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A GEOMETRIC CONSTRUCTION OF THE
IWAHORI-HECKE ALGEBRA FOR UNRAMIFIED GROUPS

Neil Chriss

This paper concerns constructing the Iwahori-Hecke alge-
bra for certain p-adic groups. It can be regarded as a natural
extension of the ideas laid down in [KL2]; the objective (and
conclusion) of that paper was the proof of Deligne-Langlands
conjecture for Hecke algebras arising from split p-adic groups
(with connected centers). The key observation of that paper
was the geometric construction of the Iwahori-Hecke algebra
for a split p-adic group.

1. Introduction.

An unramified p-adic group is a linear algebraic group over a p-adic field
k, which has a Borel subgroup defined over k, and which splits over an un-
ramified extension of k. The collection of all such groups contains the split
p-adic groups as a proper subset. Let G be the k-points of a connected re-
ductive unramified group over k, and let I be an Iwahori subgroup. Then the
Iwahori-Hecke algebra of G is the convolution algebra of smooth compactly
supported functions on the set of I-double cosets of G.

The purpose of this paper is to give a geometric construction of the
Iwahori-Hecke algebra of an unramified p-adic group in terms of the equiv-
ariant K-theory of a certain variety in terms of the L-group of G. The basic
ideas in this paper are extensions of and motivated by the path-breaking
work of Kazhdan and Lusztig in the mid 1980’s relating to the Iwahori-
Hecke algebra of a split p-adic group. The importance of this work derives
from the fact that in the case of split groups, Kazhdan and Lusztig the analo-
gous construction was the first and key step in classifying the representations
of the Iwahori-Hecke algebra, which in turn provides a classification of all
representations of the corresponding p-adic group with non-trivial I-fixed
vectors.

Let k be a p-adic field such that its residue field k has q elements. Let G
be a k-group and let G be its group of k-rational points. We shall assume
that G is unramified, i.e., satisfies the following conditions:
(1) G splits over an unramified extension F of k,
(2) G has a Borel subgroup defined over k.
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Let Γ be the Galois group of F over k. Then by the above, Γ is a cyclic
group with a canonical generator σ (the Frobenius element).

The case in which G is split, or equivalently when Γ is trivial has was
worked out in full in [KL2]. It is in this sense that this paper may be
regarded as a generalization of some of the results in [KL2].

The approach taken here is quite similar to that in [KL2]. We first con-
struct a certain canonical quotient of equivariantK-homology which depends
on σ. It is denoted by σK-homology. We do this by decomposing the repre-
sentation ring of LG×C∗ into a direct sum of rings, one for each component
of LG. Then for any LG × C∗-variety X we have K

LG×C∗
i (i = 0 or 1) is an

RLG×C∗-module. We decompose K
LG×C∗
i (X) according to the decomposition

of RLG×C∗ and write σK
LG×C∗
i (X) for the component corresponding to Gσ.

Then σK
LG×C∗
i (X) has the following properties:

(1) For any LG × C∗-variety X, σK
LG×C∗
i (X) (i = 0 or 1) has all the

functorial properties of K
LG×C∗
i (X) which do not assume LG × C∗ is

connected.
(2) For X a point σK

LG×C∗
0 (X) is isomorphic to the center of H.

(3) If Z is the variety of triples, then σK
LG×C∗
0 (Z) is isomorphic to H and

σK
LG×C∗
1 (Z) = 0.

(4) If σ is the identity automorphism, then σKM
0 (X) = KM

0 (X) for any
M -variety X.

With this new functor we are able to generalize the Kazhdan-Lusztig
construction of the Iwahori-Hecke algebra. One would like to be able to carry
out the entire proof of the Deligne-Langlands conjecture, but in fact certain
technical problems arise regarding σK-theory: in particular it is an open
question whether a general Künneth formula spectral sequence exists for
this functor (see [KL2]). Even without the Künneth spectral sequence one
can prove the Deligne-Langlands conjecture using equivariant algebraic σK-
theory and the methods outlines in [CG]. This will be handled in another
paper.

We now give an in depth description of the contents of this paper. In
Chapter 2 we give a definition of a root system in terms of the character
group of an arbitrary complex algebraic torus. This formulation will be
useful in later chapters. We also state the Pittie-Steinberg theorem (see
[ST2]) in terms of this formulation. We actually only need a special case of
this theorem which states that for a semisimple, simply connected complex
algebraic group the representation ring of a maximal torus is a free module
over the representation ring of the group.

In Chapter 3 we fix notation and collect some basic properties of L-groups
following [Bo]. The L-group defined in this chapter would appear as the L-
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group of an unramified p-adic group, but specific reference to the p-adic
group is not necessary and so is omitted. The basic idea is to fix a complex
algebraic group G. Let S = {(B, T ), {Xα}} be a splitting of G (here B is a
Borel subgroup, T a maximal torus of B and the Xα are simple root vectors
in the Lie algebra of G). Let σ be an automorphism of G preserving S and
Γ the group it generates. Then LG = Go Γ is the L-group.

In Chapter 4 we define the σK-functor and fix notation. In Chapter 5
we describe the properties of equivariant σK-homology which we shall need.
Most of the properties are direct consequences of the analogous properties
for equivariant K-homology proved in [KL2]. One notable exception is the
formula for the pushforward pullback of a line-bundle along an equivariant P1

bundle (see [KL2, 1.3 (o2)]). This formula is in some sense the link between
K-homology and representations of the Hecke algebra. This is proved using
the Borel-Weil-Bott theorem and the Weyl character formula. In this paper
we need an analogous formula not for P1 bundles but for higher dimensional
flag variety bundles. In order to prove this we need to give a ‘twisted’ version
of the Weyl character formula whose proof depends on the Lefschetz fixed
point theorem for elliptic complexes, or alternatively using the techniques in
[CG]. This formula is also used to verify the Künneth formula isomorphism
for the special case of the flag variety.

In Chapter 6 we give a definition of the Hecke algebra in terms of gener-
ators and relations, following Bernstein, Zelevinskii and Lusztig (see [L4]).
These are a generalization of the relations given in [KL2].

In Chapter 10 we analyse the equivariant σK-homology of the variety of
triples and show that it gives a model for the regular representation of H.
This chapter bears a strong resemblance to [KL2, Sec. 3], and has been
published with the permission of Kazhdan and Lusztig. The reason for this
is that the set up in [KL2] is in some sense not the most general possible. In
fact if we take σ to be trivial in the above then our construction specializes
to the construction in [KL2].

This work originates from the author’s thesis at the University of Chicago.
Deep gratitude is expressed to the author’s thesis advisor, Robert Kottwitz
for suggesting the problem, and many interesting and informative mathe-
matical conversations. Thanks are also due to Sam Evens for many helpful
mathematical tutorials.

2. Root Systems.

2.1. Algebraic Tori. Let T be an algebraic torus over C and X∗(T ) =
Hom(T,C∗), the group of algebraic homomorphisms from T to C∗. Set V =
X∗(T )⊗Q and identify X∗(T ) with X∗(T )⊗ 1. Given Σ ⊂ X∗(T ), we say
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that Σ is a root system with respect to T if Σ is an abstract root system in
the vector space V .

Suppose that W is a finite group which acts on T . Then W acts on X∗(T )
by w ·α(t) = α(w−1t) (α ∈ X∗(T ), w ∈W ) and hence on V . If the W -action
on V coincides with the action of the Weyl group of the abstract root system
Σ on V , then we say that W is the Weyl group of Σ with respect to T .

Let ( , ) be a W -invariant positive definite symmetric bilinear form on
V .

Let

L∗(Σ) =
{
λ ∈ V |2(λ, α)

(α, α)
∈ Z for all α ∈ Σ

}
.

Say that Σ is simply connected if L∗(Σ) = X∗(T ). Let Π = {α1, . . . , αn} be
a basis for the root system Σ.

2.2. The Pittie-Steinberg Theorem. Write λi ∈ V for the i-th funda-
mental dominant weight of Σ with respect to Π: λi is defined to be such
that

2(αj, λi)
(αj, αj)

= δij.

We know that the set {λ1, . . . , λn} is a basis for V and generates the
lattice L∗(Σ).

Proposition 2.1. Let Σ, T, V, {λi}1≤i≤n be as above. The following are
equivalent.
(1) Σ is simply connected,
(2) λi ∈ X∗(T ) for all i.

Proof. Follows immediately from the definitions.

The following theorem is proved in [ST2], and is a finer result of a theorem
by Pittie.

Theorem 2.2. Let Σ,Π, T,X∗(T ),W be as above and assume that Σ is
simply connected with respect to T . Let X = X∗(T ) and write C[X] for the
group ring of X over C, and C[X]W for the W invariant elements therein.
Then
(1) The natural inclusion of C[X]W into C[X] makes C[X] into a free

C[X]W -module of rank |W |.
(2) There are elements ev one for each v ∈ W , such that the ev (v ∈ W )

form a basis of C[X] as a C[X]W module, and det(u(ev))(u,v)∈W×W =
∆|W |/2, where ∆ = Π(α1/2 − α−1/2) ∈ C[X] and the product is taken
over all positive roots.
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3. Preliminaries on the group LG.

3.1. The Definition of LG. Fix G a connected, reductive linear algebraic
group over C with simply connected derived group. Let B denote the variety
of all Borel subgroups of G. We equip G with the following data:
(1) a pair (B, T ), where B is a Borel subgroup and T is a maximal torus

in B,
(2) a splitting (B, T, {Xα}), where (B, T ) is the above pair and {Xα} is a

collection of root vectors, one for each simple root α of T with respect
to B,

(3) an automorphism σ of G which preserves the splitting (B, T, {Xα}).
Write Γ for the (necessarily finite) group generated by σ, and let LG =

Go Γ. Also write LT for T o Γ and LB for B o Γ. The subrgoups B and T
will remain fixed for the rest of this paper.

3.2. Orbits of G on B×B. The orbits of G on B×B are naturally in 1−1
correspondence with the elements of W . A map

W → {G orbits in B × B}

is obtained as follows. Let w ∈W , and let n ∈ NG(T ) be a representative of
w. Map w to the orbit of (B,nBn−1). It is clear that this map is independent
of the representative of w chosen. As in [KL2] we write B′ w→ B′′ whenever
the orbit of (B′, B′′) corresponds to w ander the above bijection.

Let ≤ be the Bruhat order on W . It is well known that w ≤ w′ if and
only if the closure of the G-orbit on B × B corresponding to w is contained
in the closure of the G-orbit corresponding to w′ (this may also be taken as
the defintion of the Bruhat order).

We write B′ ≥w→ B′′ to mean: B′ w
′→ B′′ for some w′ ≥ w, and similarly we

write B′ ≤w→ B′′ to mean B w′→ B′ for some w′ ≤ w (see 6.4 for an alternative
description of B′ ≤w→ B′′).

3.3. The σ-Action on B × B. It is clear that σ acts on the G orbits in
B × B. In this way we get a natural action of σ on W and we write W Γ for
the group of fixed points of W under this action.

If we let (B, T ) be as in 3.1 and let W̃ = NG(T )/T then W̃ ∼= W and σ
acts on W̃ . This action coincides with the action of σ on W given in 3.3.
The verification of this fact is trivial and we leave it to the reader.

3.4. A Connectedness Theorem. We know that σ is a semisimple au-
tomorphism of G and therefore by [ST1, Sec. 8] that the group Gσ (resp.
T σ) the group of fixed points of σ on G (resp. T ) is connected.
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3.5. The Root Systems. Let X∗(T ) = Hom(T,C∗) where the homomor-
phisms are taken to be algebraic. Similarly let X∗(T ) = Hom(C∗, T ). Write
Σ for the root system of G with respect to T : we have Σ ⊂ X∗(T ). Write
Σ∨ for the coroots of G with respect to T : Σ∨ ⊂ X∗(T ).

Let Π = {α1, . . . , αn} (resp. Π∨ = {α∨1 , . . . , α∨n}) be the basis of Σ (resp.
Σ∨) defined by B, and let S be the corresponding set of simple reflections
in W . Write Σ+ for the positive system of roots determined by Π.

We see that Σ is a root system with respect to T (see 2.1) with Weyl
groups W .

3.6. A Form. Set V = X∗(T ) ⊗ Q and let ( , ) be a positive definite,
symmetric bilinear form on V invariant under both W and Γ (such a form
exists because the subgroup of Aut(V ) generated by W and Γ is finite).

3.7. The σ-Action on Σ. The natural action of σ on T (resp. B) induces
an action of σ on Σ (resp. Σ+ and Π). We denote this action by σ : α 7→ σ(α)
for α ∈ Σ. We identify σ with an element of Sn the symmetric group on n
letters in such a way that σ(αi) = ασ(i).

3.8. Type I Roots. Call a simple root α ∈ Π type I if the roots in the
σ-orbit of α are mutually perpendicular with respect to ( , ), see 3.6.

3.9. Type II Roots. Call a simple root α ∈ Π type II if each component D
in the Dynkin diagram of the σ-orbit of α is of type A2 and for some positive
integer a, σa preserves and acts nontrivially on D. In this case the cardinality
of the σ-orbit of α is 2a and α + σaα, σα + σa+1α, . . . , σa−1α + σ2a−1α are
mutually perpendicular roots with respect to ( , ).

3.10. Type III Roots. Call a root α ∈ Σ type III if α = β + σaβ with β
of type II and a as in 3.9.

3.11. The Norm of a Root. Let lα be the cardinality of the σ-orbit of
α ∈ Σ and set

Nα =
lα−1∑
i=0

σiα,

and call this the norm of α. For α ∈ Π set

N ′α =

{
Nα if α is of type I,
2Nα if α is of type II.

(3.11a)
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3.12. The Root Systems Σ1 and Σ2. We consider the following two sets:

Π1 = {N ′α|α ∈ Π}, and

Π2 = {Nα|α ∈ Π}.
Let π1 (resp. π2) be the map Π→ Π1 (resp. Π→ Π2) given by α→ N ′α

(resp. α → Nα). Call a root β ∈ Π1 (resp. β′ ∈ Π2) type I or II according
to whether it is the image of a root of type I or II under the map π1 (resp.
π2). Set

Σ1 = W Γ(Π1) = {wα |w ∈W Γ, α ∈ Π1},(3.12b)

Σ2 = W Γ(Π2) = {wα |w ∈W Γ, α ∈ Π2}.(3.12c)

Then Σ1 and Σ2 are root systems which are subsets of X∗(T )Γ, the fixed
points of σ in X∗(T ); they have bases Π1 and Π2 respectively.

3.13. Type I and II Roots in Σ1. Call a root β ∈ Σ1 (resp. β′ ∈ Σ2)
type I or II according to whether it is the image under W Γ of a root α ∈ Π1

(resp. α′ ∈ Π2) of type I or II respectively.

3.14. Positive Roots in Σ1 and Σ2. Write Σ+
1 (resp. Σ+

2 ) for the positive
system of roots in Σ1 (resp. Σ2) with respect to Π1 (resp. Π2).

Clearly we have that Π1 (resp. Π2) is a basis for Σ1 (resp. Σ2).

3.15. Σ1 and Σ2 are Reduced. It is obvious from the above observations
that Σ1 and Σ2 are reduced root systems.

3.16. The Root System Φ. The union Φ of Σ1 and Σ2 is a (possibly
non-reduced) root system. If it is non-reduced, then Σ1 is the root system
obtained by taking the non-multipliable roots of Φ while Σ2 is the root
system obtained by taking the indivisible roots of Φ.

The above facts (3.12, 3.11, 3.14, 3.15, and 3.16) can be deduced with very
simple modifications from the results in [ST1].

3.17. The Torus TΓ. The map A : T → T, x → xσ(x−1) is an endomor-
phism of T . Let

U = im A,

and write TΓ for T/U . Note that im A is connected and TΓ is a complex
algebraic torus, called the coinvariants of T with respect to Γ.

Since elements ofX∗(T )Γ are trivial on U there is a natural mapX∗(T )Γ →
X∗(TΓ) and this map is an isomorphism. By the definition of Σ1 and Σ2 we
know that any α ∈ Σi (i = 1 or 2) is σ-invariant and hence can be identified
with an element of X∗(TΓ). From now on we will identify Σ1 and Σ2 with
their images in X∗(TΓ).
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3.18. The W Γ-Action on TΓ. It is easy to see that the action of W Γ on
T stabilizes U (see 3.17) and therefore W Γ acts on TΓ. From the induced
action of W Γ on TΓ we obtain an action of W Γ on X∗(TΓ), and an easy
calculation shows that W Γ is the Weyl group of the abstract root systems
Σ1 and Σ2 (see 2.1).

3.19. Type I and II Fundamental Dominant Weights. Let Π∗ =
{λ1, . . . , λn} be the fundamental dominant weights (see 2.2) of Σ with re-
spect to Π. We will call λi type I or type II according to whether the
corresponding root αi is of type I or type II respectively. Since σ permutes
Π and ( , ) is invariant under σ we have that the fundamental dominant
weights are also permuted by σ. In fact, it is easy to see that σ(λi) = λσ(i)

(see 3.7).

3.20. The Simple Reflections S1. Write S1 for the set of simple reflections
in W Γ with respect to the basis Π1. Note that as a subset of W Γ this is the
same set as if we took the simple reflections corresponding to the set Π2.
Call r ∈ S1 type I or type II according to whether r corresponds to a simple
root of type I or II (see 3.13). The set S1 plays an important role in what
follows.

3.21. The Vector Space D. Write D = X∗(TΓ)⊗Q. The surjection T →
TΓ induces an injection X∗(TΓ)→ X∗(T ) which identifies D as a subspace of
V (see 3.6). Restricting ( , ) from V to D we obtain a W Γ invariant form
on D compatible with the form on V .

For convenience order the elements of Π (and correspondingly the elements
of Π∗, see 3.20) so that {α1, . . . , αm} (m ≤ n) are representatives of the
different σ-orbits in Π. We continue to identify σ with an element of Sn in
such a way that σ(αi) = ασ(i). Set lλi equal to the cardinality of the σ-orbit
of λi. Write

N ′λi =
lλi−1∑
k=0

σkλi,(3.21d)

viewing each N ′λi ∈ X∗(T )Γ as an element of X∗(TΓ)⊗Q under the isomor-
phism in 3.17. Let

Π∗1 = {N ′λ1, . . . , N
′λm}.

Proposition 3.1. With respect to the basis Π1 the set Π∗1 is the set of
fundamental dominant weights for the root system Σ1.

Proof. We must show (see 2.2) that for all 1 ≤ i, j ≤ m
2(N ′λi, N ′αj)
(N ′αj, N ′αj)

= δij.
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If 1 ≤ i 6= j ≤ m then for any positive integers a, b, (σaλi, σbαj) = 0. It is
therefore sufficient to only consider the case i = j.

Write α = αi, λ = λi and l = lα. Suppose α is of type I. We have

2(N ′α,N ′λ)
(N ′α,N ′α)

=
2(Nα,N ′λ)
(Nα,Nα)

=
2
(∑l−1

a=0 σ
aα,

∑l−1
b=0 σ

bλ
)

(∑l−1
c=0 σ

cα,
∑l−1
d=0 σ

dα
)

=
2l(α, λ)
l(α, α)

= 1.

The third equality follows from 3.8 and the σ-invariance of the form.
Now suppose that α is of type II. In this case l = 2a for some positive

integer a (see 3.9). We have

2(N ′α,N ′λ)
(N ′α,N ′α)

=
2(2Nα,N ′λ)
(2Nα, 2Nα)

=
4
(∑l−1

b=0 σ
bα,

∑l−1
c=0 σ

cλ
)

4
(∑l−1

d=0 σ
dα,

∑l−1
e=0 σ

eα
)

=
l(α, λ)

l(α, α) + l(α, σaα)
= 1.

The second equality follows from 3.9 and the σ-invariance of the form. The
last equality follows from 3.9 and explicitly evaluating the second to last
expression.

Now the following follows from 2.1:

Proposition 3.2. The root system Σ1 is simply connected with respect to
TΓ (see Section 2).

We have the following corollary.

Corollary 3.3. Σ1 ⊂ X∗(TΓ) satisfies the hypotheses of Steinberg’s theo-
rem 2.2. Setting X = X∗(TΓ) we have:
(1) C[X] is a free C[X]W

Γ
-module of rank |W Γ|.

(2) There exist elements ev ∈ C[X] one for each v ∈W Γ, such that the ev
form a basis for C[X] as a C[X]W

Γ
-module, and

det(u(ev))(u,v)∈WΓ×WΓ = ∆|W
Γ|/2,
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where ∆ = Π(α1/2 − α−1/2) ∈ C[X] (product over all α ∈ Σ+
1 ).

4. The σK-functor.

This section assumes familiarity with equivariant K-homology as in [KL2].
Unless otherwise stated M will denote an arbitrary complex algebraic group.
4.1. Equivariant K-homology. Let X be an algebraic variety over C and
M a linear algebraic group acting algebraically on X. Then we have the
groups KM

i (X) (i = 0, 1) as in [KL2]; these are homology groups with
complex coefficients.

Let RM be the Grothendieck group of finite dimensional rational repre-
sentations of the algebraic group M , and set RM = RM ⊗ C. This is a
commutative C-algebra of finite type (see [KL2, Sec. 1.3]).

Recall the following basic facts from [KL2]:
4.2. Characters. By taking characters of representations we define an iso-
morphism of RM with the C-algebra of all regular functions M → C which
are constant on each coset of the unipotent radical of M and are invariant
under inner automorphism by M .
4.3. The Maximal Ideals of RM . The maximal ideals of RM are in 1− 1
correspondence with conjugacy classes of semisimple elements in M ; if s is a
semisimple element then the corresponding maximal ideal is denoted Is and
is identified with ideal of functions in RM vanishing on s.
4.4. The Finiteness of KM

i (X). For any M -variety X, KM
i (X) is an RM -

module of finite type (i = 0 or 1).
4.5. The Frobenius Component of LG. Let LG be as in 3.1. As an alge-
braic variety LG is the disjoint union of the connected varieties G,Gσ, . . . ,
Gσ|Γ|−1. The action of σ on LG by inner automorphism preserves each com-
ponent Gσn. We will be particularly interested in Gσ, which for the purposes
of this paper will be called the Frobenius component of LG.
4.6. Definition of σRLG. Consider the ideal σRLG ⊂ RLG

σRLG = {f ∈ RLG| f is supported on Gσ}.
Let e ∈ RLG be the characteristic function of the Frobenius component of
LG; e is an idempotent element of RLG. Multiplication by e is naturally a
projection RLG → σRLG, and σRLG is a ring with identity element e.
4.7. Modules over σRLG. Given any RLG-module A, let σA denote the
σRLG-module eA obtained by projection. In this way we have an exact
functor A→ σA taking RLG-modules and RLG-morphisms to σRLG-modules
and σRLG-morphisms. For x ∈ A we will write σx for the image of x in σA.

In particular for any LG-variety X we obtain the finite σRLG-modules
σK

LG
i (X) (i = 0 or 1).
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4.8. Admissible Subgroups of LG. Let M be a subgroup of LG. We say
that M is admissible if M is closed and its intersection with the Frobenius
component of LG (see 4.5) is non-trivial. In this case we will call the inter-
section of M with the Frobenius component of LG the Frobenius component
of M .

By restriction of functions the group RM is naturally an RLG-module so
that we may form the σRLG-module σRM . On the other hand, let eM ∈ RM

be the characteristic function of the Frobenius component of M . Form the
ideal eMRM of σRM as in 4.6. It is easy to see that the map eMRM → σRM

given by eMf → ef (f ∈ RM) is well defined and an isomorphism.
In particular we have the rings σRLB and σRLT (see 3.1). Call an element

of σRLT a σ-character if it is the image under the map RLT → σRLT of a
character.

Call an element E ∈ σRM a σ-representation if it is the image of a repre-
sentation under the natural map RM → σRM . Observe that calling an ele-
ment of σRM a σ-character or σ-representation can naturally lead to muddy
thinking.

We note that if M is not admissible then clearly σRM = 0 and σKM
i = 0

(i = 0 or 1).
4.9. Equivariant K-Theory and σ-Bundles. Let M be an admissible
subgroup of LG. For an M -variety X let Ki

M(X) (i = 0 or 1) be the equiv-
ariant K-cohomology of X with complex coefficients as defined in [Se]. We
know that these are RM -modules and so we may construct the σRM -modules
σKi

M(X) (i = 0 or 1) as in 4.7.
Let E be an element of σKM

0 (X) for an M -variety X. Then we say that E
is a σ-vector bundle if E is the image of a vector bundle under the canonical
map K0

M(X) → σK0
M(X). In particular we say that E is a σ-line bundle if

it is the image of a line bundle. Note that a σ-line bundle may also be the
image of a vector bundle of higher rank.

5. Basic Properties of σK-theory.

Let G and LG be as in 3.1. Then let σ act on G×C∗ with σ acting trivially
on C∗. It is obvious that LG×C∗ = L(G×C∗) so that all the constructions
in chapter 4 carry over replacing LG by LG× C∗.

In this chapter unless otherwise specified M will be an admissible sub-
group of LG × C∗ (see 4.8). We present a list of properties of σRM and
σKM

i (X) (X an M -variety) which we will need in this paper. Unless oth-
erwise specified properties 5.1 through 5.19 follow immediately from the
analogous properties for KM

i (i = 0 or 1) given in [KL2] by the exactness
of the functor KM

i (X)→ σKM
i (X) (i = 0 or 1). The properties beyond 5.19

are analogous to properties discussed in [KL2] but require different proofs.
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5.1. Maximal Ideals of σRM . The maximal ideals of σRM are in 1-1 cor-
respondence with the conjugacy classes of semisimple elements in the Frobe-
nius component of M (see 4.3). Given a semisimple element s ∈ (Frobenius
component of M) we write Is for the maximal ideal in σRM corresponding
to s. For s ∈ (Frobenius component of M), Is is the set of all φ ∈ σRM such
that φ(s) = 0 (note that this makes sense because φ ∈ σRM is a function
supported on the Frobenius component of M).
5.2. Pullback. If f : X → X ′ is an M -equivariant smooth morphism of
M -varieties then there exists a natural σRM -morphism f∗ : σKM

i (X ′) →
σKM

i (X).
If we also have g : X ′ → X ′′ is an M -equivariant smooth morphism of

M -varieties, then f∗ ◦ g∗ = (g ◦ f)∗.
5.3. Pushforward. If f : X → X ′ is an M -equivariant proper morphism of
M -varieties, then there is a natural σRM -homomorphism f∗ : σKM

i (X) →
σKM

i (X ′).
If we also have g : X ′ → X ′′ is an M -equivariant proper morphism of

M -varieties, then g∗ ◦ f∗ = (g ◦ f)∗.
5.4. External Tensor Product. Let X,X ′ be two M -varieties, and let
X × X ′ be equipped with the diagonal action of M . There is a natural
σRM -homomorphism

� : σKM
0 (X) ⊗

σRM

σKM
i (X ′)→ σKM

i (X ×X ′).

5.5. Unipotent Bundles. Let B′ be a Borel subgroup of an algebraic group
and T ′ a maximal torus in B′. Thomason (see [T1]) has proved that if
f : X → Y is an M -equivariant morphism of algebraic varieties which is a
locally trivial B′/T ′-bundle (called a unipotent bundle) then

f∗ : σKM
i (Y )→ σKM

i (X) is an isomorphism.

5.6. Tensor Product with a Complex. Let X be an M -variety and let
E = (. . . 0 → En → . . . → E0 → 0 . . . ) be an M -equivariant complex
of algebraic vector bundles on X (see 4.9) : each Ei is an M -equivariant
algebraic vector bundle and each map is an M -equivariant morphism of
vector bundles. Let X0 be a closed M -stable subvariety of X such that E is
exact off of X0. Then there is a natural σRM -homomorphism

E⊗ : σKM
0 (X)→ σKM

0 (X0).

This is compatible with the operations 5.2, 5.3, and 5.4 as follows. Let
f : X ′ → X be an M -equivariant morphism of M -varieties, let E ′ be the
pullback of E under f and let X ′0 = f−1(X0).

We have E ′⊗ : σKM
0 (X ′)→ σKM

0 (X ′0). Let f0 :X ′0 → X0 be the restriction
of f . Then
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5.7. If f is proper then (E⊗)f∗ = (f0)∗(E ′⊗) : σKM
0 (X ′)→ σKM

0 (X0).
5.8. If f is smooth then f∗0 (E⊗) = (E ′⊗)f∗ : σKM

0 (X)→ σKM
0 (X ′0).

5.9. If E = (. . . 0 → E → 0 . . . ), then we may take X = X0 and we write
E ⊗ ξ instead of E ⊗ ξ for all ξ ∈ σKM

0 (X). Thus E ⊗ ξ ∈ σKM
0 (X).

5.10. If V is a rational finite dimensional M -module and V is the corre-
sponding M -equivariant vector bundle over X (see [Se]) then identify V
with its image in σKi

M(X). We have V ⊗ ξ = V ξ (ξ ∈ σKM
0 (X)) where V ξ

is given by the σRM -module structure of σKM
0 (X), see 4.8.

5.11. If E = (. . . 0 → En → . . . → E0 → 0 . . . ) is as above and X = X0,
then E ⊗ ξ =

∑
i(−1)iσEi ⊗ ξ, (ξ ∈ σKM

0 (X)). Here σEi is as in 4.7.
5.12. Let Ẽ be the pullback of E under pr1 : X ×X ′ → X. This gives rise
to

Ẽ⊗ : σKM
0 (X ×X ′)→ σKM

0 (X0 ×X ′).
If ξ ∈ σKM

0 (X), ξ′ ∈ σKM
0 (X ′), then

Ẽ ⊗ (ξ � ξ′) = (E ⊗ ξ)� ξ′ ∈ σKM
0 (X0 ×X ′),

and analogous result holds with respect to the other variable.
5.13. Thom Isomorphism. Let π : E → X be an M -equivariant algebraic
vector bundle over X and let

E = (. . . 0→ ∧n π̃E∗ → . . .→ ∧0π̃E∗ → 0 . . . )

be the usual Koszul complex of vector bundles over E (see [Se, Sec. 3]).
Here π̃E∗ denotes the pull-back of the dual of E under π. This is acyclic
outside the zero section j : X ↪→ E of π (which is identified with X). Hence
we have E⊗ : σKM

0 (E)→ σKM
0 (X).

Then

E ⊗ is the inverse of π* : σKM
0 (X) ∼→ σKM

0 (E).(5.13e)

We have

(π∗)−1j∗ξ =
∑
i

(−1)i∧i E∗ ⊗ ξ, (ξ ∈ σKM
0 (X)).(5.13f)

5.14. Base Change. Consider the following fiber square:

X4
p2−−−→ X2yp1

yf2

X1
f1−−−→ X3

(5.14g)

where f1 and p2 are proper and p1 and f2 are smooth, and X4
∼= X1×X3X4 by

definition. Then as σRM -module homomorphisms σKM(X1) → σKM(X2)
we have

(f2)∗(f1)∗ = (p2)∗(p1)∗.
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5.15. Localization. We need the following version of the localization the-
orem which is more general than what is stated in [KL2]. We will give a
short proof of the result.

Let M0 be any maximal compact subgroup of M and let s ∈ M be a
semisimple element in the Frobenius component of M (see 4.8) and Is as
in 5.1. For an M -variety X write σKM

i (X)Is for the localization of the
σRM -module σKM

i (X) at Is.
Write X(s) for the M0-saturation of the set of fixed points of s on X. In

other words

X(s) = M0 ·Xs,(5.15h)

where Xs is the fixed points of s on X. Then X(s) is a closed subset of
X (closed in the complex topology) and we write j : X(s) ↪→ X for the
natural inclusion. Let Y be any closed M -invariant subvariety of X which
contains X(s); note that Y is automatically M0-invariant. Let i : Y ↪→ X
be the natural embedding. Then we claim that the σRM -homomorphism
i∗ : σKM

i (Y ) → σKM
i (X) induces an isomorphism on the localizations of

σKM
i (X) and σKM

i (Y ) at the maximal ideal Is (see 5.1), i.e.,

i∗ : σKM
i (Y )Is

∼→ σKM
i (X)Is .

We sketch a proof of this fact. First note that by definition Y (s) = X(s).
Recall that by definition [KL2, 1.4] σKM

i (X) = σKM0
i (X). It follows

from [Se, Proposition 4.1] that

i∗ : σKM0
i (X(s))Is

∼→ σKM0
i (X)Is ;(5.15i)

j∗ : σKM0
i (X(s))Is = σKM0

i (Y (s))Is
∼→ σKM0

i (Y )Is .(5.15j)

We have the following commutative diagram of σRM -modules.

σKM0
i

(
Y (s)

)
Is

σKM0
i

(
X(s)

)
Is

σKM0
i (X)Is

σKM0
i (Y )Is

XXXXXXXXXXXXXXXXXXz

PPPPPPPPPPq ��
��

��*

∼

∼

where each map is the map induced by push-forward from the obvious inclu-
sion and the isomorphisms follow from 5.15i and 5.15j. The desired result is
now immediate.

5.16. Exact Sequences. Let X be an M -variety, and F be a closed M -
stable subvariety of X. Let j : F ↪→ X, j′ : X − F ↪→ X be the inclusions.
Then there is a natural exact hexagon of σRM -modules:
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σKM
0 (X)

σKM
0 (F )

σKM
1 (X − F )

σKM
1 (X)

σKM
1 (F )

σKM
0 (X − F )

��
��
�*

6

HH
HH

HY ������

?

HHHHHj

j∗

j
′∗ j∗

j
′∗

Note that this is a ‘periodic’ version of the standard homology long exact
sequence.

5.17. Poincaré Duality. Suppose X is a compact, smooth M -variety. Let
σKi

M(X) (i = 0 or 1) be as in 4.9. There is a natural isomorphism

σKM
i (X) ∼= σKi

M(X).(5.17k)

Let X ′ be a second compact, smooth M -variety. Let f : X → X ′ be
an M -equivariant morphism. Then f∗ : σKM

i (X) → σKM
i (X ′) (see 5.3)

corresponds under 5.17k to the pushforward σKi
M(X)→ σKi

M(X ′) obtained
from the standard pushforward in equivariant K-theory (see, e.g. [KL1]).
If in addition f is smooth, then f∗ : σKM

i (X ′) → σKM
i (X) corresponds

under 5.17k to the pullback map σKi
M(X ′) → σKi

M(X) obtained from the
standard pullback map in K-theory.

5.18. The Image of a Vector Bundle in σK-Theory. Let E be an M -
equivariant vector bundle over an M -variety X. We write σE for the image
of E in σK0

M(X) (see also 4.7).
If X is a compact, smooth M -variety then under the isomorphism 5.17k

we will identify σE with its image in σKM
0 (X).

5.19. Homogeneous Spaces. Given M an admissible subgroup of LG (see
4.8) and H a closed subgroup of M , there are natural isomorphisms

σKM
0 (M/H) ∼= σRH and σKM

1 (M/H) ∼= 0, where σRH is as in 4.8.
(5.19l)

If H does not intersect the Frobenius component of M (see 4.5) then it is
clear that

σKM
0 (M/H) = σRH = 0.(5.19m)
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5.20. Trivial C∗-Actions. Let M = LG × C∗ and let X be a compact,
smooth M -variety on which C∗ acts trivially. K0

M(X) ∼= C[q, q−1]⊗K0
LG(X)

where q is an indeterminant (see [Se, Prop. 2.2]). Now under the isomor-
phism 5.17k we have

KM
0 (X) ∼= C[q, q−1]⊗K

LG
0 (X),(5.20n)

and therefore it is immediate that

σKM
0 (X) ∼= C[q, q−1]⊗ σK

LG
0 (X).(5.20o)

5.21. Twisted Euler Characteristic. Let X be a projective M -variety
where M is an admissible subgroup of LG× C∗ and OX its sheaf of regular
functions. Let F be an M -equivariant coherent sheaf of OX-modules on
X (see [BBM]). Write H i(X,F) for its i-th cohomology group. Note that
H i(X,F) is a finite dimensional M -module (since X is projective), and hence
an element of RM . Set

Xσ(F) =
∑

(−1)i trace
{
σ : H i(X,F)→ H i(X,F)

}
.

We call Xσ(F) the twisted Euler characteristic of F with respect to σ, or,
when no confusion is likely to arise, the twisted Euler characteristic of F.

Let L be a σ-line bundle (see 4.9) on X. By the twisted Euler charac-
teristic of L we will mean the twisted Euler characteristic of any line bun-
dle L̃, regarded as a coherent sheaf, whose image under the canonical map
K0
M(X)→ σK0

M(X) (see 4.7) is L.
We claim that the twisted Euler characteristic is independent of the bundle

L̃ chosen. Let π : X → pt be the natural M -equivariant projection from X to
a point. Suppose that L̃1 and L̃2 have the same images in σK0

M(X). Then it
suffices to show that images of

∑
(−1)iH i(X, L̃1) and

∑
(−1)iH i(X, L̃2) are

equal in σRM . Since π∗ is an RM -module homomorphism it induces a σRM -
module homomorphism π∗ : σK0

M(X) → σRM . Therefore π∗(L̃1) = π∗(L̃2)
in σRM , so that∑

(−1)i σH i(X, L̃1) =
∑

(−1)i σH i(X, L̃2).

The result now follows.

5.22. Twisted Weyl Character Formula. In this section we will use
exponential notation to represent elements of X∗(T ), e.g., if α, β ∈ X∗(T )
then we write eα, eβ for α, β and eαeβ = eα+β. Let Σ, Σ1, Π, Π1, Π∗, Π∗1, T
be as in Section 3.



HECKE ALGEBRAS OF UNFAMIFIED GROUPS 27

Let ω be a σ-invariant, dominant weight in X∗(T ) (i.e., a non-negative
integer linear combination of elements of Π∗ fixed by σ). Let ρ : LG→ GL(V)
be the finite dimensional, irreducible representation of highest weight ω. We
assume that ρ is normalized so that σ is trivial on a highest weight vector.
Let fρ(t) : T → C be defined by

fρ(t) = trace(ρ(tσ)).

We have fρ =
∑
cλe

λ is a finite linear combination of characters λ ∈
X∗(T ). A simple calculation shows that if cλ 6= 0, then λ is trivial on the
kernel of the map T → TΓ (see 6.10 for a proof) and hence can be regarded
as an element of X∗(TΓ).

We have the following:

Proposition 5.1. If we regard fρ as an element of C[X∗(TΓ)] then

fρ =
∑
w∈WΓ

εwe
w(ρ+δ)

Π
α∈Σ+

1

(eα/2 − e−α/2)
,

εw = det(w) where w is identified with an automorphism of the vector space
D = X∗(TΓ) ⊗ Q (this is just the sign of w ∈ W Γ); δ = 1

2

∑
α∈Σ+

1
α (recall

that Σ+
1 is the set of positive roots in Σ1 with respect to Π1).

Proof. This is a generalization of the arguments in [AB].

6. The Hecke Algebra.

In this section M = LG × C∗, X = X∗(TΓ) and (B, T ) are as in 3.1. Recall
that G = LG◦.

6.1. The Flag Variety. Let B be the flag variety of LG (see 3.1). As a set
this is the collection of all Borel subgroups of LG, which can be identified
with the set of all Borel subgroups of LG◦ = G. It is well known that B is
a complete variety and is isomorphic to G/B (see 3.1). The action LG on
B by conjugation makes B into a transitive LG variety. We regard B as an
M -variety by letting C∗ act trivially.

6.2. Standard Parabolic Subgroups. Let Π and Π1 be our bases of Σ
and Σ1 respectively (see 3.5 and 3.12). Each element α ∈ Π1 or α ∈ Π2 cor-
responds to a σ-orbit ωα in Π. It is well known that the parabolic subgroups
of G containing B are naturally in bijection with the subsets of Π. Let Pα
be the unique parabolic subgroup of G containing B which corresponds to
ωα.
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If r = rα ∈ S1 (see 3.20) is the simple reflection in W Γ corresponding to
the simple root α ∈ Π1, then we will write Pr for Pα when it is convenient.
In this paper Pr is called the standard parabolic of type r. An arbitrary
parabolic subgroup of LG is said to be of type r if it is an LG conjugate of
Pr.

It is clear that for r ∈ S1 we have Pr is stable under σ. Let Pr be the
variety of all parabolic subgroups of type r. This is a complete LG-variety
isomorphic to G/Pr.

6.3. The Map πr. If α ∈ Π1 is a simple root and r = rα then there is a
natural map

πr : B → Pr,
which is a locally trivial (in the Zariski topology) Pr/B fibration ([BoT]).
The map is obtained by sending a Borel subgroup to the unique parabolic
subgroup of type r containing it.

6.4. The Bruhat Ordering. Let r ∈ S1 and regard it as an element of W .
We may now give an alternative description of B′ ≤r→ B′′ (B′, B′′ ∈ B):

B′
≤r→ B′′ if and only if πr(B′) = πr(B′′).(6.4a)

6.5. The Bundles Tr and Tr
′. Let Tr be the tangent bundle along the

fibers of πr, and let T ′r be the corresponding cotangent bundle. They are
naturally LG-equivariant vector bundles over B, and we regard them as M -
equivariant vector bundles with the trivial C∗ action.

6.6. The Characters ΨL
B. Let L be an LG-equivariant line bundle over B,

and let LB be the fiber of L over B. Since B o Γ normalizes B it maps LB
to itself yielding a character of B o Γ and hence of T o Γ. Write ΨL

B for the
character of T o Γ obtained in this way.

6.7. σ-Trivial Line Bundles. Let L be an LG-equivariant line bundle over
B (see 4.9). Then we will call L σ-trivial if the following condition is satisfied:
ΨL
B(σ) = 1 (see 6.6). Equivalently L is σ-trivial if the action of σ on the

fiber of L over B is trivial.
We call the image of a σ-trivial line bundle into σK-theory a σ-trivial,

σ-line bundle.

6.8. The Associated σ-Trivial Line Bundle. We will need the following
trivial but important fact. Given a line bundle over B there is a unique
character χ of Γ such that L ⊗ χ is σ-trivial. Here χ is regarded as the
trivial line bundle C equipped with the LG action gσ : C→ C, z → χ(σ)z.

In this case, we will call L⊗χ the σ-trivial line bundle associated with L.
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6.9. The Character q. Let q : M → C∗ be the second projection. We will
identify q with an M -equivariant σ-trivial, σ-line bundle over B as follows.
Identify q with the trivial line bundle C over B equipped with the action
of M via multiplication by the character q. Identify this with its image in
σKM

0 (B) ∼= σK0
M(B) under the isomorphism 5.17k.

6.10. An Isomorphism. The group C[X] may be identified with σRLT as
follows. An element λ ∈ X∗(TΓ) is an algebraic function f : T → C such
that f(yxσ(x−1)) = f(y) for all x, y ∈ T (see 3.17). Let f ′ : Tσ → C be
defined by f ′(xσ) = f(x) for x ∈ T . Then

f ′(yxσy−1) = f ′(xyσ(y−1)σ)

= f(xyσ(y−1))

= f(x)

= f ′(xσ),

(6.10b)

and f ′ ∈ σRLT . Conversely let f ∈ σRLT . Then f : Tσ → C, and is invariant
under inner-automorphism. Define f ′ : T → C by f ′(t) = f(tσ), (t ∈ T ). It
is a finite linear combination f ′ =

∑
cλλ of characters λ ∈ X∗(T ).

It is easy to see that f ′(s−1 σ(s) t) = f ′(t) for all s, t ∈ T . Now

f ′(t) =
∑

cλλ(t),

but

f ′(t) = f ′(s−1σ(s)t) =
∑

cλλ(s−1σ(s)t),

so ∑
cλ(λ(t)− λ(s−1σ(s)t)) = 0,

and finally ∑
cλλ(t)(1− λ(s−1σ(s))) = 0.

By linear independence of characters it follows that if cλ 6= 0, then λ(s−1σ(s))
= 1. Therefore λ ∈ X = X∗(TΓ) and f ∈ σRLT .

We leave it to the reader to check that the above correspondance is a
bijection.

6.11. Another Isomorphism. An immediate consequence of this bijec-
tion is that C[X] may be identified with σK

LG
0 (B), and C[q, q−1][X] (q an

indeterminant) may be identified with σKM
0 (B) (see 5.20).
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6.12. The σ-Line Bundle Lr. Under the above correspondence an element
p ∈ X∗(TΓ) is associated with a unique σ-trivial σ-line bundle Lp: indeed p
corresponds to an element ξp ∈ σRLT such that ξp(σ) = 1. Therefore under
the isomorphism 5.19l ξp corresponds to an LG-equivariant σ-trivial, σ-line
bundle. Under this correspondence we will identify X with the set of all
LG-equivariant σ-trivial σ-line bundles over B.

Let r ∈ S1 be the simple reflection about the simple root αr ∈ Π2, and
write Lr for the unique σ-trivial, σ-line bundle corresponding to αr. Recall
that Tr is the tangent bundle along the fibers of πr. We may explicitly
describe Lr as follows.

If r is of type I then Lr is the unique σ-trivial σ-line bundle associated to
the highest exterior power of Tr (see 6.8).

If r is of type II then Lr is the unique σ-trivial σ-line bundle such that L2
r

is the unique σ-trivial σ-line bundle associated to the highest exterior power
of Tr.

6.13. The W Γ-Action on X. By transfering the action of W Γ on X∗(TΓ)
to the set of LG-equivariant σ-trivial σ-line bundles on B (denoted from now
on by X) we obtain aW Γ- action on X written w : L 7→ wL (w ∈W Γ, L ∈ X).
Explicitly if r ∈ S1 and L ∈ X is an LG-equivariant σ-trivial σ-line bundle
then

rL =

{
LL−d+1

r if r is of type I,
LL−2d+2

r if r is of type II,
(6.13c)

where Lr is as in 6.12 and d is the twisted Euler characteristic of L restricted
to any fiber of πr (see 5.21). We note that this is well defined because the set
of type-r parabolics fixed by σ is a single orbit under Gσ = {g ∈ G|σ(g) = g}.
This will be proved in chapter 8 (Corollary 8.2) and the proof is independent
of the intervening chapters.

We leave the verification of (6.13c) to the reader.

6.14. A Formula for (π∗)(πr)∗L. Let L be an M -equivariant σ-line bundle
over B. Recall the map πr : B → Pr (r ∈ S1) (see 6.3). Then with the
identifications 6.10 and 6.12 we have

π∗r (πr)∗(L) =


L

(Lr)−d − 1
(Lr)−1 − 1

if r is of type I,

L
(Lr)−2d − 1
(Lr)−2 − 1

if r is of type II,
(6.14d)

where d is the twisted Euler characteristic of L restricted to any fiber of πr
and Lr is as in 6.12. To prove (6.14d) we will reduce to the case π : Pr/B →
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pt where Pr is as in 6.2: to obtain the reduction we apply the following
theorem.

Theorem 6.1. (Grauert’s theorem [Ha]). Let f : X → Y be a proper
morphism of complex varieties. Let F be a coherent algebraic sheaf on X,
flat over Y (i.e., for each x ∈ X, Fx is a Oy,f(x)-flat module). For y ∈ Y let
Fy = F ⊗OY Cy (i.e., Fy is the restriction of F to Xy), and Xy = f−1(y).
Then for all integers p, the following are equivalent.
(1) The map

y 7→ dimCH
p(Xy,Fy)

is constant.
(2) The higher derived functor RpF∗(F) is a locally free sheaf E on Y , and

for all y ∈ Y the natural map

E ⊗OY Cy → Hp(Xy,Fy)

is an isomorphism. (Note that here E ⊗Oy Cy is just the restriction of
E to the point y.)

First of all, the map πr : B → Pr is flat, i.e., the structure sheaf OB is flat
over Pr. It is flat on a dense open set by the theorem of generic flatness, and
because everything is LG-equivariant and homogenous, the map is flat on all
of B. Therefore the vector bundle L, being locally free, is flat over Pr as well.
Hence we may apply Grauert’s theorem (6.1). It is clear that condition (1)
(of (6.1)) is satisfied, and therefore for all integers p and all y ∈ Pr we have
the natural isomorphism

Rp(πr)∗(L)|y ∼= Hp(Xy, Ly).

Now we may apply the Borel-Weil-Bott theorem (see [Bt]) and 5.17k along
with the twisted Weyl character formula (to the root system Σ1) 5.22 and the
Atiyah-Hirzebruch form of the Riemann-Roch theorem (see [KL1, Sec. 1.7])
to obtain our result.

6.15. Exterior Powers of qTr ′. Fix r ∈ S1. If r is of type I let ν be the
rank of T ′r (see 3.9). If r is of type II then the rank of T ′r is divisible by 3
(see 3.9), and we let 3ν be the rank of T ′r. For any integer i we recall that
σ∧i qT ′r denotes the image of ∧iqT ′r in σKM

0 (B) (see 5.18).
Let C denote the trivial σ-line bundle over B and let q be as in 6.9. Then

the following facts follow from simple calculations which we will leave to the
reader.
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If r is of type I,

σ∧i (qT ′r) =


C if i = 0,
0 if 1 ≤ i < ν,

(−1)ν+1qνL−1
r if i = ν.

(6.15e)

If r is of type II,

σ∧i (qT ′r) =



C if i = 0,
(−1)νqνL−1

r if i = ν,

(−1)2ν+1q2νL−1
r if i = 2ν,

(−1)3νq3ν+1L−2
r if i = 3ν,

0 otherwise.

(6.15f)

This proves

∑
(−1)i σ∧i (qT ′r) =

{
C− qνL−1

r if r is of type I,
C− (q2ν − qν)L−1

r − q3νL−2
r if r is of type II.

(6.15g)

6.16. A Parameter System on Σ2. Let X = X∗(TΓ) (= set of LG-
equivariant σ-trivial σ-line bundles over B). Let Σ1, Σ2, Π1, Π2, S1, W Γ

be as in Section 3. Let W̃ = W Γ nX be the semidirect product, W Γ acting
on X as in 6.13. Then W̃ contains the affine Weyl group as a subgroup of
finite index.

Let
λ : Σ+

2 → N

be defined as follows. For α ∈ Π2 (see 3.12) write η(α) for the number of
connected components in the Dynkin diagram of ωα (see 6.2). Let

λ(α) =

{
η(α) if α is of type I,
3η(α) if α is of type II.

(6.16h)

In addition set λ∗(α) = η(α) if α is type II. (see 3.11). This is called a
parameter system on Σ2 in the language of [L4].

We note that if we form the Dynkin diagram of Σ2 from the basis Π2 and
label each vertex with the corresponding λ(α) then we obtain the diagrams
found in [Ti] which correspond to unramified groups. Note also that if Γ is
trivial then λ is identically 1, the case studied in [KL2].
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We will also regard λ as a map from S1 → N as follows. If r ∈ S1 is the
reflection about the simple root α ∈ Π1 then define λ(r) = λ(α); also define
λ∗(r) = λ∗(α) when applicable.

We see easily that if ν is as in 6.15 then

η(r) = ν.(6.16i)

In addition if r is of type II then

λ(r)− λ∗(r)
2

= ν,(6.16j)

λ(r) + λ∗(r)
2

= 2ν,(6.16k)

and

λ(r) = 3ν.(6.16l)

Now we have

∑
(−1)i σ∧i (qT ′r)

=

C− qλ(r)L−1
r if r is of type I,

C−
(
q
λ(r)+λ∗(r)

2 − q
λ(r)−λ∗(r)

2

)
L−1
r − qλ(r)L−2

r if r is of type II.

(6.16m)

6.17. The Bernstein-Lusztig Relations for H. Let A = C[q, q−1], q an
indeterminate. According to Bernstein and Lusztig (see [L4, Sec. 3]) one
can describe the Hecke algebra H corresponding to W̃ as follows. It is an
algebra over A with generators

Tr (r ∈ S1), and θL (L ∈ X),

subject to the following relations:

T 2
r = qλ(r) + (qλ(r) − 1)Tr,(6.17n)

TrTr′Tr . . . = Tr′TrTr′ . . . (µ factors in both products),∀r 6= r′ ∈ S1,
(6.17o)

where in 6.17o µ is the order of rr′ in W Γ.

θLTr − Trθ rL

=


(
qλ(r) − 1

)
θL−θ rL
1−θ

L
−1
r

if r is of type I,((
qλ(r)− 1

)
+θL−1

r

(
q
λ(r)+λ∗(r)

2 − q λ(r)−λ∗(r)
2

))
θL−θ rL
1−θ−2

Lr

if r is of type II.

(6.17p)
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We now present a list of properties of the Hecke algebra which we will
need.

6.18. Basis I. The elements TwθL (w ∈ W Γ , L ∈ X) form an A-basis for
H.

6.19. Basis II. The elements θLTw (w ∈ W Γ , L ∈ X) form an A-basis for
H.

6.20. The Center of H. The center of H is A[X]W
Γ
.

6.21. The Anti-Involution There is a unique A-linear involutive anti-
automorphism h → h̃ of the algebra H such that T̃r = Tr, (r ∈ S1) and
θ̃L = θL (L ∈ X).

6.22. The Involution. There is a uniqueA-linear involutive automorphism
h→ h∗ of H such that

T ∗r = −qλ(r)T−1
r ,

and
θ∗L = θL−1 .

The statements and proofs of these facts can be found in [L4, Sec. 3].

6.23. σRM is Isomorphic to the Center of H. We cite the following fact
from [Bo, Prop. 6.7]. The proof there is in a different context, but works
equally well here:

Proposition 6.2. There is a natural isomorphism

σRM
∼→ A[X]W

Γ
.

sending q ∈ σRM to the indeterminant q.

Combining this with 6.20 we get an identification

(center of H) = σRM = A[X]W
Γ
.(6.23q)

In this way H is identified as an algebra over σRM .
We also have

Corollary 6.3. σKM
0 (B) is a free σRM -module of rank |W Γ|.

Proof. Immediate from 3.3 and 6.11.
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7. Some M-varieties.

This chapter is completely analogous to [KL2, Sec. 3]. We use similar
notation whenever possible to emphasize the analogy between [KL2] and
this paper. Throughout this section M = LG× C∗ and X = X∗(TΓ) (= the
set of LG-equivariant σ-trivial, σ-line bundles on B).

7.1. The Variety Λ. Let

Λ = {(n,B′)|B′ ∈ B and n ∈ Lie(B′), n nilpotent}.
The group M acts on Λ by

(g, q) : (n,B′)→ (Adg(q−1n), gB′g−1).(7.1a)

7.2. The Varieties Λ̂r and Λr. Let r ∈ S1 (see 3.20), and let Λ̂r be the
variety of all pairs (n, P ) where P ∈ Pr and n is a nilpotent element in
Lie(P ). Let Λr be the variety of all pairs (n,B′) such that B′ ∈ B and if
P is the unique parabolic subgroup of type r containing B′ then n ∈ P ; M
acts on Λr in a manner analogous to 7.1a.

7.3. The Complex Êr. Let

π̂r : Λr → Λ̂r

be defined by (n,B′)→ (n, πr(B′)) (n,B′) ∈ Λr (see 6.3).
Let Cr be the tangent bundle along the fibers of π̂r and let µ denote the

rank of Cr. Also let C ′ r be the corresponding cotangent bundle along the
fibers of π̂r.

As in [KL2, Sec. 3.1], the nilpotent portion of Λr gives a section N of
Cr and we may form the complex of M -equivariant vector bundles

Êr =
(
. . . 0 −→ ∧µ (qC ′ r)

tN−→ ∧µ−1 (qC ′ r) . . .
tN−→ C −→ 0 . . .

)
.(7.3a)

We have that the support of Êr is precisely Λ. (The support of a complex
is the set of points where it is not acyclic, see [Se].)

7.4. The Variety of Triples. We now define the famous Steinberg variety
of triples. Let

Z = {(n,B′, B′′)|B′, B′′ ∈ B and n is nilpotent with n ∈ Lie(B′) ∩ Lie(B′′)}.
The group M acts on Z by

(g, q) : (n,B′, B′′)→ (Adg(q−1n), gB′g−1, gB′′g−1).(7.4a)
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7.5. The Varieties rZ and Zr. Let r ∈ S1 be a simple reflection (see 3.20).
Let rZ (resp. Zr) be the variety of all triples (n,B′, B′′) where (B′, B′′) ∈

B × B and n ∈ Lie(LG) is a nilpotent element such that if P ′ (resp. P ′′)
is the unique parabolic subgroup of type r containing B′ (resp. B′′) then
n ∈ Lie(P ′) (resp. n ∈ Lie(P ′′)). The group M acts on rZ and Zr in an
obvious way analogous to 7.4a.

7.6. The Varieties rẐ and Ẑr. Let rẐ (resp. Ẑr) be the variety of all
triples (n, P ′, B′) (resp. (n,B′′, P ′′)) such that B′ ∈ B and P ′ ∈ Pr (resp.
P ′′ ∈ Pr and B′′ ∈ B) and n is a nilpotent element in Lie(B′ ∩ P ′) (resp.
(Lie(P ′′ ∩ B′′))). The group M acts on rẐ and Ẑr in a manner analagous
to 7.4a.

7.7. The Complexes rE and Er. Let rπ : rZ → rẐ be defined by
(n,B′, B′′) → (n, πr(B′), B′′) (see 6.3) and πr : Zr → Ẑr be defined by
(n,B′, B′′)→ (n,B′, πr(B′′)).

Let rE (resp. Er) be the complex of M -equivariant vector bundles on rZ
(resp. Zr) defined by pulling back Êr by the map rZ → Λr, (n,B′, B′′) →
(n,B′) (resp. Zr → Λr, (n,B′, B′′) → (n,B′′)). We have the support of rE
(resp. Er) is precisely Z.

7.8. The Maps rτ and τ r. Following [KL2] we call a locally closed sub-
variety V of Z left-r-saturated (r ∈ S1) if

V = ((rπ)−1(rπ)V) ∩ Z.

Similarly call V right-r-saturated if

V = ((πr)−1(πr)V) ∩ Z.

Set V̂ = rπV. Let V be a left-r-saturated subvariety of Z stable under the
M -action 7.4a. Define a σRM -homomorphism

rτ : σKM
0 (V)→ σKM

0 (V)(7.8a)

by the composition

σKM
0 (V) j∗−→ σKM

0

(
Ṽ
)

(rπ)∗−−−→ σKM
0

(
V̂
)

(rπ)∗−−−→ σKM
0

(
Ṽ
) rE⊗−−→ σKM

0 (V).

(7.8b)

Here Ṽ = (rπ−1)V̂. The restriction of rπ to V is denoted again by rπ;
j : V ↪→ Ṽ is the inclusion, rE⊗ is as in 5.6 with respect to rE⊗ restricted
to Ṽ.
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We defined in a similar manner for an M -stable, right-r-saturated subva-
riety of Z

τ r : σKM
0 (V)→ σKM

0 (V)

by replacing in the previous definition rπ and rE⊗ by πr and Er⊗ respec-
tively.

In the forthcoming sections we will state properties of the maps rτ and
τ r. These properties are proved for analogous statements in [KL2, Sec. 3].
The proofs of these properties in all cases follow from the formal axioms
of K-homology and the various maps involved. Since the analogous axioms
hold in σK-homology and our maps are defined in the same manner as in
[KL2] we omit the proofs and refer to the proofs in [KL2].

7.9. An Alternative Definition of rτ . We give an alternative definition
of rτ . Let V be as in 7.8.

Let V′ = Ṽ ×̂
V

V, V′′ = V ×̂
V

V. Let pr′1 : V′ → Ṽ, pr′2 : V′ → V, and

pr′′1 : V′′ → V be the projections.
Let rẼ be the complex of M -equivariant vector bundles on V′ obtained

by pulling back rE|Ṽ by the map pr′1. The support of rẼ is V′′. Then rτ is
equal to the composition

σKM
0 (V)

pr′ ∗2−−→ σKM
0 (V′)

˜rE⊗−−→ σKM
0 (V′′)

(pr′′1 )∗−−−→ σKM
0 (V).(7.9a)

7.10. Compatibilty Properties of rτ . Now let V ⊂ V′ be two locally
closed, M -stable left-r-saturated subvarieties of Z and let i : V ↪→ V′ be the
inclusion. Then we have the following commutative diagrams.

If V is closed in V′ then

σKM
0 (V)

rτ−−−→ σKM
0 (V)

i∗

y i∗

y
σKM

0 (V′)
rτ−−−→ σKM

0 (V′)

(7.10a)

if V is open in V′ then

σKM
0 (V)

rτ−−−→ σKM
0 (V)

i∗
x i∗

x
σKM

0 (V′)
rτ−−−→ σKM

0 (V′)

.(7.10b)

Similar results apply to τ r.
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7.11. Examples. We will now work out the maps rτ and τ r in the particular
cases where V = Z and V = B × B. Here B × B is a subvariety of Z by the
closed immersion (B′, B′′)→ (0, B′, B′′) ((B′, B′′) ∈ B×B). Both B×B and
Z are obviously left-r-saturated.

In the case V = Z we have

rτ : σKM
0 (Z)→ σKM

0 (Z), and

τ r : σKM
0 (Z)→ σKM

0 (Z)

are the compositions

σKM
0 (Z) j∗−→ σKM

0 (rZ)
rπ∗−−→ σKM

0 (rẐ)
(rπ)∗−−−→ σKM

0 (rZ)
rE⊗−−→ σKM

0 (Z),

(7.11a)

and

σKM
0 (Z) j∗−→ σKM

0 (Zr)
πr∗−→ σKM

0 (Ẑr) πr∗−−→ σKM
0 (Zr) E

r⊗−−→ σKM
0 (Z)

(7.11b)

respectively.
In the case where V = B × B we have

rτ : σKM
0 (B × B)→ σKM

0 (B × B),(7.11c)

and

τ r : σKM
0 (B × B)→ σKM

0 (B × B)(7.11d)

are given by

σKM
0 (B × B) rφ∗−−→ σKM

0 (Pr × B) rφ
∗

−−→ σKM
0 (B × B)

rE⊗−−→ σKM
0 (B × B),

(7.11e)

and

σKM
0 (B × B)

(φr)∗−−−→ σKM
0 (B × Pr) φ∗r−→ σKM

0 (B × B) E
r⊗−−→ σKM

0 (B × B)

(7.11f)

respectively. Here rφ : B × B → Pr × B is πr × 1, φr : B × B → B × Pr is
1× πr, and rE⊗ (resp. Er⊗) denote rE ⊗ |B×B (resp. Er ⊗ |B×B).
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7.12. The Element 1. Define β : Λ → Z by β(n,B′) = (n,B′, B′) and
β′ : Λ→ B by β′(n,B′) = B′.

Let 1 ∈ σKM
0 (Z) be the image of the trivial σ-bundle C on B under the

composition

σKM
0 (B) β′ ∗−−→ σKM

0 (Λ) β∗−→ σKM
0 (Z).(7.12a)

We regard C as an element of σK0
M(B) ∼= σKM

0 (B) under the isomorph-
ism 5.17k.

7.13. The Bundles L· and ·L. Identify each L ∈ X∗(TΓ) with the cor-
responding LG-equivariant σ-trivial σ-line bundle (see 6.12). Denote by ·L
(resp. L·) the pullback of L along the M -equivariant map Z → B, (n,B′, B′′)
→ B′ (resp. (n,B′, B′′)→ B′′). We regard L as an M -equivariant σ-trivial
σ-line bundle on B with trivial action of C∗. Hence ·L,L· are naturally
M -equivariant σ-line bundles on Z.

8. The structure of Bsσ.
We will now describe the structure of the variety Bsσ. Let B and T be part
of the splitting of G and write B = TU where U is the unipotent radical of
B. For each w ∈W let

Uw =
∏

α>0,w−1α<0

Uα.

For convenience identify W with the set of fixed points of T on B. Then we
have B = tw∈WUww so that

Bσ = t
w∈WΓ

(Uw)σw.

Since every w ∈ W Γ is represented in N(T )σ (see [Bo]) we have for each
w ∈ W Γ that (Uw)σ is non-empty (see [ST1]). Therefore we have that Gσ

acts transitively on Bσ and we have immediately

Corollary 8.1. The variety Bσ is connected.

Corollary 8.2. The group Gσ acts transitively on Pσs for any s ∈ S1.

Proof. Let P1, P2 ∈ Pσs be distinct. We must show that there exists an
element g ∈ Gσ such that gP1g

−1 = P2. Let B1, B2 ∈ Bσ be such that
Bi ⊂ Pi, and B1 6= B2. Such Bi exists since σ fixes each Pi, see [ST1]. Then
there exists g ∈ Gσ such that gB1g

−1 = B2. Now gP1g
−1 is a parabolic

subgroup of type s, and moreover it contains gB1g
−1 = B2. Thus gP1g

−1 =
P2.
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Now let s ∈ T and W Γ
s be the subgroup of W Γ generated by the set of

α ∈ S1 which vanish on s.

Corollary 8.3. Let Bsσ be the variety of Borel subgroups of the group
Gsσ. Then we have

Bsσ ∼= Bsσ ×
WΓ
s

W Γ.

Proof. This is essentially proved in [ST3].

Now let s ∈ LG be an arbitrary semisimple element, and let n ∈ LieG
be such that Ad(s)n = qn. It is desirable to know that the variety Bsn is
non-empty. This was proved for the case LG = G in [L4]. We give here a
generalization.

Proposition 8.4. The variety Bsn = {B′ ∈ B|sB′s−1 = B′, and n ∈
Lie(B′)} is nonempty.

Proof. It is well known that Bs is non-empty. Choose B′ ∈ Bs and assume
that n 6∈ Lie(B′). Let u =exp(n). Then sus−1 = uq. Consider the map

φ : C→ B, λ→ uλB′u−λ.

This is an algebraic embedding of C ↪→ B. Let S denote the image of
φ. Write S̄ for the Zariski closure of S. Because B is complete we have
S̄ = S ∪ {B1} where B1 ∈ B. Because sus−1 = uq the action of s on B
restricts to an action of s on S. This action extends to S̄ and therefore s
fixes B1. The same argument applied to the u-action proves that u fixes B1.
Therefore n ∈ Lie(B1). This proves the proposition.

Even when s ∈ LG◦ this proof is different than the one in [L4].

9. A Splitting Theorem and Miscellany.

We can now state and prove an important theorem analogous to
[KL2, prop. 1.6] in the K-theory case. The proof follows from a straight-
forward imitation of [KL2]. In this section M = LG×C∗ , and X = X∗(TΓ)
(= the set of LG-equivariant σ-trivial σ-line bundles on B) are still in force.
We let G, σ,Γ, (B, T ), LG, LB, LT,B,W,W Γ be as in 3.1.

Proposition 9.1. Let Bw be the LG-orbit in B × B corresponding to the
element w ∈W Γ ⊂W (see 7.4a); Bw is a locally closed, M -stable subvariety
of B × B. The projection

p̃w : Bw → B, (B′, B′′)→ B′
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is equivariant with respect to the M -action on Bw and on B and induces an
isomorphism

p̃∗w : σKM
0 (B) ∼→ σKM

0 (Bw).(9.0a)

Proof. Immediate from 5.5 and 6.3.

For w ∈W Γ ⊂W let

Zw = {(n,B′, B′′) ∈ Z|B′ w→ B′′ (see 3.2)}.(9.0b)

With respect to the M -action on Z (see 7.4a) Zw is an M -stable subvariety
of Z.

Proposition 9.2. Let w ∈W Γ ⊂W . Then the projection

pw : Zw → B, (n,B′, B′′)→ B′

is equivariant with respect to the M -action on Zw and B respectively and
induces an isomorphism

(pw)∗ : σKM
0 (B) ∼→ σKM

0 (Zw).(9.0c)

Proof. Use 5.5.

9.1. Preparation. For w ∈ W let O(w) be the σ-orbit of w in W and let
lw be the cardinality of O(w). Let

BO(w) =
⊔

w′∈O(w)

Bw′ ,(9.1d)

where Bw′ is a copy of B. Equip BO(w) with a σ-action by letting σ : Bw →
Bσ(w) be the identity; BO(w) is an M -variety.

Let

ZO(w) =
⊔

w′∈O(w)

Zw′ .(9.1e)

It is clear that the ZO(w) form a partition of Z into locally closed M -stable
subvarieties.

Proposition 9.3. The projection

pO(w) : ZO(w) → BOw , (n,B′, B′′)→ B′
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is M -equivariant morphism of varieties and induces the isomorphism

p∗O(w) : σKM
0 (BOw) ∼→ σKM

0 (ZOw).(9.1f)

Proof. Use 5.5.

We may now state

Proposition 9.4. σKM
0 (Z) is a projective σRM -module of rank |W Γ|2,

and σKM
1 (Z) = 0.

Proof. We claim that for w ∈W

σKM
0 (ZO(w)) =

{
0 if lw > 1 (see 9.1),
σKM

0 (B) if lw = 1.
(9.1g)

Consider the case where lw > 1. We know that σKM
0 (BO(w)) ∼=

σKM
0 (ZO(w)) (see 9.1f). The group M acts transitively on BO(w). If B′ ∈

BO(w) it is easily seen that the stabilizer of B′ in M does not meet the
Frobenius component of LG. Therefore we have σKM

0 (ZO(w)) = 0 by 5.19m.
If lw = 1 then w ∈W Γ and O(w) = w and the claim follows from 9.0c.
By 9.1g, 5.19m and 6.3 we easily see that for each w ∈W Γ:

σKM
1 (Zw) = 0 and σKM

0 (Zw) is a projective σRM -module of rank |W Γ|.

Now the proposition follows from the exact sequences of 5.16 applied to
the partition of Z by the ZO(w) (w ∈W ).

The same method of proof yields

Proposition 9.5. The group σKM
0 (B ×B) is a projective σRM -module of

rank |W Γ|2.

Recall (see 5.4) that we have a natural σRM -homomorphism

� : σKM
0 (B) ⊗

σRM

σKM
0 (B)→ σKM

0 (B × B).

In [KL2] it was proved that the analogous map in K-theory is an isomor-
phism. It turns out that the essense of this proof works equally well in the
case of σK-theory. The proof is an almost word-for-word reproduction of the
proof in [KL2].
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9.2. The Splitting Theorem. Let G and LG be as in 3.1.

Proposition 9.6. The natural map

� : σK0
LG(B) ⊗

σRLG

σK0
LG(B)→ σK0

LG(B × B)

is an isomorphism.

Proof. Let (B, T ), σ,Γ, LB, LT and W be as in 3. Recall that G is the con-
nected component of the identity of LG.

Recall that Σ is the root system of G with respect to T . The action of
B on the tangent space at B of B determines a positive system of roots Σ+

in Σ opposite the positive system determined by B. Let Π be the basis of
Σ determined by Σ+. The action of σ on the tangent bundle of B induces a
σ-action on the fiber over B and hence an action on Π. From this we may
form the root system Σ1 exactly as in (3.12). This system has a canonical
basis Π1 and a positive root in Σ1 is understood to be positive with respect
to Π1. We identify Σ1 with its image in σRLT .

The natural homomorphism σRLG → σRLT is injective with image equal
to the W Γ-invariants σRWΓ

LT .
By 3.3 we have elements ev ∈ σRLT one for each v ∈W Γ, such that

(1) The ev (v ∈W Γ) form a basis of σRLT as an σRWΓ

LT - module and
(2) det(u(ev))(u,v)∈WΓ×WΓ = ∆|W

Γ|/2 where ∆ = Π(α1/2 − α−1/2) ∈ σRLT ,
(product over all positive roots α). (When |W Γ| = 1, both sides of ( 2)
are 1.)

Let ( , ) : σK0
LG(B)×σK0

LG(B)→ σRLG be the pairing defined by (E,E′) =
π∗(E⊗E′) where π : B → point is the natural map and π∗ is the direct image
in σK0

LG-theory (this is derived from the direct image in K0
LG-theory in the

usual way).
Using the natural identification σK0

M(B) = σRLB = σRLT and 5.22 along
with the Atiyah-Hirzebruch version [KL1, Sec. 1.7] of the Riemann-Roch
theorem, the Borel-Weil-Bott theorem (see [Bt]) and the twisted Weyl char-
acter formula 5.21 the pairing becomes ( , ) : σRLT × σRLT → σRWΓ

LT given
by

(α, β) = ∆−1
∑
w∈WΓ

εww(αβρ),(9.2h)

where εw is the sign of w ∈W Γ and ρ2 is the product of all positive roots.
The proof of [KL2, Prop 1.6] shows that

det((ev, ev′))(v,v′)∈WΓ×WΓ = 1;(9.2i)
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where the determinant is a matrix with entries in σRWΓ

LT . It now follows that
there is a unique basis êv (v ∈W Γ) of σRLT as an σRWΓ

LT -module such that

(ev, êv′) = δv,v′ .(9.2j)

We now define F : σK0
LG(B × B)→ σK0

LG(B) ⊗
σRLG

σK0
LG(B) by

F (ξ) =
∑
v∈WΓ

êv � (π2)∗(π∗1(ev)⊗ ξ),(9.2k)

where π1, π2 : B ×B → B are the two projections and π∗1 (resp. (π2)∗) is the
inverse (resp. direct) image in σK0

LG-theory. We regard ev, êv as elements in
σK0

LG(B) = σRLT (see 5.19l). We now show that

F (η1 � η2) = η1 � η2, for any η1, η2 ∈ σK0
LG(B).(9.2l)

By using the projection formula in equivariant σK-theory and applying base
change 5.14 to the diagram

B × B π2−−−→ B
π1

y π

y
B π−−−→ pt

(9.2m)

the left hand side of 9.2l equals∑
v∈WΓ

êv � (π2)∗((π1)∗(ev ⊗ η1)⊗ (π2)∗η2)

=
∑
v∈WΓ

êv � (π2)∗(π1)∗(ev ⊗ η1)⊗ η2

=
∑
v∈WΓ

êv � (π∗(π∗(ev ⊗ η1))⊗ η2)

=
∑
v∈WΓ

êv � (ev, η1)η2

=

( ∑
v∈WΓ

(ev, η1)êv

)
� η2

= η1 � η2,

(9.2n)

and 9.2l is proved. From this we see that the map � in the proposition is
injective and its image is a direct summand as a σRLG-module. It is therefore
enough to show that � is a map between two projective σRLG-modules of
the same rank (= |W Γ|2). The σRLG-module σK0

LG(B) ⊗
σRLG

σK0
LG(B) is free

of rank |W Γ|2 by 3.3, and the σRLG-module σK
LG
0 (B × B) is projective of

rank |W Γ|2 by 9.5. This completes the proof.
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9.3. An Element of σK0
LG(B × B). With the notations as in the previous

section, let i : B → B × B be the diagonal embedding. Identify i∗(C) ∈
σK0

LG(B × B) with an element σRLT ⊗
σRLG

σRLT , using proposition 9.6. Let

φ ∈ EndσRLG
(σRLT ) and let tφ be its transpose with respect to the inner

product ( , ) : σRLT × σRLT → σRLG in 9.6. We claim that

i∗(C) =
∑
v∈WΓ

êv ⊗ ev(9.3o)

under the above identification. To see this note that

F (i∗(C)) =
∑
v∈WΓ

êv � (π2)∗(π∗1(ev)⊗ i∗C).

But we claim that (π2)∗(π∗1(ev)⊗ i∗(C)) = ev. To see this let D ⊆ B × B be
the diagonal subvariety and let p1, p2 : D → B be the projections. Then we
have (via the Riemann-Roch theorem to switch to the algebraic theory)

(π2)∗(π∗1(ev)⊗ i∗(C)) = (p2)∗(p1)∗(ev) = ev.

This proves the claim.
We now see immediately that

(φ⊗ 1)(i∗C) = (1⊗ tφ)(i∗(C)).(9.3p)

10. The Regular Represention of H.

In this section we let M = LG× C∗, and X = X∗(TΓ) throughout.
10.1. The Main Theorem.

Theorem 10.1.
(a) Regard σKM

0 (Z) as a σRM = A[X]W
Γ−module (6.2). There is a unique

left (resp. right) H-module structure on σKM
0 (Z), (h, ξ) → hξ (resp.

(ξ, h)→ ξh), h ∈ H, ξ ∈σKM
0 (Z) extending the A[X]W

Γ−module struc-
ture such that for all ξ ∈ σKM

0 (Z), r ∈ S1, L ∈ X we have

Trξ = (qλ(r) − rτ)(ξ) (resp. ξTr = (qλ(r) − τ r)(ξ)),

see 7.11a and 7.11b,
(10.1a)

θLξ = ·L⊗ ξ (resp. ξθL = L· ⊗ ξ), see 7.13 and 5.9.
(10.1b)

(b) The two maps H→ σKM
0 (Z), h→ h1 and h→ 1h (see 7.12) coincide.

(c) The two maps in (b) are isomorphisms.
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10.2. An Auxillary Theorem. As in [KL2, Sec. 3.6] we admit the fol-
lowing result for the moment.

Proposition 10.2.
(a) There is a unique left (resp. right) H-module structure on σKM

0 (B×B),
(h, ξ)→ hξ (resp. (ξ, h)→ ξh), h ∈ H, extending the A[X]W

Γ−module
structure (see 6.2) such that

Trξ = (qλ(r) − rτ)(ξ), (resp. ξTr = (qλ(r) − τ r)ξ),

see 7.11e and 7.11f
(10.2c)

θLξ = (L� 1)⊗ ξ, (resp. ξθL = (1� L)⊗ ξ).
(10.2d)

(b) Let α : B → B×B be the diagonal embedding and let A ∈ σKM
0 (B×B)

be defined as α∗(C).
For a positive root L ∈ Σ2 set

γ(L) =

{
qλ(L) if L is of type I,

q
λ(L)+λ∗(L)

2 − q λ(L)−λ∗(L)
2 if L is of type II.

(10.2e)

Let

q =
(
q
λ(r)+λ∗(r)

2 − q λ(r)−λ∗(r)
2

)
,

and

φ+ =
∏(

1− qλ(r)Lr
)∏(

1− qLs − qλ(s)L2
s

)
,

where the first product is over all positive roots of type I while the second
product is over all positive roots of type II. Note that if S1 has no type II
roots (which is the case, for insance, if Σ is of type Dn) then the second
product is vacuous. Let θφ+ be the corresponding element of H. Then, for
any h ∈ H, we have θφ+hA = Ahθφ+.

10.3. The Auxillary Theorem Implies the Main Theorem. We now
show how 10.2 implies 10.1(a) and (b). Fix a complex number q, ql 6= 1
where l is the order of σ and consider the diagram

σKM
0 (B × B) j∗−−−→ σKM

0 (Z)y yf2

σKM
0 (B × B)loc

≈−−−→
f1

σKM
0 (Z)loc
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where j : B × B → Z, (B′, B′′) → (0, B′, B′′). The symbol “loc” denotes
localization with respect to the maximal ideal of σRM corresponding to
(σ, q) ∈M (see 5.1) and the vertical maps are the obvious maps. We have f1

is the map induced by j∗ on the localizations. We know f1 is an isomorphism
because the set of fixed points of (σ, q) on Z is the set j(Bσ × Bσ), and

therefore Z(σ) = j

( ⊔
w∈WΓ

Bw
)

(see 9.1). Thus j∗ : σKM
0 (B × B) → σKM

0 (Z)

induces an isomorphism on the localizations by 5.15. We claim that the map
f2 is injective: this follows because σKM

0 (Z) is a projective σRM -module (see
Prop. 9.4).

Now f1 and f2 above have the stated properties. To see Theorem 10.1(a)
we must see that certain identities hold for for the actions of the genera-
tors of H on σKM

0 (Z). These identities hold for the analogous actions on
σKM

0 (B × B) (by 10.2) hence they hold on σKM
0 (B × B)loc, hence they hold

on σKM
0 (Z)loc (by the compatibility of these actions and since f1 is an iso-

morphism), hence they hold on σKM
0 (Z), since f2 is injective. The same

argument shows that in the resulting H-module structures the centre of H
acts in the same way A[X]W

Γ
acts by the σRM -module structure. This

proves 10.1(a). We now prove 10.1(b). Let

δ : B → Λ

be defined by δ(B′) = (0, B′). The calculations in 6.15 along with 5.13f
combine to show that

δ∗(C) = β′ ∗(φ+),

where φ+ is regarded as an element of σKM
0 (B) = A[X], (see 6.11).

With the notations of 10.2 and 7.12 we have:

j∗A = j∗α∗C = β∗δ∗(C) = β∗β
′ ∗(φ+) = θφ+β∗β

′ ∗(C) = θφ+1 = 1θφ+ .
(10.3f)

From the definitions it follows immediately that θL1 = 1θL for any σ-trivial
σ-line bundle L ∈ X. Let h1 ∈ H. By 10.2(b) we have θφ+h1A = Ah1θφ+ .
Apply j∗ to the last equality and use the compatibility of the H-actions with
j∗. We obtain θφ+h1j∗(A) = j∗(A)h1θφ+ . Substituting j∗A = 1θφ+ = θφ+1
(by 10.3f), we get

θφ+h1θφ+1 = 1θφ+h1θφ+ .(10.3g)

We write 10.3g for h1 in the form θφ−h2θφ− where h2 ∈ H and φ− and θφ− are
defined just like φ+ and θφ+ (see 10.2(b)) but using negative roots instead
of postitive roots. Note that φ+φ− ∈ A[X]W

Γ
hence z = θφ+θφ− is in the
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center of H (see 6.20). It acts as multiplication by the corresponding element
in σRM . Thus in our case 10.3g becomes zh2z1 = 1zh2z and z commutes
with everything hence z2(h21) = z2(1h2). By 9.4 we know σKM

0 (Z) is a
projective σRM -module, hence we can cancel z2 from the last equality. Hence
h21 = 1h2 as desired.

We note that the above arguments were taken almost word for word from
[KL2] (with the necessary modifications for σK theory). This will be a
general pattern in this section. Once the basic notations are set, the ar-
guments needed for most proofs are formal consequences of the axioms of
K-homology.

10.4. Two Lemmas. We need some lemmas. Recall that to each simple
reflection r ∈ S1 there corresponds a σ-trivial σ-line bundle Lr (see 6.12).

Lemma 10.3. There is a unique left H-module structure on A[X] (denoted
h • ξ) extending the obvious A-module structure and such that for r ∈ S1,
and L,L1 ∈ X we have

Tr • L =


L− rL
Lr−1

− qλ(r) L− rLLr
Lr−1

if r is type I,

L− rL
L2
r−1
− qλ(r) L− rLL2

r

L2
r−1

−Lr
(
q
λ(r)+λ∗(r)

2 − q λ(r)−λ∗(r)
2

)
L− rL
L2
r−1

if r is type II.

(10.4h)

θL1 • L = L−1
1 L.(10.4i)

Proof. The proof follows exactly as in [KL2, Prop. 3.9] using the Hecke
algebra relation 6.17p.

Lemma 10.4. There is a unique left H-module structure (denoted h ◦ ξ)
on A[X] extending the obvious A-module structure and such that for s ∈ S1

and L,L1 ∈ X

Tr ◦ L =


rL−LLr
Lr−1

+ qλ(r) LLr− rLL−1
r

Lr−1
if r is type I,

rL−LL2
r

L2
r−1

+ qλ(r) LL
2
r− rLL−2

r

L2
r−1

−L−1
r

(
q
λ(r)+λ∗(r)

2 − q λ(r)−λ∗(r)
2

)
rL−L2

rL

L2
r−1

if r is type II.

(10.4j)

θL1 ◦ L = L1L.(10.4k)
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Proof. An elementary calculation shows that

Tr ◦ L = (φ+)−1T ∗r • (φ+L),(10.4l)

and

θL1 ◦ L = (φ+)−1(θ∗L1
• (φ+L)).(10.4m)

Here ∗ is as in 6.22 and φ+ is as in 10.2. We note that to perform the
calculation one must use the fact that A[X] is a an integral domain. Now
the lemma follows from 10.3 and 6.22.

10.5. A Computation. In this section we compute Trξ explicitly for r ∈ S1

and ξ ∈ σKM
0 (B × B) of the form L1 � L2 (see 9.6).

Case 1. r is of type I. Let ξ = L1 � L2. Then by 6.14d (and 5.12)

(rφ)∗(rφ)∗(ξ) =

(
(Lr)−d − 1
(Lr)−1 − 1

L1

)
� L2,(10.5n)

where d is the twisted Euler characteristic (see 5.21) of L1 restricted to any
fiber of the map πr : B → Pr (6.3); and rφ : B × B → Pr × B is πr × 1.
Using 6.16m and 7.11e we calculate

Trξ = (qλ(r) − rτ)(ξ)

= qλ(r)L1 � L2 − (1− qλ(r)L−1
r � 1)(rφ)∗(rφ)∗(L1 � L2)

= qλ(r)L1 � L2 +

(
L−dr − 1
1− L−1

r

L1 − qλ(r)L−1
r

L−dr − 1
1− L−1

r

L1

)
� L2

=

(
L−dr − 1
1− L−1

r

L1 + qλ(r)

(
L1 + L−1

r

1− L−dr
1− L−1

r

L1

))
� L2.

(10.5o)

Now multiply the last line by Lr
Lr

and use the fact that rL = LL−d+1
r

(see 6.13c) and continue

=

(
rL1 − L1Lr
Lr − 1

+ qλ(r)

(
L1(Lr − 1)
Lr − 1

− L1(1− L−dr )
Lr − 1

))
� L2

=
( rL1 − L1Lr

Lr − 1
+ qλ(r)L1Lr − rL1L

−1
r

Lr − 1

)
� L2,

(10.5p)
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which proves Case 1.

Case 2. r is of type II.
As in Case 1, we consider ξ ∈ σKM

0 (B × B) of the form ξ = L1 � L2.
By 6.14d we have

(rφ)∗(rφ)∗ξ =

(
(Lr)−2d − 1
(Lr)−2 − 1

)
L1 � L2,(10.5q)

where d is the twisted Euler characteristic of L1 restricted to any fiber of
πr : B → Pr. Then using 6.14d we have

Trξ = (qλ(r) −r τ)(L1 � L2)

= qλ(r)L1 � L2 −
[
1−

(
q
λ(r)+λ∗(r)

2 − q
λ(r)−λ∗(r)

2

)
L−1
r

− qλ(r)L−2
r

]L−2d
r − 1
L−2
r − 1

L1 � L2

=

[
L−2d
r − 1

1− L−2
r

L1 + qλ(r)

(
1− L−2

r

1− L−2
r

L1 − L−2
r

L−2d
r − 1

1− L−2
r

L1

)

−
(
q
λ(r)+λ∗(r)

2 − q
λ(r)−λ∗(r)

2

)
L1L

−1
r

L−2d
r − 1

1− L−2
r

]
� L2.

(10.5r)

Now multiply the last line by L2
r

L2
r

and use the fact that rL = LL−2d+2
r (see

6.13c) and continue

=

[
L−2d+2
r L1 − L2

rL1

L2
r − 1

+ qλ(r)

(
L1L

2
r − L1 − L−2d

r L1 + L1

L2
r − 1

)

−L−1
r

(
q
λ(r)+λ∗(r)

2 − q
λ(r)−λ∗(r)

2

) L−2d+2
r L1 − L2

rL1

L2
r − 1

]
� L2

=
[ rL1 − L2

rL1

L2
r − 1

+ qλ(r)

(
L2
rL1 −r L1L

−2
r

L2
r − 1

)
−L−1

r

(
q
λ(r)+λ∗(r)

2 − q
λ(r)−λ∗(r)

2

) rL1 − L2
rL1

L2
r − 1

]
� L2,

(10.5s)

which proves Case 2.

10.6. Proof of Proposition 10.2. We identify σKM
0 (B) with A[X] as

in 6.10 and so obtain σKM
0 (B × B) = A[X] ⊗

A[X]WΓ
A[X] by 9.6. With these



HECKE ALGEBRAS OF UNFAMIFIED GROUPS 51

identifications and the calculations of 10.5 we see that the endomorphism
ξ → Trξ (resp. ξ → ξTr) in 10.2 is just

L1 � L2 → (Tr ◦ L1)� L2 (resp. L1 � L2 → L1 � (Tr ◦ L2)).

Similarly the endomorphism ξ → θLξ (resp. ξ → ξθL) in 10.2 is just L1 �
L2 → (θL ◦ L1)� L2 (resp. L1 � (θL ◦ L2)).

Therefore 10.2(a) follows from 10.4 (for the left action) and from 10.4
and 6.21 (for the right action). The fact that in the resulting H-module
structure the action of the centre A[X]W

Γ
= σRM coincides with the nat-

ural σRM -module structure on σKM
0 (B × B) follows immediately from the

definitions.
We also see that the H-module structures in 10.2(a) satisfy

h(L1 � L2) = (h ◦ L1)� L2,(10.6t)

(L1 � L2)h = L1 � (h̃ ◦ L2),(10.6u)

for h ∈ H, L1, L2 ∈ X, h→ h̃ as in 6.21.
10.7. A Lemma. Following [KL2] for each L ∈ X we set Alt(L) =∑
w∈WΓ εw

wL, where εw=sign of w.
Let Lρ ∈ X be the element such that L2

ρ is the product of all positive
roots in Σ1. We consider the A[X]W

Γ
-bilinear symmetric pairing ( , ) :

A[X]×A[X]→ A[X]W
Γ

defined by

(L1, L2) = Alt(L1L2Lρ) ·Alt(Lρ)−1,

which coincides under the identification A[X] = σKM
0 (B) with the pairing

given in the proof of 9.6. Then as in [KL2, Sec. 3.12] we easily check that

(T ∗r • L1, L2) = (L1, Tr ◦ L2), for all r ∈ S1, L1, L2 ∈ X.(10.7v)

Lemma 10.5. For all h ∈ H, η, η′ ∈ A[X], we have

((θφ+h) ◦ η, η′) = (η, (θφ+ h̃) ◦ η′).
Proof. Follows exactly as in [KL2]. It is enough to check on the generators
Tr and θL of H. The case where h = θL is trivial. The case where h = Tr
follows from 10.4l.

10.8. Proof of Theorem 10.1. We now prove 10.1(b). By 10.5, for any
h ∈ H, the A[X]W

Γ
endomorphism φ : η 7→ (θφ+h) ◦ η of A[X] has as

transpose with respect to ( , ) the endomorphism tφ : η 7→ h̃θφ+ ◦η of A[X].
By 9.3, we have (φ ⊗ 1)A = (1 ⊗ tφ)A where A is regarded as an element
of A[X] ⊗

A[X]WΓ
A[X]. In view of 10.6t, the last equality is: θφ+hA = Ahθφ+ .

This proves 10.2(b). Thus 10.2 and therefore also 10.1(a) and (b) are proved.
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10.9. Preparation for Proof of Theorem 10.1(c). The rest of this chap-
ter is concerned with the proof of 10.1(c). To simplify notations, in the rest
of this section we shall write K() instead of σKM() and K1() instead of
σKM

1 (). This section, with the exception of the σK-functor, is [KL2], pp.
178-182, and has been reproduced here with the permission of Kazhdan and
Lusztig.

We define Z≤w = ∪
y≤w

Zy. We define similarly Z<w, Z≥w, Z>w.

A subset I of W is said to be closed (resp. open) if w1 ∈ I, w2 ≤ w1 ⇒
w2 ∈ I (resp. if w1 ∈ I, w2 ≥ w1 ⇒ w2 ∈ I). A subset I of W is said
to be locally closed if it is of the form I ′ ∩ I ′′ where I ′ ⊂ W is closed and
I ′′ ⊂ W is open. For a locally closed subset I of W we define ZI = ∪

y∈I
Zy.

Then ZI is a locally closed subvariety of Z; moreover, ZI is a closed (resp.
open) subvariety if I is a closed (resp. open) subset of W . For example
Z≤w, Z<w above are closed and Z≥w, Z>w are open. Note that ZI an M -
stable subvariety of Z if and only if I is a σ-invariant subset of W .

Lemma 10.6. If I is a locally closed σ-invariant subset of W , then
K1(ZI) = 0 and K(ZI) is a projective σRM -module of rank |I ∩W Γ| · |W Γ|.

Proof. Using the partition of ZI into the pieces Zy (y ∈ I ∩W Γ) and ZO(y)

(y 6∈ I ∩ W Γ; O(y) = σ-orbit of y) we may proceed as in the proof of
Proposition 9.4.

10.10. Facts I. We now state some results which are immediate conse-
quences of 10.6 and the exact sequences 5.16.

Let w ∈W Γ. Then the imbeddings

i≤w : Z≤w ↪→ Z and jw : Zw ↪→ Z≥w

induce injective maps

(i≤w)∗ : K(Z≤w)→ K(Z), (jw)∗ : K(Zw)→ K(Z≥w).(10.10w)

10.11. Facts II. The embeddings i≥w : Z≥w → Z and j′w : Zw ↪→ Z≤w
induce surjective maps

(i≥w)∗ : K(Z)→ K(Z≥w), (j′w)∗ : K(Z≤w)→ K(Zw).(10.11x)

(i≥w)∗(i≤w)∗ = (jw)∗j′∗w : K(Z≤w)→ K(Z≥w), by base change, (5.14).
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10.12. Facts III. If I ⊂ W is closed and σ-invariant, then the image of
the injective map (iI)∗ : K(ZI) → K(Z) induced by iI : ZI → Z coincides
with the sum of the images of (i≤w)∗ in 10.10w for all w ∈ I ∩W Γ.
10.13. Conclusion of Proof of Theorem 10.1(c). We fix r ∈ S1 (see
3.20) and w ∈W Γ such that rw < w. Note that l(w) = l(rw) + l(r). Here l
represents the length function on w.

It is clear that Z≤w and Z≥w are left-r-saturated subvarieties of Z (see
7.8) hence we have natural operations

rτ : K(Z≤w)→ K(Z≤w), rτ : K(Z≥w)→ K(Z≥w),

and these are compatible with rτ : K(Z)→ K(Z) via (i≤w)∗(i≥w)∗.

Lemma 10.7. Let r ∈ S1, w ∈ W Γ be such that rw < w. Then there is a
unique σRM -isomorphism ρ1 : K(Zrw) ∼→ K(Zw) such that the diagram

K(Z≥rw)

K(Z)

K(Zrw)

K(Z≥rw)

K(Z)

K(Zw)

K(Z≥w)- -

-

-

@
@
@
@I

�
�
�
��

@
@

@
@I

@
@
@
@R

�
�
�
�	

ρ1

≈

rτ

(jrw)∗ (jw)∗

i∗≥wi∗≥rw

d∗rτ

is commutative. (Here, d : Z≥w ↪→ Z≥rw is the inclusion.)

Proof. The uniqueness of ρ1 is clear since (jw)∗ is injective 10.10w. To prove
existence we introduce some notations. Let

Z̃≥rw = set of all (u,B′, B1, B
′′) with (u,B1, B

′′) ∈ Z≥rw and B′
≤r→ B1,

uZ̃≥rw = {(u,B′, B1, B
′′) ∈ Z̃≥rw|u ∈ B′},

Z̃rw = set of all (u,B′, B1, B
′′) with (u,B1, B

′′) ∈ Zrw and B′
≤r→ B1,

uZ̃rw = {(u,B′, B1, B
′′) ∈ Z̃rw|u ∈ B′},

Z ′rw = {(u,B′, B1, B
′′) ∈ Z̃rw|B′ r→ B1},

uZ
′
rw = {(u,B′, B1, B

′′) ∈ Z ′rw|u ∈ B′}.
Let Ẽ be the complex of M -equivariant vector bundles on Z̃≥rw obtained

by taking the pullback of Êr (see 7.3) under the map Z̃≥rw → Λr,

(u,B′, B1, B
′′) 7→ (u,B′).



54 NEIL A. CHRISS

Then Ẽ is acyclic on Z̃≥rw r uZ̃≥rw. The restriction of Ẽ to the subvariety
Z̃rw (resp. Z ′rw) is denoted Ẽ1 (resp. Ẽ2). By 5.6 we have

Ẽ⊗ : K(Z̃≥rw)→ K(uZ̃≥rw),

Ẽ1⊗ : K(Z̃rw)→ K(uZ̃rw),

Ẽ2⊗ : K(Z ′rw)→ K(uZ ′rw).

These fit into the following commutative diagram

K(Z≥rw)

K(Zrw)

K(Z ′rw)

K
(
Z̃rw

)
K
(
Z̃≥rw

)

K(uZ ′rw)

K
(
uZ̃rw

)
K
(
uZ̃≥rw

)

K(Zw)

K(Z≥rw) K(Z≥w)

6

-

-

@
@
@
@R

6

?

-

-

-

6

?

-

-
�
�
���

�
�
�
��

�
�
���

-

f∗1

f∗

f∗2

Ẽ⊗

Ẽ1⊗

Ẽ2⊗

g∗

d∗1

(g2)∗

(g1)∗

d∗

Here f1, f2 are the restrictions of the flag variety bundle

f : Z̃≥rw → Z≥rw, ((u,B′, B1, B
′′) 7→ (u,B1, B

′′))

to Z̃rw, Z ′rw; g : uZ̃≥rw → Z≥rw is defined by g(u,B′, B1, B
′′) = (u,B′, B′′)

and g1, g2 are its restrictions to uZ̃rw, uZ
′
rw. The map d1 : Zw ↪→ uZ̃rw is

defined by d1(u,B′, B′′) = (u,B′, B1, B
′′) where B1 is such that B′ r→ B1

rw→
B′′. The remaining un-named upward arrows are direct image maps induced
by obvious closed imbeddings; the un-named downward arrows are inverse
image maps induced by obvious open imbeddings.

The compositions of the arrows on the highest line in the diagram is the
same (by the equivalence of the definitions 7.9a, 7.9) as the composition of
the arrows d∗rτ in the first diagram. We define ρ1 to be the composition of
the arrows in the second to highest horizontal line in the above diagram. It is
clear that with this choice of ρ1, as we have just defined it, the first diagram
is commutative. From the above diagram we see that it is enough to show
that f∗2 , Ẽ2⊗, (g2)∗ are isomorphisms. For (g2)∗ this is clear since g2 is an
isomorphism of varieties. The map f2 is a unipotent bundle see 5.5; hence
f∗2 is an isomorphism by (5.5). Let Z ′′rw be the set of all (u,B′, B1, B

′′, T )
where (u,B′, B1, B

′′) ∈ Z ′rw and T is a maximal torus in B1 ∩B′′. Let uZ
′′
rw

be the subvariety of Z ′′rw defined by the condition u ∈ B′. Let π : Z ′′rw → Z ′rw
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be the unipotent bundle (u,B′, B1, B
′′, T )→ (u,B′, B1, B

′′) and let π1 be its
restriction uZ

′′
rw → uZ

′
rw (again a unipotent bundle). Let Ẽ3 be the complex

on Z ′′rw obtained by pulling back Ẽ2 under π. It gives rise by (5.6) to a
natural map

Ẽ3⊗ : K(Z ′′rw)→ K(uZ ′′rw),

and we have a commutative diagram

K(Z ′rw) Ẽ2⊗−−−→ K(uZ ′rw)

π∗
y≈ π∗

y≈
K(Z ′′rw) Ẽ3⊗−−−→ K(uZ ′′rw)

.

To show that Ẽ2⊗ is an isomorphism it is then enough to show that Ẽ3⊗ is
an isomorphism. Now Z ′′rw is in a natural way a vector bundle over uZ ′′rw and
the natural inclusion uZ

′′
rw ↪→ Z ′′rw is the zero section of this vector bundle;

we are in the situation considered in 5.13 hence Ẽ3⊗ is an isomorphism. This
completes the proof of the lemma.

Lemma 10.8. Let r ∈ S1, w ∈W Γ be such that rw < w. Then
(a) The image of (i≤w)∗ : K(Z≤w) ↪→ K(Z) is stable under rτ .
(b) For any x ∈ K(Z≤w) there exists x′ ∈ K(Z≤rw) such that x − rτx′ is

in the image of (i<w)∗ : K(Z<w) → K(Z). (Here i<w : Z<w ↪→ Z is
the inclusion and x, x′ denote the images of x, x′ under (i≤w)∗, (i≤rw)∗
respectively.)

Proof. (a) follows from 10.13. We now prove (b). Let x ∈ K(Z≤w). By
10.11x we have (i≥w)∗x = (jw)∗x1 for some x1 ∈ K(Zw). Let x2 = ρ−1

1 (x1) ∈
K(Zrw) (see 10.7). Using again 10.11,10.11x for rw, we see that (jrw)∗x2 =
i∗≥wx

′′ for some x′′ ∈ K(Z≤rw). From the diagram in the statement of lemma
10.7 we have

i∗≥w
rτx′′ = d∗rτi∗≥rwx

′′ = d∗rτ(jrw)∗x2

= (jw)∗ρ1x2 = (jw)∗x1 = (i≥w)∗x.

Thus i∗≥w(rτx′′− x) = 0. Since x, x′′ are in the image of (i≤w)∗, we see from
(a) that rτx − x = (i≤w)∗y for some y ∈ K(Z≤w). We have i∗≥w(i≤w)∗y = 0
hence by 10.11x, (jw)∗(j′w)∗y = 0 and by 10.10w we have (j′w)∗y = 0. From

the exactness of K(Z<w) → K(Z≤w)
(j′w)∗−→ K(Zw), 5.16, we see that y is the

image of some z ∈ K(Z<w) under K(Z<w) → K(Z≤w). We have (i≤w)∗y =
(i<w)∗z and the lemma is proved.
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We can now prove the following result which is actually stronger than
10.1a(c).

Lemma 10.9. For any w ∈W Γ, let H≤w be the A-submodule of H spanned
by all Tw′ΘL (w′ ≤ w,w′ ∈W Γ, L ∈ X) or, equivalently, by all ΘLTw′ (w′ ≤
w,w′ ∈ W Γ, L ∈ X). Let K≤w be the image of (i≤w)∗ : K(Z≤w) → K(Z).
Then h 7→ h1 defines an isomorphism of H≤w onto K≤w.

Proof. In the case where w = e, the result follows from 6.11. Assume now
that w 6= e and that the result is known for all w′ such that w′ < w with
w′ ∈W Γ. Let r ∈ S1 be such that rw < w. We first show that H≤w1 ⊂ K≤w.
Since K≤w is clearly stable by multiplication by ΘL(L ∈ X) it is enough to
show that Ty1 ∈ K≤w,∀y ≤ w. If y < w, then by the induction hypothesis,
Ty1 ∈ K≤y ⊂ K≤w. Assume now that y = w. By the induction hypothesis,
Trw1 ∈ K≤w. By 10.8(a), we have TrK≤w ⊂ K≤w hence Tw1 = TrTrw1 ⊂
K≤w. Hence our map H≤w → K≤w is well defined.

Let x ∈ K≤w. By 10.8(b), there exists x′ ∈ K≤w such that x− (q− Tr)x′
is in the image of (i<w)∗, hence, by 10.12 it is of the form

∑m
i=1 xi

′′ where
xi
′′ ∈ K≤wi , wi < w, (i = 1, 2, . . . ,m). By the induction hypothesis we have

x′ ∈ H≤rw1. Note that TrH≤rw ⊂ H≤w. Hence x ∈ H≤w1. Thus, our map
H≤w → K≤w is surjective.

It is an σRM -linear map between projective σRM -modules of the same
rank |I ∩W Γ||W Γ|, where I = {w′|w′ ≤ w}. (For H≤w this is clear from
6.18,6.20, and proof of 9.6(1), for K≤w ∼= K(Z≤w) this follows from 10.6.)
This implies that H≤w → K≤w must be an isomorphism. The lemma is
proved.

Since 10.1(c) is the special case of the lemma when w is the longest element
of W , we see that 10.1(c) is proved.
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