Vol. 181, No. 1, 1997

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On the Korteweg–de Vries equation: Frequencies and initial value problem

D. Bättig, T. Kappeler and B. Mityagin

Vol. 181 (1997), No. 1, 1–55
Abstract

The Korteweg-de Vries equation (KdV)

∂tv(x,t)+ ∂3xv(x,t)− 3∂xv(x,t)2 = 0 (x ∈ S1,t ∈ ℝ)

is a completely integrable system with phase space L2(S1). Although the Hamiltonian (q) := S1(                )
1(∂xq(x))2 + q(x )3
2dx is defined only on the dense subspace H1(S1), we prove that the frequencies ωj = -∂ℋ-
∂Jj can be defined on the whole space L2(S1), where (Jj)j1 denote the action variables which are globally defined on L2(S1). These frequencies are real analytic functionals and can be used to analyze Bourgain’s weak solutions of KdV with initial data in L2(S1). The same method can be used for any equation in the KdV hierarchy.

Milestones
Received: 26 February 1996
Published: 1 November 1997
Authors
D. Bättig
Université Paris-Nord
France
T. Kappeler
Ohio State University
Columbus, OH 43210
B. Mityagin
Ohio State University
Columbus, OH 43210