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ESSENTIAL NORMS OF COMPOSITION OPERATORS AND
ALEKSANDROV MEASURES

JosegrH A. CIMA AND ALEC L. MATHESON

The essential norm of a composition operator on H? is cal-
culated in terms of the Aleksandrov measures of the inducing
holomorphic map. The argument provides a purely function-
theoretic proof of the equivalence of Sarason’s compactness
condition for composition operators on L' and Shapiro’s com-
pactness condition for composition operators on Hardy spaces.
An application is given relating the essential norm to angular
derivatives.

§1.

If ¢ is a holomorphic map of the unit disk D into itself, it is a consequence
of Littlewood’s subordination principle [5] that composition with ¢ induces
a bounded operator Cy on each Hardy space H?. A recurring theme in the
study of composition operators has been the search for function theoretic
conditions on ¢ which guarantee the compactness of Cy on H”. It was
shown by Shapiro and Taylor [11] that if C, is compact on H? for some
0 < p < o0, then C, is compact on H” for all 0 < p < oo, and so it is enough
to study compactness on H2. In this context Shapiro [9] gave an expression
for the essential norm of Cy on H? in terms of the Nevanlinna counting
function of ¢, thus providing a complete function theoretic characterization
of compact composition operators on H?.

In a different direction Sarason [7] showed how to define the composition
operator Cy on the space M of complex Borel measures on the unit circle
T. Indeed, if u is the Poisson integral of a complex Borel measure, it is
not difficult to see that u o ¢ is also, and then that the action of C, is
bounded on M. He also showed that C, acts boundedly on L', and that
compactness on M is equivalent to compactness on L. In the process he gave
a function theoretic condition on ¢ equivalent to compactness on L'. Since
H!' C L', it is evident from the above discussion that Sarason’s condition
implies Shapiro’s. The reverse implication was established by Shapiro and
Sundberg [10], and subsequently another more direct proof was found by
Sundberg. However, Sarason [8] states that a direct function theoretic proof
is still lacking. It is the main purpose of this note to provide such a proof.
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Shapiro’s expression for the essential norm of C, on H? is

where N,(z) is Nevanlinna’s counting function for ¢, given by
1
= Z log —.
slos ¢l

In particular Cy is compact on H? if and only if lim SUP|4|—1 ljzg—(i) =0. In
Tl
the course of proving this Shapiro established the inequality

Ny
1CylI? > hmsup |Cyfall3 > lim sup i (a)’
lal— la]—1 Ta]

where f,(z) = VI 4o the normalized kernel function for a € D. This,

l1-az

together with the rest of his proof, shows that
1Cslle = liIImISlllp 1Cs fall2-

It is important to note that although Shapiro’s proof of this equation is not
purely function theoretic, his methods can be used to provide such a proof.

In the next section Sarason’s condition will be derived from the alternate
condition on the kernel functions. In the process a third expression for the
essential norm of C, will be derived in terms of the singular parts of the
Aleksandrov measures of ¢. An application related to angular derivatives
will be given in Section 3.

§2.

Sarason’s compactness condition can be given in two equivalent formulations.
In the first instance if f € L! has harmonic extension u to the unit disk, then
Cyf is the boundary function of the harmonic function u o ¢. The Poisson
formula gives

1—|¢(2)”
T [¢—o(2)]?

where m denotes the normalized Lebesgue measure on the unit circle T.
Sarason proceeds by analyzing the kernel

1—16(9)”
[SGE

wo(z) = | m— =z f(Qdm((),  zeD,

¢,§eT.
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He shows that Cy is compact on L' if and only if

1—[6(&)
1 [¢ = o(E)?

for all ( € T, at least when ¢(0) = 0. The main ingredient in his proof is
a theorem of Dunford and Pettis which asserts that a sequence of functions
(fn) in L' converges in norm to f € L' if f, — f and ||fulls — || f]l1- It is
not difficult to show that in general C, is compact on L' if and only if

L JOOF | o (CH00)
22) ﬂ<—MOPd(O_%(C—M®>

(2.1) dm(§) =1

for all ( € T.
The other formulation, which is easily seen to be equivalent, results from
consideration of measures studied by Aleksandrov [2]. For each a € T,

since [|@]le < 1, un(z) = %(fﬁg;) is a positive harmonic function, and

so, by Herglotz’s theorem, is the Poisson integral of a positive measure 7.

This measure has total variation ||7,]] = & (zfzggg) = u,(0) and Lebesgue
decomposition dr, = h, dm + do,, where h, € L* and o, L m. Since
1—[o(§)P

ha(€) lllgua(rf) o — $(E)2
for almost every £ € T, it follows from (2.2) that Cy is compact on L* if and
only if 0, = 0 for all @ € T, or, what is the same thing, if and only if the
Aleksandrov measures 7, are all absolutely continuous. Sarason calls this
the absolute continuity condition [8].

It follows from the Lebesgue decomposition of 7, that

loall = lirall = [ Ba(é) dm(é)

—afe(o“”b(o)>_ 1-1e@I

a—o(0)) " Jrla—oep )

On the other hand

[Catally = [ e )
L= r9(¢)

? 1 —[o(
T la—1d(E)? dm(¢ /|ar¢ dm(¢)

©
TSV O g;;iji N
(2:3) ‘%(a—rwm> o —re(e)p M)
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Clearly, since |¢(0)| < 1, lim,_; R (a”‘b(o)) =R <°‘+¢(0)> uniformly in a.

a—re(0) a—a(0)
Now if 0 <7 < s <1 and |w| < 1, it is geometrically obvious that
1 ’ ‘ 1
- —w| < |- —w|,
S r
and so
2 2
2.4 < .
(24) 1 —rwl> |1 - swl?
It follows that 7‘2% increases monotonically to lla__lz(é))lé for almost
every £ € T, and so
. 1—|o(§)
(2.5) lim / _dm(€) = [ —— 2 e,
rl Ia—m5 T o= ¢(§)]?
Hence
(2.6) lim [ Cofoal3 = ol

In particular
(2.7) loall < hlmlsup ICs fallz = ICslI2

for all « € T, and so Shapiro’s compactness condition implies Sarason’s.
In order to prove the reverse inequality set

A= li‘mlsup 1Ce fall3
al—1

and fix e > 0. For each r, 0 <r < 1, let

By continuity each E, is a closed set. Since 72 [} % dm(&) is an in-
creasing function of r for each «, it follows that E, D E, whenever r < s < 1.

Choose ry so that

(i) ()<

for all o if ro < r < 1. Now if rq < r < 1, there exists r1, r < r; < 1, and
a € T such that ||Cyfralls > A — €, and so a € E,, C E,. In particular
each E, is nonempty. By compactness there exists oy € No<,r<1F,.. Hence,
passing to the limit, [|o,,]| > A — 2e. Combining this with (2.7) yields

(2.8) 1Cslle = sup y/[loa]|-
a€cT
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§3.

Equation (2.8) leads quickly to a lower bound for ||Cy||. in terms of angular
derivatives. The angular derivative ¢/(¢) for ¢ € T with |¢(¢)| = 1 is the
limit lim,_., W, provided the limit exists nontangentially. Let S, =
{¢Ce€T| o) = a} for each a« € T. The Julia-Carathéodory theorem
asserts that for each ¢ € S,, ¢'({) exists or is infinite. In any case the proof

of the Julia-Carathéodory theorem on p. 11 of [1] shows that 7,({(}) = m
for each ¢ € S, (with the usual convention that 75 = 0 if ¢/(¢) = o).
In particular the quantity (o) = > .. m is the variation of the purely

atomic part of 7, and hence is finite. Now (2.8) yields

(3.1) IC |12 = sup d(a),

acT

an estimate first obtained by Cowen [3, 4], who also provided the upper
bound 2sup, . 0(a) if ¢ is continuous on D. Actually, if 7, has continuous
singular part for no o € T, then in fact

(3:2) ICs 12 = sup d(a).
a€eT

Since o, is supported on S,, this happens in particular whenever S, is a
finite set for each a. A theorem of Novinger and Oberlin [6] shows that
this is the case if ¢ satisfies a Lipschitz condition of order 1 (see also [13]).
Hence in this case (3.2) holds, improving Cowen’s upper bound. It should
be remarked that Shapiro has used his calculation of ||Cy||. and the Julia-
Carathéodory theorem to give a proof of the result of Novinger and Oberlin.

Finally it would be of interest to see a direct proof of (2.7). Since it is
relatively easy to prove that ||Cy||? > ||o.| for each «, this is a question of
providing a proof of the inequality sup,cr ||0all > [|Cslle which does not use
Nevanlinna’s counting function.
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