Vol. 176, No. 1, 1996

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Partitioning products of 𝒫(ω)fin

Otmar Spinas

Vol. 176 (1996), No. 1, 249–262
Abstract

We generalize the cardinal invariant a to products of 𝒫(ω)fin and then sharpen the well-known inequality b a by proving b a(λ) for every λ ω. Here a(n), for n < ω, is the least size of an infinite partition of (𝒫(ω)fin)n, a(ω) is the least size of an uncountable partition of (𝒫(ω)fin)ω, and b is the least size of an unbounded family of functions from ω to ω ordered by eventual dominance. We also prove the consistency of b < a(n) for every n < ω.

Mathematical Subject Classification 2000
Primary: 03E05
Secondary: 03E35
Milestones
Received: 22 September 1994
Revised: 11 January 1995
Published: 1 November 1996
Authors
Otmar Spinas
Mathematisches Seminar, Mathematisch-Naturwissenschaftliche Fakultät
Christian-Albrechts-Universität zu Kiel
Raum: 516
Ludewig-Meyn-Str. 4
D-24118 Kiel
Germany
http://www.math.uni-kiel.de/logik/spinas/