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AN ANALOGUE OF HARDY’S THEOREM FOR VERY
RAPIDLY DECREASING FUNCTIONS ON SEMI-SIMPLE

LIE GROUPS

A. Sitaram and M. Sundari

We generalise a result of Hardy, which asserts the impos-
sibility of a function and its Fourier transform to be simul-
taneously “very rapidly decreasing”, to: (i) all noncompact,
semi-simple Lie groups with one conjugacy class of Cartan
subgroups; (ii) SL(2,R); and (iii) all symmetric spaces of the
noncompact type.

1. Introduction.

A celebrated theorem of L. Schwartz asserts that a function f on R is ‘rapidly
decreasing’ (or in the ‘Schwartz class’) iff its Fourier transform is ‘rapidly
decreasing’. Since this theorem is of fundamental importance in harmonic
analysis, there is a whole body of literature devoted to generalizing this result
to other Lie groups. (For example, see [18].) In sharp contrast to Schwartz’s
theorem, is a result due to Hardy [5] which says that f and f̂ cannot both be
“very rapidly decreasing”. More precisely, if |f(x)| ≤ Ae−α|x|

2

and |f̂(y)| ≤
Be−β|y|

2

and αβ > 1
4
, then f ≡ 0. (See [2], pp. 155-157.) However, as

far as we are aware, until very recently no systematic attempt was made
to generalize Hardy’s theorem to other Lie groups. In [12], [13], and [15],
this result has been generalized to the Heisenberg groups Hn, the Euclidean
motion groups M(n) and for certain eigenfunction expansions. In this paper
we establish an analogue of Hardy’s theorem for a class of noncompact semi-
simple Lie groups and all symmetric spaces of the noncompact type.

Hardy’s theorem can also be viewed as a sort of ‘Uncertainty Principle’.
The results in [12] and [13] are presented from this point of view.

(In [1], Cowling and Price have proved an “Lp − Lq” version of Hardy’s
theorem on R. The theorem of Beurling in [9] is similar in spirit to Hardy’s
theorem, although far more general, and indeed Hardy’s theorem, as well as
the result of Cowling and Price, can be deduced from it as special cases.)

2. Notation and Preliminaries.

Let G be a connected, non-compact, semi-simple Lie group with finite centre
and K a fixed maximal compact subgroup of G. Let G, K denote the Lie
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algebras of G and K respectively. Suppose G = K⊕P is a Cartan decom-
position of G and B is the Cartan-Killing form of G. It is known that B
restricted to P is positive definite. Therefore B defines an inner product on
the real vector space P. Let P = expP. Then G is diffeomorphic to K × P
under the map (k, u) 7→ ku for k ∈ K and u ∈ P . Therefore each g ∈ G can
be uniquely written as g = gKgP with gK ∈ K and gP ∈ P . Since P and
P are diffeomorphic under the exponential map, gP = expX for a unique
X ∈ P. Define ‖g‖G = B(X,X)

1
2 .

Fix a maximal abelian subspace A of P. Let the dimension of A be l.(‘l’
is called the real rank of G.) The restriction B|A×A gives an inner product
on A and we can identify A with Rl under this inner product. Let ∆ denote
the set of roots for the adjoint action of A on G. Fix a Weyl-chamber A+ of
A and let ∆+ be the corresponding set of positive roots (see [7] for details).
Let A = expA and A+ = expA+. If A+ denotes the closure of A+ in
G then it is known that G = KA+K, the polar decomposition of G i.e.
each x ∈ G can be written as x = k1ak2, for k1, k2 ∈ K and a ∈ A+. If
Gα denotes the root space corresponding to α ∈ ∆, then we can choose a
Haar measure dx on G such that relative to the polar decomposition it is
given by dx = J(a)dk1dadk2 where J(a) =

∏
α∈∆+(eα(log a) − e−α(log a))n(α),

n(α) = dimGα and ‘log’ is the inverse of the map ‘exp’ on A i.e.
∫
G f(x)dx =∫

K

∫
A+

∫
Kf(k1ak2)J(a)dk1dadk2, where da is the Haar measure on A. Let

G = KAN be the corresponding Iwasawa decomposition of G (see [7] for
details). The Iwasawa decomposition gives rise to the projection mappings
κ : G→ K, a : G→ A, and n : G→ N . Then we have

x = κ(x) expH(x)n(x),

where κ(x) ∈ K, H(x) ∈ A, H(x) = log a(x), n(x) ∈ N .
If M denotes the centralizer of A in K then P = MAN is the minimal

parabolic subgroup of G. Fix ξ ∈ M̂ and let Hξ be the finite dimensional
Hilbert space on which ξ acts, d(ξ) = dimHξ. For λ ∈ A∗(the real dual of
A), define a representation (ξ, λ) of P by:

(ξ, λ)(man) = ξ(m) exp((ıλ+ ρ)(log a)),

where log : A → A is the inverse of the map exp : A → A and ρ =
1
2

∑
α∈∆+n(α)α, m ∈M , a ∈ A, n ∈ N . From this representation we get, by

induction, a representation πξ,λ of G acting on the Hilbert space

Hoξ =

{
g : K → Hξ measurable : g(km) = ξ(m−1)g(k), k ∈ K,m ∈M

and

∫
K

‖g(k)‖2dk <∞
}
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where ‖ · ‖ denotes the norm on Hξ. The induced representation πξ,λ acts
unitarily on Hoξ by the formula

(πξ,λ(x)g)(k) = e−(ıλ+ρ)(H(x−1k))g
(
κ
(
x−1k

))
(2.1)

for x ∈ G, k ∈ K, g ∈ Hoξ. Note that the action of K on Hoξ is just the left
regular action.

Given ξ ∈ M̂ , it is known that one can find a dense open subset Oξ of A∗
such that πξ,λ is irreducible for all λ ∈ Oξ (see [10], pp. 174 for details). Let
W be the Weyl group of the pair (G,A) . Then there is a natural action of W
on M̂×A∗ and the only identifications among the irreducible representations
in these series of representations are the identifications given by the Weyl
group action (see [10], pp. 174 for details).

For the remaining part of this section we assume that G has only one
conjugacy class of Cartan subgroups. Given f in L1(G), we can define the
group Fourier transform on M̂ ×A∗ by

f̂(ξ, λ) = f̂(πξ,λ) = πξ,λ(f) =

∫
G

f(x)πξ,λ(x)dx(2.2)

for (ξ, λ) ∈ M̂×A∗ (-the integral being interpreted suitably). If f ∈ L1(G)∩
L2(G), we have the Plancherel theorem for such G: There exists an explicitly
computable measure µ on M̂ ×A∗ such that∫

G

|f(x)|2dx =

∫
M̂×A∗tr(πξ,λ(f)πξ,λ(f)∗)dµ(ξ, λ).(2.3)

For fixed ξ ∈ M̂ , this measure is of at most polynomial growth on A∗ (see
[10], pp. 511 and [6] for details). Let A∗C = A∗ ⊗ C. Since B is positive
definite on A, it defines an inner product on A. Hence there is a natural
inner product on A∗, and the corresponding norm on A∗ will be denoted by
‖·‖. This real inner product can be extended in a unique fashion as an inner
product on the complex vector space A∗C and the corresponding norm on A∗C
will also be denoted by ‖ · ‖. By abuse of notation, the norm induced by B
on A will also be denoted by ‖ · ‖.

If 1 is the trivial representation in M̂ , then we denote π1,λ by πλ. The
set of representations {πλ}λ∈A∗ are called the class− 1 principal series rep-
resentations of G, and they are realized on the Hilbert space L2(K/M). Let
Φλ be the “elementary spherical function” corresponding to λ ∈ A∗C. Then
for λ ∈ A∗,

Φλ(x) = 〈πλ(x)1, 1〉, x ∈ G(2.4)
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where 1 is the constant function 1 on K/M. Also one has;

Φλ(x) =

∫
K

e−(ıλ+ρ)(H(x−1k))dk

=

∫
K

e(ıλ−ρ)(H(xk))dk(2.5)

for λ ∈ A∗C(∼= C l). Moreover for λ ∈ A∗(∼= Rl) and any a ∈ A+, we have the
following estimate:

|Φıλ(a)| ≤ eλ+(log a)(2.6)

where λ+ is the element in the fundamental Weyl chamber corresponding to
λ (see [4] for details).

Finally, we end this section with a lemma from complex analysis that is
crucial for the proof of our main theorem. We shall also denote the standard
Euclidean norms on Rn and Cn by ‖ · ‖.

Lemma 2.1. Let n ≥ 1. Let h be an entire function on Cn such that

|h(z)| ≤ Cea‖z‖2 , z ∈ Cn,(2.7)

|h(t)| ≤ Ce−a‖t‖2 , t ∈ Rn,(2.8)

for some positive constants a and C. Then h(z) = Const. e−a(z2
1+···+z2

n), z =
(z1, · · · , zn) ∈ Cn.

Proof. To prove this, we will need the following lemma from [17] (pp. 175):

Lemma (∗). Let h be an entire function on C such that h(z) = O
(
ea|z|

)
for

z ∈ C and h(t) = O(e−at) for t ∈ R+, where a is a positive constant. Then
h(z) = Const. e−az, z ∈ C.

We shall prove Lemma (2.1) in two steps. First, we prove the lemma for
the case n = 1, and then proceed to prove it in general.

Let h be an entire function on C satisfying the following estimates:

|h(z)| ≤ Cea|z|2 , z ∈ C,(2.9)

|h(t)| ≤ Ce−at2 , t ∈ R,(2.10)

for some positive constants a and C. If h is even, then by applying (∗)
to φ(z) = h(

√
z), the result will follow immediately. (Note that since h
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is even and entire φ(z) = h(
√
z) is an entire function and will satisfy the

assumptions of (∗).)
Suppose h is an odd, entire function and h satisfies (2.9) and (2.10). Then

the function φ(z) = h(z)/z is an even, entire function on C satisfying the
estimates (2.9) and (2.10). Therefore, by the even case, we have, φ(z) =
h(z)/z = C ′e−az

2

, z ∈ C, for some constant C ′. In particular, h(t) =
C ′te−at

2

, t ∈ R. Then by (2.10) it will follow that:∣∣∣C ′te−at2∣∣∣ ≤ Ce−at2 , t ∈ R,
which is impossible, unless C ′ = 0. Hence h ≡ 0.

If h is an entire function on C satisfying the estimates (2.9) and (2.10),
then write h(z) = (h(z) + h(−z))/2+(h(z)− h(−z))/2 = heven(z)+hodd(z),
as the sum of even and odd entire functions. Since h satisfies (2.9) and (2.10),
it is easy to see, in view of the expressions for heven and hodd, that they also
satisfy (2.9) and (2.10) respectively. Applying the even and odd cases to
heven and hodd respectively, we conclude that h(z) = Const. e−az

2

, z ∈ C.
This proves the lemma in the case when n = 1.

Now consider the case n > 1. For fixed (u1, · · · , un−1) in Rn−1, let g(z) =
h(u1, · · · , un−1, z), z ∈ C. Clearly, g is an entire function on C in the variable
z. Since h satisfies (2.7) and (2.8), for fixed (u1, · · · , un−1) ∈ Rn−1, we have:

|g(z)| = |h(u1, · · · , un−1, z)| ≤ Cea(|u1|2+···+|un−1|2)ea|z|
2

, z ∈ C,

|g(t)| = |h(u1, · · · , un−1, t)| ≤ Ce−a(|u1|2+···+|un−1|2)e−at
2

, t ∈ R.
Applying the one dimensional case to g we can conclude that

g(z) = Cn(u1, · · · , un−1)e−az
2

, z ∈ C, (u1, · · · , un−1) ∈ Rn−1,

where Cn depends only on u1, · · · , un−1. Setting z = 0, we have

Cn(z1, · · · , zn−1) = g(0) = h(z1, · · · , zn−1, 0)

for (z1, · · · , zn−1) ∈ Rn−1. Thus

h(z1, · · · , zn−1, zn) = h(z1, · · · , zn−1, 0)e−az
2
n(2.11)

for all (z1, · · · , zn−1, zn) ∈ Rn. However, both sides are entire functions on
Cn and hence (2.11) must actually hold for all (z1, · · · , zn−1, zn) ∈ Cn. Here
we are using the fact that two entire functions on Cn which agree on Rn

have to actually agree on Cn. Now from (2.7) and (2.8) it follows that

h(z1, · · · , zn−1, 0) = O
(
ea(|z1|

2+···+|zn−1|2)
)
, (z1, · · · , zn−1) ∈ Cn−1,
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and

h(t1, · · · , tn−1, 0) = O
(
e−a(|t1|

2+···+|tn−1|2)
)
, (t1, · · · , tn−1) ∈ Rn−1,

and applying exactly the same argument as before we will have

h(z1, · · · , zn−1, 0) = h(z1, · · · , zn−2, 0, 0)e−az
2
n−1 ,

and so
h(z1, · · · , zn) = h(z1, · · · , zn−2, 0, 0)e−a(z

2
n−1+z2

n).

Repeating the above, we finally have

h(z1, · · · , zn) = h(0, 0, · · · , 0)e−a(z
2
1+···+z2

n), (z1, · · · , zn) ∈ Cn,

and the proof of the lemma is complete.

In the next section we will state and prove an analogue of Hardy’s theorem
for a class of semi-simple Lie groups.

3. Semi-simple Lie groups with one conjugacy class of Cartan
subgroups.

We retain the notation introduced in Section 2. However we assume that G
has only one conjugacy class of Cartan subgroups. Thus, throughout this
section, G will denote a connected non-compact semi-simple Lie group with
finite centre and having only one conjugacy class of Cartan subgroups. For
such groups, as described in Section 2, the Plancherel measure is entirely
supported on the various principal series representations associated with the
minimal parabolic. We now state and prove an analogue of Hardy’s theorem
for such groups.

Theorem 3.1. Suppose f is a measurable function on G satisfying the
following estimates:

|f(x)| ≤ Ce−α‖x‖2G , x ∈ G(3.1)

∥∥∥f̂(ξ, λ)
∥∥∥
HS

= ‖πξ,λ(f)‖HS ≤ Cξe−β‖λ‖2 , (ξ, λ) ∈ M̂ ×A∗(3.2)

where C, Cξ, α and β are positive constants and Cξ depends on ξ. If αβ > 1
4
,

then f = 0 a.e.

(Note: (i) The very rapid decay of f implies f ∈ L1(G). Hence πξ,λ(f) is

defined for all ξ ∈ M̂ , λ ∈ A∗. Here ‖T‖HS denotes the Hilbert-Schmidt
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norm of T .
(ii) If x = k1ak2, a = expH, then ‖x‖G = ‖H‖, where ‖ · ‖ is the norm on
A described in Section 2.)

Proof. For ξ ∈ M̂ let {eξj : j ∈ N} be a basis of Hoξ consisting of K-finite
vectors. (As observed earlier the action of K on Hoξ is just left regular action.)
Let 〈·, ·〉ξ denote the inner product on Hoξ. We shall show that if αβ > 1

4
,〈

πξ,λ(f)eξm, e
ξ
n

〉
ξ

= 0, for all λ ∈ A∗, m,n ∈ N. Fix mo, no ∈ N. We have by
(2.2):

〈
πξ,λ(f)eξmo , e

ξ
no

〉
ξ

=

∫
G

f(x)
〈
πξ,λ(x)eξmo , e

ξ
no

〉
ξ
dx.(3.3)

Let Φmo,no
ξ,λ (x) =

〈
πξ,λ(x)eξmo , e

ξ
no

〉
ξ

for x ∈ G. Then it can be shown from

the definition of πξ,λ(x) acting on Hoξ that:

Φmo,no
ξ,λ (x) =

∫
K

e−(ıλ+ρ)(H(x−1k))
〈
eξmo(κ(x−1k)), eξno(k)

〉
dk(3.4)

where 〈·, ·〉 inside the integral is the inner product on Hξ. Thus

〈
πξ,λ(f)eξmo , e

ξ
no

〉
ξ

=

∫
G

f(x)Φmo,no
ξ,λ (x)dx.(3.5)

The basis vectors eξmo , e
ξ
no

being K-finite, actually belong to C∞(K,Hξ) and
hence are bounded as functions into Hξ. Therefore it follows easily that for
each x ∈ G, the integral defining Φmo,no

ξ,λ makes sense even for λ ∈ A∗C and
in fact, for each fixed x, the function λ 7→ Φmo,no

ξ,λ (x) extends as an entire
function of λ ∈ A∗C(∼= C l). Writing λ = λR + ıλI , one has the following easy
estimate from the above integral:∣∣∣Φmo,no

ξ,λ (x)
∣∣∣ ≤ Const.

∫
K

e(λI−ρ)(H(x−1k))dk(3.6)

where the constant depends only on mo, no and ξ. The integral on the
right is just the elementary spherical function ΦıλI and hence we have the
following easy estimate∣∣∣Φmo,no

ξ,λ (x)
∣∣∣ ≤ Const.ΦıλI (x).(3.7)

Using the K-biinvariance of ΦıλI , one therefore finally has, if x is written as
x = k1ak2, k1, k2 ∈ K, a ∈ A+,

|Φmo,no
ξ,λ (x)| ≤ Const. eλ

+
I

(log a)(3.8)
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where λ+
I is the element in the fundamental Weyl chamber corresponding to

λI (see [4] for details). Now define

G(λ) =

∫
G

Φmo,no
ξ,λ (x)f(x)dx, λ ∈ A∗.(3.9)

Then G(λ) =
〈
πξ,λ(f)eξmo , e

ξ
no

〉
ξ

for λ ∈ A∗. Also observe that as f decays

very rapidly (3.1), the analyticity of λ 7→ Φmo,no
ξ,λ (x) on A∗C(∼= C l) for each

fixed x ∈ G, the estimate (3.8) together with (3.5) will imply that the integral
defining the function G(λ) makes sense for λ ∈ A∗C and in fact defines an
entire function. Moreover, for λ = λR + ıλI ∈ A∗C,

|G(λ)| ≤
∫
G

|f(x)||Φmo,no
ξ,λ (x)|dx.(3.10)

Now using polar coordinates, (3.8) and the fact that if x = k1ak2, ‖x‖G =
‖a‖G, the integral on the right hand side is majorized by

Const.

∫
A+

e−α‖a‖
2
Geλ

+
I

(log a)|J(a)|da,

where da denotes the Haar measure on A. If H ∈ A is the unique el-
ement such that expH = a and dH denotes the Lebesgue measure on
A, then it can be easily seen that there exists a constant C such that
|J(a)| ≤ Const. eC‖H‖ and the integral on the right hand side is majorized by
Const.

∫
A e
−α‖H‖2eλ

+
I

(H)eC‖H‖dH, where now ‖ · ‖ is the norm on A induced
by the Cartan-Killing form.

Now let HλI be the unique element of A such that λ+
I (H) = 〈H,HλI 〉 for

all H, where 〈·, ·〉 is the inner product on A induced by the Cartan-Killing
form. Then there exists 0 < α′ < α such that we continue to have α′β > 1

4

and e−α‖H‖
2+C‖H‖ ≤ Const. e−α

′‖H‖2 . So:∫
Ae
−α‖H‖2eλ

+
I

(H)eC‖H‖dH

=

∫
A e

−α‖H‖2+〈H,HλI 〉+C‖H‖dH

≤ Const.

∫
A e

−α′‖H‖2+〈H,HλI 〉dH

= Const. e
1

4α′ ‖HλI ‖
2

∫
A e

−α′〈H− 1
2α′HλI ,H− 1

2α′HλI 〉dH

= Const. e
1

4α′ ‖HλI ‖
2

∫
A
e−α

′‖H‖2dH

(by translation invariance of Lebesgue measure). But by the choice of inner
product on A∗, ‖HλI‖ = ‖λ+

I ‖. Further the action of the Weyl group pre-
serves the norm on A∗ and hence ‖λ+

I ‖ = ‖λI‖ ≤ ‖λ‖. So finally we get the
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estimate

|G(λ)| ≤ Ce 1
4α′ ‖λ‖

2

, λ ∈ A∗C ∼= C l

for some constant C. But for λ ∈ A∗ by (3.2),

|G(λ)| ≤ Cξe−β‖λ‖2 .

Since α′β > 1
4
, −β < − 1

4α′ and so we have |G(λ)| ≤ Ce
1

4α′ ‖λ‖
2

for λ ∈ A∗C
and |G(λ)| ≤ Cξe

− 1
4α′ ‖λ‖

2

for λ ∈ A∗. So by Lemma (2.1), we have G(λ) =
Const. e−

1
4α′ ‖λ‖

2

, λ ∈ A∗. Therefore we have for λ ∈ A∗,∣∣∣Const. e−
1

4α′ ‖λ‖
2
∣∣∣ = |G(λ)| ≤ Cξe−β‖λ‖2 .

But β − 1
4α′ > 0 and hence we would have∣∣∣Const. e(β− 1

4α′ )‖λ‖
2
∣∣∣ ≤ Cξ, λ ∈ A∗

and this is impossible unless the constant on the left hand side is zero i.e.
G(λ) ≡ 0 i.e. for arbitrary ξ ∈ M̂ , mo,no ∈ N,

〈
πξ,λ(f)eξmo , e

ξ
no

〉
ξ
≡ 0 as a

function of λ. Hence it follows that πξ,λ(f) ≡ 0 on M̂ × A∗ and since the

Plancherel measure is supported on M̂ ×A∗, it follows that f = 0 a.e.

4. Arbitrary semi-simple Lie groups.

We continue to retain the notation introduced in Section 2. In this section,
G will denote an arbitrary noncompact semi-simple Lie group with finite
centre i.e. we drop the assumption that G has only one conjugacy class
of Cartan subgroups. Instead, we impose some restrictions on the kind of
functions being considered; we will consider only right K-invariant functions.
For the harmonic analysis of such functions, only the class-1 principal series
representations are relevant. Let {πλ}λ∈A∗ denote the class-1 principal series
representations of G (i.e. πλ = π1,λ where 1 is the trivial representation of
M). These can all be realized on L2(K/M). Let vo be the constant function
1 on K/M i.e. vo is the essentially unique K-fixed vector in L2(K/M) for the
representation πλ. Then one knows that if v is any other K-finite vector
in L2(K/M) which is not a multiple of vo, then πλ(f)v = 0. Thus πλ(f) is
completely determined by πλ(f)vo and moreover ‖πλ(f)‖HS = ‖πλ(f)vo‖,
where ‖ · ‖ denotes the usual norm in L2(K/M). Thus the group theoretic
Fourier transform can be thought of as a function on A∗ alone, taking values
in the Hilbert space L2(K/M). Keeping these considerations in mind, an
examination of the proof of Theorem (3.1) immediately yields the following
result:
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Theorem 4.1. Suppose f is a measurable right K-invariant function on
G (i.e. f(xk) = f(x), x ∈ G, k ∈ K), satisfying the following estimates for
some positive constants C, α and β:

|f(x)| ≤ Ce−α‖x‖2G , x ∈ G,
‖πλ(f)vo‖ ≤ Ce−β‖λ‖2 , λ ∈ A∗.

If αβ > 1
4
, then f = 0 a.e.

One can view the above as a theorem about functions on G/K, which
is a symmetric space of the noncompact type; the group theoretic Fourier
transform can be reinterpreted as the Fourier transform on the symmetric
space, as introduced by Helgason (see [8]). A brief discussion from this point
of view can be found in [12].

5. Further remarks.

5.1. SL(2,R). Thus in Section 3, we have established an analogue of Hardy’s
theorem for a class of semi-simple Lie groups which include all complex
groups and real rank-1 groups without Discrete Series representations. How-
ever we would like to conjecture that a result of a similar nature is valid
for all noncompact semi-simple Lie groups. For instance, in the case when
G = SL(2,R), we shall prove the exact analogue of Theorem (3.1). For this
we need to recall some facts from the representation theory of SL(2,R). The
reader can find the details of the material covered in this section in [3], [11]
and [14].

In this section, we shall continue to use the notation introduced in Section
2 except that the norm defined on A∗ in Section 2 is denoted by ‖ · ‖A∗ .

For the time being, let G = SL(2,R). Then

K = SO(2)(' S1), A =

{(
t 0

0− t

)
: t ∈ R

}
and M =

{
±
(

10
01

)}
.

Therefore

A =

{
at =

(
et 0

0 e−t

)
: t ∈ R

}
.

The polar decomposition of an element g ∈ G can be written as

g = kθ1atkθ2 where kθ =

(
cos θ sin θ
− sin θ cos θ

)
.

In this case, there are only two irreducible representations of M . Corre-
sponding to the two irreducible representations of M , one gets two sets of
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principal series representations denoted by π1,λ, π−1,λ of G, defined exactly
as in Section 2. Each set of principal series representations is parametrized
by A∗ ' R. The series π1,λ is irreducible for all λ ∈ R and π−1,λ is irreducible
for all λ ∈ R \ {0}. There is another set of irreducible, unitary representa-
tions of G called the Discrete series. For each n ∈ Z, |n| ≥ 2, denote by
Dn the corresponding discrete series representation of G. For details about
the K-module structure and the spaces on which these representations are
realized, see [11], [14] etc. (Apart from these, there is another collection of
irreducible, unitary representations of G, called the complementary series,
which do not play a role in the Plancherel measure.) The Plancherel measure
µ is supported on the set of principal and discrete series representations (see
[11] for details).

For n ∈ Z, define χn on SO(2)(' S1) by χn(kθ) = eınθ. Let π be an
irreducible unitary representation of G on the Hilbert space Hπ. If 0 6= v ∈
Hπ is such that π(kθ)v = χl(kθ)v, l ∈ Z, kθ ∈ K, then we say “v transforms
according to χl”. If such a non-zero v exists then it is unique upto scalar
multiplication (see [3]) and we say that “χl occurs in π”. If m and n are fixed
integers such that χm and χn occur in π, let vm, vn be the essentially unique
unit vectors transforming according to χm and χn respectively. Denote by
Φm,n
π the function defined by Φm,n

π (g) = 〈π(g)vn, vm〉 - this is the “elementary
spherical function of type (m,n) corresponding to π”. Here 〈·, ·〉 denotes the
inner product on Hπ. If Dl is a Discrete series representation of G and χm,
χn occur in Dl, then explicit formulae are available for Φm,n

Dl
(see [3] and

[14]). Denote Φm,n
Dl

by Φm,n
l . It turns out that for at ∈ A, Φm,n

l (at) is a
rational function of e−t such that as t → ∞, Φm,n

l (at) → 0. (Note that
e−t → 0 as t→∞ !)

Now we are in a position to state and prove the exact analogue of Theorem
(3.1) for G = SL(2,R):

Theorem 5.1. Suppose f is a measurable function on G satisfying the
following estimates:

|f(x)| ≤ Ce−α‖x‖2G , x ∈ G,(5.1)

‖πξ,λ(f)‖HS ≤ Ce−β‖λ‖
2

A∗ , ξ ∈ M̂, λ ∈ A∗,(5.2)

where C, α, β are positive constants. If αβ > 1
4
, then f = 0 a.e.

Proof. Any f ∈ L1(G) can be written (in the sense of distributions) as
f ≈ ∑

m,n ∈ Zχm ∗ f ∗ χn =
∑
m,n ∈ Zfmn. Note that each fmn has the

property that

fmn(kθ1gkθ2) = χm(kθ1)f(g)χn(kθ2),(5.3)
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kθ1 , kθ2 ∈ K. One can easily show that if f satisfies estimates (5.1) and (5.2),
then so does each fmn. Clearly, if each fmn = 0, then so is f . Hence, without
loss of generality, assume that f satisfies (5.3) for some fixed m, n ∈ Z. Then
exactly as in the proof of Theorem (3.1), it will follow that π1,λ(f) ≡ 0 and
π−1,λ(f) ≡ 0 as functions of λ. Thus by the inversion formula (see [11] and
[14]) for functions that satisfy (5.3), it follows that f is a linear combination
of elementary spherical functions of type (m,n) of finitely many Discrete
series representations. (Note that for fixed m, n ∈ Z, there are only finitely
many Discrete series representations in which χm and χn occur.) Since each

Φm,n
l evaluated at at =

(
et 0
0 e−t

)
∈ G, t > 0, is a rational function of e−t, it

follows that f(at) is a rational function of e−t. Also as noted, when t→∞
i.e. e−t → 0, each Φm,n

l → 0. So f(at)→ 0 as e−t → 0.
Suppose f(at) ≡/ 0 as a function of t. We will arrive at a contradiction.

Since f(at) is a rational function of e−t, f(at) = (e−t)lg(e−t) for some positive
integer l, where g(e−t) is also a rational function of e−t and coverges to a
finite non zero limit γ as t→∞ (i.e. e−t → 0). On the other hand

|f(at)| ≤ Ce−α ′t2 ,
where α ′ is a positive constant depending on α and the way the norm is
defined on A. Hence we would have∣∣(e−t)lg(e−t)

∣∣ ≤ Ce−α ′t2
as t → ∞. But since g(e−t) → γ, and γ is non zero, this clearly leads to a
contradiction. This completes the proof of the theorem.

5.2. The sharpness of the constant 1
4
. For the group G = SL(2,C), us-

ing the normalizations in this paper, we will show that 1
4

is the best possible
constant. First we recall a couple of facts. If f is an L1-function invariant
under the right action of K, then πξ,λ(f) = 0 unless ξ is the trivial represen-
tation of M . Thus, for such functions, it is enough to consider {π1,λ}λ ∈ A∗ .
As before, denote π1,λ by πλ. Now let vo be the essentially unique K-fixed
vector in L2(K/M) for the representation πλ. (vo is the constant function 1 on
K/M.) Then, as observed in Section 4, for such f , ‖πλ(f)‖HS = ‖πλ(f)vo‖,
where ‖ · ‖ denotes the usual norm in L2(K/M). Further, if f is also left K-
invariant i.e. f is K-biinvariant, then πλ(f)vo = 〈πλ(f)vo, vo〉 vo and hence
‖πλ(f)‖HS = | 〈πλ(f)vo, vo〉 |. Now 〈πλ(f)vo, vo〉 =

∫
G 〈πλ(x)vo, vo〉 f(x)dx,

where dx is the Haar measure on G. So, as before, if we denote the func-
tion x 7→ 〈πλ(x)vo, vo〉 by Φλ(x), we need to consider only the integral∫
Gf(x)Φλ(x)dx. The collection {Φλ}λ ∈ A∗ form a subset of the set of ‘el-

ementary spherical functions’ and we are actually looking at the ‘spheri-
cal Fourier transform’ of f . So let g(λ) =

∫
Gf(x)Φλ(x)dx. Since f is K-

biinvariant, f is completely determined by its restriction to A. Thus to prove
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our assertion that 1
4

is the best possible constant, it is enough to produce a
function f which is

(a) K-biinvariant

(b) for every ε > 0, |f(a)| ≤ Cεe−( 1
16−ε)‖a‖2G , a ∈ A, and

(c) |g(λ)| = e
−4‖λ‖2A∗ , where ‖ · ‖A∗ is the norm on A∗ induced by the Killing

form.

Each λ ∈ R can be identified with an element in A∗ via the identification

A 3
(
x 0
0 −x

)
7→ λx.

With this identification the elementary spherical functions are given by

Φλ

((
et 0
0 e−t

))
=

2 sinλt

λ sinh 2t

(see [16], Vol. 2, pp. 313-314). Also ‖λ‖A∗ = |λ|
4

and
∥∥∥( et 0

0 e−t

)∥∥∥
G

= 4|t|.
Let g(λ) = e−

λ2

4 , λ ∈ R ' A∗. In view of the “rapid decay” of g, by
appealing to the Trombi-Varadarajan theorem ([18]), there exists a unique
K-biinvariant f such that the spherical Fourier transform of f is precisely
g.

Since in this case (i.e. G = SL(2,C)), the Plancherel formula and the
inversion formula can be explicitly written down (see [16], Vol. 2, pp. 313-
314), we have

f

((
et 0
0 e−t

))
= Const.

∫
R
g(λ)

2 sinλt

λ sinh 2t
|λ|2dλ

=
Const.

sinh 2t

∫
R
λe−

λ2

4 sinλtdλ

which is equal to Const.
te−t

2

sinh 2t , using routine Euclidean Fourier transform
calculations. Clearly,∣∣∣∣∣f

((
et 0
0 e−t

))∣∣∣∣∣ = Const.

∣∣∣∣ t

sinh 2t
e−
‖at‖2G

16

∣∣∣∣ ≤ Cεe−( 1
16−ε)‖at‖2G ,

for each ε > 0 and |g(λ)| = e
−4‖λ‖2A∗ where at =

(
et 0
0 e−t

)
. Thus the fact

that 1
4

is the best possible constant has been established.
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[9] L. Hörmander, A uniqueness theorem of Beurling for Fourier transform pairs, Arkiv
för Matematik, 29(2) (1991), 237-240.

[10] A.W. Knapp, Representation theory of semi-simple Lie groups, an overview based
on examples, Princeton University Press, Princeton, 1986.

[11] S. Lang, SL2(R), Springer-Verlag, 1985.

[12] V. Pati, A. Sitaram, M. Sundari and S. Thangavelu, An uncertainty principle for
eigenfunction expansions, J. Fourier Analysis and Applications, 2(5) (1996), 427-
433.

[13] A. Sitaram, M. Sundari and S. Thangavelu, Uncertainty principles on certain Lie
groups, Proc. Indian Acad. Sci. (Math. Sci.), 105(2) (1995), 135-151.

[14] M. Sugiura, Unitary representations and harmonic analysis, An introduction, Ko-
dansha scientific books, Tokyo, 1975.

[15] M. Sundari, Hardy’s theorem for the n-dimensional Euclidean motion group, to
appear in Proc. Amer. Math. Soc.

[16] A. Terras, Harmonic analysis on symmetric spaces and applications, Vols. 1 and 2,
Springer-Verlag, 1988.

[17] E.C. Titchmarsh, Introduction to the theory of Fourier Integrals, Chelsea Publishing
Company, New York, N.Y., 1986.

[18] P.C. Trombi and V.S. Varadarajan, Spherical transforms on semi-simple Lie groups,

Ann. Math., 94 (1971), 246-303.

Received May 3, 1995 and revised November 29, 1995.

Indian Statistical Institute
8th Mile, Mysore Road
Bangalore - 560 059, India
E-mail address: sitaram@isibang.ernet.in


