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ESSENTIAL NORMS OF COMPOSITION OPERATORS AND
ALEKSANDROV MEASURES

Joseph A. Cima and Alec L. Matheson

The essential norm of a composition operator on H2 is cal-
culated in terms of the Aleksandrov measures of the inducing
holomorphic map. The argument provides a purely function-
theoretic proof of the equivalence of Sarason’s compactness
condition for composition operators on L1 and Shapiro’s com-
pactness condition for composition operators on Hardy spaces.
An application is given relating the essential norm to angular
derivatives.

§1.

If φ is a holomorphic map of the unit disk D into itself, it is a consequence
of Littlewood’s subordination principle [5] that composition with φ induces
a bounded operator Cφ on each Hardy space Hp. A recurring theme in the
study of composition operators has been the search for function theoretic
conditions on φ which guarantee the compactness of Cφ on Hp. It was
shown by Shapiro and Taylor [11] that if Cφ is compact on Hp for some
0 < p <∞, then Cφ is compact on Hp for all 0 < p <∞, and so it is enough
to study compactness on H2. In this context Shapiro [9] gave an expression
for the essential norm of Cφ on H2 in terms of the Nevanlinna counting
function of φ, thus providing a complete function theoretic characterization
of compact composition operators on H2.

In a different direction Sarason [7] showed how to define the composition
operator Cφ on the space M of complex Borel measures on the unit circle
T. Indeed, if u is the Poisson integral of a complex Borel measure, it is
not difficult to see that u ◦ φ is also, and then that the action of Cφ is
bounded on M . He also showed that Cφ acts boundedly on L1, and that
compactness onM is equivalent to compactness on L1. In the process he gave
a function theoretic condition on φ equivalent to compactness on L1. Since
H1 ⊂ L1, it is evident from the above discussion that Sarason’s condition
implies Shapiro’s. The reverse implication was established by Shapiro and
Sundberg [10], and subsequently another more direct proof was found by
Sundberg. However, Sarason [8] states that a direct function theoretic proof
is still lacking. It is the main purpose of this note to provide such a proof.
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Shapiro’s expression for the essential norm of Cφ on H2 is

‖Cφ‖e = lim sup
|a|→1

√√√√Nφ(a)
log 1

|a|
,

where Nφ(z) is Nevanlinna’s counting function for φ, given by

Nφ(z) =
∑

φ(ζ)=z

log
1
|ζ| .

In particular Cφ is compact on H2 if and only if lim sup|a|→1
Nφ(a)

log 1
|a|

= 0. In
the course of proving this Shapiro established the inequality

‖Cφ‖2e ≥ lim sup
|a|→1

‖Cφfa‖22 ≥ lim sup
|a|→1

Nφ(a)
log 1

|a|
,

where fa(z) =
√

1−|a|2
1−az is the normalized kernel function for a ∈ D. This,

together with the rest of his proof, shows that

‖Cφ‖e = lim sup
|a|→1

‖Cφfa‖2.

It is important to note that although Shapiro’s proof of this equation is not
purely function theoretic, his methods can be used to provide such a proof.

In the next section Sarason’s condition will be derived from the alternate
condition on the kernel functions. In the process a third expression for the
essential norm of Cφ will be derived in terms of the singular parts of the
Aleksandrov measures of φ. An application related to angular derivatives
will be given in Section 3.

§2.

Sarason’s compactness condition can be given in two equivalent formulations.
In the first instance if f ∈ L1 has harmonic extension u to the unit disk, then
Cφf is the boundary function of the harmonic function u ◦ φ. The Poisson
formula gives

u(φ(z)) =
∫
T

1− |φ(z)|2
|ζ − φ(z)|2 f(ζ) dm(ζ), z ∈ D,

where m denotes the normalized Lebesgue measure on the unit circle T.
Sarason proceeds by analyzing the kernel

1− |φ(ξ)|2
|ζ − φ(ξ)|2 , ζ, ξ ∈ T.
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He shows that Cφ is compact on L1 if and only if

(2.1)
∫
T

1− |φ(ξ)|2
|ζ − φ(ξ)|2 dm(ξ) = 1

for all ζ ∈ T, at least when φ(0) = 0. The main ingredient in his proof is
a theorem of Dunford and Pettis which asserts that a sequence of functions
(fn) in L1 converges in norm to f ∈ L1 if fn → f and ‖fn‖1 → ‖f‖1. It is
not difficult to show that in general Cφ is compact on L1 if and only if

(2.2)
∫
T

1− |φ(ξ)|2
|ζ − φ(ξ)|2 dm(ξ) = <

(
ζ + φ(0)
ζ − φ(0)

)
for all ζ ∈ T.

The other formulation, which is easily seen to be equivalent, results from
consideration of measures studied by Aleksandrov [2]. For each α ∈ T,
since ‖φ‖∞ ≤ 1, uα(z) = <

(
α+φ(z)

α−φ(z)

)
is a positive harmonic function, and

so, by Herglotz’s theorem, is the Poisson integral of a positive measure τα.
This measure has total variation ‖τα‖ = <

(
α+φ(0)

α−φ(0)

)
= uα(0) and Lebesgue

decomposition dτα = hα dm+ dσα, where hα ∈ L1 and σα ⊥ m. Since

hα(ξ) = lim
r→1

uα(rξ) =
1− |φ(ξ)|2
|α− φ(ξ)|2 ,

for almost every ξ ∈ T, it follows from (2.2) that Cφ is compact on L1 if and
only if σα = 0 for all α ∈ T, or, what is the same thing, if and only if the
Aleksandrov measures τα are all absolutely continuous. Sarason calls this
the absolute continuity condition [8].

It follows from the Lebesgue decomposition of τα that

‖σα‖ = ‖τα‖ −
∫
T
hα(ξ) dm(ξ)

= <
(
α+ φ(0)
α− φ(0)

)
−
∫
T

1− |φ(ξ)|2
|α− φ(ξ)|2 dm(ξ).

On the other hand

‖Cφfrα‖22 =
∫
T

1− r2

|α− rφ(ξ)|2 dm(ξ)

=
∫
T

1− r2|φ(ξ)|2
|α− rφ(ξ)|2 dm(ξ)− r2

∫
T

1− |φ(ξ)|2
|α− rφ(ξ)|2 dm(ξ)

= <
(
α+ rφ(0)
α− rφ(0)

)
− r2

∫
T

1− |φ(ξ)|2
|α− rφ(ξ)|2 dm(ξ).(2.3)
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Clearly, since |φ(0)| < 1, limr→1<
(
α+rφ(0)

α−rφ(0)

)
= <

(
α+φ(0)

α−φ(0)

)
uniformly in α.

Now if 0 < r < s ≤ 1 and |w| ≤ 1, it is geometrically obvious that∣∣∣∣1s − w
∣∣∣∣ < ∣∣∣∣1r − w

∣∣∣∣ ,
and so

(2.4)
r2

|1− rw|2 <
s2

|1− sw|2 .

It follows that r2 1−|φ(ξ)|2
|α−rφ(ξ)|2 increases monotonically to 1−|φ(ξ)|2

|α−φ(ξ)|2 for almost
every ξ ∈ T, and so

lim
r→1

r2

∫
T

1− |φ(ξ)|2
|α− rφ(ξ)|2 dm(ξ) =

∫
T

1− |φ(ξ)|2
|α− φ(ξ)|2 dm(ξ).(2.5)

Hence

lim
r→1
‖Cφfrα‖22 = ‖σα‖.(2.6)

In particular

‖σα‖ ≤ lim sup
|a|→1

‖Cφfa‖22 = ‖Cφ‖2e(2.7)

for all α ∈ T, and so Shapiro’s compactness condition implies Sarason’s.
In order to prove the reverse inequality set

A = lim sup
|a|→1

‖Cφfa‖22

and fix ε > 0. For each r, 0 < r < 1, let

Er =
{
α ∈ T | <

(
α+ φ(0)
α− φ(0)

)
− r2

∫
T

1− |φ(ξ)|2
|α− rφ(ξ)|2 dm(ξ) ≥ A− 2ε

}
.

By continuity each Er is a closed set. Since r2
∫
T

1−|φ(ξ)|2
|α−rφ(ξ)|2 dm(ξ) is an in-

creasing function of r for each α, it follows that Er ⊃ Es whenever r < s < 1.
Choose r0 so that ∣∣∣∣<(α+ φ(0)

α− φ(0)

)
−<

(
α+ rφ(0)
α− rφ(0)

)∣∣∣∣ < ε

for all α if r0 ≤ r < 1. Now if r0 ≤ r < 1, there exists r1, r ≤ r1 < 1, and
α ∈ T such that ‖Cφfr1α‖22 > A − ε, and so α ∈ Er1 ⊂ Er. In particular
each Er is nonempty. By compactness there exists α0 ∈ ∩0<r<1Er. Hence,
passing to the limit, ‖σα0‖ ≥ A− 2ε. Combining this with (2.7) yields

(2.8) ‖Cφ‖e = sup
α∈T

√
‖σα‖.
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§3.

Equation (2.8) leads quickly to a lower bound for ‖Cφ‖e in terms of angular
derivatives. The angular derivative φ′(ζ) for ζ ∈ T with |φ(ζ)| = 1 is the
limit limz→ζ

φ(ζ)−φ(z)

ζ−z , provided the limit exists nontangentially. Let Sα =
{ ζ ∈ T | φ(ζ) = α } for each α ∈ T. The Julia-Carathéodory theorem
asserts that for each ζ ∈ Sα, φ′(ζ) exists or is infinite. In any case the proof
of the Julia-Carathéodory theorem on p. 11 of [1] shows that τα({ζ}) = 1

|φ′(ζ)|
for each ζ ∈ Sα (with the usual convention that 1

|φ′(ζ)| = 0 if φ′(ζ) = ∞).
In particular the quantity δ(α) =

∑
ζ∈Sα

1
|φ′(ζ)| is the variation of the purely

atomic part of τα and hence is finite. Now (2.8) yields

(3.1) ‖Cφ‖2e ≥ sup
α∈T

δ(α),

an estimate first obtained by Cowen [3, 4], who also provided the upper
bound 2 supα∈T δ(α) if φ′ is continuous on D. Actually, if τα has continuous
singular part for no α ∈ T, then in fact

(3.2) ‖Cφ‖2e = sup
α∈T

δ(α).

Since σα is supported on Sα, this happens in particular whenever Sα is a
finite set for each α. A theorem of Novinger and Oberlin [6] shows that
this is the case if φ satisfies a Lipschitz condition of order 1 (see also [13]).
Hence in this case (3.2) holds, improving Cowen’s upper bound. It should
be remarked that Shapiro has used his calculation of ‖Cφ‖e and the Julia-
Carathéodory theorem to give a proof of the result of Novinger and Oberlin.

Finally it would be of interest to see a direct proof of (2.7). Since it is
relatively easy to prove that ‖Cφ‖2e ≥ ‖σα‖ for each α, this is a question of
providing a proof of the inequality supα∈T ‖σα‖ ≥ ‖Cφ‖e which does not use
Nevanlinna’s counting function.
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