Vol. 176, No. 2, 1996

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
A uniqueness theorem for the minimal surface equation

Jenn-Fang Hwang

Vol. 176 (1996), No. 2, 357–364
Abstract

In 1991, Collin and Krust proved that if u satisfies the minimal surface equation in a strip with linear Dirichlet data on two sides, then u must be a helicoid. In this paper, we give a simpler proof of this result and generalize it.

Mathematical Subject Classification 2000
Primary: 53A10
Secondary: 35J65
Milestones
Received: 4 December 1994
Revised: 20 April 1995
Published: 1 December 1996
Authors
Jenn-Fang Hwang
Institute of Mathematics
Academia Sinica
6F, Astronomy-Mathematics Building
No. 1, Sec. 4, Roosevelt Road
Taipei 10617
Taiwan
http://www.math.sinica.edu.tw/www/people/websty1_e.jsp?owner=majfh