,--- , M}
by {1, - ,an} = £ if (Te,,e) € Vi where a = (a1, ,an) for oy <
-+ < ay. Then use Ramsey’s Theorem fo find a large monochromatic set
.

The proof of Step 2 involves many different cases (but all of them are
similar). One has to look at all the different ways that (a;,---,an) #
(o, ,aly). We will illustrate the case when o4, < «, for every k < N.

Color the 2N-elements of {1,--- , M} by: {a;,0},as,0h, -+ ,an,ay} is
bad if oy < o} < ap < @y < -+ < ay < oy and |(Teqy,€qx)| > € where
a=(ay, - ,ay)and o = (o}, - ,ay); it is good otherwise.

Ramsey’s Theorem gives us a large monochromatic subset 1; C 9. We
will show that v, has to be good. Let o} < as < oy < --- < ay < )y be the
2N — 1 largest elements of 4,, and let 8 = (g, -+ ,an), & = (&, -+, ),
and F =[e; ®eg: i € 41,1 < af).

It is clear that F = £¥11=2N+1, Define T : F — C by T(z) = (T'z,ea).
Then we have that T is a map from £5 into C, with norm less than or equal
to K and maps the canonical basis into “large” elements. Since we assumed
that p; > 1 this is a contradiction.

Now we have to look at all the other possibilities; e.g., o > «; and
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o < ap, for 2 <k < N etc. We have to look also at the cases when some
of the coordinates are equal, but these are not very different. We prove the
proposition by choosing M large enough. 1

Sketch of the proof of Proposition 5.5. It is enough to prove that if z €
EN®--- @) with ||z|| < 1, then we can find Q, a large block projection,
such that ||Q(z)|| < e. Then take an e-net of the sphere of E, {z;};_,. Find
(), a large block projection such that [|Q,z1] < €; then find @, a large block
projection contained in the range of Q); such that [|Q.Q,z,|| < e. Proceeding
in this way we get that Q@ = Q- -- Q2Q1; this @ does it.

To check the first claim let z € £;/®--- @£} with ||z]] <1 and let p > 0
(to be fixed later). Then define a coloring on the N sets of {1,--- , M} by:

{ay, - ,an} is bad if [(z,e,)| > p where o = (ay, - ,ay) and oy < --- <

ay. And good otherwise. Ramsey’s theorem gives us a large monochromatic

subset, and this subset has to be good. O
6. Appendix

In this section we will prove Basic Lemmas 1 and 2 from Section 3.

Proof of Basic Lemma 1. For this proof let M,, = [e, : @ < n] with projection
P,. We will divide the proof into two parts, one for m > n and the other
one for m < n. In both cases, 0 = (01, ,0n) satisfies 0y =03 = -+ = on.

The case m > n is simpler; we start with it.

If KC¥4,®: - ®¢,, isa compact set, then K is essentially inside one of
the M,’s. The following elementary lemma states this fact quantitatively
(we omit its proof as it is an easy exercise). The proof of the case m > n
follows easily from it.

Lemma 6.1. Let K C £,,®--®¢,, be a compact set and €, > 0 be given.
Then we can find a sequence ny, € N such that sup,cx [|(I — Py, )| < €.

We start the inductive construction of o;. Set A; = N and o(1) =
min A;. Let K = ® Ball 0M, (1) and ¢, = €; ;. Then find A, C A;\ {o1(1)}
according to Lemma 6.1; and set 0,(2) = min A,.

Let K = ® Ball M, (2), €, = € and find A3 C A, \ {01(2)} according
to Lemma 6.1. Then set 0,(3) = min A;.

Continuing in this fashion we get o, and construct o = (oy,--- ,07). It is
easy to see that if z € OM,, and m > n, then

1Qum K0, z|| < €nmll]l.
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We will now prove the case m < n.
The construction of o; is similar to the previous case. We need the fol-
lowing elementary lemma (which as before do not prove).

Lemma 6.2. Letl < p < oo, F a finite dimensional space, and T : £, - F
a bounded linear map. Then for every € > 0, the set {i : ||Te;|| > €} is finite.

We will only present the induction step for the construction of ;. Assume
that A C N is an infinite set with first n elements o;(1),---,0,(n). We
want to find an infinite A’ C A with the same first n elements as A such that
whenever o € (A')Y is such that e, & M,,(»), then [P, ) ®Pe,|| < e. Then
we will choose o;(n + 1) = min A’ \ {o:(1),--- ,01(n)}.

The construction of A’ uses Ramsey’s Theorem as in Section 5. We look
at all the different ways that e, € M,,(,). We will illustrate this for two
different cases. The others are very similar.

Case 1. o1(n) <oy < ag < --- < an.

Color the N-sets of {i € A:i > o,(n)} as follows: {ay,- - ,an} is good if
a1 < -+ < ay and || P, (n)Pe,|| < € and bad otherwise.

Ramsey’s Theorem gives us a monochromatic infinite set A; C A. It is
easy to see that Lemma 6.2 implies that the set has to be good. (Let §; <
-+ < Bn-1 be the N —1 smallest elements of A; and define T": £,, — M,,(n)
as follows: if i > By_y, then Te; = P, (n®eg, ... gy_.,i) and if 1 < By,
then Te; = 0. If A; were bad this would contradict Lemma 6.2.)

Case 2. aj,a5 < oy(n) <az <--- < ay.

Color the (N — 2)-sets of {i € A:i > 0,(n)} as follows: {as,---,an} is
good if a3 < --- < ay and ||P,, () Pea|| < € for every oy, a; < o1(n), (notice
that a = (a1, 09,03, -+ ,ay)) and bad otherwise.

Once again Ramsey’s Theorem gives an infinite monochromatic subset of
A. And as before it has no choice but to be good. This follows because there
are only finitely many o, @, < o1(n).

There are finitely many ways in which e, € M,, (). They are very sim-
ilar to the two cases just considered, and repeating the above argument
for all of them we get A C A that is good in all the cases. Then let
A = AU{o:1(1), - ,01(n)}. We choose ¢ > 0 small enough so that when-
ever £ € OM,,,,, then

| Py () Ko @Jpz|| < IICIETI}{En+1,k}”$“-

O

Proof of Basic Lemma 2. Assume that we have a sequence of complex num-
bers {Aa s, : @, 3 € N¥71la| V8] < j} and a sequence of positive numbers,
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{eap; 15> 1ol VIBl}.
For a,f fixed, find a subsequence {j;} of {j:j > |a| V|B|} and some
Ao, € C satisfying:

lim Ay g = Asp

Jr—>00

(**) Aasin = Aapl < €apik-

Moreover, if we have finitely many {a;,5},.,,, we can find a subsequence
{jx} such that (+#) is true for every | < m.

The condition j > |a| V |G| is the key to extend the argument to all
a,8 € NN~1, The basic idea is that once we have fixed o,(1),-- ,01(n),
we take the subsequence j; from {j : j > 0,(n)}; hence, we do not affect the
initial segment.

We will only present the induction step for o;. Assume that A C N is
an infinite set with first elements o,(1),0,(2),--- ,01(n). We want to find
an infinite A’ C A with the first n elements as in A, and such that (*x)
is satisfied for every o, 8 < o;(n). We can do that because there are only
finitely many of them. We take the subsequence j; from {7 € A : j > o,(n)}
and let A’ = {j; : k € N}U{o1(1), - ,01(n)}. Then set o;(n+1) = j;, the
minimum of the j;’s (remember that j; > o,(n)).

Repeating the process we finish the proof. O
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