PROOF OF LONGUERRE’S THEOREM AND ITS EXTENSIONS BY THE METHOD OF POLAR COORDINATES

Yu Zhihong

There are several methods to prove the well-known Longuerre’s theorem and its extensions in plane geometry. We now prove them by the method of polar coordinates. Our proof is characterized by its directness, simplicity, regularity, originality, and no need for any auxiliary lines.

Longuerre’s Theorem. Let $A_1A_2A_3A_4$ be a quadrilateral inscribed in a circle, on which p is an arbitrary point. Let S_i denote the Simson line of point p with respect to the triangle $A_jA_kA_l$ (i,j,k,l distinct) and let D_i denote the projection of p on S_i.

The four points D_1, D_2, D_3, D_4 are collinear.

Proof. We establish a polar coordinates system (Fig. 1) with p being the pole and the extension line of po being the polar axis. Let d be the diameter of the circle. Hence the equation of the circle is $\rho = d \cos \theta$. Let $(d \cos \theta_i, \theta_i)((i = 1, 2, 3, 4), \theta_i \in [0, 2\pi])$ be the coordinates of A_1, A_2, A_3, A_4. Hence the two-point form equation of A_1A_2 is

$$\frac{\sin(\theta_2 - \theta_1)}{\rho} = \frac{\sin(\theta_2 - \theta)}{d \cos \theta_1} + \frac{\sin(\theta - \theta_1)}{d \cos \theta_2},$$

$$\therefore \rho [\sin(\theta_2 - \theta) \cos \theta_2 + \sin(\theta - \theta_1) \cos \theta_1] = d \sin(\theta_2 - \theta_1) \cos \theta_1 \cos \theta_2.$$

$$\therefore \frac{1}{2} \rho [\sin(2\theta_2 - \theta) + \sin(\theta - 2\theta_1)] = d \sin(\theta_2 - \theta_1) \cos \theta_1 \cos \theta_2,$$

$$\therefore \rho \sin(\theta_2 - \theta_1) \cos(\theta - \theta_1 - \theta_2) = d \sin(\theta_2 - \theta_1) \cos \theta_1 \cos \theta_2,$$

$$\therefore \sin(\theta_2 - \theta_1) \neq 0,$$

$$\therefore \rho \cos(\theta - \theta_1 - \theta_2) = d \cos \theta_1 \cos \theta_2.$$

This is exactly the normal form equation of A_1A_2. Hence we have the coordinates of the foot B_1 at which pB_1 is normal to $A_1A_2 : B_1(d \cos \theta_1 \cos \theta_2, \theta_1 + \theta_2)$. By means of cyclic permutation of indices we get $B_2(d \cos \theta_2 \cos \theta_3$,

581
\[\theta_2 + \theta_3 \), \(B_3(d \cos \theta_3 \cos \theta_1, \theta_3 + \theta_1). \] Obviously the coordinates of the three feet \(B_i \) satisfy the normal form equation
\[\rho \cos(\theta - \theta_1 - \theta_2 - \theta_3) = d \cos \theta_1 \cos \theta_2 \cos \theta_3. \]

Hence we get the normal form equation of the Simson line \(S_1 \) of point \(p \) with respect to \(\Delta A_1A_2A_3 \):
\[S_1: \rho \cos(\theta - \theta_1 - \theta_2 - \theta_3) = d \cos \theta_1 \cos \theta_2 \cos \theta_3. \]

\[\text{Figure 1.} \]

Similarly, by the same means we can obtain the normal form equations of the other three Simson lines with respect to \(\Delta A_jA_kA_i \). They are
\[S_2: \rho \cos(\theta - \theta_1 - \theta_2 - \theta_4) = d \cos \theta_1 \cos \theta_2 \cos \theta_4, \]
\[S_3: \rho \cos(\theta - \theta_2 - \theta_3 - \theta_4) = d \cos \theta_2 \cos \theta_3 \cos \theta_4, \]
\[S_4: \rho \cos(\theta - \theta_3 - \theta_4 - \theta_1) = d \cos \theta_3 \cos \theta_4 \cos \theta_1. \]

Hence the coordinates of the four projections \(D_i \) are:
\[D_1(d \cos \theta_1 \cos \theta_2 \cos \theta_3, \theta_1 + \theta_2 + \theta_3), \]
It is obvious that the above-mentioned coordinates satisfy the normal form equation of the line

\[S: \rho \cos(\theta - \theta_1 - \theta_2 - \theta_3 - \theta_4) = d \cos \theta_1 \cos \theta_2 \cos \theta_3 \cos \theta_4. \]

Thus the four points \(D_i \) are collinear.

The above equation of \(S \) represents a straight line containing the points \(D_i \) and this straight line is named the Simson line of a point \(p \) with respect to four concyclic points.

Extension I. Let \(A_1, A_2, A_3, A_4, A_5 \) be five points on a circle and let \(p \) be an arbitrary point on this circle. Let \(S_i \) denote the Simson line of \(p \) with respect to the 4-tuple \(A_jA_kA_lA_m \) (\(i, j, k, l, m \) distinct) and let \(D_i \) denote the projection of \(p \) on the line \(S_i \) (\(i = 1, 2, 3, 4, 5 \)). Then the five points \(D_i \) are collinear.

Proof. We establish a polar coordinates system (Fig. 2) with \(p \) being the pole and the extension line of \(po \) being the polar axis. Let \(d \) be the diameter of the circle. The equation of the circle is \(\rho = d \cos \theta \). Let \((d \cos \theta_i, \theta_i)(\theta_i \in [0, 2\pi]) \) be the coordinates of \(A_i \). According to the above Longuerre’s theorem and its proof we can get the normal form equations of \(S_i \). They are:

\[
\begin{align*}
S_1 & : \rho \cos(\theta - \theta_1 - \theta_2 - \theta_3 - \theta_4) = d \cos \theta_1 \cos \theta_2 \cos \theta_3 \cos \theta_4, \\
S_2 & : \rho \cos(\theta - \theta_1 - \theta_2 - \theta_3 - \theta_5) = d \cos \theta_1 \cos \theta_2 \cos \theta_3 \cos \theta_5, \\
S_3 & : \rho \cos(\theta - \theta_2 - \theta_3 - \theta_4 - \theta_5) = d \cos \theta_2 \cos \theta_3 \cos \theta_4 \cos \theta_5, \\
S_4 & : \rho \cos(\theta - \theta_3 - \theta_4 - \theta_5 - \theta_1) = d \cos \theta_3 \cos \theta_4 \cos \theta_5 \cos \theta_1, \\
S_5 & : \rho \cos(\theta - \theta_4 - \theta_5 - \theta_1 - \theta_2) = d \cos \theta_4 \cos \theta_5 \cos \theta_1 \cos \theta_2.
\end{align*}
\]

Hence the coordinates of the five projections \(D_i \) are:

\[
\begin{align*}
D_1 & : d \cos \theta_1 \cos \theta_2 \cos \theta_3 \cos \theta_4, \quad \theta_1 + \theta_2 + \theta_3 + \theta_4, \\
D_2 & : d \cos \theta_1 \cos \theta_2 \cos \theta_3 \cos \theta_5, \quad \theta_1 + \theta_2 + \theta_3 + \theta_5, \\
D_3 & : d \cos \theta_2 \cos \theta_3 \cos \theta_4 \cos \theta_5, \quad \theta_2 + \theta_3 + \theta_4 + \theta_5, \\
D_4 & : d \cos \theta_3 \cos \theta_4 \cos \theta_5 \cos \theta_1, \quad \theta_3 + \theta_4 + \theta_5 + \theta_1, \\
D_5 & : d \cos \theta_4 \cos \theta_5 \cos \theta_1 \cos \theta_2, \quad \theta_4 + \theta_5 + \theta_1 + \theta_2.
\end{align*}
\]
Clearly the coordinates of D_i satisfy the normal form equation of the line

$$S: \rho \cos \left(\theta - \sum_{i=1}^{5} \theta_i \right) = d \prod_{i=1}^{5} \cos \theta_i.$$

Thus the five points D_i are collinear.

\[\square \]

Extension II. Let A_1, A_2, \ldots, A_n be n points on a circle and let p be an arbitrary point on this circle. Let S_i denote the Simson line of p with respect to the $(n-1)$-tuple $(n-1)$-gonal polygon $A_j A_k \cdots A_x$ (i, j, k, \ldots, x distinct) and let D_i denote the projection of p on the line S_i ($i = 1, 2, \ldots, n$).

Then the n points D_i are collinear.

Proof. We again establish a polar coordinates system with p being the pole and the extension line of po being the polar axis. One can immediately verify that

$$\rho \cos \left(\theta - \sum_{i=1}^{n} \theta_i \right) = d \prod_{i=1}^{n} \cos \theta_i.$$
represents a straight line containing the n points D_i. Hence the n points D_i are collinear.

Received March 9, 1995 and revised July 19, 1995. Translation by Tschüh Jatschiang.

TAIZHOU GENERAL RUBBER FACTORY
162 YANGZHOU ROAD
TAIZHOU CITY, JIANGSU PROVINCE
PEOPLE'S REPUBLIC OF CHINA
Volume 176 No. 2 December 1996

One remark on polynomials in two variables
ENRIQUE ARTAL BARTOLO and PIERRETTE CASSOU-NOGUÈS 297

Divergence of the normalization for real Lagrangian surfaces near complex tangents
XIANGHONG GONG 311

Classification of the stable homotopy types of stunted lens spaces for an odd prime
JESUS GONZALEZ 325

Plancherel formulae for non-symmetric polar homogeneous spaces
JING-SONG HUANG 345

A uniqueness theorem for the minimal surface equation
JENN-FANG HWANG 357

Differential Galois groups of confluent generalized hypergeometric equations: an approach using Stokes multipliers
CLAUDINE MITSCHI 365

Oscillatory theorem and pendent liquid drops
KIMIAKI NARUKAWA and TAKASHI SUZUKI 407

Local and global plurisubharmonic defining functions
ALAN NOELL 421

Specializations and a local homeomorphism theorem for real Riemann surfaces of rings
M. J. DE LA PUENTE 427

Eigenvalue comparisons in graph theory
GREGORY T. QUENELL 443

Applications of loop groups and standard modules to Jacobians and theta functions of isospectral curves
WILLI SCHWARZ 463

Bridged extremal distance and maximal capacity
ROBERT E. THURMAN 507

Imbedding and multiplier theorems for discrete Littlewood-Paley spaces
IGOR E. VERBITSKY 529

On constrained extrema
THOMAS VOGEL 557

Heat flow of equivariant harmonic maps from \(\mathbb{R}^3 \) into \(\mathbb{C}P^2 \)
YUANLONG XIN 563

Proof of Longuerre’s theorem and its extensions by the method of polar coordinates
ZHIHONG YU 581

Correction to: “Special generating sets of purely inseparable extension fields of unbounded exponent”
BONIFACE IHEMOTUONYE EKE 587