Vol. 180, No. 1, 1997

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
The local index formula for a Hermitian manifold

Peter B. Gilkey, S. Nikčević and J. Pohjanpelto

Vol. 180 (1997), No. 1, 51–56
Abstract

Let M be a compact complex manifold of real dimension m = 2m with a Hermitian metric. Let an(x,Δp,q) be the heat equation asymptotics of the complex Laplacian Δp,q. Then TrL2(fetΔp,q ) Σn=0t(nm)2 Mfan(x,Δp,q) for any f C(M); the an vanish for n odd. Let ag(M) be the arithmetic genus and let an(x,) := Σq(1)qan(x,Δ0,q) be the supertrace of the heat equation asymptotics. Then Man(x,)dx = 0 if nm while Mam(x,)dx = ag(M). The Todd polynomial Tdm is the integrand of the Riemann Roch Hirzebruch formula. If the metric on M is Kaehler, then the local index theorem holds:

                 --                       --
(1)          an(x,∂) = 0 for n < m, and am(x,∂) = Tdm(x).

In this note, we show Equation (1) fails if the metric on M is not Kaehler.

Milestones
Received: 17 May 1996
Published: 1 September 1997
Authors
Peter B. Gilkey
University of Oregon
Eugene Or 97403
S. Nikčević
SANU Knez Mihailova 35, pp 367
11001 Belgrade
Yugoslavia
J. Pohjanpelto
Oregon State University
Corvallis OR 97331