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MINIMIZING FUNCTIONALS DEPENDING ON SURFACES
AND THEIR CURVATURES: A CLASS OF VARIATIONAL
PROBLEMS IN THE SETTING OF GENERALIZED GAUSS

GRAPHS

Silvano Delladio

We consider a family of variational problems involving
generalized Gauss graphs. Roughly, we are interested in the
problem of minimizing a functional defined in a class of sur-
faces constrained to include a given fixed rectifiable set. As a
particular case, one has the following example: Given a recti-
fiable set M , find a mass minimizer among all null boundary
generalized Gauss graphs of surfaces which include M as a
subset. Particular attention is paid to the case of curves in
the plane.

1. Introduction.

The variational problems where the functional to minimize depends on man-
ifolds and involves curvatures are far to be exhaustively investigated. Prob-
ably the most important example of functional of this type is Willmore’s
one, introduced in the sixties (see [23], [24]) and recently reconsidered by
Leon Simon who proved a beautiful existence result in the genus one case
(see [21], [22]). For an introductory presentation of Willmore problem one
can refer to [18].

General theories about minimizing functionals depending on curvatures
can be found in [12] and in [5]. In both of these papers the authors spend
a lot of work to define a generalized notion of surface endowed with a cur-
vature tensor and to look into its properties. So Hutchinson defines the
curvature varifolds while Anzellotti, Serapioni and Tamanini get the notion
of generalized Gauss graph.

A comparison between such generalizations can be found in [9]. Further
investigations and applications involving them are given, for example, in [2],
[4], [10], [13], [14] and [15].

Here we consider a family of variational problems involving generalized
Gauss graphs. Roughly, we are interested in the problem of minimizing a

301

http://nyjm.albany.edu:8000/PacJ/
http://nyjm.albany.edu:8000/PacJ/1997/v179no2.html
http://nyjm.albany.edu:8000/PacJ/1997/


302 SILVANO DELLADIO

functional defined in a class of surfaces constrained to include a given fixed
rectifiable set. As a particular case, one has the following example:

Given a rectifiable set M , find a mass minimizer among all null
boundary generalized Gauss graphs of surfaces which include M
as a subset.

The Section 5 is devoted to the presentation of the problem and to get
the existence. In 6 we prove that a factor of a minimizer has to be itself a
minimizer of a suitable “restricted” problem. Finally, particular attention is
paid to the case of curves in the plane, which is discussed in 7. The Sections
2 and 3 recall some standard terminology and the needed preliminaries about
generalized Gauss graphs. Some basic facts, particularly with regard to the
factors of a generalized Gauss graph, are proved in 4.

2. Notation.

For the general terminology we refer to the classical literature about geo-
metric measure theory (see [11], [17] and [20]). Rectifiable currents are the
main tools we will work with.

Let U be an open subset of a given euclidean space. Then we shall denote
by Dh(U) the set of h-dimensional currents in U , while Rh(U) and Ih(U) will
be the subspace of rectifiable currents and the subspace of integral currents,
respectively. According to a completely standard notation, the set of smooth
differential h-forms having compact support in U will be denoted by Dh(U).

If T is a h-dimensional current, then we define

N(T ) := M(T ) in case h = 0

and

N(T ) := M(T ) + M(∂T ) in case h ≥ 1

where M is the usual mass of currents.
Throughout this paper, we will deal with a generalized notion of Gauss

graph for surfaces of dimension n and codimension k. Thus, the ambients
where our surfaces and their generalized Gauss graphs are immersed will be
respectively the euclidean spaces RN and RN × S1(ΛkRN), where:

N := n+ k

and S1 denotes the set of unit vectors in the argument space (see Definition
3.1 below).

As we shall soon see, it is convenient to introduce a further copy of RN

which has to be kept distinguished from the ambient space. By specifying
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the variable name into the notation, we will denote them by RN
x and RN

x̃

respectively. Let e1, . . . , eN (resp. dx1, . . . , dxN) be the standard basis (resp.
dual basis) of RN

x and let ε1, . . . , εN (resp. dx̃1, . . . , dx̃N) be the one of
RN
x̃ . Then we denote by z̃ ∈ RN

x̃ the image of z ∈ RN
x through the trivial

isomorphism
RN
x 3 ej → ẽj := εj ∈ RN

x̃

i.e.,

z̃ =
N∑
j=1

zj εj

if z =
∑N
j=1 z

j ej.
Given a couple of positive integers (H and h such that H ≥ h), we adopt

the usual notation for multi-indices sets:

I(H,h) :=
{
δ = (δ1, . . . , δh)

∣∣ 1 ≤ δ1 < δ2 < . . . < δh ≤ H
}
.

Also we need to extend this notation to infinite indices:

I(∞, h) := ∪HI(H,h) and I(∞) := ∪hI(∞, h).

The short notation for wedge products will be often used. For example:

eα := eα1 ∧ . . . ∧ eαn or dxβ := dxβ1 ∧ . . . ∧ dxβk .

Note that {εβ}β∈I(N,k) is the basis of Λk(RN
x̃ ) naturally induced from RN

x̃ ,
as well as {dx̃β}β∈I(N,k) is the standard basis of the dual space of Λk(RN

x̃ ),
et cetera.

The letter y will be adopted to denote the variable of ΛkRN
x̃ equipped

with the basis {εβ}β∈I(N,k), so that we may consistently confuse ΛkRN
x̃ with

Rd
y, where

d :=

(
N

k

)
.

The projection operators from the product space RN
x ×ΛkRN

x̃ onto the single
factor spaces RN

x and ΛkRN
x̃ will be denoted p and q, respectively.

The linear subspace associated to a non zero simple multivector τ will be
called “the enveloping subspace of τ” (according to [16]).

Both the standard inner product and the dual pairing for all the vector
spaces we will deal with will be denoted by 〈 · , · 〉. For example, if η, τ ∈
Λn(RN

x ),
〈η, τ〉 :=

∑
α

〈η, eα〉〈τ, eα〉 =
∑
α

ηατα.
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The only notion of “length” we will need is the natural one induced by 〈 · , · 〉,
namely:

| · | :=
√
〈 · , · 〉.

For h = 1, . . . , n, the stratum h of a vector

ζ ∈ Λn
(
RN
x ×Rd

y

)
is defined as follows:

ζ(h) :=
∑

γ∈I(N,n−h)
δ∈I(N,h)

〈ζ, eγ ∧ εδ〉 eγ ∧ εδ.

Throughout the paper we will consider at most the strata 0 and 1 of the
multi-vectors we will deal with. For example, we will need the following
measures related to a current T = [[G, η, θ]] ∈ Rn(RN

x × ΛkRN
x̃ ):

|T(h)| := |η(h)| |T | = |η(h)| θHn G

for h = 0, 1. Obviously, such a definition makes sense for all h = 0, 1, . . . , n.
Finally we will adopt the standard inclusion and equality symbols to de-

note the corresponding notions “in measure”. For example, if A and B are
Hh-measurable sets, then “A ⊂ B” will mean Hh(A\B) = 0.

3. Generalized Gauss graphs: Some well-known fact.

Let us begin this section by recalling the definition of generalized Gauss
graph.

Definition 3.1. Let Ω be an open subset of RN
x . Then we define curvn(Ω)

as the set of currents T ∈ Dn(Ω× ΛkRN
x̃ ) such that:

(i) T and ∂T are rectifiable and supported in Ω× S1(ΛkRN
x̃ );

(ii) 〈T λ, ϕ ω〉 = 0 for all λ ∈ Dn−1(Ω × ΛkRN
x̃ ) and ω ∈ Dk−1(Ω ×

ΛkRN
x̃ ), where ϕ(x, y) :=

∑
β∈I(N,k)y

β dxβ;
(iii) 〈∂T µ, ϕ ω〉 = 0 for all µ ∈ Dn−2(Ω × ΛkRN

x̃ ) and ω ∈ Dk−1(Ω ×
ΛkRN

x̃ );
(iv) (−1)kn〈T ? ϕ, g〉 ≥ 0 for all non negative g ∈ C0

c (Ω× ΛkRN
x̃ ), where

? is the Hodge operator in RN
x with respect to the canonical basis, so

that ?ϕ(x, y) =
∑
β∈I(N,k)σ(β, β̄)yβdxβ̄.

A current belonging to curvn(Ω) will be called a “generalized Gauss graph”.

The following remark explains why the foregoing definition extends the
classical notion of Gauss graph.

Remark 3.1. Let M be a n-dimensional surface, embedded in RN
x , smooth,

oriented and with smooth boundary ∂M ⊂M . We say that a n-dimensional
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surface G ⊂ RN
x × S1(ΛkRN

x̃ ) is a Gauss graph of M when it is the graph of
?τ , where τ is a smooth orientation of M i.e. a smooth field of unit simple
n-vectors tangent to M . Obviously, there exist only two Gauss graphs of M ,
namely, given a smooth orientation τ , the graphs of ?τ and − ? τ .

Note that, given a Gauss graph G of M , one can immediately recover the
smooth orientation τ such that G is the graph of ?τ . In fact

τ(x) = (−1)kn ? y

is true on G since y = ?τ(x) has to hold at all (x, y) ∈ G. Now, denoting
by ν a smooth extension to RN

x of the map that associates x ∈M with the
unique y such that (x, y) ∈ G (so that ν|M = ?τ), it is natural to consider
the one multiplicity rectifiable current T carried by G and oriented by

η :=
Λn(I ⊕ dν̃)τ
|Λn(I ⊕ dν̃)τ | ◦ p

i.e.,
T = [[G, η, 1]].

It is easy to check that T ∈curvn(RN
x ). Indeed, the orthogonality between

the enveloping spaces of y and η(x, y), at all (x, y) ∈ G, is just expressible
in terms of T by means of conditions (ii) and (iii) in Definition 3.1 (see also
Proposition 3.1(1) below), while (iv) is clearly fulfilled just thanks to the
choice, suitably made, of the orientation η. Furthermore, any current of the
form [[G, ση, 1]], where σ : G → {±1} is Hn measurable, continues to verify
(ii) and (iii) but only T , among them, satisfies (iv).

The following couple of propositions recalls all we shall need in this paper
about generalized Gauss graphs. For a more exhaustive presentation of the
subject see [1], [5], [8] and [9].

Proposition 3.1. Let T = [[G, η, θ]] ∈ curvn(Ω). Then:
(1) the condition (ii) in Definition 3.1 is fulfilled if and only if the en-

veloping subspaces of η(x, y) and
∑
β〈y, εβ〉eβ are mutually orthogonal

in RN
x × ΛkRN

x̃ at Hn-a.e. (x, y) ∈ G;
(2) for Hn-a.e. (x, y) ∈ G, one has (−1)knη(0)(x, y) = |η(0)(x, y)| ? y;
(3) there exists a Hn-measurable map υ : pG → S1(ΛkRN

x ) such that, for
Hn a.e. x ∈ pG, υ(x) is simple, its enveloping subspace is orthogonal to
the tangent subspace of pG at x and p−1

|G (x) ⊂ {(x, υ(x)), (x,−υ(x))}.

Proposition 3.2. Assume T, Tj (j = 1, 2, . . . ) belong to curvn(Ω) and be
such that Tj ⇀ T . Then |Tj(0)

|⇀ |T(0)|.
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4. The factors of a generalized Gauss graph are generalized
Gauss graphs themselves.

Definition 4.1. We say that a countable family {Tj} ⊂ Dn(RM) is a proper
decomposition of T ∈ Dn(RM) if

T =
∑
j

Tj and N(T ) =
∑
j

N(Tj).

The currents Tj will be called factors of T .

We recall from [11, 4.2.25] that every T ∈ In(RM) has a proper decom-
position whose factors are indecomposable currents in In(RM).

This section is devoted to prove that every factor of a null boundary
generalized Gauss graph has to be a null boundary generalized Gauss graph
itself.

Proposition 4.1. Let T , Tj (j = 1, 2, . . . ) be in Dn(RM) such that

∂T = 0 and T =
∑
j

Tj.

Then
N(T ) =

∑
j

N(Tj)

if and only if

M(T ) =
∑
j

M(Tj) and ∂Tj = 0 for all j.

Proof. If N(T ) =
∑
jN(Tj) holds, then one has also∑
j

N(Tj) = N(T ) = M(T ) ≤
∑
j

M(Tj)

i.e.,
∑
jM(∂Tj) ≤ 0, whence we conclude the proof of “only if ”. The vice

versa is trivial.

Proposition 4.2. Let T = [[G, η, θ]], Tj = [[Gj, ηj, θj]] (j = 1, 2, . . . ) be in
Rn(RM) such that

T =
∑
j

Tj and M(T ) =
∑
j

M(Tj).(4.1)

Then one has:
(1) G = ∪jGj
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(2) η|Gj = ηj (j = 1, 2, . . . ) and θ =
∑
j θ̃j, where

θ̃j :=

{
θj on Gj

0 on G\Gj.

Proof. Let us consider the family of Hn-rectifiable sets defined as follows:

G(β) := (Gβ1 ∩ . . . ∩Gβl)\ ∪j 6∈β Gj

for all β ∈ I(∞). They constitute a “natural partition” of G and, as one can
check by a simple calculation, they satisfy the following conditions:

∪β G(β) = ∪jGj and G(β) ∩G(β′) = ∅ whenever β 6= β′(4.2)

∑
j

M(Tj) =
∞∑
l=1

∑
β∈I(∞,l)

∫
G(β)

l∑
i=1

θβi dHn(4.3)

∑
j

Tj(ω) =
∞∑
l=1

∑
β∈I(∞,l)

∫
G(β)

〈η(β), ω〉θ(β) dHn(4.4)

for all ω ∈ Dn(RM), where:{
η(β) := ηβ1

θ(β) := θβ1 + 〈ηβ2 , ηβ1〉θβ2 + . . .+ 〈ηβl , ηβ1〉θβl .

As a consequence, we have:∫
G

(
1− 〈η, ω〉)θ dHn = M(T )− T (ω) =

∑
j

M(Tj)−
∑
j

Tj(ω)

=
∞∑
l=1

∑
β∈I(∞,l)

∫
G(β)

l∑
i=1

θβi
(
1− 〈ηβ1 , ω〉〈ηβi , ηβ1〉

)
dHn

=
∞∑
l=1

∑
β∈I(∞,l)

∫
G(β)

l∑
i=1

θβi(1− 〈ηβi , ω〉) dHn

for all ω ∈ Dn(RM). Hence, by localizing, it follows that

G(β) ⊂ G(4.5)

for all β.
We remark that this conclusion cannot be drawn directly from (4.4) since

θ(β) could be zero somewhere.
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By (4.5) and (4.2), one obtains:

∪jGj = ∪βG(β) ⊂ G

and then, as the opposite inclusion is obvious, the proof of (1) is concluded.
To prove (2), let us define

σj : G→ {0,±1}

as follows:

σj :=

{
〈η, ηj〉 ∈ {±1} on Gj

0 on G\Gj.

As Gj ⊂ G and (4.1) holds, one has:∫
G

〈η, ω〉θ dHn =
∑
j

∫
Gj

〈ηj, ω〉θj dHn =
∫
G

〈η, ω〉
∑
j

σj θ̃j dHn

for all ω ∈ Dn(RM). By the arbitrariness of ω, it follows that

θ =
∑
j

σj θ̃j(4.6)

Hn G− a.e. On the other hand, by (4.1) again, one has also∫
G

θ dHn =
∑
j

∫
Gj

θj dHn

and thus ∑
j

∫
Gj

σjθj dHn =
∫
G

∑
j

σj θ̃j dHn =
∑
j

∫
Gj

θj dHn

i.e. ∑
j

∫
Gj

(1− σj)θj dHn = 0.

Now (2) becomes evident by recalling (4.6) again.

Proposition 4.3. Let T ∈ curvn(RN
x ), ∂T = 0 and let {Tj} ⊂ Rn(RN

x ×
ΛkRN

x̃ ) be a proper decomposition of T . Then

Tj ∈ curvn(RN
x ) and ∂Tj = 0

for all j.
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Proof. Let us note that ∂Tj = 0 immediately follows from Proposition 4.1
which implies also that

M(T ) =
∑
j

M(Tj).

Then we can apply Proposition 4.2 to obtain

Gj ⊂ G and η|Gj = ηj(4.7)

for all j. Hence, by Proposition 3.1, it follows that the enveloping subspaces
of η(x, y) and y are mutually orthogonal at Hn Gj almost every (x, y), for
all j. In other words: The hypothesis (ii) of Definition 3.1 is fulfilled by all
Tj.

To conclude, we have only to check that also (iv) of Definition 3.1 is
satisfied. But this easily follows by using again (4.7) together with Proposi-
tion 3.1, as the calculation below shows (let g ∈ C0

c (RN
x × ΛkRN

x̃ )):

(−1)kn〈Tj ? ϕ, g〉 = (−1)kn
∫
Gj

〈ηj, ?ϕ〉gθj dHn

= (−1)kn
∫
Gj

〈η, ?ϕ〉gθj dHn =
∫
Gj

|η(0)|gθj dHn.

Remark 4.1. Let us assume the hypotheses of Proposition 4.2 be verified.
Then the following two simple consequences of the proposition can be given.

First. ∣∣Tj(1)

∣∣� ∣∣Tj(0)

∣∣
for all j, whenever

∣∣T(1)

∣∣ � ∣∣T(0)

∣∣. This fact, along with Proposition 4.3, is
interesting with regard to the links between generalized Gauss graphs and
curvature varifolds. More precisely, if

∣∣T(1)

∣∣� ∣∣T(0)

∣∣ holds then T and all its
factors Tj induce curvature varifolds (see [9] for details).

Second. Let

f : RN
x × ΛkRN

x̃ × Λn
(
RN
x × ΛkRN

x̃

)→ [−∞,+∞]

be a Borel measurable function such that∫ ∣∣f(x, y, η(x, y)
)∣∣ dHn G < +∞.

Then we can define the real measure

µ(·) :=
∫
·
f
(
x, y, η(x, y)

)
dHn G



310 SILVANO DELLADIO

and hence also the positive and negative variations of µ can be defined: Let
us denote them by µ+ and µ− (see, for example, [19] as a general reference).

If we assume that

θ ∈ L1(µ+) or θ ∈ L1(µ−)

then, by Proposition 4.2, we get∫
G

f
(
x, y, η(x, y)

)
θ(x, y) dHn =

∑
j

∫
Gj

f
(
x, y, ηj(x, y)

)
θj(x, y) dHn(4.8)

as the following computation shows:∫
G

f
(
x, y, η(x, y)

)
θ(x, y) dHn =

∫
θ dµ =

∫
θ dµ+ −

∫
θ dµ−

=
∑
j

∫
θ̃j dµ

+ −
∑
j

∫
θ̃j dµ

− =
∑
j

∫
θ̃j dµ

=
∑
j

∫
Gj

f
(
x, y, ηj(x, y)

)
θj(x, y) dHn.

When f ≥ 0, Proposition 4.2 and monotone convergence theorem imply that
(4.8) holds without any further condition on θ, even if∫

f
(
x, y, η(x, y)

)
dHn G = +∞.

In particular, taking f ≡ 1, one recovers the mass condition in (4.1).

5. The problem.

Given a n-dimensional rectifiable set M ⊂ RN , a non negative constant c
and a current B ∈ Rn−1(RN

x × ΛkRN
x̃ ), one can define the class of currents

IM,c
B :=

{
T ∈ curvn(RN)

∣∣ M(∂T −B) ≤ c and p(spt T ) ⊃M}
.

Then we can consider the problem of minimizing a sufficiently nice functional
F (for example the mass) among the currents belonging to IM,c

B .
Before going into details, let us give the following definition.

Definition 5.1. Let us be given a functional F defined on a subset Σ of
Dn(RN

x × ΛkRN
x̃ ). Then we say that:

(1) F is lower semi-continuous if

F(T ) ≤ lim inf
j
F(Tj)

whenever Tj ⇀ T (T , Tj ∈ Σ).



A CLASS OF VARIATIONAL PROBLEMS 311

(2) F is coercive if in every set S ⊂ Σ such that F(S) is bounded there
exists a sequence that converges weakly to an element of S.

We shall show that, if F is lower semi-continuous and coercive, then the
problem above has a solution. First of all we need the stability of the con-
dition

p(spt T ) ⊃M
with respect to the weak convergence in curvn(RN).

Proposition 5.1. Let T , Tj ∈curvn(RN) and let M be a n-dimensional
rectifiable subset of RN . If

Tj ⇀ T and p(spt Tj) ⊃M

then one has also p(spt T ) ⊃M .

Proof. Let T = [[G, η, θ]], Tj = [[Gj, ηj, θj]] and g ∈ C0
c (RN). Then, by the

area formula and Proposition 3.2, we get:∫
pG

g(x)
∑

(x,y)∈p−1(x)∩G
θ(x, y) dHn(x, y) =

∫
G

g(x)
∣∣η(0)(x, y)

∣∣θ(x, y) dHn(x, y)

= lim
j

∫
Gj

g(x)
∣∣ηj(0)

(x, y)
∣∣θj(x, y) dHn(x, y)

= lim
j

∫
pGj

g(x)
∑

(x,y)∈p−1(x)∩Gj
θj(x, y) dHn(x, y).

In particular, one has∫
pG

g(x)
∑

(x,y)∈p−1(x)∩G
θ(x, y) dHn(x, y) ≥

∫
M

g dHn

for all non negative g ∈ C0
c (RN). Now the thesis follows by an usual local-

ization argument.

Remark 5.1. In Proposition 5.1 the hypothesis Tj ∈curvn(RN) is crucial
in the sense that the thesis can be false if one assumes only that sptTj ⊂
RN
x × S1(ΛkRN

x̃ ). Here is an example.

Example (n = k = 1). Let σ be a straight segment in R2 and let {uj} ⊂
S1(R2) be a sequence converging to u. If Tj is the one dimensional, mul-
tiplicity one, rectifiable current carried by the couple of segments σ × {u}
and σ × {uj} endowed with opposite orientations, then one has spt Tj ⊂
R2 × S1(R2), p(spt Tj) = σ and Tj ⇀ T := 0.
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Now, by the direct method, we easily obtain the existence result.

Proposition 5.2. Let IM,c
B be not empty and assume F : IM,c

B → [0,+∞]
be lower semi-continuous and coercive. Then there exists a minimizer of F .

Proof. If

m := inf
IM,c
B

F = +∞

then there is nothing to prove. Otherwise, let {Tj} be a minimizing sequence.
As F is coercive, we can extract a subsequence which converges weakly to
T ∈ curvn(RN). By Proposition 5.1 one has T ∈ IM,c

B and finally, as F is
lower semi-continuous, F(T ) = m.

Examples. Both the following situations correspond to problems solvable
by means of Proposition 5.2:

Situation 1: F = M and c = 0 (here we are dealing with a prescribed
boundary problem).

Situation 2: F = M and B = 0.

Remark 5.2. Natural examples of functionals to consider are the integral
ones

curvn(RN) 3 T = [[G, η, θ]]→ E(T ) :=
∫
G

f(x, y, η(x, y))θ(x, y) dHn(x, y)

where

f : RN
x × ΛkRN

x̃ × S1

(
Λn
(
RN
x × ΛkRN

x̃

))→ [−∞,+∞]

has to satisfy some conditions that allow E to be nice for our minimum
problem. For example, if f is Borel measurable and f ≥ ε > 0 then E is
coercive.

In order that E be lower semi-continuous, one can assume, for example,
the “adequateness” condition on f (introduced in [5], see also [7]).

Finally we obtain the following result.

Proposition 5.3. Let IM,c
B be not empty and assume f be adequate and

f ≥ ε > 0. Then the functional E|IM,c
B

has a minimizer.
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6. A factor of a minimizer is a minimizer.

Let M be a n-dimensional rectifiable subset of RN
x such that IM,0

0 is non
empty and consider a functional

G : I∅,00 =
{
T ∈ curvn(RN)

∣∣ ∂T = 0
}→ [−∞,+∞]

such that the restriction
F := G|IM,00

has a minimizer T . For example this is true when F is non negative, lower
semi-continuous and coercive, by Proposition 5.2.

If {Tj} ⊂ Rn(RN
x × ΛkRN

x̃ ) is a proper decomposition of T , then Propo-
sition 4.3 implies that

Tj ∈ curvn(RN) and ∂Tj = 0(6.1)

for all j, whereby one can wonder if Tj minimizes the functional

Fj := G|IMj,00

where Mj := M ∩ p(spt Tj).
The following proposition gives an answer.

Proposition 6.1. Let G be non negative and subadditive. Moreover, assume
that

G(T ) =
∑
j

G(Tj).

Then Tj minimizes Fj, for all j.

Proof. It is enough to prove the thesis for j = 1.
Furthermore, one can assume that the decomposition consists of just two

factors since also

G(T ) = G(T1) + G
∑
j≥2

Tj


has to hold, as the following computation shows:

G(T ) =
∑
j

G(Tj) = G(T1) +
∑
j≥2

G(Tj) ≥ G(T1) + G
∑
j≥2

Tj

 ≥ G(T ).

Similarly, we have also

N(T ) = N(T1) + N

∑
j≥2

Tj
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whereby T1,
∑
j≥2

Tj


is a proper decomposition of T . So the thesis is reduced to the following one:
If {T1, T2} is a proper decomposition of T such that G(T ) = G(T1) + G(T2),
then T1 minimizes F1, i.e.,

F1(T1) ≤ F1(T ′1)(6.2)

for all T ′1 ∈ IM1,0
0 .

In order to prove it, let us take T ′1 ∈ IM1,0
0 and note that

Σ := T + T ′1 − T1 = T2 + T ′1 ∈ IM,0
0 .(6.3)

In fact, one has

Σ ∈ curvn(RN) and ∂Σ = 0

by (6.1), while
p(spt Σ) ⊃M

holds by Proposition 6.2 below. As T is a minimizer of F , (6.3) implies that

F(T ) ≤ F(Σ).

Hence

G(T1) + G(T2) ≤ G(T2) + G(T ′1)

i.e.,

G(T1) ≤ G(T ′1)

that is just (6.2).

Now let us state and prove the result used in the proof of Proposition 6.1.

Proposition 6.2. Let there be given a rectifiable n-dimensional set M ⊂
RN and T ,T1,T2,T ′1 ∈ Rn(RN

x × S1(ΛkRN
x̃ )) be such that the following hy-

potheses hold:
(i) T = T1 + T2

(ii) (−1)knT2 ? ϕ = |T2(0)| and (−1)knT ′1 ? ϕ = |T ′1(0)|
(iii) p(spt T ) ⊃M
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(iv) p(spt T ′1) ⊃M ∩ p(spt T1).
Then one has

p(spt(T2 + T ′1)) ⊃M.

Proof. For the sake of shortness we shall adopt the following notation:{
P := p(spt T ) and P ′1 := p(spt T ′1)
Pi := p(spt Ti) and Mi := M ∩ Pi, for i = 1, 2.

Let T2 = [[G2, η2, θ2]] and T ′1 = [[G′1, η
′
1, θ
′
1]]. Then (ii) and the area formula

imply that, for all non negative g ∈ C0
c (RN

x ), one has:

(−1)kn(T2 + T ′1)(g ? ϕ) =
∣∣T2(0)

∣∣(g) +
∣∣T ′1(0)

∣∣(g)

=
∫
G2

g
∣∣η2(0)

∣∣θ2 dHn +
∫
G′1

g
∣∣η′1(0)

∣∣θ′1 dHn
=
∫
P2

g(x)
∑

(x,y)∈p−1(x)∩G2

θ2(x, y) dHn(x, y) +

+
∫
P ′1

g(x)
∑

(x,y)∈p−1(x)∩G′1
θ′1(x, y) dHn(x, y) ≥

∫
P2∪P ′1

g dHn.

Hence the conclusion follows by localizing, once proved that

P2 ∪ P ′1 ⊃M.

In order to verify such inclusion, we note that M ⊂ P ⊂ P1∪P2 has to hold,
by (i) and (iii). Thus, by (iv), we get:

M = M ∩ (P1 ∪ P2) = M1 ∪M2 ⊂M1 ∪ P2 ⊂ P ′1 ∪ P2

i.e., just what we need.

The following proposition is an easy consequence of Proposition 5.3, Propo-
sition 6.1 and Remark 4.1.

Proposition 6.3. Let E be the integral functional defined by means of an
adequate function f ≥ ε > 0, as in Proposition 5.3. If IM,0

0 6= ∅ then
E|IM,00

has a minimizer T . Moreover, every factor Tj of a rectifiable proper
decomposition of T minimizes E|IMj,00

, where Mj := M ∩ p(spt Tj).

Proof. Let us set
G := E|I∅,00

.
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By Proposition 5.3 we get a minimizer T of the functional

G|IM,00
= E|IM,00

.

Let {Tj} be a rectifiable proper decomposition of T . We have

G(T ) =
∑
j

G(Tj)

by Remark 4.1. Moreover, as f is non negative, one has also that G is non
negative and subadditive. Then Proposition 6.1 implies that Tj minimizes
the functional

G|IMj,00
= E|IMj,00

where Mj := M ∩ p(spt Tj).

7. The case of the curves in the plane.

This section is devoted to investigate the properties of a solution T of our
problem when M is a closed and piecewise smooth curve in R2 and

B = 0, c = 0 and F = M.

Note that M has finite length, since H1(M) ≤M(T ).

Let S ⊂ M be the set of the singular points of M , namely the ones at
which the tangent line to M doesn’t exist. If M is simple then, by recalling
Jordan’s theorem (see for example [6]), one can define the outward normal
map to M :

ν : M\S → S1(R2).

Let the graph of ν be denoted by Gν and consider the rectifiable set G̃ν ⊂
M ×S1(R2) obtained by filling the holes of Gν , over every P ∈ S, by means
of an arc of {P}×S1(R2) in the cheapest way (in the sense of the mass). As
Gν must have finite measure, G̃ν has finite measure provided that the total
length of the added arcs is finite. Analogously, by considering the inward
normal in place of the outward one, we get G̃−ν .

The generalized Gauss graphs carried by G̃ν and G̃−ν will be called “nat-
ural Gauss graphs of M”.

Remark 7.1. One could hurriedly conclude that the natural Gauss graphs
always have to be minimizers. The following example shows that this guess
is false.
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Example (the double-comb). Let Ch be the “double-comb” set pictured
below respectively for h = 2 and h = 3

� 1 -� 1 -� 1 -

6
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and let C(j)
h , j = 1, . . . , h, denote the “double-teeth” that form Ch; here

there is an explanatory figure, in the case h = 3.
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Then, let νh and ν
(j)
h be the outward normal map to ∂Ch and ∂C

(j)
h re-

spectively and consider the multiplicity one generalized Gauss graphs Th,
T

(j)
h carried by G̃νh , G̃

ν
(j)
h

respectively (let us recall that they are uniquely
determined, by the second statement in Proposition 3.1).

Furthermore let

T ′h :=
h∑
j=1

T
(j)
h .

It is obvious that
Th, T

′
h ∈ IMh,0

0

where Mh := ∂Ch. Moreover

M(Th) > M(T ′h)

for h big enough. In fact:

M(T ′h) = hH1
(
G̃
ν

(1)
h

)
= h

(
2π + 2 + 4

√
1 +

1
4h2

)
and

M(Th) = H1
(
G̃νh

)
= 2 + 4h

√
1 +

1
4h2

+ 2αh + 2(π − αh)(2h− 1)

where αh is the tooth angle.
We obtain

M(Th)−M(T ′h) = 2(h− 1)(π − 2αh − 1)
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whence the conclusion follows. By a simple calculation one can check that
the same idea doesn’t work if one takes the “more convex” simple-comb.

We shall prove that the convexity condition on M is enough for the mini-
mality of the natural Gauss graphs, just as one expects (probably a suitable
weaker condition allowing “slightly nonconvex” M ’s could be sufficient).

Let us introduce some notation which will be useful in the rest of the
section.

Let S ⊂ R2
x ×R2

y be a H1-rectifiable set and define

R+
S := Gν ∩ S, R−S := Q

(
Gν\R+

S

)
and RS := R+

S ∪R−S

where Q(x, y) := (x,−y). We set also

M+
S := pR+

S and M−
S := pR−S .

Now we are ready to state the first proposition.

Proposition 7.1. Let S ⊂ R2
x ×R2

y be a H1-rectifiable set. Then
(1) H1(RS) = H1(Gν).

Moreover, if Σ ∈ curv1(R2) is nonzero and null-boundary then one has
(2) Rspt Σ ⊂ spt Σ, provided p(spt Σ) ⊃M ;
(3) if M is convex, then H1(spt Σ\RS) ≥ H1

(
G̃ν\Gν

)
.

Proof. To prove the first statement, note that, as R+
S and R−S are disjointed,

as well as R+
S and QR−S which form a partition of Gν , one has

H1(RS) = H1(R+
S ) +H1(R−S ) = H1(R+

S ) +H1(QR−S ) = H1(Gν).

The statement (2) immediately follows from Proposition 3.1(3). Eventually,
let us prove (3).

If Σ∗ is a rectifiable indecomposable factor of Σ then, by [8, Theorem 4.1],
we can find a couple of disjointed H1-measurable sets

G′, G′′ ⊂ spt Σ∗ ⊂ spt Σ

(the last inclusion being true by Proposition 4.2) such that qG′ and qG′′ are
semicircles and

qG′ ∩ qG′′ = ∅ or qG′ = qG′′.
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The area formula implies that

H1(spt Σ\RS) ≥ H1
(
(G′ ∪G′′)\RS

)
= H1(G′\RS) +H1(G′′\RS)

≥ H1
(
q(G′\RS)

)
+H1

(
q(G′′\RS)

)
= H1

(
q(G′\(RS ∩G′))

)
+H1

(
q(G′′\(RS ∩G′′))

)
≥ H1

(
qG′\q(RS ∩G′)

)
+H1

(
qG′′\q(RS ∩G′′)

)
= 2π −H1

(
q(RS ∩G′)

)−H1
(
q(RS ∩G′′)

)
≥ 2π −H1

(
q(R+

S ∩G′)
)−H1

(
q(R−S ∩G′)

)
−H1

(
q(R+

S ∩G′′)
)−H1

(
q(R−S ∩G′′)

)
.

As q|R+
S

and q|R−
S

are injective (being M convex), one has also

H1
(
q(R+

S ∩G′)
)

+H1
(
q(R+

S ∩G′′)
)

= H1
(
q(R+

S ∩ (G′ ∪G′′))) ≤ H1(qR+
S )

and

H1
(
q(R−S ∩G′)

)
+H1

(
q(R−S ∩G′′)

)
= H1

(
q(R−S ∩ (G′ ∪G′′))) ≤ H1(qR−S ).

Hence we get

H1(spt Σ\RS) ≥ 2π −H1(qR+
S )−H1(qR−S )

= 2π −H1(qR+
S )−H1(−qR−S )

= 2π −H1
(
ν(M+

S )
)−H1

(
ν(M−

S )
)

= 2π −H1
(
ν(M)

)
= H1(G̃ν\Gν)

i.e., just the thesis.

The following result is a corollary of Proposition 7.1.

Proposition 7.2. Let M be convex. Then:
(1) The natural Gauss graphs of M are minimizers;
(2) every minimizer is indecomposable.

Proof. Let T := [[G, η, θ]] be a minimizer.

First step. Consider a nonzero indecomposable factor Σ of T . Then, by
Proposition 4.3, one has

Σ ∈ curv1(R2) and spt Σ ⊂ G.
By Proposition 7.1 we have:

M(T ) ≤ H1(G̃ν) = H1(G̃ν\Gν) +H1(Gν) ≤ H1(spt Σ\RG) +H1(RG)

= H1(spt Σ ∪RG) ≤ H1(G) ≤
∫
G

θ dH1 = M(T )
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whence we get the first part of the thesis and also that

θ ≡ 1(7.1)

and

spt Σ ∪RG = G.(7.2)

Second step. By [11, 4.2.25] and recalling that every null-boundary, nonzero,
one-dimensional generalized Gauss graph has mass not smaller than 2π (see
[8, Theorem 4.1]), one can find a finite proper decomposition of T whose
factors are indecomposable currents in I1(R2

x×R2
y): let them be denoted by

Σj := [[Gj, ηj, 1]] (j = 1, . . . , h).

Now assume h ≥ 2: we shall get a contradiction.

By (7.1) and Proposition 4.2 one has that

G = ∪hj=1Gj and Gi ∩Gj = ∅ whenever i 6= j.

Moreover, by (7.2), we know that

Gj ∪RG = G

for j = 1, . . . , h. It follows that Gj ⊂ RG for j = 1, . . . , h and hence G ⊂ RG.
The opposite inclusion holds by Proposition 3.1(3), whereby we obtain

RG = G.

As ∂T = 0 and G has to be Lipschitz (see [11, 4.2.25]), we conclude that G
has no hole and thus

RG = Gν or RG = QGν .

We get
G = ∪hj=1Gj = Gν or G = ∪hj=1Gj = QGν

which cannot be true, being h ≥ 2.

The following proposition improves the previous one.

Proposition 7.3. Let M be convex. Then a generalized Gauss graph is a
minimizer if and only if it is a natural Gauss graph of M .
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Proof. By Proposition 7.2 we have only to prove that a minimizer has to be
a natural Gauss graph.

Let Σ be a minimizer and S := spt Σ. Then Proposition 7.1 and Propo-
sition 7.2 imply that

H1(S\RS) = H1(S)−H1(RS) = H1(G̃ν)−H1(Gν)

= H1(G̃ν\Gν) = H1
(
S1(R2)\ν(M)

)
.

Thus, by recalling the inequality obtained in the proof of Proposition 7.1,
we get:

H1(G′\RS) +H1(G′′\RS) = H1
(
q(G′\RS)

)
+H1

(
q(G′′\RS)

)
and

H1(S\RS) = H1
(
(G′ ∪G′′)\RS

)
whence it follows that

H1(G′\RS) = H1
(
q(G′\RS)

)
, H1(G′′\RS) = H1

(
q(G′′\RS)

)
and

S\RS = (G′ ∪G′′)\RS.
The first couple of equalities says that “G′\RS and G′′\RS are vertical”, i.e.,
that

H1
(
p(G′\RS)

)
= H1

(
p(G′′\RS)

)
= 0

whereby the last equality implies the “verticality” of S\RS:

H1
(
p(S\RS)

)
= H1

(
p
(
(G′ ∪G′′)\RS

))
= H1

(
p(G′\RS) ∪ p(G′′\RS)

)
≤ H1

(
p(G′\RS)

)
+H1

(
p(G′′\RS)

)
= 0.

Hence we get

H1(pS) = H1
(
p(S\RS) ∪ pRS

)
= H1(pRS)

and thus
pS = pRS = M.

The conclusion easily follows by recalling that S is Lipschitz.
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