OSCILLATORY THEOREM AND PENDENT LIQUID DROPS

Kimiaki Narukawa and Takashi Suzuki
OSCILLATORY THEOREM AND PENDENT LIQUID DROPS

KIMIAKI NARUKAWA AND TAKASHI SUZUKI

In this paper the bifurcation diagram for the equation of a pendent liquid drop is devoted. The bendings of the branch of solutions bifurcated from the trivial solution occur infinitely many times.

1. Introduction.

In this article we discuss the bifurcation problem for a model equation which describes capillary surfaces. The membrane in the equilibrium state which is framed horizontally and filled up with fluid in the gravity field yields to the equation of mean curvature type

\begin{equation}
- \text{div} \left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \right) = \lambda u \quad \text{in } \Omega
\end{equation}

with the boundary condition

\begin{equation}
u = 0 \quad \text{on } \partial \Omega
\end{equation}

and the constraint

\begin{equation}
u < 0 \quad \text{in } \Omega,
\end{equation}

where \(\Omega \) is a bounded domain in \(R^2 \), \(\lambda \) a positive parameter determined by the physical constants.

Here \(z = u(x,y), \ (x,y) \in \Omega \), represents the shape of the membrane spanned by \(\partial \Omega \). Actually, the left hand side in Equation (1.1) defines the mean curvature of a graph \((x,y,u(x,y)), \ (x,y) \in \Omega \) at each point.

Noting that \(u \equiv 0 \) is the trivial solution for any \(\lambda > 0 \), we see that nontrivial solutions of (1.1), (1.2), (1.3) bifurcate from \(u \equiv 0 \) at the first eigenvalue \(\lambda = \lambda_0 \) of the linearized equation

\begin{equation}
- \Delta u - \lambda u = 0 \quad \text{in } \Omega
\end{equation}

with

\begin{equation}
u = 0 \quad \text{on } \partial \Omega,
\end{equation}
by the usual method. The branch of solutions is subcritical, i.e., there exists a solution for any \(\lambda \) with \(\lambda_0 - \delta < \lambda < \lambda_0 \) for small \(\delta > 0 \). Moreover, we can show that there are no solutions of (1.1), (1.2), (1.3) for \(\lambda \geq \lambda_0 \) (see the part at the beginning of Section 2). However, we do not know how the branch of solutions behaves globally by this method of bifurcation theory. When the global behavior of the branch of solutions is regarded, we would like to consider an equation

\[
H[X](p) = \lambda X^3(p) \quad \text{in } B_1 \equiv \{p \in \mathbb{R}^2 \mid |p| < 1\}
\]

instead of (1.1). Here \(X(p) = (X^1(p), X^2(p), X^3(p)) \), \(p \in B_1 \), represents the deformed surface in parametrized form and \(H[X](p) \) denotes the mean curvature of the surface at each point \(X(p) \). In fact, (1.1) is a reduced form of (1.6) when the surface \(\{X(p) \mid p \in B_1\} \) is represented by a graph: \(X_3 = u(X_1, X_2) \).

In this paper we consider the case when the frame is given by a horizontal unit circle, namely, (1.6) with

\[
(X^1(p), X^2(p)) \in \partial B_1 \quad \text{and} \quad X^3(p) = 0 \quad \text{on } \partial B_1
\]

and

\[
X^3(p) < 0 \quad \text{in } B_1.
\]

Wente [15] has shown that the surfaces given by Equations (1.6), (1.7), (1.8) are the ones of revolution with \(x_3 \)-axis as the axis of symmetry. Then the generating curve \(u \) of each surface is given by smooth continuations of arcs determined by solutions of the ordinary differential equation

\[
\left(\frac{ru_r}{\sqrt{1 + u_r^2}} \right)_r = -\lambda \text{sgn}(u_r)ru
\]

in terms of radial distance \(r \) from the axis of symmetry with the boundary conditions

\[
u_r(0) = 0, \quad u(1) = 0
\]

and the constraint

\[
u(r) < 0 \quad \text{on } [0,1),
\]
where subindex r indicates the derivative with respect to r. Equation (1.9) can be rewritten in terms of the arc length s along the trajectory as

\[
\begin{aligned}
\frac{dr}{ds} &= \cos \psi \\
\frac{du}{ds} &= \sin \psi \\
\frac{d\psi}{ds} &= -\lambda u - \frac{\sin \psi}{r}
\end{aligned}
\]

(1.12)

where ψ is the angle of inclination of the solution curve with regard to the r-axis. In this case we can avoid the argument of the continuation of solutions. Physical backgrounds and many results concerning Equations (1.9) or (1.12) are stated in detail in the monograph [7] by Finn. And further various properties on solutions of the type of this equation have been investigated precisely by many authors, i.e., ground state solutions [2], [10], [11], [14], a singular solution [4], [5], and vertical points of solutions [1], [3], etc.

In the paper [13], Narukawa and Suzuki have shown the existence of the lower bound $\lambda > 0$ for which solutions of (1.9), (1.10), (1.11) exist, and Finn [9] has given a new proof of this fact by using the method of Green’s identities. Finn [9] further shows that the branch of solutions (λ, u_λ) blows up at $\lambda = \lambda_*$ with λ_* given by $R_\infty^2 \sim 1.32^2$, where R_∞ is the first zero of singular solution of (1.9) for $\lambda = 1$. Here computational calculation suggests that the branch bends infinitely many times at $\lambda = \lambda_*$, but this result of oscillation has not yet proved mathematically. It is our aim to give a partial answer for this.

2. Main results.

Prior to starting the main theorems, we remark that there are no solutions of (1.1), (1.2), (1.3) for $\lambda \geq \lambda_0$, where λ_0 is the first eigenvalue of $-\Delta$ with the Dirichlet boundary condition. In fact, let u be a solution of (1.1), (1.2), (1.3) and $\lambda(u)$ and $\varphi(x)$ be the first eigenvalue and eigenfunction corresponding to this $\lambda(u)$ respectively, of the linear equation

\[
-\text{div} \left(\frac{\nabla \varphi}{\sqrt{1 + |\nabla u|^2}} \right) = \lambda \varphi \quad \text{in } \Omega
\]

(2.1)

with

\[
\varphi = 0 \quad \text{on } \partial \Omega.
\]

(2.2)
Multiplying Equations (1.1) and (2.1) by \(\varphi \) and \(u \) respectively and integrating over \(\Omega \), we have

\[
(2.3) \quad \int_{\Omega} \frac{\nabla u \nabla \varphi}{\sqrt{1 + |\nabla u|^2}} \, dx = \lambda \int_{\Omega} u \varphi \, dx
\]

and

\[
(2.4) \quad \int_{\Omega} \frac{\nabla u \nabla \varphi}{\sqrt{1 + |\nabla u|^2}} \, dx = \lambda(u) \int_{\Omega} u \varphi \, dx.
\]

Since \(\varphi(x) > 0 \) in \(\Omega \) from the Krein–Rutman theorem and \(u(x) < 0 \) in \(\Omega \) from (1.3), we have

\[
\int_{\Omega} u \varphi \, dx < 0.
\]

And hence \(\lambda = \lambda(u) \). On the other hand,

\[
\lambda(u) = \inf \left\{ \int_{\Omega} \frac{|\nabla \varphi|^2}{\sqrt{1 + |\nabla u|^2}} \, dx \mid \varphi \in H_0^1(\Omega), \int_{\Omega} |\varphi|^2 \, dx = 1 \right\}
\]

\[
< \inf \left\{ \int_{\Omega} |\nabla \varphi|^2 \, dx \mid \varphi \in H_0^1(\Omega), \int_{\Omega} |\varphi|^2 \, dx = 1 \right\}
\]

\[
= \lambda_0,
\]

where \(\lambda_0 \) is the first eigenvalue of \(-\Delta \) with the Dirichlet boundary condition. This implies that there are no solutions of (1.1), (1.2), (1.3) for \(\lambda \geq \lambda_0 \).

Therefore the branch of solutions which bifurcates from the trivial solution at \(\lambda = \lambda_0 \) does not reach into the region \(\lambda \geq \lambda_0 \). Actually, allowing multivalued functions as solutions, we have the following two theorems.

Let \(X \) be the set of smooth curves \(C \) connecting \((1,0)\) and \((0,u_0)\), \(u_0 < 0 \), in the half plane \(\{(r,u) \in \mathbb{R}^2 \mid r \geq 0\} \). It is equipped with the metric defined by

\[
d_X(C_1, C_2) = \max \left\{ \max_{p=(r,u) \in C_1} \text{dist}(p, C_2), \max_{p'=(r',u') \in C_2} \text{dist}(p', C_1) \right\}
\]

for \(C_1, C_2 \in X \). We regard the arc \(C_\lambda \) whose revolution with \(u \)-axis is a surface given by Equations (1.6), (1.7), (1.8) as an element in \(X \). Namely, \(C_\lambda \in X \) represents the smooth continuation of arcs given by solutions (1.9) with (1.10), (1.11) or a curve \((r(s), u(s)) \) given by (1.12) with \((r(0), \psi(0)) = (0,0), (r(s_1), u(s_1)) = (1,0) \) for some \(s_1 > 0 \) and \(u(s) < 0 \) on \(0 \leq s < s_1 \) for given \(\lambda > 0 \).

Theorem 2.1. The set of solutions \(S = (\lambda, C_\lambda) \) forms a 1-dimensional manifold in \(\mathbb{R} \times X \), homeomorphic to \(\mathbb{R} \), starting from \((\lambda_0, 0)\) and approaching
\[\lambda = \lambda^* \text{ as the minimum of } u\text{-component of } C_\lambda \text{ goes up to } -\infty. \text{ Here, } \lambda^* = R^\infty_2 \sim 1.32^2 \text{ with the first zero } R^\infty \text{ of the singular solution } U(r) \text{ of } (1.9) \text{ for } \lambda = 1 \text{ which is obtained in } [8]. \]

Theorem 2.2. The bendings with respect to \(\lambda \) on \(S \) in \(R \times X \) occur infinitely many times in any neighborhood of \(\lambda = \lambda^* \).

Theorem 2.1 is already known, more or less. In fact, by the similar transformation \(\ell = \sqrt{\lambda}r, \upsilon = \sqrt{\lambda}u \), Equation (1.9) is normalized as \(\lambda = 1 \). Further, taking \(\upsilon \) as an independent variable and \(\ell \) as a function of \(\upsilon \), (1.9) turns to

\[
(2.5) \quad \left(\frac{\ell \ell_\upsilon}{\sqrt{1 + \ell_\upsilon^2}} \right)_\upsilon = \ell_\upsilon + \sqrt{1 + \ell_\upsilon^2}.
\]

Taking account of the boundary condition (1.10) and the constraint (1.11), we see that a solution curve \(C_\lambda \) corresponds to the solution of (2.5) on \((v_0, 0) \) with some \(v_0 < 0 \) which satisfies the boundary condition

\[
(2.6) \quad \ell(v_0) = 0, \quad \lim_{\upsilon \downarrow v_0} \ell'(\upsilon) = \infty
\]

and

\[
(2.7) \quad \ell(0) = \sqrt{\lambda}.
\]

We also notice that the local existence and the uniqueness of solutions of (2.5) with the initial condition (2.6) have been proved by Wente [16] and Concus and Finn [6] (see also Sections 4.2 and 4.3 in [7]). Further a local solution is continued globally on \([v_0, 0] \) as a solution of (2.5) in a single valued function of \(\upsilon \), which is denoted by \(\ell(v, v_0) \), and the mapping from \(v_0 \) to \(\ell(0, v_0) \) is smooth. Thus, for each \(v_0 < 0 \), the solution \(\ell(v, v_0) \) corresponds to a curve \(C_\lambda, \lambda = \ell(0, v_0)^2 \), by the relation

\[
C_\lambda : \begin{cases} r = \frac{1}{\sqrt{\lambda}} \ell \left(\frac{v}{\sqrt{\lambda}}, \frac{v_0}{\sqrt{\lambda}} \right) \\ u = \frac{v}{\sqrt{\lambda}} \end{cases}.
\]

Namely, the branch of solutions \(S \) is a family parametrized by \(v_0 < 0 \) and the minimum of \(u\)-component of \(C_\lambda \) is \(v_0/\sqrt{\lambda} \). Hence, from the continuity of solutions on initial data, the curve \(\tilde{S} \equiv \{ \ell(0, v_0)^2, v_0/\ell(0, v_0)|v_0 < 0 \} \) in \(R^2 \) defined by the solutions \(\ell \) of (2.5), (2.6) indicates the branch of solutions \(S \). Finn [7] notes that \(\ell(0, v_0) \) converges to the square of the first zero of the Bessel function \(J_0(r) \), which is the first eigenvalue of \(-\Delta \) in \(B_1 \) with the
Dirichlet boundary condition. This shows that the branch of solutions \(S \) parametrized by \(v_0 \) as above is the one which bifurcates at \(\lambda = \lambda_0 \). Hence our problem is to investigate the behavior \(\ell(0, v_0) \), that is, how \(\ell(0, v_0) \) approaches \(R_\infty \), as \(v_0 \) tends to \(-\infty\).

Therefore, Theorem 2.1 follows from a theorem proved by Finn [8], which is nothing but Conjecture 3 in [7]. This shows that \(\ell(v, v_0) \) converges uniformly to a singular solution \(\ell_\infty(v) \) with all derivatives in any compact set in \((-\infty, 0]\). Here \(\ell_\infty(v) \) is a positive global solution of (2.5) on \((-\infty, 0]\) satisfying \(\ell_\infty(v) \to 0 \) as \(v \to -\infty \). Hence, when \(v_0 \) goes to \(-\infty\), \(\lambda = \ell(0, v_0)^2 \) tends to \(\lambda^* = \ell_\infty(0)^2 = R_\infty^2 \). Thus Theorem 2.1 is proven.

3. Proof of Theorem 2.2.

For the solution \(\ell(v, v_0) \) of (2.5) with (2.6), let us put

\[
\phi(v, v_0) = \frac{\partial \ell}{\partial v_0}(v, v_0), \quad (v_0 < v < 0).
\]

Then the branch of solutions \(S \) bends at \(\lambda = \ell(0, v_0)^2 \) with respect to \(\lambda \) if and only if there exists an interval \(J = [a, b] \) containing \(v_0 \) such that \(\phi(0, v_0) \) vanishes on \(J \) and changes its sign on a neighborhood of \(J \).

Our strategy is to look at the number of zero points of \(\phi(\cdot, v_0) \) in the interval \((v_0, 0)\). We shall show that it goes to infinity as \(v_0 \to -\infty \), since the variational equation for the singular solution is oscillatory. On the other hand, it will be also shown that the zeros of \(\phi(\cdot, v_0) \) never appear afresh in any compact subinterval of \([v_0, 0)\). This indicates that \(\phi(0, v_0) \) must change its sign when the number of zeros of \(\phi(\cdot, v_0) \) changes, so that \(\phi(0, v_0) \) changes its sign infinitely many times as \(v_0 \to -\infty \).

We begin with some lemmas.

Lemma 3.1. For each \(v_0 < 0 \), the function \(\phi(v, v_0) \) satisfies the variational equation

\[
\left[\frac{\ell}{(1 + \ell^2_v)^{3/2}} \phi_v \right]_v + \left(\frac{\ell_v}{\sqrt{1 + \ell^2_v}} \right)_v \phi = v \phi
\]

on the interval \((v_0, 0)\], and further,

\[
\lim_{v \to v_0} \phi(v, v_0) = -\infty,
\]

where subindex \(v \) indicates the partial derivative with respect to \(v \).

Proof. Since the first part is a direct consequence of Equality (2.5), we only show (3.3). Note that \(\ell(v, v_0) \) \((0 \leq v - v_0 \ll 1)\) is the inverse function of
\[v = v(\ell, v_0) \quad (0 \leq \ell \ll 1) \] which is smooth in \((\ell, v_0)\), which solves
\[\left(\frac{\ell v_\ell}{\sqrt{1 + v_\ell^2}} \right)_\ell = -\ell v \]
with
\[\lim_{\ell \to 0} v(\ell, v_0) = v_0 \quad \text{and} \quad \lim_{\ell \to 0} v_\ell(\ell, v_0) = 0. \]
Thus
\[(3.4) \quad v(\ell(v, v_0), v_0) = v \]
holds on the interval \((v_0, v_0 + \delta)\) with some \(\delta > 0\). Differentiating (3.4) by \(v_0\), we obtain
\[\ell_{v_0}(\ell(v, v_0), v_0) = -\frac{v_{v_0}(\ell(v, v_0), v_0)}{v_\ell(\ell(v, v_0), v_0)} \]
for \(v \in (v_0, v_0 + \delta)\). Noting
\[\ell(v, v_0) \to 0 \quad \text{as} \quad v \to v_0 \]
and
\[v_{v_0}(\ell, v_0) \to 1, \quad v_\ell(\ell, v_0) \searrow 0 \quad \text{as} \quad \ell \to 0, \]
we obtain
\[\phi(v, v_0) = \ell_{v_0}(v, v_0) \to -\infty \quad \text{as} \quad v \to v_0. \]
\[\square \]
Owing to Theorem 4.11 of [7], we have the asymptotic expansion
\[(3.5) \quad v(\ell) \sim -\frac{1}{\ell} + \frac{5}{2} \ell^3 - \frac{567}{8} \ell^7 + \cdots \quad \text{as} \quad \ell \downarrow 0 \]
for the inverse function of the singular solution \(\ell_\infty(v)\). Thus we have
\[(3.6) \quad \ell_\infty(v) = -\frac{1}{v} + O\left(\frac{1}{v^5}\right) \quad \text{as} \quad v \to -\infty. \]
In fact, from (3.5),
\[v(\ell) = -\frac{1}{\ell} + g(\ell), \quad g(\ell) = O(\ell^3) \quad \text{as} \quad \ell \searrow 0. \]
Noting $v \to -\infty$ if and only if $\ell \searrow 0$, we have

$$
\ell = -\frac{1}{v - \ell(v)} = -\frac{1}{v} \left[1 + \frac{g(\ell)}{v} + O \left(\frac{g(\ell)^2}{v^2} \right) \right]
$$

$$
= -\frac{1}{v} \left[1 + O \left(\frac{1}{v^4} \right) \right] \quad \text{as } v \to -\infty.
$$

Thus

$$
g(\ell) = O(\ell^3) = O \left(\frac{1}{v^3} \right)
$$

and

$$
\ell = -\frac{1}{v} \left[1 + \frac{1}{v} O \left(\frac{1}{v^3} \right) \right] = -\frac{1}{v} + O \left(\frac{1}{v^5} \right).
$$

Further, noting (3.5), (3.6) and (2.5), we have

(3.7)

$$
\frac{d \ell_\infty}{dv}(v) = \frac{1}{v^2} + O \left(\frac{1}{v^6} \right)
$$

and

(3.8)

$$
\frac{d^j \ell_\infty}{dv^j}(v) \to 0, \quad (0 \leq j \leq 3) \quad \text{as } v \to -\infty.
$$

These are obtained by carrying out a tedious calculation in practice.

For the limit equation of the variational equation (3.2), we have the following oscillation theorem.

Lemma 3.2. Let ψ be a solution of the equation

(3.9)

$$
\left[\frac{\ell_\infty}{(1 + \ell_\infty^2)^{3/2}} \psi_v \right]_v + \left(\frac{\ell'_{\infty}}{\sqrt{1 + \ell'_{\infty}^2}} \right)_v \psi = v \psi,
$$

where $\ell'_{\infty} = \frac{d \ell_\infty}{dv}$. Then ψ has infinitely many zeros on the interval $(-\infty, 0)$, that is, (3.9) is oscillatory.

Proof. Putting

$$
a(v) = \frac{\ell_\infty(v)}{[1 + \ell_\infty^2]^{3/2}}, \quad b(v) = \left[\frac{\ell'_{\infty}(v)}{\sqrt{1 + \ell'_{\infty}^2}(v)} \right]_v - v,
$$

we consider the equation

(3.10)

$$
(a(v)\psi_v(v))_v + b(v)\psi(v) = 0 \quad \text{on } (-\infty, 0].
$$
By the Liouville transformation
\[z(v) = \int_0^v \frac{dw}{\sqrt{a(w)}}, \quad \Psi(z(v)) = a(v)^{1/4}\psi(v), \]
Equation (3.10) turns to
\[\Psi_{zz} + p(z)\Psi = 0 \quad \text{on } (-\xi, 0], \]
where
\[p(z(v)) = b(v) - \frac{1}{4}a''(v) + \frac{1}{16}a(v)^{-1}a'(v)^2 \]
and
\[\xi = \int_{-\infty}^0 \frac{dv}{\sqrt{a(v)}}. \]
Noting (3.6), we have \(\xi = \infty \). Thus \(z \) tends to \(-\infty \) if and only if \(v \) goes
to \(-\infty \). Hence Equation (3.10) is oscillatory at \(-\infty \), i.e., any solution has
infinitely many zeros on the interval \((-R, -\infty)\) for any \(R > 0 \), if and only
if Equation (3.11) is oscillatory. The oscillatory theorem based on the Euler
equation (see e.g. [12, Theorem 7.1]) says that if the inequality
\[\lim_{z \to -\infty} z^2p(z) > \frac{1}{4} \]
holds, then Equation (3.11) is oscillatory. In our case, since
\[p(z(v)) = -v + o(1) \quad \text{as } v \to -\infty \]
from (3.6), (3.7), (3.8) and \(z(v) \to -\infty \) as \(v \to -\infty \), we have
\[\lim_{z \to -\infty} z^2p(z) = \lim_{v \to -\infty} p(z(v)) \left(\int_v^0 \frac{dv}{\sqrt{a(v)}} \right)^2 = \infty. \]
Thus (3.11), and hence (3.10) is oscillatory. \(\square \)

Now, for a continuous function \(\phi \) in \(v \), we denote by \(i_{(a,b)}(\phi) \) the number
of zeros of \(\phi \) in the interval \((a, b)\) and put \(i(v_0) = i_{(v_0,0)}(\phi(\cdot, v_0)) \) for the
function \(\phi(v, v_0) \) defined by (3.1). Then we have

Lemma 3.3. The number \(i(v_0) \) tends to \(\infty \) as \(v_0 \to -\infty \).

Proof. For each \(v_0 < 0 \), let \(\zeta(v, v_0) \) be the solution of (3.2) with the initial
data
\[(3.12) \quad \zeta(0, v_0) = 0, \quad \frac{\partial \zeta}{\partial v}(0, v_0) = 1. \]
Note that the coefficients
\[
\frac{\ell}{(1 + \ell^2)^{3/2}} > 0 \quad \text{and} \quad \left[\frac{\ell_v}{\sqrt{1 + \ell^2}} \right]_v - v
\]
in (3.2) are smooth on \([v_0 + 1, 0]\), where \(\ell = \ell(v, v_0)\). From the Sturmian oscillation theorem, the solutions \(\phi(v, v_0)\) and \(\zeta(v, v_0 \to \zeta(v, v_0))\) have one zero between any two consecutive zeros of the other function respectively on the interval \([v_0 + 1, 0]\) or these two functions are linearly dependent. Therefore
\[
(3.13) \quad i_{(v_0+1,0)}(\phi(\cdot, v_0)) = i_{(v_0+1,0)}(\zeta(\cdot, v_0)) \quad \text{or} \quad i_{(v_0+1,0)}(\zeta(\cdot, v_0)) + 1.
\]
On the other hand, owing to the result obtained by Finn [9], we know that \(\ell(v, v_0)\) converges uniformly to a singular solution \(\ell_\infty(v)\) with all derivatives on any compact set in \((-\infty, 0]\). Thus the coefficients in (3.2) and hence \(\zeta(v, v_0)\) converge to the ones and \(\psi(v)\), respectively, uniformly with its derivatives in any compact set in \((-\infty, 0]\) as \(v_0 \to -\infty\). Here \(\psi(v)\) is the solution of (3.9) with the initial data
\[
\psi(0) = 0, \quad \frac{d\psi}{dv}(0) = 1.
\]
This implies that, for any fixed \(c > 0\), there exists a constant \(v_1(c) < 0\) such that
\[
(3.14) \quad \left| i_{(-c,0)}(\zeta(\cdot, v_0)) - i_{(-c,0)}(\psi) \right| \leq 1
\]
for any \(v_0 \leq v_1(c)\). Since \(\psi\) has infinitely many zeros on \((-\infty, 0]\) from Lemma 3.2, there exists a positive constant \(c(n)\) for each natural number \(n\) such that
\[
(3.15) \quad i_{(-c(n),0)}(\psi) \geq n.
\]
Thus, taking \(c = c(n)\) in (3.15) and \(v_0 \leq \min\{-c(n) - 1, v_1(c(n))\}\), we have, from (3.13), (3.14), (3.15),
\[
i(v_0) \geq i_{(-c(n),0)}(\zeta(\cdot, v_0)) \geq i_{(-c(n),0)}(\psi) - 1 \geq n - 1.
\]
This implies that \(i(v_0) \to \infty\) as \(v_0 \to -\infty\). \(\square\)

Now we give the proof of Theorem 2.2.
Proof of Theorem 2.2. From (3.3), we can take a constant \(\delta = \delta(v_0) > 0 \) such that \(\phi \) has no zeros on the interval \((v_0, v_0 + \delta) \). Consider Equation (3.2) on the interval \([v_0 + \delta, 0]\). Then the coefficients in (3.2) are continuous and \(\ell/(1 + \ell^2)^{3/2} \) is strictly positive on \([v_0 + \delta, 0]\). Hence the zeros of a solution (3.2) cannot concentrate in the interval \([v_0 + \delta, 0]\). Thus any solution of (3.2) has only finite zeros on \([v_0 + \delta, 0]\) unless it vanishes identically. This means that \(i(v_0) = i_{(v_0, 0)}(\phi(\cdot, v_0)) \) is finite for each \(v_0 < 0 \).

We want to show that \(\phi(0, v_0) \) changes the sign infinitely many times as \(v_0 \to -\infty \). Then Theorem 2.2 follows immediately.

For this purpose, we assume that \(\phi(0, v_0) \) does not change the sign for \(v_0 \in (a, b) \) with \(a < b < 0 \), but may vanish at some points in \((a, b)\). Then we can show that \(i(v_0) \) takes a constant value \(i^* \) on the interval \((a, b)\) except at the points where \(\phi(0, v_0) \) vanishes, and further, the difference between this constant \(i^* \) and \(i(v_0) \) at these zero points of \(\phi(0, v_0) \) is at most one. This implies the desired consequence. In fact, \(i(v_0) \) tends to \(\infty \) as \(v_0 \to -\infty \) from Lemma 3.3, and the above assertion indicates that there exist infinitely many disjoint intervals \(J_n = [a_n, b_n], 0 > b_1 > a_1 > b_2 > a_2 > \cdots > b_n \geq a_n > \cdots \to -\infty \), such that \(\phi(0, v_0) = 0 \) on \(J_n \) and changes its sign on the both sides of each interval \(J_n \).

In proving the above fact, first we consider the case that \(\phi(0, v_0) \) does not vanish on \((a, b)\). Then, for \(\overline{v}_0 \in (a, b) \), we denote by \(\{v_j\}_{1 \leq j \leq m}, 0 > v_1 > v_2 > \cdots > v_m \) the zeros of \(\phi(v, \overline{v}_0) \) on \((\overline{v}_0, 0)\), where \(m = i(\overline{v}_0) \). Here, each zero point of \(\phi(v, \overline{v}_0) \) is not degenerate i.e.,

\[
\frac{\partial \phi}{\partial v}(v_j, \overline{v}_0) \neq 0, \quad 1 \leq j \leq m,
\]

because \(\phi(\cdot, \overline{v}_0) \) solves the linear equation (3.2) under the boundary condition (3.3), where \(v_0 = \overline{v}_0 \). Hence, for sufficiently small \(\varepsilon > 0 \), there exists a constant \(\delta > 0 \) such that, if \(|v_0 - \overline{v}_0| < \delta \), then there exists exact one zero of \(\phi(v, v_0) \) in each \(\varepsilon \)-neighborhood of \(v_j, 1 \leq j \leq m \). This means that \(i(v_0) \) is continuous on \((a, b)\), and hence it never varies on \((a, b)\).

Next, we consider the case that \(\phi(0, v_0) \) vanishes on \([c, d]\) but does not change sign in a neighborhood of \([c, d]\). When \(v_0 \) varies on a compact set in \((0, 0)\), from Lemma 4.17 and 4.18 in [7], we know that \(\ell(v, v_0) \) is extended continuously to \(v \in (v_0, \rho) \) with some \(\rho > 0 \) as a solution of (2.5) with (2.6) and \(\ell(v, v_0) > 0 \) there. Let us take \(\rho > 0 \) sufficiently small so that \(\phi(v, v_0) > 0 \) (or \(< 0 \)) on \((-\rho, \rho) \setminus \{0\}\) for any \(v_0 \in [c, d]\). In each step we take positive constants \(\rho \) and \(\delta \) smaller, still denoted by \(\rho \) and \(\delta \), respectively.

Considering Equation (3.2) on the interval \((v_0, \rho)\) instead of \((v_0, 0)\), we obtain

\[
i_{(c,\rho)}(\phi(\cdot, c)) = i_{(d,\rho)}(\phi(\cdot, d)),
\]
similarly to the former case. Namely, \(i_{(v,\rho)}(\phi(\cdot, v)) \) is continuous in \(v \in [c, d] \). Because \(v = 0 \) is the only zero point of \(\phi(v, c) \) and also of \(\phi(v, d) \) in the interval \((-\rho, \rho) \), we have

\[
\begin{align*}
i(c) &= i_{(c,\rho)}(\phi(\cdot, c)) - 1 \\
&= i_{(d,\rho)}(\phi(\cdot, d)) - 1 \\
&= i(d).
\end{align*}
\]

We consider the case

\[
\phi(0, v_0) > 0 \quad \text{for} \quad c - \delta < v_0 < c, \quad d < v_0 < d + \delta \quad \text{with some} \quad \delta > 0,
\]

\[
\frac{\partial \phi}{\partial v}(0, c) > 0,
\]

to prove that

\[
i(c) = i(d) = i(v_0) - 1 = i(\overline{v}_0) - 1 \quad \text{for} \quad c - \delta < v_0 < c \quad \text{and} \quad d < \overline{v}_0 < d + \delta.
\]

The other cases

\[
\phi(0, v_0) > (\text{or} <) 0 \quad \text{for} \quad c - \delta < v_0 < c, \quad d < v_0 < d + \delta,
\]

\[
\frac{\partial \phi}{\partial v}(0, c) < 0
\]

will be treated similarly.

For this purpose, we consider Equation (3.2) on the interval \((v_0, -\rho)\) and \([-\rho, \rho]\) separately. From the continuity of \((\partial \phi/\partial v)(0, v_0)\) in \(v_0\),

\[
\frac{\partial \phi}{\partial v}(0, v_0) > 0 \quad \text{on} \quad [c - \delta, c + \delta] \quad \text{for small} \quad \delta > 0.
\]

Since \(\phi(0, v_0) > 0\) on \((c - \delta, c)\) and \((d, d + \delta)\), we have \(\phi(v, v_0) > 0\) for any \((v, v_0)\) with \(0 < v < \rho\) with small \(\rho > 0\) and \(c - \delta < v_0 < c + \delta\). Namely \(\phi(\cdot, v_0)\) does not vanish on \([0, \rho]\) for any \(v_0 \in (c - \delta, c + \delta)\). On the other hand, by the same argument as above, if \(\rho\) and \(\delta\) are taken sufficiently small, then \(\phi(\cdot, v_0)\) has exactly one zero point in the interval \([-\rho, \rho]\) for any \(v_0 \in (c - \delta, c + \delta)\). Hence the zero point of \(\phi(v, v_0)\) belongs to \([-\rho, 0]\) for \(c - \delta < v_0 < c\) and is equal to zero for \(c \leq v_0 < c + \delta\). This shows

\[
i_{[-\rho,0]}(\phi(\cdot, v_0)) = 1 \quad \text{and} \quad i_{[-\rho,0]}(\phi(\cdot, c)) = 0.
\]

Noting \(\phi(-\rho, v_0) \neq 0\) for \(v_0 \in (c - \delta, c + \delta)\), considering Equation (3.2) on the interval \((v_0, -\rho)\) and proceeding the same argument as above, we have

\[
i_{(v_0, -\rho)}(\phi(\cdot, v_0)) = i_{(c, -\rho)}(\phi(\cdot, c)).
\]
Therefore the equality

\[i(v_0) = i_{(v_0,-\rho)}(\phi(\cdot,v_0)) + i_{[-\rho,0)}(\phi(\cdot,v_0)) \]
\[= i_{(c,-\rho)}(\phi(\cdot,c)) + 1 \]
\[= i(c) + 1 \]

holds for \(c - \delta < v_0 < c \).

Finally, noting \(\phi(0,v_0) = 0 \) on \([c,d]\), we see that \((\partial \phi / \partial v)(0,v_0)\) does not vanish on \([c,d]\). Hence \((\partial \phi / \partial v)(0,d) > 0\). Then, we also have

\[i(v_0) = i(d) + 1 \quad \text{for} \quad d < v_0 < d + \delta \]

in the same way as above.

Since \(i(c) = i(d) \), we have \(i(v_0) = i(\bar{v}_0) \) for any \(v_0 \in (c - \delta, c) \) and \(\bar{v}_0 \in (d, d + \delta) \).

Concluding Remarks. So far, we have proven the infinitely many bendings around \(\lambda = \lambda_* \) of the bifurcation diagram for the pendent liquid drop (1.6) with (1.7) and (1.8). However, the computational calculation (Figure 4.13 in [7]) suggests the existence of infinitely many solutions at \(\lambda = \lambda_* \). We have not given a proof for this conjecture yet.

Acknowledgement. The authors wish to thank the referee for valuable advice to improve the manuscript.

References

Received February 25, 1994 and revised May 18, 1994.

NARUTO UNIVERSITY OF EDUCATION
NARUTO, TOKUSHIMA, 772
JAPAN

AND

OSAKA UNIVERSITY
TOYONAKA, 560
JAPAN
PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by

EDITORS

Sun-Yung A. Chang (Managing Editor)
University of California
Los Angeles, CA 90095-1555
pacific@math.ucla.edu

F. Michael Christ
University of California
Los Angeles, CA 90095-1555
christ@math.ucla.edu

Nicholas Ercolani
University of Arizona
Tucson, AZ 85721
ercolani@math.arizona.edu

Robert Finn
Stanford University
Stanford, CA 94305
finn@gauss.stanford.edu

Steven Kerckhoff
Stanford University
Stanford, CA 94305
spk@gauss.stanford.edu

Martin Scharlemann
University of California
Santa Barbara, CA 93106
mgscharl@math.ucsb.edu

Gang Tian
Massachusetts Institute of Technology
Cambridge, MA 02139
tian@math.mit.edu

V. S. Varadarajan
University of California
Los Angeles, CA 90095-1555
vsv@math.ucla.edu

Dan Voiculescu
University of California
Berkeley, CA 94720
dvv@math.berkeley.edu

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIF. INST. OF TECHNOLOGY
CHINESE UNIV. OF HONG KONG
HONG KONG UNIV. OF SCI. & TECH.
KEIO UNIVERSITY
MACQUARIE UNIVERSITY
MATH. SCI. RESEARCH INSTITUTE
NEW MEXICO STATE UNIV.
OREGON STATE UNIV.
PEKING UNIVERSITY
RITSUMEIKAN UNIVERSITY
STANFORD UNIVERSITY
TOKYO INSTITUTE OF TECHNOLOGY
UNIVERSIDAD DE LOS ANDES
UNIV. OF ARIZONA
UNIV. OF BRITISH COLUMBIA
UNIV. OF CALIF., BERKELEY
UNIV. OF CALIF., DAVIE
UNIV. OF CALIF., IRVINE
UNIV. OF CALIF., LOS ANGELES
UNIV. OF CALIF., RIVERSIDE
UNIV. OF CALIF., SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA
UNIV. OF CALIF., SANTA CRUZ
UNIV. OF HAWAII
UNIV. OF MELBOURNE
UNIV. OF MONTANA
UNIV. NACIONAL AUTONOMA DE MEXICO
UNIV. OF NEVADA, RENO
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA
UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

The supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

Manuscripts must be prepared in accordance with the instructions provided on the inside back cover.

The table of contents and the abstracts of the papers in the current issue, as well as other information about the Pacific Journal of Mathematics, may be found on the Internet at http://www.math.uci.edu/pjm.html.

The Pacific Journal of Mathematics (ISSN 0030-8730) is published monthly except for July and August. Regular subscription rate: $245.00 a year (10 issues). Special rate: $123.00 a year to individual members of supporting institutions.

Subscriptions, back issues published within the last three years and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics at the University of California, c/o Department of Mathematics, 981 Evans Hall, Berkeley, CA 94720 (ISSN 0030-8730) is published monthly except for July and August. Second-class postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 6143, Berkeley, CA 94704-0163.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS at University of California, Berkeley, CA 94720, A NON-PROFIT CORPORATION

This publication was typeset using AMS-LATEX, the American Mathematical Society's TEX macro system.

Copyright © 1995 by Pacific Journal of Mathematics
One remark on polynomials in two variables
ENRIQUE ARTAL BARTOLO and PIERRETTE CASSOU-NOGUÈS

Divergence of the normalization for real Lagrangian surfaces near complex tangents
XIANGHONG GONG

Classification of the stable homotopy types of stunted lens spaces for an odd prime
JESUS GONZALEZ

Plancherel formulae for non-symmetric polar homogeneous spaces
JING-SONG HUANG

A uniqueness theorem for the minimal surface equation
JENN-FANG HWANG

Differential Galois groups of confluent generalized hypergeometric equations: an approach using Stokes multipliers
CLAUDINE MITSCHI

Oscillatory theorem and pendent liquid drops
KIMIAKI NARUKAWA and TAKASHI SUZUKI

Local and global plurisubharmonic defining functions
ALAN NOELL

Specializations and a local homeomorphism theorem for real Riemann surfaces of rings
M. J. DE LA PUENTE

Eigenvalue comparisons in graph theory
GREGORY T. QUENELL

Applications of loop groups and standard modules to Jacobians and theta functions of isospectral curves
WILLI SCHWARZ

Bridged extremal distance and maximal capacity
ROBERT E. THURMAN

Imbedding and multiplier theorems for discrete Littlewood-Paley spaces
IGOR E. VERBITSKY

On constrained extrema
THOMAS VOGEL

Heat flow of equivariant harmonic maps from \mathbb{R}^3 into $\mathbb{C}P^2$
YUANLONG XIN

Proof of Longuerre’s theorem and its extensions by the method of polar coordinates
ZHIHONG YU

Correction to: “Special generating sets of purely inseparable extension fields of unbounded exponent”
BONIFACE IHEMOTUONYE EKE