
pacific journal of mathematics
Vol. 178, No. 2, 1997

ON STABILITY OF CAPILLARY SURFACES IN A BALL

Antonio Ros and Rabah Souam

We study stable capillary surfaces in a euclidean ball in
the absence of gravity. We prove, in particular, that such a
surface must be a flat disk or a spherical cap if it has genus
zero. We also prove that its genus is at most one and it has
at most three connected boundary components in case it is
minimal. Some of our results also hold in H3 and S3.

Introduction.

Consider a smooth and compact convex body B in R3. Let ∂B and intB
denote its boundary and its interior respectively. We are interested in em-
bedded constant mean curvature surfaces M in R3 with non empty boundary
such that intM ⊂ intB and ∂M ⊂ ∂B and which intersect ∂B at a constant
angle γ ∈ (0, π). Such surfaces, called capillary surfaces, are critical points
of an energy functional under some constraints. The energy functional is de-
fined as follows: the surface M separates B into two bodies, consider among
these two bodies the one inside which the angle γ is measured and call Ω
the part of its boundary that lies on ∂B. Denote by A the area of M and
by T that of Ω. The energy function is then

E = A− cos γ T.

The space of surfaces under consideration are compact orientable surfaces
in R3 with boundary contained in ∂B and interior contained in intB and
which divide B into two bodies of preassigned volumes. The Euler-Lagrange
equation shows that a critical point of E under these constraints is a constant
mean curvature surface that intersect ∂B at the constant angle γ, that is
the angle between the exterior conormals to ∂M in M and Ω is everywhere
equal to γ along ∂M . We say that such a surface is capillarily stable if
it minimizes the energy up to second order. Capillary surfaces correspond
to the physical problem of the behavior of an incompressible liquid in a
container B in the absence of gravity. A great deal of work has been devoted
to capillary phenomena from the point of view of existence and uniqueness of
solutions mainly in the non-parametric case and in the more general situation
of presence of gravity (see the book of R. Finn, [F], for an account of the
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subject). Stability has also drawn some attention, we quote the works of H.C.
Wente ([W1]) and T.I. Vogel. This last author has, for example, studied
stability in the absence of gravity for a capillary annulus between two parallel
planes ([V1]) and of an infinite cylinder in a wedge ([V2]).

When B ⊂ R3 is a ball, examples of capillary surfaces for varying mean
curvature and angle of contact are given by rotational ones, namely totally
geodesic disks, spherical caps, pieces of catenoids and pieces of Delaunay
surfaces. We must remark that we do not know any other examples. A
consequence of one of our results is that pieces of catenoids and of Delaunay
surfaces are not stable.

We here study stability of capillary surfaces in euclidean balls with no
restrictions a priori about their topology. The orthogonal case, that is when
the angle of contact is π/2, has been investigated by the first author and E.
Vergasta ([R-V]) in the euclidean case and by the second author ([S]) in the
spherical and hyperbolic cases. The techniques we use here are mainly bor-
rowed from ([R-V]) but our results here are less precise than those obtained
in the orthogonal case. This is due to the fact that in the non orthogonal
case the geometry of the surface is involved in the boundary term in the
second variation formula.

Our first result (Corollary 2.3) says that
“A genus zero capillarily stable surface in a ball of R3 must be a totally

geodesic disk or a spherical cap”.
Before proving this result we reprove a theorem of Nitsche [N] which

states that a capillary disk (with no assumption on stability) in a euclidean
ball must be a totally geodesic disk or a spherical cap. Nitsche proved his
theorem in the orthogonal case and pointed out at the end of his paper that
the result extends to general contact angles. More generally his argument
actually extends to balls in S3 or H3 (Theorem 2.1). Moreover the proof of
the above result gives some information for a more general class of metrics
on R3, namely those that are invariant under the group of rotations SO(3).
We show that if B is a ball centered at the origin in R3 endowed with such a
metric, then a capillary stable surface of genus zero in B must be a disk that
is invariant under rotation around an axis that passes through the origin
(Theorem 2.2).

Our second result (Theorem 3.3) concerns the case where the surface is
assumed minimal. We show that

“The only capillarily stable and minimal surfaces in a ball of R3 are the
totally geodesic disks or surfaces of genus 1 with boundary having at most 3
connected components”.

We furthermore show that under these hypotheses the case of a surface
of genus 1 and 1 boundary component cannot occur if the angle of contact
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is close to 0 or π. In the orthogonal case, A. Ros and E. Vergasta have
shown that a capillarily stable and minimal surface in a euclidean ball is
necessarilly a totally geodesic disk (they have in fact proved this in every
dimension, and the result is also true in the hyperbolic and spherical cases,
see [S]). This result is probably true for any angle of contact but we have
not been able to prove it. We have included in an appendix at the end of
the paper a proof of the second variation formula. This formula is already
known (see [V1] or [W1]) but its derivation doesn’t seem to appear in the
litterature.

1. Preliminaries.

Let W be an orientable riemannian manifold of dimension n + 1 and B a
smooth compact body in W that is diffeomorphic to a euclidean ball. Let M
be an orientable n-dimensional compact manifold with non empty boundary
∂M and φ : M −→W an embedding, smooth even at ∂M , that maps intM
into intB and ∂M into ∂B. φ(intM) then separates intB into two connected
components. The boundary of each of these two components consists of the
union of φ(M) and a domain on ∂B. Let us fix one of these two domains
and call it Ω. By an admissible variation of φ we mean a differentiable map
Φ : (−ε, ε) ×M −→ W such that Φt : M −→ W, t ∈ (−ε, ε), defined by
Φt(p) = Φ(t, p), p ∈ M , is an embedding satisfying Φt(intM) ⊂ intB and
Φt(∂M) ⊂ ∂B for all t, and Φ0 = φ. Fix an angle γ ∈ (0, π). Given an
admissible variation Φ, Ω then moves to Ω(t), for t ∈ (−ε, ε). We define the
energy function E : (−ε, ε) −→ R by:

E(t) = A(t)− cos γ T (t)

where A(t) (resp. T (t)) denotes the volume of M (resp. of Ω(t)) in the
metric induced by Φt (resp. by the inclusion in W ). The volume function
V : (−ε, ε) −→ R is defined by:

V (t) =
∫

[0,t]×M
Φ∗dV

where dV is the volume element of W . V (t) represents the volume enclosed
between the hypersurfaces φ and Φt. The variation is said to be volume -
preserving if V (t) = V (0)(= 0) for all t. The variation vector field of Φ is
defined on M by:

Y (p) =
∂Φ
∂t

(p)
∣∣∣∣
t=0

.

Let N be the unit normal vector field along φ that points into the domain
bounded in W by φ(M) and Ω, and let N̄ be the exterior unit normal to ∂B.
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We let ν (resp. ν̄) denote the unit exterior normal to ∂M in M (resp. in
Ω), ds the volume element of ∂M induced by φ and H the mean curvature
of φ. The first variation formula for this energy function and for the volume
are given by the following formulae:

E′(0) = −n
∫
M

Hf dA+
∫
∂M

〈Y, ν − cos γ ν̄〉 ds(1-1)

V ′(0) =
∫
M

f dA(1-2)

where f = 〈Y,N〉 and dA is the volume element on M induced by φ. (1-1)
follows from the first variation formula for the area function (cf. [Sp, vol. 4]),
for a proof of (1-2) see [B-dC-E]. The embedding is said to be capillary if
A′(0) = 0 for any admissible volume - preserving variation of φ. It follows
from (1-1) and (1-2) that φ is capillary if and only if φ has constant mean
curvature and intersects ∂B at the constant angle γ; that is along ∂M the
angle between the normals N and N̄ or equivalently between ν and ν̄ is
everywhere equal to γ.

Henceforth we shall assume that φ is capillary. Let σ denote the second
fundamental form of φ with respect to the chosen unit normal field N , and
let II denote the second fundamental form of ∂B in W with respect to the
inwards pointing unit normal (i.e with respect to −N̄). For an admissible
volume-preserving variation we have (cf. the appendix):

E′′(0) = −
∫
M

(
f∆f + (|σ|2 + nRic(N))f2

)
dA+

∫
∂M

f

(
∂f

∂ν
− q f

)
ds

where
q =

1
sin γ

II(ν̄, ν̄) + cot γ σ(ν, ν).

Here ∆ is the Laplacian in the metric induced by φ, Ric the Ricci curvature
of W and ∂f

∂ν
the derivative of f in the direction of the exterior normal ν.

Adapting the arguments in [B-dC-E], one can show that for each smooth
function f on M with mean value zero, that is

∫
M f dA = 0, there exists

an admissible volume - preserving vartiation of φ with variation vector field
having fN as normal part. We say that a capillary embedding φ : M −→ B
is stable if E′′(0) ≥ 0 for all admissible volume - preserving variations of φ.
Let F = {f ∈ H1(M),

∫
M fdA = 0} where H1(M) denotes the first Sobolev

space of M , and let’s define the index form I of φ as the symmetric bilinear
form on H1(M) by

I(f, g) =
∫
M

{〈∇f,∇g〉 − (|σ|2 + nRic(N))fg} dA−
∫
∂M

q fg ds
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where ∇f means the gradient of f in the metric induced by φ. It follows
from what preceeds that the capillary embedding φ is stable if and only if
I(f, f) ≥ 0 for all f ∈ F .

Given f ∈ F , we say that the normal vector field fN is a Jacobi vector
field of φ if I(f, g) = 0 for all g ∈ F . It can be shown that fN , for an f ∈ F
is a Jacobi field if and only if f ∈ C∞(M) and

∆f + (|σ|2 + nRic(N)) f = constant on M

∂f

∂ν
= q f on ∂M.

We first prove the stability of totally geodesics disks and spherical caps in a
ball B ⊂ R3.

Proposition 1.1. Let B ⊂ R3 be a euclidean ball. Then totally geodesic
disks and spherical caps in B with boundary in ∂B are capillarily stable.

Proof. We may assume without loss of generality that B is a unit ball. Let Σ
denote either a totally geodesic disk or a spherical cap contained in B with
boundary in ∂B.

Assume Σ is a totally geodesic disk and let R denote its radius. The angle
of contact then satisfies the relation sin γ = R. We thus have to show that

(1-4)
∫
M

|∇f |2 dA ≥ 1
R

∫
∂M

f2 ds for each f ∈ F .
Consider now the ball B′ of radius R having Σ as an equatorial totally
geodesic disk. Thus Σ intersects ∂B′ orthogonally and we know (cf. [R-V])
that Σ is capillarily stable in B′, but the stability condition of Σ in B′ is
exactly Condition (1-4). Hence Σ is stable in B.

Assume now that Σ is a spherical cap. Let R denote the radius of the
sphere S containing Σ and let also γ denote the constant angle between Σ
and ∂B measured inside the domain into which the spherical cap is curved.
When γ = π/2, we know that Σ is stable and in fact minimizing (see [R-V]).
One may be tempted to use this to prove stability for any angle of contact in
the same way as we did it before for flat disks. Unfortunately it is not always
possible to find a ball B′ containing Σ and intersecting ∂Σ orthogonally (this
is in fact possible if and only if Σ is smaller than a hemisphere). Instead
of this, consider the plane Π that contains ∂Σ. Σ then intersects Π at a
constant angle which we denote by γ′. Σ can hence be seen as a capillary
surface in a halfspace and it is known that spherical caps in a halfspace are
capillarily stable and in fact minimize the energy function (see [G-M-T]).
Thus

(1-5)
∫

Σ

(
|∇f |2 − 2

R2
f2

)
dA ≥ cot γ′

R

∫
∂Σ

f2 ds for each f ∈ F .
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Elementary geometry shows that

(1-6)
1

sin γ
+

cot γ
R

=
cot γ′

R
.

Stability of Σ in B follows from (1-5) and (1-6).

Before proceeding further, we make some remarks concerning capillary
surfaces in euclidean balls regardless of their stability properties. As we
mentioned in the introduction, Nitsche’s theorem ([N]) is true for any angle
of contact and says that a capillary disk in a euclidean ball is a totally
geodesic disk or a spherical cap (see Theorem 2.1). Another more or less
known fact is that Alexandrov’s reflection technique is useful in this setting
and gives the following:

Proposition 1.2. Let φ : M −→ B be a capillary embedding in a euclidean
ball. Assume that φ(∂M) is contained in an open hemisphere of ∂B, then
φ(M) is a totally geodesic disk or a spherical cap.

Proof. We may assume that B is centered at the origin and that φ(∂M) is
contained in the open hemisphere defined by x1 < 0. Suppose first that φ
is not entirely contained in this hemisphere. In particular, by the maximum
principle, φ is not minimal, so we call Λ the domain in R3 into which the
mean curvature vector of φ(M) points. Alexandrov’s reflection method,
using the family of parallel planes {x1 = t}, t ≥ 0, shows that the reflected
image of φ(M) ∩ {x1 ≥ 0} with respect to the plane {x1 = 0} is contained
in Λ and it cannot touch the boundary of φ(M) because of the geometry of
the sphere. The fact that φ(M) intersects ∂B at a constant angle allows us
to continue Alexandrov’s reflection process this time by rotating the plane
{x1 = 0} around lines containing the origin to conclude that φ(M) has to be
a rotational disk (see [W2] for the details in a similar situation, one needs to
use a maximum principle at a corner). In case φ(M) is entirely contained in
a hemisphere we just begin our argument using the rotating planes.

2. The genus zero case.

We begin with an extension of Nitsche’s theorem [N].

Theorem 2.1. Let φ : M −→ B be a capillary embedding of a closed disk
M into a ball B in R3, S3 or H3, then φ(M) is totally umbilical.

Proof. We may parametrize M conformally by the closed unit disk D̄. Con-
sider the Hopf-function defined on D̄ by:

h(z) = σ(∂z, ∂z) = σ(∂x, ∂x)− σ(∂y, ∂y)− 2i σ(∂x, ∂y); z = x+ iy ∈ D̄.
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It is well known (see [Ch]) that h is holomorphic when φ has constant mean
curvature and vanishes precisely at umbilics. By hypothesis φ(M) intersects
∂B at a constant angle and since the latter is totally umbilical we conclude
that each component of ∂M is a line of curvature in M (this follows from
the classical terquem-Joachimsthal’s theorem, cf. [Sp, vol. 3, p. 296]). We
thus have

σ(x∂x + y∂y,−y∂x + x∂y) = 0 on ∂D̄.

This is equivalent to =m(z2h(z)) = 0 on ∂D̄, and since this is a harmonic
function, it has to be identically zero in D̄. It follows that its conjuguate
function <e(z2h(z)) is constant in D̄ and hence identically zero since it
vanishes at zero. We infer that h vanishes everywhere in D̄ which means
that φ(M) is totally umbilical.

We now treat the problem of stability of capillary surfaces of genus zero in
a ball in a three dimensional simply connected space. We first show a result
that holds for a larger class of metrics on R3. The method of proof is similar
to the one used in the orthogonal case in [R-V], we give the argument in
detail for completeness.

Theorem 2.2. Let µ be a metric on R3 that is invariant under the group
of rotations SO(3). Let φ : M −→ B be a stable capillary surface of genus
zero in a ball of (R3, µ) centered at the origin, then M is a disk and φ(M)
is a rotation surface around an axis passing through the origin.

Proof. Let p0 ∈ M be a point in M such that φ(p0) is at the minimum
euclidean distance on φ(M) to the origin. Denote by N the unit normal field
along φ with respect to the metric µ and call X the Killing field on (R3, µ)
induced by rotations around the axis passing through the origin and directed
by N(p0). More precisely for x ∈ R3 , X(x) = x∧N(p0), where ∧ denotes the
usual cross product in R3. Consider then the function β : M −→ R defined
by β(p) = µ (X(φ(p)), N(p)). As our problem is invariant under rotation
around N(p0), it follows that βN is a Jacobi vector field of φ. Thus

(2-1) ∆β + (|σ|2 + 2 Ric(N))β = 0

and

(2-2)
∂β

∂ν
= q β on ∂M.

Also, one can check that

(2-3) β(p0) = 0 and ∇β(p0) = 0.
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We claim that β = 0 on M . Assuming the contrary, the nodal set β−1(0)
of β is then a graph whose vertices are the critical points of β (cf [C]).
The Gauss-Bonnet formula applied to each connected component Mi of M \
β−1(0) gives ∫

Mi

K dA = 2πX (Mi)−
∫
∂Mi

kg ds−
∑
li

θli

where θli denote the external angles of ∂Mi. Summing up the above equa-
tions for all i, we obtain

(2-4)
∫
M

K dA = 2π
∑
i

X (Mi)−
∫
∂M

kg ds−
∑
j

θj

where the last term means the sum of all external angles for every connected
component Mi. As ∂M is smooth, (2-4) and again the Gauss-Bonnet formula
yield

2π(2− 2g − r) = 2π
∑
i

X (Mi)−
∑
j

θj

where g and r denote respectively the genus of M and the number of its
boundary components. By (2-3) p0 is a vertex of the graph β−1(0). Moreover,
let Γ be a connected component of ∂M , then any critical point on Γ of the
height function in the direction of the axis N(p0) is a zero of β. Actually at
such a point, φ ∧N(p0) is tangent to Γ. This shows that β has at least two
zeroes on each component of ∂M . So∑

j

θj ≥ 2π(1 + r).

Together with (2-4), this gives∑
i

X (Mi) ≥ 3− 2g.

So if the genus of M is zero, there at least three connected components in
M \ β−1(0). Let us then define a function β̃ : M → R by

β̃ =


β on M1

aβ on M2

0 on M \ (M1 ∪M2)

where the constant a is chosen so that
∫
M β̃ dA = 0. Using (2-1) and

(2-2), a direct computation gives I(β̃, β̃) = 0. Since φ is assumed stable, this



STABILITY OF CAPILLARY SURFACES 353

implies easily that β̃N is a Jacobi field. But β̃ vanishes outside M1 ∪M2,
the classical unique continuation principle then shows that β̃ = 0 identically
on M . This contradiction shows that β = 0 on M , this means that M is a
rotation surface around the axis N(p0) with fixed point p0, and therefore M
is a disk.

Remark. Compact constant mean curvature hypersurfaces without bound-
ary are, as it is well known, critical points of the area function for volume-
preserving variations. J.L. Barbosa, M. do Carmo and J. Eschenburg have
shown (see [B-dC-E] or [E-I] for another proof) that stable compact con-
stant mean curvature hypersurfaces without boundary in a simply connected
space form must be totally umbilical spheres. The proof of Theorem 2-2
shows that if µ is any SO(3)-invariant metric on R3 then a stable closed
constant mean curvature surface in (R3, µ) of genus zero must be a rotation
surface around an axis passing through the origin.

As a corollary, using Theorem 2.1, we obtain:

Corollary 2.3. Let φ : M −→ B be a capillary stable surface of genus zero
in a ball of R3, S3 or H3, then φ(M) is totally umbilical.

3. Some restrictions in the general case.

We start with some preliminary results. Let kg (resp.k̄g) denote the geodesic
curvature of ∂M in M (resp. in Ω). We have:

Lemma 3.1.
(1) kg = cos γ k̄g + sin γ.
(2) σ(ν, ν) = 2H − tan γ kg + 1

cos γ
.

Proof. (1) follows from the relation ν = cos γ ν̄ + sin γ N̄ . Let now α be
an arclength parametrization of a component of ∂M , then

σ(ν, ν) = 2H − σ(α′, α′) = 2H − 〈α′′, N〉.
(2) then follows from the relation N = − tan γ ν + 1

cos γ
N̄ .

Proposition 3.2. Let M be a capillary surface in a unit ball of R3, then:

H2A+
∫
∂M

kgds ≥ 2π sin γ + 2π cos γ (X (Ω)− 1).

Proof. For any surface, it is well-known (cf. [L-Y]) that the integral∫
M

(H2 −K) dA
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is invariant under conformal transformations of R3 ∪ {∞}. Assume B is
centered at the origin and consider a point x0 ∈ S2. Then there exists a
one parameter family {ηλ/λ > 0} of conformal transformations of R3 ∪ {∞}
which preserve the ball B and fix the points x0 and −x0, and such that when
λ→∞, ηλ(x) converges to −x0 for any x ∈ R3 \ {x0}. These properties are
satisfied for instance if we take ηλ = f−1◦hλ◦f where hλ is the homothety in
R3 with center at the origin and factor of dilation λ and f is the conformal
transformation of R3 ∪ {∞} which transforms the ball B into the upper
halfspace, the point x0 into the origin and the point −x0 into ∞. Denoting
by Hλ,Kλ and dAλ respectively the mean curvature, the Gauss curvature
and the area element induced on M by the embedding ηλ ◦ φ, we have

(3-1) H2A −
∫
M

K dA =
∫
M

(H2
λ −Kλ) dAλ.

The ηλ being conformal, ηλ ◦φ(M) still intersects S2 at the constant angle
γ. Using Gauss-Bonnet formula and Lemma 3.1 (1), we get

2πX (M) =
∫
M

K dA +
∫
∂M

kg ds

=
∫
M

Kλ dAλ +
∫
∂M

kλg dsλ(3-2)

=
∫
M

Kλ dAλ + sin γ Lλ + cos γ
∫
∂M

k̄λg dsλ

where kλg (resp. k̄λg ) denotes the geodesic curvature of ∂M in M (resp. in
Ω) with respect to the embedding ηλ ◦ φ (resp. ηλ), dsλ the induced metric
on ∂M and Lλ its length. (3-1) and (3-2) give

H2A+
∫
∂M

kgds =
∫
M

H2
λ dAλ + sin γ Lλ + cos γ

∫
∂M

k̄λg dsλ.

If we take x0 = φ(p0) for some p0 ∈ ∂M , then the integral
∫
∂M k̄λg dsλ

which by Gauss-Bonnet formula equals 2πX (Ω)− area(ηλ(Ω)) converges to
2π(X (Ω) − 1) as λ → ∞. Moreover ηλ ◦ φ(∂M) converges to an equator of
the unit sphere S2 and so limλ→∞ Lλ = 2π. This completes the proof of the
proposition.

We are now ready to prove the main result in this section. Henceforth
we shall denote by g the genus of the surface M and by r the number of its
boundary components.

Theorem 3.3. Let φ : M −→ B be a stable capillary surface in a ball of
R3. Assume φ is minimal, then the only possibilities are
(1) φ(M) is a totally geodisic disk
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(2) g = 1 and r = 1, 2 or 3.
Moreover, putting γ0 = arcsin(

√
13− 3) = 0.65..., for γ ≤ γ0 or γ ≥ π − γ0,

the case g = 1 and r = 1 cannot occur.

Proof. We begin the proof without assuming the minimality of φ. Let M̃ be a
compact Riemann surface obtained from M by attaching a conformal disk at
each connected component of ∂M . There exists a non constant holomorphic
map ψ̃ : M̃ −→ S2 such that (cf. [G-H, p. 261])

(3-3) degree
(
ψ̃
)
≤ 1 +

[
g + 1

2

]
where [.] denotes the integer part. Let ψ : M −→ S2(1) ⊂ R3 be the
restriction of ψ̃ to M . Using an extended version of a result of Hersch
(see [H] and [L-Y]) we may assume after composing ψ with a conformal
diffeomorphism of S2 that its coordinate functions satisfy∫

M

ψi dA = 0, i = 1, 2, 3.

Stability of φ implies, using Lemma 3.1 (2), that

0 ≤
∫
M

{|∇ψi|2 − |σ|2 ψ2
i

}
dA −

∫
∂M

kg ψ
2
i ds

+
2

sin γ
(1 +H cos γ)

∫
∂M

ψ2
i ds, i = 1, 2, 3.

Summing up these inequalities and using (3-3), Gauss equation and Gauss-
Bonnet formula, we obtain
(3-4)

8π
(

1 +
[
g + 1

2

])
+ 4π(2− 2g− r) > 4H2A+

2L
sin γ

(1 +H cos γ) +
∫
∂M

kg ds.

We now assume that φ is minimal. We may assume without loss of gen-
erality that B is centered at the origin. Consider then the support function
u = 〈φ,N〉 of M . It satisfies the following{

∆u + |σ|2u = 0 on M

u = cos γ on ∂M.

Let’s callM+ (resp. M−) the subset ofM where u is positive (resp. negative)
and define u+, u− ∈ H1(M) by

u+(p) =

{
u(p) if p ∈M+

0 if p ∈M \M+
, u−(p) =

{
u(p) if p ∈M−

0 if p ∈M \M− .
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We may suppose γ ≤ π/2, the case γ ≥ π/2 is similar. A direct computation
gives

I(u−, u−) = 0

I(u+, u+) =
∫
∂M

kg ds − 1 + cos2 γ

sin γ
L.

If u does not change sign in M , then as in [R-V] this implies that φ(M) is
starshaped with respect to the center of the ball and so M has genus zero
and hence (Corollary 2.3) φ(M) is totally geodesic. Now if u changes sign,
we can consider the function ũ = u+ + au−, where a is the positive constant

a = −
∫
M u+ dA∫
M u− dA

.

ũ is then not identically zero, satisfies
∫
M ũ dA = 0 and

I(ũ, ũ) = I(u+, u+) + 2aI(u+, u−) + a2I(u−, u−)

=
∫
∂M

kg ds − 1 + cos2 γ

sin γ
L.

Stability then implies that∫
∂M

kg ds ≥ 1 + cos2 γ

sin γ
L.

Putting this into Inequality (3-4), we get

(3-5) 8π
([
g + 1

2

]
− g

)
+ 4π (4− r) >

3 + cos2 γ

sin γ
L.

The only possibilities besides totally geodesics disks are thus

g = 1 and r = 1, 2 or 3

g = 2 or 3 and r = 1.

To finish the proof we analyze more closely the case r = 1, that is M
having only one boundary component. In this case, if L < 2π, then φ(∂M)
is contained in some open hemisphere (for a proof, see [Sp, vol. 3, p. 427]).
By Proposition (1.2), φ(M) must then be a totally geodesic disk. Hence if
φ(M) is not a totally geodesic disk its boundary length satisfies L ≥ 2π.
Putting this into (3-5), we get the conclusion by direct calculation.

If we do not assume minimality, denoting by A and L the area of M
and the lenght of its boundary respectively, the same arguments give the
following
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Proposition 3.4. Let φ : M −→ B be a stable capillary surface in a ball
in R3. Assume that either cos2 γ L ≤ 6 sin γ A or 1 +H cos γ ≥ 0, then the
only possibilities are
(1) φ(M) is a totally geodesic disk or a spherical cap

(2) g = 1 and r ≤ 1 +
[

6−sin γ
2−| cos γ|

]
≤ 6

(3) g = 2 or 3 and r ≤ 1 +
[

2−sin γ
2−| cos γ|

]
≤ 2.

([.] denotes the integer part.)

Proof. Recall the Inequality (3-4)

8π
(

1 +
[
g + 1

2

])
+4π(2−2g−r) > 4H2A +

2L
sin γ

(1+H cos γ)+
∫
∂M

kg ds.

The binomial in H, 3H2A + 2L cot γ H + 2L
sin γ

is non negative provided
that cos2 γ L ≤ 6 sin γ A . Assuming either this inequality satisfied or that
1 +H cos γ ≥ 0 and using Lemma 3.2 together with the inequalities 2− r ≤
X (Ω) ≤ r, we obtain

4
(

2− g +
[
g + 1

2

])
+ r (| cos γ| − 2) > sin γ + | cos γ|.

The conclusion follows.

4. Appendix.

We give here a proof of the second variation Formula (1-3) for an admissible
volume-preserving variation Φ of a capillary embedding φ. We keep the
notations used in Section 1 and for each t ∈ (−ε, ε), we use the subscript
t for terms related to Φt, for example dst stands for the induced metric on
∂M by Φt etc..., and we shall omit this subscript for t = 0.

The first variation formula gives:

E′(t) = −n
∫
M

H(t)〈Yt, Nt〉 dAt +
∫
∂M

〈Yt, νt − cos γ ν̄t〉 dst

where

Yt =
∂Φ
∂s

(p)
∣∣∣∣
s=t

.

It follows that

E′′(0) = − n
∫
M

H ′(0) 〈Y,N〉 dA− nH(0)
d

dt

∣∣∣∣
t=0

(∫
M

〈Yt, Nt〉 dAt
)
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+
∫
∂M

〈
D

dt

∣∣∣∣
t=0

Yt, ν − cos γ ν̄
〉
ds+

∫
∂M

〈
Y,

D

dt

∣∣∣∣
t=0

νt − cos γ ν̄t
〉
ds

+
∫
∂M

〈Y, ν − cos γ ν̄〉 d
dt

∣∣∣∣
t=0

(dst)

where D denotes the covariant derivative in W . Notice that

d

dt

∣∣∣∣
t=0

(∫
M

〈Yt, Nt〉 dAt
)

= V ′′(0) = 0

and 〈Y, ν − cos γ ν̄〉 = 0 since Y is tangent to ∂B along ∂M and

ν − cos γ ν̄ = sin γ N̄.

Moreover, we’ve the well known formula (cf. [R])

nH ′(0) = ∆f +
(|σ|2 + nRic(N)

)
f.

So to prove the formula for E′′(0) we need to compute〈
D

dt

∣∣∣∣
t=0

Yt, ν − cos γ ν̄
〉

+
〈
Y,

D

dt

∣∣∣∣
t=0

νt − cos γ ν̄t
〉
.

Henceforth we shall denote simply by a “prime” the covariant derivative
D
dt

∣∣
t=0

.

Lemma 4.1. Let ∇̃ denote the gradient on ∂M for the metric induced by φ
and Y0 (resp. Y1) the tangent part of Y to M (resp. to ∂M). Let also S0, S1

and S2 denote respectively the shape operator of M in W with respect to N ,
of ∂M in M with respect to ν and of ∂M in ∂B with respect to ν̄. Then
(1) N ′ = −∇f − S0(Y0)

(2) ν ′ =
(
∂f
∂ν

+ σ(Y0, ν)
)
N + fS0(ν)− fσ(ν, ν) ν − S1(Y1) + cot γ ∇̃f

(3) ν̄ ′ = −II(Y, ν̄) N̄ − S2(Y1) + 1
sin γ
∇̃f.

Proof. To prove (1), let {ei}, i = 1, . . . , n be an orthonormal frame of TpM
for some p ∈ M . Put ei(t) = dΦt(ei), then using the fact that N has norm
one, we get

〈N,DeiY 〉 = df(ei) + 〈N,DeiY0〉.
Now, since 〈Nt, ei(t)〉 = 0 and [ei(t), Y (t)] = 0, we have

N ′ =
n∑
i=1

〈N ′, ei〉ei
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= −
n∑
i=1

〈N, ei′〉ei

= −
n∑
i=1

〈N,DeiY 〉ei

= −
n∑
i=1

df(ei)ei −
n∑
i=1

〈N,DeiY0〉ei

= −
n∑
i=1

df(ei) ei +
n∑
i=1

〈DY0N, ei〉ei

= −∇f − S0(Y0).

As a consequence of (1) we have

(4-1) 〈ν ′, N〉 = −〈ν,N ′〉 =
∂f

∂ν
+ σ(Y0, ν).

Let now {vi}, i = 1, . . . , n − 1 be an orthonormal frame of Tp∂M for some
p ∈ ∂M . As before, put vi(t) = dΦt(vi), then one can check that along ∂M

Y = fN + Y1 − cot γ f ν(4-2)

〈ν ′, vi〉 = −〈ν, vi′〉 = −〈ν,DviY 〉
= −f〈ν,DviN〉 − 〈ν,DviY1〉+ cot γ df(vi).

The Formula (2) now follows from (4-1), (4-2) and the fact that 〈ν ′, ν〉 = 0.
To prove (3), we notice that on ∂M , we have

(4-3) Y = Y1 − 1
sin γ

f ν̄.

So, for i = 1, . . . , n− 1

〈ν̄ ′, vi〉 = −〈ν̄, vi′〉 = −〈ν̄, DviY 〉 = −〈ν̄, DviY1〉+
1

sin γ
df(vi).

Moreover

〈ν̄ ′, ν̄〉 = 0 and 〈ν̄ ′, N̄〉 = − II(Y, ν̄).

Thus

ν̄ ′ = − II(Y, ν̄) N̄ −
n−1∑
i=1

〈ν̄, DviY1〉vi +
1

sin γ

n−1∑
i=1

df(vi) vi

and this is exactly Formula (3).
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Combining Formulae (2) and (3) in Lemma 4.1, we obtain

〈Y, ν′ − cos γ ν̄ ′〉 = f
∂f

∂ν
+ f2 cot γ σ(ν, ν) + 2f σ(Y0, ν)(4-4)

+ sin γ II(Y1, Y1).

Furthermore, the relation

Y0 = Y1 − cot γ f ν

implies that
σ(Y0, ν) = σ(Y1, ν)− f cot γ σ(ν, ν).

Putting this into (4-4) we obtain

〈Y, ν′ − cos γ ν̄ ′〉 = f
∂f

∂ν
− f2 cot γ σ(ν, ν) + 2f σ(Y1, ν)(4-5)

+ sin γ II(Y1, Y1).

We now compute 〈Y ′, ν − cos γ ν̄〉. Since ν − cos γ ν̄ = sin γN̄ , we have

(4-6) 〈Y ′, ν − cos γ ν̄〉 = − sin γ II(Y, Y ).

Using the decomposition (4-3), we get

(4-7) II(Y, Y ) = II(Y1, Y1)− 2
sin γ

f II(Y1, ν̄) +
1

sin2 γ
f2 II(ν̄, ν̄).

It is straightforward to check that

(4-8) σ(Y1, ν) + II(Y1, ν̄) = 0.

Finally, (4-5), (4-6), (4-7) and (4-8) give

〈Y ′, ν−cos γ ν̄〉+〈Y, ν′−cos γ ν̄ ′〉 = f
∂f

∂ν
−
{

cot γ σ(ν, ν) +
1

sin γ
II(ν̄, ν̄)

}
f2.

This completes the proof of the second variation formula.

References

[B-dC-E] J.L. Barbosa, M. do Carmo and J. Eschenburg, Stability of hypersurfaces of constant
mean curvature in Riemannian manifolds, Math. Z., 197 (1988), 123-128.

[C] S.Y. Cheng, Eigenfunctions and nodal sets, Comment. Math. Helvitici, 51 (1976),
43-55.

[Ch] S.S. Chern, On surfaces of constant mean curvature in a three dimensional space of
constant curvature, Selected papers IV, Springer Verlag, New York, 1989.



STABILITY OF CAPILLARY SURFACES 361

[E-I] A. El Soufi and S. Ilias, Majoration de la seconde valeur propre d’un opérateur de
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