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MATHEMATICAL THEORY OF MEDIAL AXIS
TRANSFORM

Hyeong In Choi, Sung Woo Choi and Hwan Pyo Moon

The medial axis of a plane domain is defined to be the set of
the centers of the maximal inscribed disks. It is essentially the
cut loci of the inward unit normal bundle of the boundary. We
prove that if a plane domain has finite number of boundary
curves each of which consists of finite number of real analytic
pieces, then the medial axis is a connected geometric graph in
R2 with finitely many vertices and edges. And each edge is a
real analytic curve which can be extended in the C1 manner at
the end vertices. We clarify the relation between the vertex
degree and the local geometry of the domain. We also analyze
various continuity and regularity results in detail, and show
that the medial axis is a strong deformation retract of the
domain which means in the practical sense that it retains all
the topological informations of the domain. We also obtain
parallel results for the medial axis transform.

1. Introduction.

One of the difficult problems in global differential geometry is the precise
description and the exact determination of the cut loci of a set. It is because
a cut locus arises as a critical point of a certain distance function, and
studying it is in general a nontrivial problem.

In this paper, we study the following version: Let Ω be a connected
bounded domain in R2. Let CORE(Ω) be the set of the maximal inscribed
disks in Ω. We define the medial axis, denoted by MA(Ω), to be the set
of the centers of the disks in CORE(Ω). Thus if Ω has smooth boundary,
MA(Ω) is essentially the set of the cut loci of the inward pointing unit nor-
mal bundle of ∂Ω. But since we allow Ω to have corners, our case includes
a slightly more general notion. (Consult Definition 4.4 and its subsequent
role.) We can also define the medial axis transform, denoted by MAT(Ω),
to be the set of the pairs consisting of the center and the radius of the disks
in CORE(Ω).

The medial axis is a continuous version of the so-called Voronoi diagram
which was introduced by Voronoi [14]. Voronoi diagram was originally de-
fined for a finite set of points in R2, and in fact this and the related notions
can be traced as far back as to Dirichlet [3].
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Although the medial axis is a natural geometric object, its careful mathe-
matical study has been lacking in the pure mathematics communities. How-
ever, the medial axis transform has been widely used in the engineering
and the computer science community. The modern incarnation of the me-
dial axis transform was introduced by Blum [1] to extract and represent the
salient features of a planar shape (domain). Since then, there has been a
prolific amount of literatures in many application areas such as vision, pat-
tern recognition, NC tool path planning, and FEM mesh generation, and
so on. However, the engineering and the computer science communities are
mainly interested in the algorithmic aspects of actually finding the medial
axis transform under specific conditions on the domain, and they seem to be
less interested in pinning down the intricate mathematical details for general
class of domains. Most of the known results deal with the domain with the
boundary consisting of line segments and pieces of circular arcs. These can
be found in [5, 8, 9, 10, 13, 16], to name a few.

However, even in the application areas, the boundary curves need to be of
much more general form. The kind of curve representation accepted as the
most general in application is called the NURBS, i.e., Non-Uniform Rational
B-Splines. Mathematically, they arise as splines in the projective geometry,
and they are all rational functions of the curve parameter, But, in this
generality, not so much is known for the medial axis transform. Our paper
with N.-S. Wee [2] gives a good approximate algorithm which works well
in practical situations with very general boundary curve assumptions, i.e.,
boundary is assumed to be composed of finite number of real analytic curves.
In proving that our algorithm works and terminates in finite steps, etc., we
had to have the rigorous mathematical foundation. As we pondered over
these issues, we discovered many interesting pieces of mathematics. This
paper is an outgrowth of that.

One important observation that is relevant to our subsequent analysis is
the regularity assumption of the domain. Contrary to common belief, it is
not enough to assume that the boundary curve is C∞. In fact, we show
that there are plenty of domains with C∞ boundary that have pathological
behavior. For example, there are domains with C∞ boundary that have
infinitely many inscribed osculating circles, or infinitely many bifurcation
circles. Or, they may have a medial axis point from which infinitely many
branches of the medial axis emanate. These may make the medial axis
an infinite graph. In fact, it is possible to create all kinds of pathological
examples with the C∞ assumption on the boundary.

Thus we have to restrict the class of domains in order to do meaningful
analysis. The domains we consider are the ones with finitely many boundary
curves each of which consists of finite number of real analytic pieces. The
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real analytic pieces in the boundary may meet with each other in the C1

manner, or may meet at a corner. This kind of restrictions pose no real loss
in most practically important situations, since almost all domains that have
practical importance have this property. For instance, the boundary curves
may be represented as NURBS curves which fall into this category. We
cannot help believing that our assumption is the most natural and optimal
in practice.

The basic strategy of our analysis is a judicious combination of local dif-
ferential geometry and some of the tools we develop. The most important
tool is the Domain Decomposition Lemma which enables us to break up the
domain into simpler pieces, thus localizing the analysis. We also do careful
analysis relating the curvature. We then prove various finiteness results: the
finiteness of the inscribed osculating circles and the bifurcation circles; and
the finiteness of the number of the branches of the medial axis of the domain
emanating from any medial axis point. These analyses enable us to obtain
various continuity and regularity results. Combining all these together, we
prove that the medial axis is a connected geometric graph in R2 with finitely
many vertices and edges, and each edge is a real analytic curve which can
be extended in the C1 manner at the end vertices. We show that the me-
dial axis is a strong deformation retract of the domain which means in the
practical sense that it retains all the topological informations of the domain.
We also obtain parallel results for the medial axis transform as a geometric
graph in R3.

A word on related works is in order. After this paper was submitted,
we received three papers which are relevant to our work: In [15], F.-E.
Wolter also proved that the medial axis is a strong deformation retract of
the domain, although his method of proof is different from ours. Sherbrooke,
Patrikalakis and Wolter [11] also obtained the same result using different
method. In [6], Hoffmann and Chiang discuss various aspects of the domain
decomposition lemma. In fact, they essentially obtained the same result
when the domain is simply connected but with no dull corners. They also
indicate how to decompose the domain when it has homology. But their
idea, although very close in spirit, is not exactly in the form of our domain
decomposition lemma. The paper [15] of Wolter contains many interesting
results related to this work. For example, he gives interesting discussions on
the cut locus, equidistance set, Voronoi diagram, and the medial axis from
general view point. He also obtained other related topological results. An
interested reader should consult his paper [15].

We gratefully acknowledge the support of Hyundai Media Systems Co.,
Ltd. Special thanks are due to Dr. Jin-Kee Lee, and Directors Joon W. Kim
and Tae-Won Kang. We would like to thank Dr. Sungjin Lee and Kyung
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Hwan Park for their interest in our work, and Sun Gi Hong, Director of R&D
of Microsoft Korea, for the support over the years. Finally, we would also
like to thank Heungju Ahn for pointing out the paper [7].

2. Standing Assumption on Domain.

Before we proceed further, we need to restrict the class of the domains for
our analysis. In doing so, the important requirement is that it must be
inclusive enough to cover almost all practically important cases, while at the
same time restrictive enough to be amenable to thorough analysis.

First, let us look at some examples with pathological behavior even with
C∞ boundary.

Example 2.1. Let Ω be the domain whose boundary consists of two C∞

curves α and β, where α is an arc portion of the unit circle {ζ ∈ C : |ζ| = 1}
and β is a curve represented by

β(θ) =
(

1 + e−1/θ2
sin2 1

θ

)
eiθ,

for sufficiently small |θ|, and α and β are joined in such a way as in Figure 1
to form a closed C∞ curve.

.
... β

.

...
...

α

p

Ω

Medial Axis

Figure 1. Medial Axis Point with Infinitely Many Prongs.

Then it is easy to see that the point p is in the medial axis of Ω and there
are infinitely many prongs in the medial axis of Ω emanating from p.

Example 2.2. Let Ω be the domain whose boundary consists of two C∞

curves γ and δ, where γ is a portion of the boundary of a stadium and δ is
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a curve represented by

δ(t) =
(
t, e−1/t2 sin2 1

t

)
,

for sufficiently small |t|, and γ and δ are joined in such a way as in Figure 2
to form a closed C∞ curve.

... ...

..... .....

......

.

γ
Ω

δ
δ(0)

Medial Axis

Figure 2. Medial Axis having Infinitely Many Bifurcation Points.

Then it is easy to see that the medial axis of Ω has infinitely many bifur-
cation points.

The situations in the above examples are bad, because these should not
happen in real applications, and such kind of pathological phenomena make
algorithm unnecessarily complicated, and often times it is very difficult to
design practically workable algorithms to capture these phenomena.

After some analysis, we concluded that the most natural domains must be
the ones that have finite number of boundary curves each of which consists
of finite number of real analytic pieces. Once our condition is violated, one
can easily cook up some counterexamples to many of the important results
in this paper. However, these kinds of pathologies are not meaningful in real
world applications.

Definition 2.1. A curve γ : (a, b) −→ Rn (n = 1, 2, . . . ), is a Ck curve, if
there is a reparametrization γ(t) = (x1(t), . . . , xn(t)) of γ by the arc length,
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such that x1(t), . . . , xn(t) are Ck functions of t, where k = 1, 2, . . . ,∞, or
k = ω when it is real analytic. A curve γ : [a, b] −→ Rn (n = 1, 2, . . . ) is a Ck

curve, if there exists a Ck curve γ̃ : (a− ε, b+ ε) −→ Rn for some ε > 0 such
that γ̃(t) = γ(t) for all t ∈ [a, b], where k = 1, 2, . . . ,∞, ω. A Cω curve will
also be called a real analytic curve.

Remark 2.1. A curve γ : (a, b) −→ Rn (n = 1, 2, . . . ), is a Ck curve in the
sense of the above definition, if and only if, for any point p on γ, there exists
a small number ε such that the curve γ can be represented as the graph of a
Ck function with respect to the tangent line at p inside the ε-disk Bε(p) in
Rn, where k = 1, 2, . . . ,∞, ω.

We now list the assumptions which a domain Ω in our class should satisfy.

Assumption 1. Ω is the closure of a connected bounded open subset in R2

bounded by finite number of mutually disjoint simple closed curves. (Here
a simple closed curve means an embedding of the unit circle in R2.)

The closedness and the connectedness of domain simplifies much of the
technical arguments; and the boundedness is not only appropriate for prac-
tical settings, but also essential sometimes in our analysis of the medial axis
transform, since, it, together with the closedness, implies the compactness.
The simple closed curve in ∂Ω which bounds the unbounded connected com-
ponent of R2\Ω, is called the outer boundary curve, and the rest of the simple
closed curves in ∂Ω are called the inner boundary curves. The number of
the inner boundary curves in ∂Ω is called the genus of Ω.

Assumption 2. Each simple closed curve in ∂Ω consists of finite number
of pieces of real analytic curves.

Let us be more clear about this assumption: Assumption 2 means that
each simple closed curve in ∂Ω is represented as a closed curve γ : [a, b] −→ R2

such that there exist finite number of points a = t0 < t1 < · · · < tN = b such
that γ[ti−1,ti] is a real analytic curve for i = 1, . . . , N. We call γ[ti−1,ti] a real
analytic piece (of γ). It should be noted that γ is C1 at a point where two
real analytic pieces join as long as the unit tangent vector fields along each
piece coincide at that point. However, it is not realistic to expect it to be C2

in general because the curvature of the two pieces may not coincide at the
joint point. But, assuming each piece should be a polynomial curve is too
restrictive, because, for example, conic sections, such as ellipses, parabolas,
or hyperbolas, which are frequently used as NURBS curves are in general
not polynomial curves. (Note that their x and y coordinates may have a
polynomial relation, but the x and y coordinates of these conic sections
cannot be polynomial functions of some parameter simultaneously.) Thus



MEDIAL AXIS TRANSFORM 63

the right kinds of general class of curves are real analytic pieces joined in
the C1 manner except at corner points.

Standing Assumption. From now on, by the term domain, we mean a
non-circular domain satisfying the above two assumptions unless otherwise
stated.

The reason we usually exclude the circular domain, i.e., the disk, is that
the disk poses an exception to many of our technical results. But since it is
a trivial domain with the medial axis consisting of one point, everything is
known. Thus there is no real loss of generality in excluding the disk.

3. Curvature and Inscribed Osculating Circle.

In this section, we present some preliminaries about curvature and osculating
circle. First let us fix the notations about the curvature.

Definition 3.1. Let γ : [a, b] −→ R2 be a C2 curve parameterized by the
arc-length. The (geodesic) curvature of γ is defined to be 〈γ′′, N〉, where N
is the unit vector obtained by rotating γ′ counterclockwise by 90 degrees.

Here, 〈 , 〉 denotes the standard inner product in R2.

Remark 3.1. In fact, we don’t need the arc length parametrization to
define the (geodesic) curvature, since it is an intrinsic quantity. So we can
freely use the term (geodesic) curvature for any C2 curve, even if it is not
parametrized by the arc length.

Let γ : [a, b] −→ R2 be a C2 curve. We call a circle C centered at p
an osculating circle of γ at γ(t) (t ∈ [a, b]), if the following conditions are
satisfied.
(1) γ(t) is on C.
(2) The tangent line of C at γ(t) is tangent to γ.

(3)
−−→
γ(t)p is in the direction of N (resp., −N), if the curvature of γ at γ(t)
is positive (resp., negative).

(4) The radius of C is equal to 1/|κ(t)|.

Definition 3.2. Let γ : (a, b) −→ R2 be a C2 curve, and let p be a point
on the half line from γ(t0) (t0 ∈ (a, b)) with the direction of N , where N
is defined as above. Then we say that p is within the focal locus of γ near
γ(t0), if

1
d(p, γ(t0))

> κ(t0).
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Now we fix the sign of the curvatures of the points in the boundary of
a domain. Let p be a point in ∂Ω, and let γ : (−ε, ε) −→ ∂Ω be a curve
such that γ(0) = p, where γ is oriented in such a way that the interior of
Ω is always on the left of γ. Then the we denote κ+(p) = lim

t→0+
κ(t) and

κ−(p) = lim
t→0−

κ(t), where κ is the geodesic curvature of γ. Note that this is
well-defined because of our assumption on ∂Ω, and does not depend on the
choice of γ. If κ+(p) = κ−(p), we denote κ(p) = κ+(p) (= κ−(p)) and call
κ(p) the (geodesic) curvature at p.

We need the following lemma for the treatment of the osculating circles.

Lemma 3.1. Let I be an interval of the type [0, δ] or [−δ, 0]. Let γ : I −→
R2 be a C2 curve. Let κ be its geodesic curvature function. Assume κ(0) ≥ 0.
Suppose κ(t) > κ(0) (resp., κ(t) < κ(0)) for all t ∈ I \ {0}. Then, for suf-
ficiently small δ, γ(t), for t 6= 0, must lie strictly inside (resp., outside)
the osculating circle of γ at γ(0) when κ(0) > 0. And, when κ(0) = 0,
for sufficiently small δ, γ(t), for t 6= 0, must lie strictly in the half plane
P = {p ∈ R2 | 〈−−−→γ(0)p,N(0)〉 > (resp., <) 0}, where N is the usual counter-
clockwise rotation of γ′ by 90 degrees.

Proof. Let us first give the proof for the case when κ(t) > κ(0). In the
proof we regard R2 as the complex plane C, and points and vectors are also
regarded as complex numbers. Let us first give the proof for I = [0, δ].
Suppose κ(0) > 0. By rescaling, we may assume without loss of generality
that κ(0) = 1. We may also assume without loss of generality that γ is
parametrized by the arc-length s. Let T (s) = γ′(s). Then N(s) = iT (s),
and

T ′(s) = κ(s)N(s) = iκ(s)T (s).

Dividing both sides by T (s), and integrating, we have

T (s) = T (0)eiL(s),

where
L(s) =

∫ s

0

κ(u) du

is the total curvature function. Since γ′(s) = T (s), we integrate γ′(s) =
T (0)eiL(s) to get

γ(s) = γ(0) + T (0)
∫ s

0

eiL(u) du.

We may assume without loss of generality that γ(0) = 0 and T (0) = 1. Then

γ(s) =
∫ s

0

cosL(u) du+ i

∫ s

0

sinL(u) du.
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And the osculating circle is given by |z − i| = 1. Now check |γ(s) − i|2,
namely (∫ s

0

cosL(u) du
)2

+
(

1−
∫ s

0

sinL(u) du
)2

.(1)

Since κ(u) > 1 on (0, δ), we have L(u) > u. Thus cosL(u) < cosu and
sinL(u) > sinu. Applying these to (1) for sufficiently small s, we have

|γ(s)− i| < 1.

Now assume κ(0) = 0. Then we have only to show that∫ s

0

sinL(u) du > 0.

But it follows from the fact that L(u) > 0.
The proof for the case I = [−δ, 0] is the same, except for a few minor

modification: Define, for s < 0,

L(s) =
∫ 0

s

κ(u) du.

Then the assumption implies L(s) > −s when κ(0) = 1, and L(s) > 0 when
κ(0) = 0, and the relevant facts are

T (s) = T (0)e−iL(s),

and

γ(s) = γ(0)− T (0)
∫ 0

s

e−iL(u) du.

But then the rest of the proof are essentially the same.
The proof for the case κ(t) < κ(0) proceeds very similarly.

Remark 3.2. One can remove the assumption κ(0) ≥ 0 in Lemma 3.1.
When κ(0) < 0, one can reverse the curve and use Lemma 3.1 to obtain the
appropriate corresponding results.

The following theorem is about the basic geometric facts for osculating
circles.

Theorem 3.1. Let I be an interval of one of the types [−δ, δ], [0, δ] or
[−δ, 0]. Let γ : I −→ R2 be a real analytic curve such that κ(0) ≥ 0. Assume
γ lies outside (resp., inside) the osculating circle of γ at γ(0) in case κ(0) >
0. And in case κ(0) = 0, assume γ lies outside the half plane P = {p ∈
R2 | 〈−−−→γ(0)p,N(0)〉 > (resp., <) 0}, where N is the usual counterclockwise
rotation of γ′ by 90 degrees. Then κ(0) is a local maximum (resp., minimum)
of the curvature function.
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Proof. We first give a proof for the case when γ lies outside the osculating
circle or the half plane. We will give a proof for the case I = [0, δ], as the
rest are the same. Suppose now that κ(0) is not a local maximum. Then
there exists a monotone decreasing sequence un ↓ 0 such that κ(un) > κ(0).
If κ(s) > κ(0) for all s ∈ (0, un), then by Lemma 3.1, γ(s) must lie strictly
inside the osculating circle or the half plane. Thus there exists sn ∈ (0, un)
such that κ(sn) ≤ κ(0). Thus there exists tn ∈ [sn, un] such that κ(tn) =
κ(0), and tn ↓ 0. Since κ is a real analytic function which can be extended
real analytically across 0, it must be constant. Thus κ(0) is a local maximum,
which is a contradiction.

The rest of the proof proceeds similarly.

Remark 3.3. When we say γ lies outside the osculating circle, we are
allowing γ to lie on the osculating circle. We do similarly for the half plane.
Remark 3.4. Let γ(t) = (t,−e−1/t2 sin2 1/t). Then it is clearly a C∞

curve, and its curvature κ(0) at t = 0 is 0. Note that it lies outside the
half plane P = {(x, y) | y > 0}. But there exists a sequence tn → 0 such
that κ(tn) > 0. This example shows that the real analyticity assumption in
Theorem 3.1 is an essential one. For the case κ(0) > 0, one can certainly
cook up similar examples.

Now let Ω be a domain. A circle in R2 is called an inscribed osculating
circle in Ω, if it is in Ω and is osculating at least one real analytic piece of
∂Ω. Theorem 3.1 gives us the following finiteness result.

Corollary 3.1 (Finiteness of the Number of Inscribed Osculating
Circles). The number of the inscribed osculating circles in a domain Ω is
finite.

Proof. Suppose the number of the inscribed osculating circles is infinite.
Since there are finite number of real analytic pieces in ∂Ω, there is one
real analytic piece, denoted by ζ, which infinitely many distinct inscribed
osculating circles osculate. Theorem 3.1 implies that ζ has an infinite number
of points at which the curvature is local maximum. The curvature function of
a real analytic curve is also real analytic, thus this implies that the curvature
function must be constant. Namely, ζ must be a circular arc. But then it
can have only one osculating circle, which is absurd.

4. Medial Axis Transform.

4.1. Definition of Medial Axis Transform. Let Ω be a domain in R2.
Let Br(p) denote the closed disk of radius r centered at p. We define the
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ordered set D(Ω) by

D(Ω) = {Br(p) |Br(p) ⊂ Ω},
which is ordered by the set inclusion. That is, D(Ω) is the set of all closed
disks contained in Ω.
Remark 4.1. Throughout this paper, all disks are assumed to be closed
disks unless stated otherwise. This assumption simplifies many arguments
concerning closedness of objects in discussion. Furthermore, the radius of a
disk is allowed to be 0, in which case the disk is just a point.

Definition 4.1. The core of a domain Ω is the set of all maximal elements
in D(Ω), that is,

CORE(Ω) = {Br(p) ∈ D(Ω) |Bs(q) ∈ D(Ω)

and Br(p) ⊂ Bs(q) implies Br(p) = Bs(q)}.
We call Br(p) a maximal disk and ∂Br(p) a maximal circle, if Br(p) ∈
CORE(Ω).

Now we define the medial axis and the medial axis transform.

Definition 4.2. The medial axis of a domain Ω is the set of the centers of
disks in CORE(Ω). That is,

MA(Ω) = {p ∈ Ω |Br(p) ∈ CORE(Ω)}.
The medial axis transform of a domain Ω is the set of the ordered pairs

of centers and radii of disks in CORE(Ω). That is,

MAT(Ω) = {(p, r) ∈ Ω× (R+ ∪ {0}) |Br(p) ∈ CORE(Ω)}.
Here the radius is allowed to be 0 of course. Such a case occurs at a sharp

corner of ∂Ω.
4.2. Corner Points.

Definition 4.3. A boundary point is a corner (point) if the unit tangent
vector field is discontinuous at that point. It is called a sharp (resp., dull)
corner if the interior angle is strictly less (resp., greater) than π.

Definition 4.4. Let γ(t) be a piecewise real analytic curve which is a
part of the boundary of Ω. We assume that γ is oriented in such a way that
the interior of Ω is always on the left of γ. Let p = γ(0) and suppose p is
not a sharp corner. We define the inward unit cone IC(p) at p by

IC(p) = {−→v : |−→v | = 1,−→v is an inward pointing vector at p

such that 〈−→v , γ′(0+)〉 ≤ 0 and 〈−→v , γ′(0−)〉 ≥ 0}.
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Thus if γ is differentiable at p, IC(p) consists of the single inward unit
normal vector.

We say −→w ∈ IC(p) is an interior direction if 〈−→w , γ′(0+)〉 ≤ 0 and
〈−→w , γ′(0−)〉 ≥ 0, and a purely interior direction if 〈−→w , γ′(0+)〉 < 0 and
〈−→w , γ′(0−)〉 > 0 (i.e., −→w is in the interior of IC(p)).

4.3. Contact Points. From now on, for a medial axis point p, let B(p)
denote the disk Br(p) in CORE(Ω) which corresponds to p. The dis-
tance d(p, ∂Ω) is realized at the contact points of ∂B(p) with ∂Ω. That
is, d(p, ∂Ω) = d(p, q) for any q ∈ ∂Ω ∩ ∂B(p). If the boundary ∂Ω has a
circular arc portion whose corresponding circle is contained in Ω, and p is
the center of this circle, then p is in MA(Ω) and the distance d(p, ∂Ω) is
realized at every point in the circular arc portion. Thus the distance can be
realized at infinitely many boundary points. So the important information
is not the number of points where the distance is realized but the number
of connected components of the set of all common points between B(p) and
∂Ω. In this regard, we give the following definition.

Definition 4.5. Let B(p) be a disk in CORE(Ω). Then we define the
contact set of p (or of B(p), or of ∂B(p)), denoted by C(p), as

C(p) = ∂B(p) ∩ ∂Ω.

A point in C(p) is called a contact point of p (or of B(p), or of ∂B(p)). A
connected component of C(p) is called a contact component of p (or of B(p),
or of ∂B(p)), and a contact component is called an isolated contact point if
it is a point, and a contact arc if it is an arc containing its two end points.
Finally, ∂B(p) is called a contact circle.

It is trivial to see that a connected set in the real line is either a point or
an interval, thus a contact component is either an isolated contact point or
a contact arc.

Lemma 4.1 (Finiteness of the Number of Contact Components).
Let Br(p) be a disk in CORE(Ω). Then the number of the contact compo-
nents of p is finite.

Proof. Suppose that p has infinitely many contact components. Then there is
a real analytic piece γ : [a, b] −→ R2 of ∂Ω which have infinitely many contact
components of p. Define the function ρ : [a, b] −→ R by ρ(t) = d(p, γ(t)).
Since ρ is a real analytic function defined on a closed interval which has
infinitely many local minima, ρ must be constant. But then, this means
that γ is a part of a circular arc of B(p), which is absurd.
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In fact, almost all medial axis points have two contact components, which
will be clear in Section 6.3. However some medial axis points can have only
one contact component or more than two contact components, and we char-
acterize the medial axis points by the number of their contact components.

Definition 4.6. A point p in MA(Ω), which is not a sharp corner point,
is called an n-prong (point) where n ≥ 1, if C(p) has n contact components.
For reasons that will become clear when we deal with the graph structure of
the medial axis, we classify the sharp corner points as 1-prong points.

Definition 4.7. An n-prong point p for n ≥ 3 is called a bifurcation
point, and a 1-prong point is also called a terminal point. Let (p, r) be in
MAT(Ω). The disk Br(p) ∈ CORE(Ω) is called a bifurcation disk, if p is
a bifurcation point. In this case, ∂Br(p) is called a bifurcation circle. The
disk Br(p) ∈ CORE(Ω) is called an osculating disk (at q ∈ ∂Ω), if ∂B(p) is
an inscribed circle which osculates ∂Ω (at q).

The following lemma is useful in dealing with the terminal points.

Lemma 4.2. A 1-prong point, which is not a sharp corner, is the center
of an inscribed osculating circle with one contact component.

Proof. Let p be a 1-prong point which is not a sharp corner, and let r > 0
be the radius of the corresponding 1-prong circle with the center p. There
are two possibilities for the contact component: Either it is a circular arc
or a single point. If it is a circular arc, the proof is obvious. So assume
that the contact component consists of a single point q. Let κ+(q) and κ−(q)
be defined as above. First, note that max{κ+(q), κ−(q)} > 0. Now, clearly
1/r ≥ max{κ+(q), κ−(q)}. Suppose 1/r > max{κ+(q), κ−(q)}. By rotating
the domain, we may assume without loss of generality that q = 0 and the
x-axis is tangent to ∂Ω. Then ∂Ω can be described locally near q as the
graph of a function

f(x) = f(0) + f ′(0)x+
k+(q)

2
x2 +O(|x|3) for x ≥ 0,

and

f(x) = f(0) + f ′(0)x+
k−(q)

2
x2 +O(|x|3) for x ≤ 0,

while the circle of radius r with the center p is represented as the graph of
a function

g(x) = g(0) + g′(0)x+
g′′(0)

2
x2 +O(|x|3).
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Enlarge Br(p) to Br+ε(pε) by moving the center p to pε away from q while still
staying on the line from q to p to make d(pε, q) = r+ε. Since f(0) = g(0) = 0,
f ′(0) = g′(0) = 0, and 1/r = g′′(0) > max{κ+(q), κ−(q)}, one can find
sufficiently small ε > 0 and δ > 0 such that Br+ε(pε) ∩ Bδ(q) still stays
inside Ω. Now outside Bδ(q), the boundary ∂Ω and the boundary of Br(p)
has some positive distance, so for sufficiently small ε, Br+ε(pε) and ∂Ω do
not meet outside Bδ(q) either. Therefore, Br(p) cannot be a maximal disk.
Hence, 1/r must be equal to max{κ+(q), κ−(q)}.

By combining the above lemma and Corollary 3.1, we have the following.

Corollary 4.1 (Finiteness of the Number of 1-prongs). The number
of 1-prongs in a domain is finite.

5. Domain Decomposition Lemma.

In this section, we introduce our fundamental tool, called the Domain De-
composition Lemma. By this lemma, we can decompose the given domain
into many small subdomains. And the medial axis (resp., medial axis trans-
form) of the domain is represented by the union of all subdomains’ medial
axes (resp., medial axis transforms). See also [6] for related results and
discussions. The basic idea of the domain decomposition is illustrated in
Figure 3.

p

p p

pB(p)
B(p)

Figure 3. The Idea of Domain Decomposition.

For a given domain Ω, let p be a medial axis point and B(p) be the corre-
sponding maximal disk in CORE(Ω). Now let A1, . . . , An be the connected
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components of Ω\B(p), and we define the subset T (p) of B(p) to be the union
of all segments from p to contact points of B(p) with ∂Ω. For i = 1, 2, . . . , n,
let Bi be the union of the connected components of B(p)\T (p) which border
with Ai. Then B(p) \ T (p) = ∪ni=1Bi.

Now we have some basic facts about T (p) and D(Ω).

Lemma 5.1. T (p) ∩MA(Ω) = {p}.
Proof. Suppose q ∈ T (p) ∩MA(Ω). If q 6= p, then q lies on a line segment
from p to a contact point p′ on ∂B(p). Let r = d(q, ∂Ω) = d(q, p′). As
Br(q) is properly contained in B(p), Br(q) cannot be a maximal disk. Thus
q /∈MA(Ω), and therefore p = q.

Lemma 5.2. D(Ω) =
⋃n
i=1D(Ai ∪B(p)).

Proof. Suppose Br(q) is any disk in D(Ω). As we have seen before, if q ∈ T (p)
then Br(q) ⊂ B(p). Thus Br(q) ∈ ⋃ni=1D(Ai ∪ B(p)). If q 6∈ T (p) then
q ∈ Ai ∪ Bi for some i. We want to show that Br(q) ⊂ Ai ∪ B(p). Suppose
Br(q) 6⊂ Ai ∪ B(p). Then there exists q′ in Aj for some j 6= i such that
d(q, q′) = r. Note that the line segment from q to q′ should go through a
point w in T (p). Let p′ be the boundary point such that w ∈ pp′. Therefore
we get r = d(q, ∂Ω) ≤ d(q, p′) ≤ d(q, w) + d(w, p′). Since q′ 6∈ B(p), we
have d(w, p′) < d(w, q′). So r < d(q, w) + d(w, q′) = d(q, q′) = r, which is a
contradiction.

Lemma 5.3. For i 6= j, D(Ai ∪B(p)) ∩ D(Aj ∪B(p)) = D(B(p)).

Proof. Suppose Br(q) is a disk in D(Ai ∪B(p))∩D(Aj ∪B(p)). If q ∈ T (p),
then the proof is trivial as before. Suppose q /∈ T (p). Then we can assume
with no loss of generality that q ∈ Ai ∪ Bi, and as we have seen before,
Br(q) cannot meet any point in Aj. That is, Br(q) ∩Aj = ∅. Since Br(q) ⊂
Aj ∪B(p), we must have Br(q) ⊂ B(p).

Theorem 5.1 (Domain Decomposition Lemma). For any fixed me-
dial axis point p ∈MA(Ω), let B(p)(= Br(p)) be the corresponding maximal
disk, i.e., B(p) ∈ CORE(Ω). Suppose A1, . . . , An are the connected compo-
nents of Ω \B(p). Denote Ωi = Ai ∪B(p) for i = 1, . . . , n. Then

MA(Ω) =
n⋃
i=1

MA(Ωi)

and

MAT(Ω) =
n⋃
i=1

MAT(Ωi).
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Moreover, we have

MA(Ωi) ∩MA(Ωj) = {p}

and

MAT(Ωi) ∩MAT(Ωj) = {(p, r)},
for every distinct i and j.

Proof. Suppose (q, s) ∈ MAT(Ωi) for some i. We will show that Bs(q) is
also maximal disk in Ω. If there exists another disk Bs′(q′) ∈ D(Ω) such that
Bs(q) ⊂ Bs′(q′), then by Lemma 5.2, Bs′(q′) ∈ D(Ωj) for some j. If i = j,
then Bs(q) = Bs′(q′) by the maximality of Bs(q) in D(Ωi). If i 6= j, then
we get Bs(q) ⊂ Bs′(q′) ∈ D(Ωj). So Bs(q) ∈ D(Ωi) ∩ D(Ωj) = D(B(p)) by
Lemma 5.3. Since Bs(q) is maximal in D(Ωi), it is also maximal in D(B(p)),
which means that Bs(q) = B(p). In either case, Bs(q) is maximal in D(Ω).
So (q, s) ∈MAT(Ω). This proves MAT(Ω) ⊃ ∪ni=1MAT(Ωi).

On the other hand, suppose (q, s) ∈ MAT(Ω). Then by Lemma 5.2,
Bs(q) ∈ D(Ωi) for some i. Since Bs(q) is maximal in D(Ω), Bs(q) is also
maximal in D(Ωi). That is, (q, s) ∈MAT(Ωi). Thus we proved MAT(Ω) ⊂⋃n
i=1 MAT(Ωi).
Suppose (q, s) ∈ MAT(Ωi) ∩MAT(Ωj). Then Bs(q) ∈ D(Ωi) ∩ D(Ωj).

Thus, by Lemma 5.3, Bs(q) ∈ D(B(p)). Since Bs(q) is maximal in D(Ω), it is
also maximal in D(B(p)), and hence Bs(q) = B(p). This proves MAT(Ωi)∩
MAT(Ωj) = {(p, r)} for every i 6= j.

The results for MA(Ω) follows immediately from the above.

Remark 5.1. The Domain Decomposition Lemma can be used to localize
the arguments about MAT(Ω) (MA(Ω)): decompose the domain Ω recur-
sively by using the maximal disks Br1(p1), . . . , Brn(pn) in CORE(Ω). Let
Ω1, . . . ,ΩN be the resulting subdomains. Then, by using the above domain
decomposition lemma, we can easily see that MAT(Ω) = ∪Ni=1MAT(Ωi),
and MAT(Ωi) ∩MAT(Ωj) = (pk, rk) for some k (1 ≤ k ≤ n) and for every
i 6= j. Of course, the same statement can be made for MA(Ω). In short,
the global information about the medial axis (transform) can be obtained
by combining local informations about the medial axis (transform) only, and
local informations are independent of the global information.

6. Basic Notations and Lemmas.

6.1. Extended Boundary. We first make the following observation. Let q
be a point in ∂Ω. If q is not a corner, then there exists a unique point p in
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MA(Ω) such that q ∈ C(p). Moreover, −→qp is in the inner normal direction
at q. Let q be a dull corner. Then, for each interior direction of q, there
exists a unique point p in MA(Ω) such that q ∈ C(p). For a direction not
in IC(q), there are no points p in MA(Ω) such that q ∈ C(p). Finally, if q
is a sharp corner, then q is the only point in MA(Ω) such that q ∈ C(p).

In our analysis, we need to analyze the correspondence between the points
in ∂Ω and the points in MA(Ω) (or MAT(Ω)), and the above observation
can be used to establish the correspondence. But there are some problems
for dull corners, for, as we have observed, there corresponds a point p in
MA(Ω) (and (p, r) ∈MAT(Ω)) for each interior direction of a dull corner.
This prevents us to define a map from ∂Ω to MA(Ω) (MAT(Ω)), and thus
we need some concept generalizing the real boundary ∂Ω, which we call the
extended boundary.

Let Ω be a domain with genus g, and let C1,C2,. . . ,Cg+1 be the simple
closed curves in ∂Ω. Then by our standing assumption on the domain,
there exists a continuous map γ̃i : [0, 1] −→ Ci such that γ̃i(0) = γ̃i(1) for
each i. We slightly modify this map as follows. For each dull corner in
Ci, we replace the corresponding point in [0, 1] by a closed interval which
parametrize continuously the interior directions of that dull corner. Each
interior direction which corresponds to an end point of this inserted interval
should be the limit of the inner normal directions at points in ∂Ω, as the
corresponding parameters of these points approach to that end of this inter-
val from outside. By resizing the resulting intervals, we can redefine a map
γi : [0, 1] −→ (Ci \ {dull corners in Ci}) ∪ ⋃q: dull corners in Ci

IC(q) such that
γi(0) = γi(1) for each i.

Let S1 be the unit circle, and let T1, . . . , Tg+1 be disjoint copies of S1.
Now let ∂Ω∗ be ∪g+1

i=1Ti, where each Ti is viewed as the domain [0, 1] of the
map γi with 0 and 1 identified. In short, we have parametrized the set
(∂Ω\{dull corners})∪⋃q : dull corner IC(q) by the set ∂Ω∗ = ∪g+1

i=1Ti. In what
follows, we will always assume that one such parametrization is given.

Definition 6.1 (Extended Boundary). We call ∂Ω∗ the extended bound-
ary of Ω assuming the above parametrization is fixed.

Remark 6.1. We will often identify an element in ∂Ω∗ with the corre-
sponding one in the set (∂Ω \ {dull corners}) ∪⋃q : dull corner IC(q). In some
situations, we will also identify the points in ∂Ω∗ with real numbers, as it
is convenient if we can refer an arc in ∂Ω∗ as an interval of real numbers.
These identifications enable us to simplify our notations when we need to
deal with the boundary points which are not dull corners and the interior
directions of the dull corners at the same time.
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By virtue of the above definition of extended boundary, now we can give
the following definition.

Definition 6.2 (Medial Axis (Transform) Map along the Bound-
ary). The medial axis transform map (along the extended boundary), β̃ :
∂Ω∗ −→MAT(Ω), given by β̃(t) = (p(t), r(t)) is defined as follows.
(1) If t ∈ ∂Ω∗ corresponds to a point q in ∂Ω which is not a dull corner,

then (p(t), r(t)) is the unique point in MAT(Ω) such that q ∈ C(p(t)).
(2) If t ∈ ∂Ω∗ corresponds to an interior direction −→v of a dull corner q,

then (p(t), r(t)) is the unique point in MAT(Ω) such that p(t) is in
the half line from q in the direction of −→v , and q ∈ C(p(t)).

We define the map β : ∂Ω∗ −→ MA(Ω), which is called the medial axis
map (along the extended boundary), by β = π ◦ β̃, where π is the projection
map π : MAT(Ω) −→MA(Ω), given by π((p, r)) = p.

We will prove that the maps β̃ and β are continuous in Section 7.2.

6.2. Finiteness of the Number of Bifurcation Points. In this section,
we prove an important finiteness result concerning the number of the bifur-
cation points. First, we need the following lemma.

Lemma 6.1. Let Ω be a simply connected domain without any corner.
Then there exist at least two inscribed osculating circles.

Proof. Take any B(p) ∈ CORE(Ω). If ∂B(p) is an inscribed osculating
circle with only one contact component, let Ω1 be the whole domain Ω. We
will show that Ω1 has another inscribed osculating circle, which completes
the proof. If B(p) decomposes Ω into more than one subdomains, then take
any one of them, and call it Ω1. We will also show that Ω1 has an inscribed
osculating circle other than ∂B(p). Then the proof will be complete, since
there is another such subdomain.

Now let Ω1 be either one of those chosen above. It is easy to see that Ω1

is simply connected. Thus the boundary of Ω1 consists of two portions: one
is a circular arc portion (or a point) which is ∂Ω1 ∩ B(p), and the other is
a curve, called γ0, defined to be ∂Ω1 \ B(p). Take a point q1, in γ0 which
is at half length of γ0, and take the maximal disk B(p1) ∈ CORE(Ω1)
which makes contact with Ω1 at q1. If B(p1) has a contact arc, or has
only one contact component with ∂Ω1, then we are done by Lemma 4.2.
Otherwise, continue as follows: First note that B(p1) has no contact with
∂Ω1 ∩ B(p). For, otherwise, B(p1) ⊂ B(p) ⊂ Ω, hence B(p1) = B(p), since
B(p1) ∈ CORE(Ω1) implies B(p1) ∈ CORE(Ω). But this is absurd. Thus
B(p1) has at least two isolated contact points with ∂Ω1, none of which lies
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in ∂Ω1 ∩ B(p). Decompose Ω1 with B(p1). Then there is a subdomain Ω2

containing q1 which is disjoint from ∂Ω1∩B(p). It is easy to see that there is
a unique q∗1 in ∂B(p1) ∩Ω2 such that q∗1 6= q1 and the portion of γ0 between
q1 and q∗1 has no other points in ∂B(p1). Call this portion γ1. This process
is illustrated in Figure 4.
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Figure 4. Successive Subdomains.

Note that γ1 has the length less than or equal to the half of the length of
γ0. Now apply this process again to the subdomain Ω2 as a new domain. If
we continue the above processes recursively, then either this process stops at
a finite step in which case we are done, or this process continues indefinitely.
In the latter case, we can find a sequence γn such that γn is a portion of
γn−1 and the arc length of γn is less than or equal to that of γn−1, where γ0

is as given at the beginning. Because the length decreases at least by half
at each step, γn converges to a point, which we call q∗.

Now there exists a unique maximal disk B(p∗) which has contact with
∂Ω1 at q∗. We claim that q∗ is the unique contact point of p∗. Suppose
there is another point q′ ∈ ∂Ω1 ∩ ∂B(p∗). Since γn converges to q∗, γn
does not contain q′ for sufficiently large n. But by applying the domain
decomposition lemma, B(p∗) ∈ CORE(Ωn+1). This is a contradiction, since
q′ /∈ Ωn+1. Thus q∗ is the only contact point of p∗. Now the proof follows by
Lemma 4.2.
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Remark 6.2. By modifying the above proof slightly, one can in fact show
that Ω has at least two inscribed osculating circles with only one contact
component. In case there is no sharp corners, but dull corners are allowed,
then we can still have the same conclusion with slight modification of the
proof.

Remark 6.3. For a general simply connected domain with sharp corners
and dull corners, the statement in Lemma 6.1 is still true, if the sharp corners
are regarded as the inscribed osculating circle with zero radius, which implies
that there exist at least two 1-prongs.

Theorem 6.1 (Finiteness of the Number of Bifurcation Points).
The number of the bifurcation points in MA(Ω) is finite.

Proof. Suppose there are infinite number of bifurcation points pn ∈MA(Ω)
(n = 1, 2, . . . ). Let Brn(pn) (n = 1, 2, . . . ) be the corresponding disks in
CORE(Ω). Then, by the compactness of Ω, one can choose appropriate
subsequences, still called {pn} and {rn}, of {pn} and {rn} such that pn →
p0 ∈ Ω and rn → r0 for some p0 and r0. Then it is easy to see that Br0(p0) ∈
D(Ω). Choose some Bρ(q) ∈ CORE(Ω) such that Bρ(q) ⊃ Br0(p0). Then
for sufficiently small ε > 0, (Bρ+ε(q) ∩ Ω) \ Bρ(q) consists of m disjoint sets
A1,...,Am, where m is the number of the contact components of q. For each
i, Ai ∩ ∂Ω consists of two curves αi and βi. Note that the curves αi and βi,
for i = 1, ...,m, are all mutually disjoint, and we let ai = αi and bi = βi for
i = 1, ...,m.

By the real analyticity, we may choose ε > 0 sufficiently small so that
each αi or βi for i = 1, . . . ,m is real analytic, and has no corners and no
local maximum points for its curvature function: corners or curvature local
maximum points may occur only at points in ai ∩ Bρ(q) or bi ∩ Bρ(q) for
some i = 1, . . . ,m. Since Brn(pn) converges to Br0(p0) ⊂ Bρ(q), Brn(pn) ⊂
Bρ+ε(q) for all sufficiently large n. It is easy to see, by using the argument
in the proof of Lemma 5.2, that once Brn(pn) makes contact with aj or bj,
then it cannot make contact with any other ak or bk for k 6= j. Since pn is a
bifurcation point, Brn(pn) must make contact at least twice with one of aj
and bj. We may assume without loss of generality that there is a subsequence
of Brn(pn), still denoted by Brn(pn), each of which makes contact with a1 at
least twice. See Figure 5.
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Figure 5. Limit of Bifurcation Circles.

Let w be the unique point in a1 ∩ Bρ(q). Now by applying the domain
decomposition with Brn(pn), we can find a subdomain Ωn whose boundary
contains the portion ζn of a1 which connects a pair of contact points of pn. If,
for some n, none of these contact points is w, then Ωn has no corners, thus by
Lemma 6.1, ζn has a local maximum point for its curvature function, which
contradicts our choice of ε. Thus we may assume that for every sufficiently
large n, one of these contact points is w. Call the other contact point wn.
(Note that this situation may happen only when w is a dull corner of Ω.)
Since Brn(pn) converges to Br0(p0) ⊂ Bρ(q), wn must converge to w. Fix
sufficiently large n1. Then there is n2 such that wn2 lies on a1 between wn1

and w. Now by Domain Decomposition Lemma using Brn1
(pn1), we can

see easily that Brn2
(pn2) has no contact with b1. Thus Brn2

(pn2) must have
another contact point with a1 other than wn2 and w. Call it w′. Then by
applying Lemma 6.1, we can see that there exists a point in a1 between w′

and wn2 where the curvature takes a local maximum, which is impossible for
our choice of ε. Thus we have the desired result.

6.3. Generic 2-prong. In this section, we define some useful concepts:
generic 2-prong and generic points in ∂Ω∗.

Definition 6.3 (Generic 2-prong). A 2-prong p in MA(Ω) is a generic
2-prong, if the following conditions are satisfied.
(1) The two contact components of p are isolated contact points (denoted

by q1 and q2).
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(2) If qi (i = 1, 2) is not a dull corner, then ∂Ω near qi is real analytic, and
p is within the focal locus of a small piece of ∂Ω near qi.

(3) If qi (i = 1, 2) is a dull corner, then −→qip is in a purely interior direction
of qi.

The next theorem justifies the term ‘generic’, and this follows immedi-
ately from the finiteness results such as Corollary 4.1, Theorem 6.1, and
Corollary 3.1, all of which need the real analyticity of ∂Ω.

Theorem 6.2 (Genericity of Generic 2-prongs). The number of points
in MA(Ω) which are not generic 2-prong is finite.

We define one more concept which is a companion to that of generic 2-
prong.

Definition 6.4. A point t in ∂Ω∗ is called generic, if β(t) ∈MA(Ω) is a
generic 2-prong, where β : ∂Ω∗ −→MA(Ω) is the medial axis map defined in
Section 6.1.

6.4. Boundary Generation from Medial Axis Transform: Envelope
Formula. Now we derive an important formula which works in rather gen-
eral context.

Theorem 6.3 (Envelope Formula). Let γ : (a, b) −→MAT(Ω), γ(t) =
(p(t), r(t)) be a C1 curve such that |p′(t)| = 1 and p(t) is a 2-prong point for
all t ∈ (a, b). Then the contact set C(p(t)) consists of exactly two isolated
contact points for t ∈ (a, b), and their position vectors x+(t), x−(t) are given
by

x+(t) = p(t) + r(t)
{
−r′(t)p′(t) +

√
1− (r′(t))2q(t)

}
(2)

and

x−(t) = p(t) + r(t)
{
−r′(t)p′(t)−

√
1− (r′(t))2q(t)

}
,(3)

where q(t) is the vector obtained from rotating p′(t) counterclockwise by the
right angle.

Proof. Let x be a contact point for (p(t), r(t)). Then it must satisfy

|x− p(t)| = r(t) and |x− p(t+ ε)| ≥ r(t+ ε),
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for sufficiently small |ε|. Thus if we put

f(ε) = |x− p(t+ ε)|2 − r(t+ ε)2,

then the above condition is equivalent to

f(0) = 0 and f(ε) ≥ 0,

for sufficiently small |ε|. Since γ is at least C1 near t, f is C1 near 0. Thus
the conditions on f imply

f(0) = 0 and f ′(0) = 0,

which is equivalent to

|x− p(t)| = r(t)

and

〈x− p(t), p′(t)〉 = −r(t)r′(t).
Note that the above equations specifies the length of x− p(t) and the angle
between x − p(t) and p′(t). From this we can easily see that these two
equations have exactly two distinct solutions, and they are x+(t) and x−(t)
in Equations(2) and (3) which must be the only contact points for p(t), since
p(t) is a 2-prong point.

Remark 6.4. Note the point x+(t) and x−(t) are ‘always’ in symmetric
positions each other with respect to the line through p(t) with the direction
of the vector p′(t).
Remark 6.5. Let y+(t) = (x+(t)− p(t))/r(t) and y−(t) =
(x−(t)− p(t))/r(t) for a < t < b, i.e.,

y±(t) = −r′(t)p′(t)±
√

1− (r′(t))2q(t).

Let θ(t) > 0 be the angle between the vectors y±(t) and p′(t) and α(t)
be the angle between the vectors γ′(t) and p′(t). (Here we let α(t) have the
same sign with r′(t).)

Then we have

cos(θ(t)) = −r′(t), sin(θ(t)) =
√

1− (r′(t))2

and
tan(α(t)) = r′(t).

Thus we can conclude that

cos(θ(t)) = − tan(α(t)).
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7. Regularity of Medial Axis Transform.

7.1. Local Regularity of Medial Axis Transform. We now present a
sharp local regularity result for the medial axis transform. This kind of
regularity result is of fundamental importance in our understanding of the
geometric properties of MAT(Ω).

Here we will call Ω a Ck domain, if Ω satisfies all conditions in our standing
assumption except that the real analyticity of the boundary is replaced by
Ck.

Theorem 7.1. Let Ω be a Ck domain (k = 1, . . . ,∞, ω), and let (p, r)
be a point in MAT(Ω) such that the contact set of p consists of exactly two
points q1 and q2. Suppose the following conditions hold.
(1) If qi (i = 1, 2) is not a dull corner, then ∂Ω is Ck near qi, and p is

within the focal locus of a small piece of ∂Ω near qi.
(2) If qi (i = 1, 2) is a dull corner, then −→qip is in a purely interior direction

of qi.
Then MA(Ω) (resp., MAT(Ω)) is a Ck curve near p (resp., (p, r)).

Proof. By the assumptions, we can take two curves γi : (−ε, ε) −→ ∂Ω,
i = 1, 2, near qi respectively, such that, for each i = 1, 2, p is within the
focal locus of γi near qi if qi is not a dull corner. Let ρi be the distance
function from γi for i = 1, 2. By [7], ρi is a Ck function near p, if we take
sufficiently small ε > 0. Let F (x, y) = ρ1(x, y) − ρ2(x, y) which is defined

near p. Then ∇F (p) = ∇ρ1(p) −∇ρ2(p) =
−→q1p

|−→q1p| −
−→q2p

|−→q2p| 6= 0. Then by the

implicit function theorem, there is a line L through p such that, near p, the
set M = {(x, y) ∈ R2|F (x, y) = 0} is a graph of a Ck function over L. Note
that L can be chosen to be the line passing through p in the direction of−→v which is perpendicular to −→pq1 −−→pq2. From Remark 5.1,we can see easily
that there are no points in MA(Ω) other than those in M near p. Thus
MA(Ω) is represented by a Ck curve α near p. If we let r(s) be such that
(α(s), r(s)) be in MAT(Ω), then r(s) = ρ1(α(s)), and hence r is also Ck.
Thus MAT(Ω) is a Ck curve near (p, r).

Remark 7.1. In general, if MA(Ω) goes through the center p of an
inscribed osculating circle with contact arc, then MA(Ω) may not even be
C1, even if the boundary is Ck (k ≥ 1). In Figure 6 below, Ω is a C1 domain,
but MA(Ω) is only C0 near p. By changing the boundary of Ω slightly to
make it C∞, we can easily construct an example of a C∞ domain Ω with
MA(Ω) not even C1.
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p

Figure 6.

From Theorem 7.1, we have the following local result.

Corollary 7.1. Let (p, r) be a point in MAT(Ω) such that p ∈MA(Ω) is
a generic 2-prong. Then MA(Ω) (resp., MAT(Ω)) is a real analytic curve
near p (resp., (p, r)).

7.2. Continuity of Medial Axis Transform Map. Let γ1 : (a, b) −→
∂Ω∗ be a one-to-one, continuous curve such that γ1(t) is a generic point for
t ∈ (a, b). Then by the definition of generic point, β(γ1(t)) is a generic 2-
prong which we denote by p(t) ∈ MA(Ω) for t ∈ (a, b). Let r : (a, b) −→ R
be defined such that (p(t), r(t)) ∈ MAT(Ω), and let γ(t) = (p(t), r(t)) for
t ∈ (a, b). Now, by the definition of generic 2-prong, there exists a unique
generic point γ2(t) ∈ ∂Ω∗ which is a contact point of p(t) other than γ1(t)
for t ∈ (a, b).

Lemma 7.1 (Limit of Generic 2-prongs). Let γ1 : (a, b) −→ ∂Ω∗ be a
one-to-one, continuous curve such that γ1(t) is a generic point for t ∈ (a, b),
and let γ2, γ, p and r be defined as above. Then γ2 and γ are also one-to-
one, continuous curves, and γ2 has no intersections with γ1. Furthermore,
we have the following.
(1) The lengths of p and γ are finite.
(2) lim

t→a p(t) and lim
t→a r(t) exist, and are denoted by p(a) and r(a) respec-

tively.
(3) lim

t→a p
′(t) and lim

t→a r
′(t) exist, and are denoted by p′(a) and r′(a) respec-

tively.
(4) (p(a), r(a)) is in MAT(Ω) and γi(a), i = 1, 2 are contact points of

p(a), where γi(a) = lim
t→a γi(t) for i = 1, 2.

Proof. It is an easy consequence of Lemma 6.1, Theorem 6.2 and Corollary 7.1
that γ2 is a one-to-one, continuous curve with no intersections with γ1. By
Corollary 7.1, we may assume γ(t) and p(t) are real analytic after some
reparametrization of t. Furthermore, we take the unit speed parametrization
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for p, i.e., |p′| ≡ 1. In doing so, we may have to allow a = −∞ or b = ∞.
Now from Equations (2) and (3) in Theorem 6.3, we have

1
2

(
x+(t)− p(t)

r(t)
+
x−(t)− p(t)

r(t)

)
= −r′(t)p′(t),(4)

and

1
2

(
x+(t)− p(t)

r(t)
− x−(t)− p(t)

r(t)

)
=
√

1− (r′(t))2q(t).(5)

Note that if x± are curves in ∂Ω with no corner points, then the terms
(x±(t)− p(t))/r(t) are nothing but the unit outer normals of ∂Ω at x±(t)
respectively. If x± are dull corners, then −(x±(t)− p(t))/r(t) are the interior
directions of x± respectively. In any case, the limits of the left sides of
Equations (4) and (5) exist. Thus lim

t→a |r
′(t)p′(t)| = lim

t→a |r
′(t)| exists. If

lim
t→a |r

′(t)| = 0, then by (5), lim
t→a p

′(t) exists, as p′(t) is q(t) rotated by 90
degrees clockwise. Suppose lim

t→a |r
′(t)| = c > 0 but lim

t→a r
′(t) does not exists.

Then by the intermediate value theorem, there is a sequence tn → a such
that r′(tn) = 0. Thus by (5), the limit of the norm of the left side of (5)
must be 1, which must be less than 1 since lim

t→a(r
′(t))2 > 0. Thus we have a

contradiction and lim
t→a r

′(t) (6= 0) exists. Then by (4), lim
t→a p

′(t) exists.
Now suppose a = −∞. Then since |p′| = 1 and lim

t→a p
′(t) exists, the

curve p cannot be bounded, which is a contradiction to the fact that p is in
MA(Ω). Similarly b 6= ∞. Thus the length of p is finite. Since |r′| ≤ 1, it
follows that the length of γ is also finite, and so the existence of the limits
lim
t→a p(t) and lim

t→a r(t) is obvious. That (p(a), r(a)) is in MAT(Ω) and γi(a)’s
correspond to contact points of p(a) is an easy consequence of the fact that
(x±(t)− p(t))/r(t) converge.

From Lemma 7.1, we can obtain the following theorem.

Theorem 7.2 (Continuity of Medial Axis (Transform) Map). The
medial axis transform map β̃ = (p, r) : ∂Ω∗ −→MAT(Ω) and the medial axis
map β : ∂Ω∗ −→MA(Ω) defined in Section 6.1 is continuous.

Proof. Let t0 be a point in ∂Ω∗. By Theorem 6.2, we can take a small
interval (t0 − ε, t0 + ε) around t0 such that each of the two open intervals
(t0− ε, t0) and (t0, t0 + ε) consists of either only generic points or only points
in ∂Ω∗ corresponding to points in a circular arc in ∂Ω. If one of the intervals
(t0− ε, t0) and (t0, t0 + ε) corresponds to the latter case, the continuity from



MEDIAL AXIS TRANSFORM 83

that interval is obvious. So it is sufficient to show that lim
t→t0+

β̃(t) = β̃(t0)

and lim
t→t0+

β(t) = β(t0), where we have supposed (t0, t0 + ε) consists of only
generic points. But this is an immediate consequence of Lemma 7.1, and
thus we have the proof.

7.3. Path-connectedness of Medial Axis Transform. The following
theorem is a consequence of the continuity of the medial axis (transform)
map in the previous section. In fact, the proof contains a useful argument
which is the key idea of the process called killing homology in [2]. See also
[6, 11, 15] for other proofs.

Theorem 7.3. MAT(Ω) and MA(Ω) is path connected.

Proof. Suppose Ω has genus g. Note that MAT(Ω) = ∪g+1
i=1 β̃(Ti), where

∂Ω∗ = ∪g+1
i=1Ti is defined as in Section 6.1. We now join all the boundary

curves C1,C2,. . . ,Cg+1 by contact circles as follows: Let C1 be the outer
boundary curve. First, choose an inner boundary curve, say C2, which is
closest to the outer boundary curve C1. Let q1 ∈ C1 and s1 ∈ C2 be points
such that d(q1, s1) = d(C1, C2). Draw a disk Br1(p1) with the segment q1s1

as the diameter. Then it is easy to see that Br1(p1) is a maximal disk con-
tained in Ω, i.e., Br1(p1) ∈ CORE(Ω). We recursively define Bri(pi) as fol-
lows: Suppose {C1, C2, . . . , Ci} are joined by disks Br1(p1), . . . , Bri−1(pi−1)
in CORE(Ω). Choose a curve, say Ci+1, among unselected ones {Ci+1, . . . ,
Cg+1} such that Ci+1 is closest to the set C1 ∪ · · · ∪Ci. Let qi ∈ C1 ∪ · · · ∪Ci
and si ∈ Ci+1 be points such that d(qi, si) = d(Ci+1,∪ik=1Ck). Then the disk
Bri(pi) with the segment qisi as the diameter is again in CORE(Ω).

Note the continuity of β̃ implies that each β̃(Ti) is path-connected, and
since (pi, ri) ∈ (β̃(Ti) ∩ β̃(Ti+1)) 6= ∅ for 1 ≤ i ≤ g, MAT(Ω) = ∪g+1

i=1 β̃(Ti)
itself is path connected. The path connectedness of MA(Ω) follows easily
from that of MAT(Ω).

Remark 7.2. It is easy to see that the disk Bri(pi) connecting one of
C1, . . . , Ci to Ci+1 does not make contact with any other boundary curve.
Therefore, this process of connecting the boundary curves stops in exactly
g step, where g is the genus of Ω.

8. Graph Structure of Medial Axis Transform.

8.1. Topology of Medial Axis Transform. One of the nice features of
the medial axis (transform) is that it preserves the topological information
of the domain. We illustrate this fact by showing that MA(Ω) is a strong



84 HYEONG IN CHOI, SUNG WOO CHOI AND HWAN PYO MOON

deformation retract of Ω, hence MA(Ω) and Ω are homotopically equivalent.
For a definition of strong deformation retract, see [12].

Let p be any point in the interior int(Ω) of Ω, and q be a point in ∂Ω
such that d(p, ∂Ω) = d(p, q). Suppose p /∈ MA(Ω). Then the point q is
unique. Let m(q) be the point in MA(Ω) such that q is a contact point
of m(q) and p is on the line segment q m(q). We now define the homotopy
Hδ : int(Ω) −→MA(Ω) \ {sharp corners} for δ ∈ [0, 1]: If p /∈MA(Ω), then
define Hδ(p) = p(δ), where p(δ) is a point in the line segment between p and
m(q) such that the ratio of the length of p(δ)m(q) over the length of pm(q)
is 1− δ. If p ∈MA(Ω), simply define Hδ(p) = p. We call Hδ the canonical
homotopy associated with the medial axis. That Hδ is a continuous map is
an easy consequence of the fact that the medial axis map β is a continuous
map from ∂Ω∗ to MA(Ω) which is Theorem 7.2. Therefore we have proved
the following

Theorem 8.1. MA(Ω) \ {sharp corners} is a strong deformation retract
of int(Ω) by the canonical homotopy defined above.

Now let Ωδ = Hδ(int(Ω)). Then for sufficiently small δ, it is trivial to
define a homotopy Rδ retracting Ω to Ωδ while keeping MA(Ω) fixed. Com-
posing Rδ with Hδ above, we have

Corollary 8.1. MA(Ω) is a strong deformation retract of Ω. Hence
MA(Ω) (and thus MAT(Ω)) is homotopic to Ω.

Remark 8.1. In [15], F.-E. Wolter obtained the same result using different
method. It should be noted his result is also valid for higher dimension when
the boundary is smooth. Sherbrooke, Patrikalakis and Wolter also obtained
the same result [11].

8.2. Geometric Graph. In this section we summarize the results obtained
so far to show that the medial axis and the medial axis transform have the
structure which we will call geometric graph. The graph structure of medial
axis (transform) is extremely useful. It allows us to store and process the
entire information of a domain which is a 2-dimensional object, as a form of
graph which is 1-dimensional and relatively easy to handle.

We will call a point p ∈ MA(Ω) a vertex, if p is not a generic 2-prong.
So the number of the vertices of MA(Ω) is finite by Theorem 6.2. Let
p ∈MA(Ω) be a generic 2-prong. Then by Theorem 6.2 and Corollary 7.1,
it is easy to see that there exists a maximal real analytic curve in MA(Ω)
containing p such that all points on it are generic 2-prongs. We call such a
curve in MA(Ω) an edge. Thus every generic 2-prong is in one of the edges
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of MA(Ω) and the set of generic points in MA(Ω) is the union of all the
edges. Especially the edges have no mutual intersections and each edge has
no self-intersections. Now Lemma 7.1 says that each edge has a finite length
and its end points must be vertices. So an edge is one of the following type:
(1) A curve connecting two vertices.
(2) A curve whose both end points coincide at one vertex.
(3) A closed curve.

Let p ∈ MA(Ω) be a vertex which is an n-prong point (n ≥ 1). Then
there are n points (or intervals) C1, . . . , Cn in ∂Ω∗ which correspond to the
n contact components of p respectively, and there are 2n open intervals
of generic points in ∂Ω∗ each of whose one end point is in ∪ni=1Ci. By
Corollary 7.1 and Lemma 7.1, these intervals are paired to produce exactly
n real analytic curves emanating from p. This means that the vertex degree
of p is n. Since the number of the vertices is finite and the number of the
contact components of each vertices are finite by Lemma 4.1, it follows that
the number of edges is also finite. Finally, note that MA(Ω) is connected
by Theorem 7.3.

The above arguments can be applied in the same way to MAT(Ω), and
we skip the analogous definitions and results here. We call a set in R2(or
in R3) a geometric graph, if it is topologically a usual connected graph with
finite number of vertices and edges, where a vertex is a point in R2(or in
R3) and an edge is a real analytic curve with finite length whose limits of
tangents at the end points exist.

Summarizing the above arguments, we have:

Theorem 8.2 (Graph Structure of Medial Axis (Transform)).
MA(Ω) (MAT(Ω)) is a geometric graph, Moreover, we have the following.
(1) A point in an edge of MA(Ω) is a generic 2-prong, and hence MA(Ω)

is real analytic at this point.
(2) A vertex of degree 1 in MA(Ω) is either a sharp corner or the center

of an inscribed osculating circle with one contact component.
(3) A vertex of degree 3 or higher in MA(Ω) is a bifurcation point.
(4) A vertex of degree 2 in MA(Ω) is a 2-prong which is not generic.

Remark 8.2. Note that MA(Ω) and MAT(Ω) are isomorphic as graphs.
So we have omitted the obvious statements about MAT(Ω) in Theorem 8.2.

By using Remark 6.4 and Lemma 7.1, 2-prongs which are not generic can
be classified according to whether MA(Ω) and MAT(Ω) are C1 there.
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Let (p, r) be in MAT(Ω) such that p is a 2-prong which is not generic.

Type 1. Both of the two contact components of p are isolated contact
points:

In this case, MA(Ω) and MAT(Ω) are both C1 at p and (p, r) respectively.
This is valid even when the maximal disk Br(p) is osculating ∂Ω at the
contact points, which is illustrated in Figure 7.

p

Ω

ΜΑ(Ω)

osculating point

Figure 7. MA(Ω) and MAT(Ω) are C1.

Type 2. At least one contact component of p is a contact arc and the
lengths of the two contact components are not same:

Here we consider the length of an isolated contact point to be 0 of course.
In this case, both MA(Ω) and MAT(Ω) are not C1 at p and (p, r) respec-
tively. See Figure 8.

p
ΜΑ(Ω)

Ω

Figure 8. MA(Ω) and MAT(Ω) are not C1.

Type 3. Both of the two contact components are contact arcs with the
same length:

In this case, while MAT(Ω) is still not C1 at (p, r), MA(Ω) is C1 at p.
See Figure 9.
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pΜΑ(Ω)
Ω

Figure 9. MA(Ω) is C1 but MAT(Ω) has a C1 break.

9. Concluding Remarks.

Throughout this paper, the real analyticity condition on the boundary of
a domain is used to prove various finiteness results: The number of the
contact components of a medial axis point, the number of the 1-prongs,
the number of the bifurcation points, and the number of the medial axis
points which are not generic 2-prongs. We remark that a domain satisfying
these finiteness conditions has the same properties concerning the medial
axis (transform) with the ones in our class, even if the boundary is only Ck

(k = 2, . . . ,∞) rather than real analytic. But as one can see, usually these
finiteness conditions cannot easily be checked in general.
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